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1. Introduction

The generalized hypergeometric function pFq(x) may be defined for complex parameters and
argument by the series

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣x) =

∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

xk

k!
. (1.1)

When q = p this series converges for |x| <∞, but when q = p− 1 convergence occurs when
|x| < 1. However, when only one of the numeratorial parameters aj is a negative integer
or zero, then the series always converges since it is simply a polynomial in x of degree −aj .
In (1.1) the Pochhammer symbol or ascending factorial (a)k is defined by (a)0 = 1 and for
k ≥ 1 by (a)k = a(a+ 1) . . . (a+ k − 1). However, for all integers k we write simply

(a)k =
Γ(a+ k)

Γ(a)
,
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where Γ is the gamma function. We shall adopt the convention of writing the finite sequence
(except where noted otherwise) of parameters (a1, . . . , ap) simply by (ap) and the product
of p Pochhammer symbols by

((ap))k ≡ (a1)k . . . (ap)k,

where an empty product p = 0 reduces to unity.
Let (mr) be a nonempty sequence of positive integers. In this paper we shall derive trans-

formation formulas for the generalized hypergeometric functions r+2Fr+1(x) and r+1Fr+1(x)
whose r numeratorial and denominatorial parameters differ by positive integers (mr). Thus
we shall show in Sections 3, 4 and 5 respectively that

r+1Fr+1

(
b,
c,

(fr +mr)
(fr)

∣∣∣∣x) = ex m+1Fm+1

(
λ,
c,

(ξm + 1)
(ξm)

∣∣∣∣− x) , (1.2)

where |x| <∞,

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x) = (1− x)−a m+2Fm+1

(
a, λ,
c,

(ξm + 1)
(ξm)

∣∣∣∣ x

x− 1

)
, (1.3)

where |x| < 1, Rex < 1
2 , and

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x) = (1− x)c−a−b−m m+2Fm+1

(
λ, λ′,
c,

(ηm + 1)
(ηm)

∣∣∣∣x) , (1.4)

where |x| < 1. In these transformation formulas the quantities m, λ and λ′ are defined by

m ≡ m1 +m2 + · · ·+mr, λ ≡ c− b−m, λ′ = c− a−m, (1.5)

where, when (mr) is empty, we define m = 0. Following [1], the (ξm) and (ηm) are the
nonvanishing zeros of certain associated parametric polynomials of degree m, which we
denote generically by Qm(t), provided that certain restrictions on some of the parameters
of the generalized hypergeometric functions on both sides of (1.2) – (1.4) are satisfied. The
polynomial Qm(t) for the transformations (1.2) and (1.3) is given by (2.4). The associated
parametric polynomial for the transformation (1.4) is given by (5.10). Certain generalized
quadratic transformations for r+2Fr+1(x) are also provided in Section 6 and a summation
theorem when x = 1 is rederived in Section 7.

When (mr) is empty, (1.2) reduces to Kummer’s transformation formula for the confluent
hypergeometric function, namely

1F1

(
b
c

∣∣∣∣x) = ex 1F1

(
c− b
c

∣∣∣∣− x) , (1.6)

where |x| < ∞. Similarly, (1.3) and (1.4) reduce respectively to Euler’s classical first and
second transformations for the Gauss hypergeometric function, namely

2F1

(
a, b
c

∣∣∣∣x) = (1− x)−a 2F1

(
a, c− b

c

∣∣∣∣ x

x− 1

)
(1.7)

= (1− x)c−a−b 2F1

(
c− a, c− b

c

∣∣∣∣x) , (1.8)

where |x| < 1, Rex < 1
2 in (1.7) and |x| < 1 in (1.8).

In [1] Miller obtained the specialization m1 = · · · = mr = 1 of the transformation (1.2)
by employing a summation formula for a r+2Fr+1(1) hypergeometric series combined with a
reduction identity for a certain Kampé de Fériet function. In [2], an alternative, more direct

2



derivation of this specialization was given by employing Kummer’s transformation (1.6) and
a generating relation for Stirling numbers of the second kind {nk} defined implicitly by (2.2).
The specialization alluded to in [1, 2] is given by

r+1Fr+1

(
b,
c,

(fr + 1)
(fr)

∣∣∣∣x) = ex r+1Fr+1

(
c− b− r,

c,
(ξr + 1)

(ξr)

∣∣∣∣− x) . (1.9)

The (ξr) are the nonvanishing zeros (provided b 6= fj (1 ≤ j ≤ r) and (c − b − r)r 6= 0) of
the associated parametric polynomial Qr(t) of degree r given by

Qr(t) =

r∑
j=0

sr−j

j∑
k=0

{
j
k

}
(b)k(t)k(c− b− r − t)r−k, (1.10)

where the sr−j (0 ≤ j ≤ r) are determined by the generating relation

(f1 + x) . . . (fr + x) =

r∑
j=0

sr−jx
j . (1.11)

When r = 1, we have from (1.9), (1.10) and (1.11)

2F2

(
b,
c,
f + 1
f

∣∣∣∣x) = ex 2F2

(
c− b− 1,

c,
ξ + 1
ξ

∣∣∣∣− x) , (1.12)

where the nonvanishing zero ξ (provided b 6= f , c− b− 1 6= 0) of

Q1(t) = (b− f)t+ f(c− b− 1)

is given by

ξ =
f(c− b− 1)

f − b
. (1.13)

The Kummer-type transformation (1.12) for 2F2(x) was obtained by Paris [3] who employed
other methods. Paris’ result generalized a transformation for 2F2(x) derived by Exton [4]
and rederived in simpler ways by Miller [5] for the specialization f = 1

2b. Other derivations
of (1.12) have been recorded in [6 – 8].

In [9], the Euler-type transformations (1.3) and (1.4) specialized with m1 = · · · = mr = 1
were obtained. These specializations are given by

r+2Fr+1

(
a, b,
c,

(fr + 1)
(fr)

∣∣∣∣x)

= (1− x)−a r+2Fr+1

(
a, c− b− r,

c,
(ξr + 1)

(ξr)

∣∣∣∣ x

x− 1

)
(1.14)

= (1− x)c−a−b−r r+2Fr+1

(
c− a− r, c− b− r,

c,
(ηr + 1)

(ηr)

∣∣∣∣x) . (1.15)

The (ξr) are again the nonvanishing zeros of the polynomial Qr(t) of degree r given by
(1.10), where b 6= fj (1 ≤ j ≤ r) and (c− b− r)r 6= 0. The (ηr) are the nonvanishing zeros
of a different polynomial also of degree r that may be obtained from Theorem 4 specialized
with m1 = . . . = mr = 1 so that m = r. When r = 1, the transformation (1.14) reduces to
the result due to Rathie and Paris [8]

3F2

(
a, b,
c,

f + 1
f

∣∣∣∣x) = (1− x)−a 3F2

(
a, c− b− 1,

c,
ξ + 1
ξ

∣∣∣∣ x

x− 1

)
, (1.16)
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where ξ is given by (1.13). The transformation (1.16) was subsequently obtained by Maier
[10] who employed other methods. Maier [10] also obtained the specialization r = 1 of
(1.15), namely

3F2

(
a, b,
c,

f + 1
f

∣∣∣∣x) = (1− x)c−a−b−13F2

(
c− a− 1, c− b− 1,

c,
η + 1
η

∣∣∣∣x) ,
where

η =
f(c− a− 1)(c− b− 1)

ab+ f(c− a− b− 1)
,

which was also derived in [9].

2. Preliminary results

In this section we record several preliminary results that we shall utilize in the sequel.
Lemmas 1 and 3 and Theorem 1 below are proved in [1].

Lemma 1. Consider the polynomial in n of degree µ ≥ 1 given by

Pµ(n) ≡ a0nµ + a1n
µ−1 + · · ·+ aµ−1n+ aµ,

where a0 6= 0 and aµ 6= 0. Then we may write

Pµ(n) = aµ
((ξµ + 1))n

((ξµ))n
,

where (ξµ) are the nonvanishing zeros of the polynomial Qµ(t) defined by

Qµ(t) ≡ a0(−t)µ + a1(−t)µ−1 + · · ·+ aµ−1(−t) + aµ.

Lemma 2. Consider the generalized hypergeometric function r+1Fs+1((cr+1); (ds+1)|z) whose
series representation determined by (1.1) converges for z in an appropriate domain. Then
[11, p. 166]

r+1Fs+1

(
(cr+1)
(ds+1)

∣∣∣∣ z) = ez
∞∑
n=0

r+2Fs+1

(
−n, (cr+1)

(ds+1)

∣∣∣∣ 1) (−z)n

n!
, (2.1)

provided the summation converges.

The notation {nk} will be employed to denote the Stirling numbers of the second kind.
These nonnegative integers represent the number of ways to partition n objects into k
nonempty sets and arise for nonnegative integers n in the generating relation [12, p. 262]

xn =

n∑
k=0

{
n
k

}
(−1)k(−x)k,

{
n
0

}
= δ0n, (2.2)

where δ0n is the Kronecker symbol.

Lemma 3. For nonnegative integers j define

Sj ≡
∞∑
n=0

nj
Λn
n!
, S0 ≡

∞∑
n=0

Λn
n!
,

where the infinite sequence (Λn) is such that Sj converges for all j. Then

Sj =

j∑
k=0

{
j
k

} ∞∑
n=0

Λn+k
n!

.
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We shall also utilize the following summation theorem for the generalized hypergeometric
series r+2Fr+1(1) whose r numeratorial and denominatorial parameters differ by positive
integers.

Theorem 1. For nonnegative integer n and positive integers (mr)

r+2Fr+1

(
−n, b,

c,
(fr +mr)

(fr)

∣∣∣∣ 1) =
(λ)n
(c)n

((ξm + 1))n
((ξm))n

, (2.3)

where m = m1 + · · ·+mr, λ = c− b−m, (λ)m 6= 0 and b 6= fj (1 ≤ j ≤ r). The (ξm) are
the nonvanishing zeros of the associated parametric polynomial Qm(t) of degree m given by

Qm(t) =

m∑
j=0

σm−j

j∑
k=0

{
j
k

}
(b)k(t)k(λ− t)m−k, (2.4)

where the σj (0 ≤ j ≤ m) are determined by the generating relation

(f1 + x)m1 . . . (fr + x)mr =

m∑
j=0

σm−jx
j . (2.5)

Note when m1 = · · · = mr = 1, then m = r so that by (1.11) σj = sj (0 ≤ j ≤ r) and Qm(t)
reduces to Qr(t), which is the polynomial of degree r given by (1.10).

The following Theorem 2 concerns a specialization of a hypergeometric function in two
variables called the Kampé de Fériet function; for an introduction to the latter, see [11,
pp. 63–64]. Since the proof of Theorem 2 is very similar to that given in [1, Theorem 2], we
shall omit its proof.

Theorem 2. Suppose b 6= fj (1 ≤ j ≤ r) and (c− b− r)r 6= 0. Then we have the reduction
formula for the Kampé de Fériet function

F p:r+1;0
q:r+1;0

(
(ap) :
(bq) :

b,
c,

(fr +mr)
(fr)

;
;

∣∣∣∣− x, x)

= p+m+1Fq+m+1

(
c− b−m,

c,
(ap),
(bq),

(ξm + 1)
(ξm)

∣∣∣∣x) , (2.6)

where m ≡ m1+· · ·+mr and the solid horizontal line indicates an empty parameter sequence.
The (ξm) are the nonvanishing zeros of the associated parametric polynomial Qm(t) of degree
m given by (2.4).

Finally, the following lemma expresses a r+sFr+1(x) hypergeometric function, where
in the sequel s = 1, 2 and r pairs of numeratorial and denominatorial parameters differ
by positive integers, in terms of a finite sum of sF1(x) functions. This lemma will prove
fundamental to our discussion.

Lemma 4. For nonnegative integer s let (as) denote a parameter sequence containing s
elements, where when s = 0 the sequence is empty. Let (as + k) denote the sequence when k
is added to each element of (as). Let F(x) denote the generalized hypergeometric function
with r numeratorial and denominatorial parameters differing by the positive integers (mr),
namely

F(x) ≡ r+sFr+1

(
(as),
c,

(fr +mr)
(fr)

∣∣∣∣x) , (2.7)

where by (1.1) convergence of the series representation for the latter occurs in an appropriate
domain depending on the values of s and the elements of the parameter sequence (as). Then

F(x) =
1

A0

m∑
k=0

xkAk
((as))k

(c)k
sF1

(
(as + k)
c+ k

∣∣∣∣x) , (2.8)
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where m = m1 + · · ·+mr, the coefficients Ak are defined by

Ak ≡
m∑
j=k

{
j
k

}
σm−j , A0 = (f1)m1 . . . (fr)mr , Am = 1 (2.9)

and the σj (0 ≤ j ≤ m) are generated by the relation (2.5).

Proof: Now
((fr +mr))n

((fr))n
=

(f1 + n)m1

(f1)m1

. . .
(fr + n)mr

(fr)mr

,

where the numeratorial expression on the right-hand side is a polynomial in n of degree m
which can be written in the form

(f1 + n)m1
. . . (fr + n)mr

=

m∑
j=0

σm−jn
j

by (2.5). By (1.1) upon expanding F(x) as a power series in x we obtain

F(x) =

∞∑
n=0

((as))n
(c)n

((fr +mr))n
((fr))n

xn

n!

=
1

A0

m∑
j=0

σm−j

∞∑
n=0

nj
((as))n

(c)n

xn

n!

upon interchanging the order of summation. Application of Lemma 3 to the n-summation
followed by use of the identity

(α)k+n = (α)k(α+ k)n = (α)n(α+ n)k (2.10)

then yields

F(x) =
1

A0

m∑
j=0

σm−j

j∑
k=0

{
j
k

} ∞∑
n=0

((as))n+k
(c)n+k

xn+k

n!

=
1

A0

m∑
k=0

xkAk

∞∑
n=0

((as))n+k
(c)n+k

xn

n!

=
1

A0

m∑
k=0

xkAk
((as))k

(c)k

∞∑
n=0

((as + k))n
(c+ k)n

xn

n!
,

where we have interchanged the order of the j and k-summations and introduced the coeffi-
cients Ak defined by (2.9). Identification of the summation over n as sF1((as + k); c+ k |x)
then completes the proof.

3. The Kummer-type transformation (1.2)

If in (2.6) we set p = q = 0, we immediately obtain (1.2). Also by setting s = r and
cr+1 = b, (cr) = (fr + mr), dr+1 = c, (dr) = (fr) in the identity (2.1) and using the
summation formula (2.3) of Theorem 1, we can derive (1.2). However, we provide below a
more insightful derivation of the Kummer-type transformation (1.2) that utilizes Kummer’s
transformation (1.6) for the confluent hypergeometric function 1F1(x) together with Lemmas
1 and 4.

6



For positive integers (mr) define

F (x) ≡ r+1Fr+1

(
b,
c,

(fr +mr)
(fr)

∣∣∣∣x) .
Then, from (2.8) with s = 1 and a1 = b, we have

F (x) =
1

A0

m∑
k=0

xkAk
(b)k
(c)k

1F1

(
b+ k
c+ k

∣∣∣∣x) ,
where |x| < ∞ and m = m1 + · · · + mr. Application of Kummer’s transformation (1.6) to
each of the 1F1(x) functions then yields

F (x) =
ex

A0

m∑
k=0

xkAk
(b)k
(c)k

1F1

(
c− b
c+ k

∣∣∣∣− x)

=
ex

A0

m∑
k=0

(−1)kAk
(b)k
(c)k

∞∑
n=k

(c− b)n−k
(c+ k)n−k

(−x)n

(1)n−k
,

where an obvious adjustment of the summation index has been made. Upon noting the
identities

1

(1)n−k
=

(−1)k(−n)k
n!

, (α+ k)n−k =
(α)n
(α)k

, (3.1)

we have

F (x) =
ex

A0

m∑
k=0

Ak (b)k

∞∑
n=0

(−n)k
(c− b)n−k

(c)n

(−x)n

n!
,

where we have replaced the summation index in the inner sum by n = 0 since (−n)k = 0
when n < k. Noting the easily established identity

(c− b)n−k =
(λ)n(λ+ n)m−k

(λ)m
, (3.2)

where λ = c− b−m, we then obtain

F (x) =
ex

A0 (λ)m

m∑
k=0

Ak(b)k

∞∑
n=0

(λ)n (−x)n

(c)n n!
(−n)k(λ+ n)m−k

=
ex

A0 (λ)m

∞∑
n=0

(λ)n (−x)n

(c)n n!

m∑
k=0

Ak(b)k(−n)k(λ+ n)m−k, (3.3)

where we have interchanged summations.
With the definition

Pm(n) ≡
m∑
k=0

Ak(b)k(−n)k(λ+ n)m−k

=

m∑
j=0

σm−j

j∑
k=0

{
j
k

}
(b)k(−n)k(λ+ n)m−k, (3.4)

it is shown in [1] that Pm(n) is a polynomial in n of degree m having the form

Pm(n) = (f1 − b)m1
. . . (fr − b)mr

nm + · · ·+A0 (λ)m,
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where the remaining intermediate coefficients of powers of n in Pm(n) (when m > 1) are
determined by the expression on the right-hand side of (3.4). Now assuming b 6= fj (1 ≤
j ≤ r) and (λ)m 6= 0 we may invoke Lemma 1 thus obtaining

Pm(n) = A0 (λ)m
((ξm + 1))n

((ξm))n
, (3.5)

where the (ξm) are the nonvanishing zeros of the associated parametric polynomial of degree
m given by (2.4).

Finally, combining (3.3), (3.4) and (3.5) we find

F (x) = ex
∞∑
n=0

(λ)n
(c)n

((ξm + 1))n
((ξm))n

(−x)n

n!
,

which is the Kummer-type transformation (1.2).

4. The first Euler-type transformation (1.3)

In this section we shall provide two derivations of the Euler-type transformation formula
given by (1.3). The first proof relies on the reduction formula for the Kampé de Fériet
function given in Theorem 2. The second proof utilizes Lemma 4 and (1.7), and is similar
to the derivation of the Kummer-type transformation (1.2) given in Section 3.

Proof I. Let (mr) be a sequence of nonnegative integers and consider

F (y) ≡ (1− y)−a r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣ y

y − 1

)
,

where b 6= fj (1 ≤ j ≤ r) and (c− b− r)r 6= 0, so that

F (y) =

∞∑
k=0

(a)k(b)k
(c)k k!

((fr +mr))k
((fr))k

(−y)k(1− y)−a−k.

Since for |y| < 1

(1− y)−a−k =

∞∑
n=0

(a+ k)n
n!

yn

upon noting the identity (2.10), we have

F (y) =

∞∑
k=0

∞∑
n=0

(a)k+n
(b)k
(c)k

((fr +mr))k
((fr))k

(−y)k

k!

yn

n!

= F 1:r+1;0
0:r+1;0

(
a :

:
b,
c,

(fr +mr)
(fr)

;
;

∣∣∣∣− y, y) .
Now applying Theorem 2 with p = 1, q = 0, a1 = a we find

F (y) = m+2Fm+1

(
a, c− b−m,

c,
(ξm + 1)

(ξm)

∣∣∣∣ y) ,
so that

(1− y)−ar+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣ y

y − 1

)
= m+2Fm+1

(
a, c− b−m,

c,
(ξm + 1)

(ξm)

∣∣∣∣ y) ,
8



where m = m1 + · · ·+mr. The (ξm) are the nonvanishing zeros of the associated parametric
polynomial Qm(t) of degree m given by (2.4). Finally, letting y = x/(x−1) we deduce (1.3).
This evidently completes the first proof.

Proof II. Let (mr) be a sequence of nonnegative integers and consider

F (x) ≡ r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x) , (4.1)

where b 6= fj (1 ≤ j ≤ r) and (c − b − r)r 6= 0. Then, from (2.8) with s = 2 and a1 = a,
a2 = b, we have

F (x) =
1

A0

m∑
k=0

xkAk
(a)k(b)k

(c)k
2F1

(
a+ k, b+ k

c+ k

∣∣∣∣x) , (4.2)

where |x| < 1. The coefficients Ak and the integer m are defined respectively by (2.9) and
(1.5).

Application of Euler’s transformation (1.7) to the above 2F1(x) functions then yields

2F1

(
a+ k, b+ k

c+ k

∣∣∣∣x) = (1− x)−a−k 2F1

(
a+ k, c− b

c+ k

∣∣∣∣ x

x− 1

)
= (1− x)−a−k

∞∑
n=k

(a+ k)n−k(c− b)n−k
(c+ k)n−k (n− k)!

(
x

x− 1

)n−k
, (4.3)

where an obvious adjustment of the summation index has been made. Noting the identities
(3.1) and (3.2), we may write (4.3) as

2F1

(
a+ k, b+ k

c+ k

∣∣∣∣x) = x−k(1− x)−a
(c)k

(a)k(λ)m

×
∞∑
n=0

(a)n(λ)n
(c)n n!

(
x

x− 1

)n
(−n)k(λ+ n)m−k, (4.4)

where the summation index n = k has been replaced by n = 0 since (−n)k = 0 when n < k.
Now substitution of (4.4) in (4.2) yields

F (x) =
(1− x)−a

A0(λ)m

∞∑
n=0

(a)n(λ)n
(c)n n!

(
x

x− 1

)n m∑
k=0

Ak(b)k(−n)k(λ+ n)m−k,

where the order of summation has been interchanged. Finally, recalling (3.4) and (3.5), we
see that

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x) = (1− x)−a
∞∑
n=0

(a)n(λ)n
(c)n n!

((ξm + 1))n
((ξm))n

(
x

x− 1

)n
which evidently completes the proof of the transformation (1.3).

We summarize the results of Sections 3 and 4 in the following:

Theorem 3. Let (mr) be a nonempty sequence of positive integers and m ≡ m1 + · · ·+mr.
Then if b 6= fj (1 ≤ j ≤ r), (λ)m 6= 0, where λ ≡ c − b −m, we have the transformation
formulas

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x) = (1− x)−a m+2Fm+1

(
a, λ,
c,

(ξm + 1)
(ξm)

∣∣∣∣ x

x− 1

)
, (4.5)
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where |x| < 1, Rex < 1
2 , and

r+1Fr+1

(
b,
c,

(fr +mr)
(fr)

∣∣∣∣x) = ex m+1Fm+1

(
λ,
c,

(ξm + 1)
(ξm)

∣∣∣∣− x) , (4.6)

where |x| <∞. The (ξm) are the nonvanishing zeros of the associated parametric polynomial
Qm(t) of degree m given by

Qm(t) =

m∑
j=0

σm−j

j∑
k=0

{
j
k

}
(b)k(t)k(λ− t)m−k,

where the σj (0 ≤ j ≤ m) are determined by the generating relation (2.5).

We remark that the Kummer-type transformation formula (4.6) may be employed to
quickly provide an upper bound for the number of zeros of the generalized hypergeometric
function considered by Ki and Kim [13], namely

w(x) ≡ r+1Fr+1

(
(fr+1 +mr+1)

(fr+1)

∣∣∣∣x) ,
where |x| <∞ and (mr+1) is a sequence of positive integers such that M ≡ m1 + · · ·+mr+1.
Thus we have the following.

Corollary 1. The entire function w(x) has at most M zeros in the complex plane.

Proof: In (4.6) with m = m1 + · · ·+mr let b = fr+1 +mr+1 and c = fr+1. Then λ = −M
and (−M)m 6= 0, so that

w(x) = ex m+1Fm+1

(
−M, (ξm + 1)
fr+1, (ξm)

∣∣∣∣− x) . (4.7)

Since w(x) is proportional to a polynomial in −x of degree at most M , the proof of the
corollary is evident.

In fact we can show that [17]

m+1Fm+1

(
−M, (ξm + 1)
fr+1, (ξm)

∣∣∣∣− x) =
1

A0

M∑
k=0

Akx
k, (4.8)

where the Ak (0 ≤ k ≤ M) are defined in an analogous manner to that in (2.9). Thus the
zeros of the entire function w(x) are characterized completely by (4.7) and (4.8), whereas
Ki and Kim [13] only show the existence of at most M zeros for w(x). See also the fourth
example in Section 8, where we consider the specialization of w(x), namely (8.2).

5. The second Euler-type transformation (1.4)

Before establishing the second Euler-type transformation (1.4) we shall prove a preliminary
lemma. This lemma addresses the form of the associated parametric polynomial Qm(t) for
this transformation and is intended to streamline the derivation of the main theorem.

Lemma 5. Let m be a positive integer. Consider the polynomial in n defined by

Pm(n) ≡
m∑
k=0

Bk

p∑
s=0

(−p)s
s!

Λk,s(n), (5.1)
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where
Λk,s(n) ≡ (λ+ n)p−s(λ

′ + n)p−s(−n)k+s(1− c− n)s, (5.2)

p ≡ m− k, λ ≡ c− b−m, λ′ ≡ c− a−m and the coefficients Bk (0 ≤ k ≤ m) are arbitrary
complex numbers. Then Pm(n) is a polynomial in n of degree m that takes the form

Pm(n) = α0n
m + · · ·+ αm−1n+ αm

provided that (1 + a+ b− c)m 6= 0 and α0 6= 0, where

α0 = (−1)m
m∑
k=0

Bk
(1 + a+ b− c)m
(1 + a+ b− c)k

(5.3)

and
αm = B0(λ)m(λ′)m. (5.4)

Proof: It is evident that Pm(n) is a polynomial in n of degree at most 2m. By employing
the identities (2.10) and

(α)−k =
(−1)k

(1− α)k
(5.5)

we may write

Pm(n) =

m∑
k=0

Bk(−n)k(λ+ n)p(λ
′ + n)p

p∑
s=0

(−p)s(k − n)s(1− c− n)s
(1− λ− p− n)s(1− λ′ − p− n)ss!

=

m∑
k=0

Bk(−n)k(λ+ n)p(λ
′ + n)pGp,k(n), (5.6)

where the s-summation has been expressed as a 3F2(1) hypergeometric series that we define
as

Gp,k(n) ≡ 3F2

(
−p, k − n, 1− c− n

1− λ− p− n, 1− λ′ − p− n

∣∣∣∣ 1) . (5.7)

The degree of the polynomial Pm(n) can then be obtained by employing Sheppard’s
transformation [14, p. 141] given by

3F2

(
−p, a, b
d, e

∣∣∣∣ 1) =
(d− a)p(e− a)p

(d)p(e)p
3F2

(
−p, a, 1− σ

1 + a− d− p, 1 + a− e− p

∣∣∣∣ 1) ,
where p is a nonnegative integer and σ = d + e − a − b + p is the parametric excess.1

Application of this transformation to Gp,k(n) given by (5.7) then yields

Gp,k(n) =
(1− λ− p− k)p(1− λ′ − p− k)p
(1− λ− p− n)p(1− λ′ − p− n)p

3F2

(
−p, −n+ k, 1− σ
λ+ k, λ′ + k

∣∣∣∣ 1) ,
where now 1 − σ = c − a − b −m. Employing the identity (5.5) we obtain from this and
(5.6) the alternative representation

Pm(n) =

m∑
k=0

Bk(−n)k(λ+ k)p(λ
′ + k)p 3F2

(
−p, −n+ k, 1− σ
λ+ k, λ′ + k

∣∣∣∣ 1) . (5.8)

Since n appears only in a single numeratorial parameter of the 3F2(1) series on the right-
hand side of (5.8), we see that 3F2(1) is a polynomial in n of degree p = m − k only if

1We must assume σ 6= 1 for otherwise this transformation degenerates to a summation formula.
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σ 6= 1, 2, . . . , p; that is, provided (1 + a + b − c)m 6= 0. As (−n)k is a polynomial in n of
degree k, it follows that Pm(n) is a polynomial in n of degree k + p = m and hence must
have the form given in the statement of the lemma.

The coefficient α0 can be determined as follows. The highest power of n in the 3F2(1)
series in (5.8) arises from the last term when it is expressed as an s-summation; that is when
s = p

(−1)p(−n+ k)p(1− σ)p
(λ+ k)p(λ′ + k)p

=
(1− σ)p

(λ+ k)p(λ′ + k)p
np + · · · .

Thus from (5.8) we find the coefficient of nm in the polynomial Pm(n), namely

α0 =

m∑
k=0

(−1)kBk(1− σ)m−k

which yields (5.3). Finally, when n = 0 the only contribution to the double sum in (5.1)
arises from k = s = 0. Thus, since Pm(0) = αm, we deduce (5.4). The proof of the lemma
is evidently complete.

As we shall see below when

Bk = (−1)kAk(a)k(b)k (0 ≤ k ≤ m),

where the Ak (0 ≤ k ≤ m) are given by (2.9), the associated parametric polynomial Qm(t)
for the transformation (1.4) may be obtained from either (5.1), (5.6) or (5.8) by replacing
in the latter n by −t, so that in each case Qm(t) = Pm(−t).

We now establish an extension of the second Euler transformation (1.8) given in the
following.

Theorem 4. Suppose2 (1 + a+ b− c)m 6= 0 and (λ)m 6= 0, (λ′)m 6= 0. Then

r+2Fr+1

(
a, b, (fr +mr)
c, (fr)

∣∣∣∣x) = (1− x)c−a−b−mm+2Fm+1

(
λ, λ′, (ηm + 1)
c, (ηm)

∣∣∣∣x) (5.9)

valid in |x| < 1, where λ = c − b −m and λ′ = c − a −m. The (ηm) are the nonvanishing
zeros of the associated parametric polynomial Qm(t) of degree m = m1 + · · ·+mr, given by

Qm(t) =

m∑
k=0

(−1)kAk(a)k(b)k(t)k(λ− t)p(λ′ − t)pGp,k(−t), (5.10)

where p ≡ m− k, the coefficients Ak are defined by (2.9) and Gp,k(−t) is defined by (5.7).

Proof: Our starting point is the expansion (4.2) which expresses the hypergeometric func-
tion F (x) defined by (4.1) as a finite series of 2F1(x) functions. To each of the latter functions
we apply the second Euler transformation (1.8) to find

xk 2F1

(
a+ k, b+ k

c+ k

∣∣∣∣x) = xk(1− x)c−a−b−k2F1

(
c− a, c− b
c+ k

∣∣∣∣x)
= (1− x)c−a−b−m

p∑
s=0

(−p)s
s!

∞∑
n=0

(c− a)n(c− b)n
(c+ k)n

xn+k+s

n!
,

where we have defined p ≡ m − k and used the binomial theorem to expand the factor
(1 − x)p. If we now change the summation index n 7→ n + k + s and make use of (2.10),
(3.1) and the identity (5.5), the right-hand side of the above equation can be written as

(1− x)c−a−b−m
p∑
s=0

(−p)s
s!

∞∑
n=k+s

(c− a)n−k−s(c− b)n−k−s
(c+ k)n−k−s(1)n−k−s

xn

2The following are necessary conditions for the nonvanishing of the (ηm); sufficient conditions are given
below.
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= (1− x)c−a−b−m
(−1)k(c)k
(λ)m(λ′)m

p∑
s=0

(−p)s
s!

∞∑
n=0

(λ)n(λ′)n
(c)n

Λk,s(n)
xn

n!
,

where we have introduced the coefficients Λk,s(n) defined by (5.2) and have replaced the
inner summation index n = k + s by n = 0 since (−n)k+s = 0 for n < k + s. Hence, from
(4.2), we obtain

F (x) =
(1− x)c−a−b−m

A0(λ)m(λ′)m

∞∑
n=0

(λ)m(λ′)m
(c)n

xn

n!
Pm(n) (5.11)

upon interchanging the order of summation, where we have defined

Pm(n) ≡
m∑
k=0

(−1)kAk(a)k(b)k

p∑
s=0

(−p)s
s!

Λk,s(n). (5.12)

Now setting Bk = (−1)kAk(a)k(b)k in Lemma 5, we see that Pm(n) is a polynomial in
n of degree m having the form

Pm(n) = α0n
m + · · ·+ αm−1n+ αm,

where, from (5.3) and (5.4),

α0 = (−1)m(1 + a+ b− c)m
m∑
k=0

(−1)kAk(a)k(b)k
(1 + a+ b− c)k

, αm = A0(λ)m(λ′)m. (5.13)

Assuming that the coefficient α0 6= 0 and (λ)m 6= 0, (λ′)m 6= 0, we may then invoke Lemma
1 to obtain

Pm(n) = A0 (λ)m(λ′)m
((ηm + 1))n

((ηm))n
, (5.14)

where, from (5.6) with Bk defined as above, the (ηm) are the nonvanishing zeros of the
associated parametric polynomial given by (5.10).

Then, provided α0 6= 0, αm 6= 0 by Lemma 1, the zeros (ηm) of the associated parametric
polynomial Qm(t) are nonvanishing. This requires that (λ)m 6= 0 and (λ′)m 6= 0 for the
coefficient αm 6= 0; a necessary condition for α0 6= 0 is (1 + a + b − c)m 6= 0, since if this
is satisfied then (1 + a + b − c)k 6= 0 for k < m, so that the k-summation in (5.13) exists
as a finite value. A sufficient condition for α0 6= 0 is that the finite sum in (5.13) does not
vanish. With these restrictions, it then follows from (5.11) and (5.14) that

F (x) = (1− x)c−a−b−m
∞∑
n=0

(λ)n(λ′)n
(c)n

((ηm + 1))n
((ηm))n

xn

n!
,

thereby establishing Theorem 4.

6. Quadratic transformations

In this section we derive generalizations of two well-known quadratic transformation formulas
for the Gauss hypergeometric function, which we state in the following theorem.

Theorem 5. Let (mr) denote a sequence of positive integers such that m ≡ m1 + · · ·+mr.
Then we have the generalized quadratic transformation

r+2Fr+1

(
a, a+ 1

2 ,
c,

(fr +mr)
(fr)

∣∣∣∣ x2

(1∓ x)2

)
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= (1∓ x)2a2m+2F2m+1

(
2a, c−m− 1

2 ,
2c− 1,

(ξ2m + 1)
(ξ2m)

∣∣∣∣± 2x

)
, (6.1)

where, provided (c −m − 1
2 )m 6= 0, the (ξ2m) are the nonvanishing zeros of the associated

parametric polynomial Q2m(t) of degree 2m given by

Q2m(t) =

m∑
k=0

Ak
22k

(t)2k(c−m− 1
2 − t)m−k. (6.2)

In addition, we have the second generalized quadratic transformation

r+2Fr+1

(
a, a+ 1

2 ,
c,

(fr +mr)
(fr)

∣∣∣∣ 4x

(1 + x)2

)

= (1 + x)2a2m+2F2m+1

(
2a, 2a− c+ 1,

c,
(η2m + 1)

(η2m)

∣∣∣∣x) , (6.3)

where, provided (2a − c + 1)m 6= 0, the (η2m) are the nonvanishing zeros of the associated
parametric polynomial of degree 2m given by

Q2m(t) =

m∑
k=0

(−1)kAk
(2a− c+ 1)k

(t)k(2a− t)k. (6.4)

The coefficients Ak are defined by (2.9) and the transformations (6.1) and (6.3) hold in
neighborhoods of x = 0.

When r = 0, then m = 0 so that (6.1) and (6.3) reduce to the well-known quadratic
transformation formulas due to Kummer given by

2F1

(
a, a+ 1

2
c

∣∣∣∣ x2

(1∓ x)2

)
= (1∓ x)2a2F1

(
2a, c− 1

2
2c− 1

∣∣∣∣± 2x

)
(6.5)

and

2F1

(
a, a+ 1

2
c

∣∣∣∣ 4x

(1 + x)2

)
= (1 + x)2a2F1

(
2a, 2a− c+ 1

c

∣∣∣∣x) , (6.6)

which are respectively slight variations of those given in [15, Section 15.3, (19) and (20)].
Proof: We shall first establish (6.1). Let us define

F (x) ≡ r+2Fr+1

(
a, a+ 1

2 ,
c,

(fr +mr)
(fr)

∣∣∣∣X) , X ≡ x2

(1∓ x)2
. (6.7)

Then use of the expansion (2.8) with s = 2 and a1 = a, a2 = a+ 1
2 yields

F (x) =
1

A0

m∑
k=0

Ak
(a)2k

22k(c)k
Xk

2F1

(
a+ k, a+ k + 1

2
c+ k

∣∣∣∣X) , (6.8)

where we have employed the duplication formula

(α)2k = 22k(α)k(α+ 1
2 )k. (6.9)

Application of the quadratic transformation (6.5) to each of the 2F1(X) functions then yields

F (x) =
(1∓ x)2a

A0

m∑
k=0

Ak
(a)2k

22k(c)k
x2k 2F1

(
2a+ 2k, c+ k − 1

2
2c+ 2k − 1

∣∣∣∣± 2x

)

=
(1∓ x)2a

A0

m∑
k=0

Ak
(a)2k

24k(c)k

∞∑
n=2k

(2a+ 2k)n−2k(c+ k − 1
2 )n−2k

(2c+ 2k − 1)n−2k

(±2x)n

(1)n−2k
,
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where an obvious adjustment of the summation index has been made.
We now make use of (3.1) with k replaced by 2k and (6.9) together with the identity

(c′ + k)n−2k =
(c′ −m)n
(c′ −m)m

(c′ −m+ n)m−k
(c′)k

, c′ ≡ c− 1
2 .

Thus we obtain after some reduction

F (x) =
(1∓ x)2a

A0(c′ −m)m

m∑
k=0

2−2kAk

∞∑
n=2k

(2a)n(c′ −m)n
(2c′)n

(±2x)n

n!
(−n)2k(c′ −m+ n)m−k

=
(1∓ x)2a

A0(c′ −m)m

∞∑
n=0

(2a)n(c′ −m)n
(2c′)n

(±2x)n

n!
P2m(n),

where we have interchanged the order of summation, replaced the summation index n = 2k
by n = 0 since (−n)2k = 0 for n < 2k, and defined

P2m(n) ≡
m∑
k=0

Ak
22k

(−n)2k(c′ −m+ n)m−k.

Since by (2.9) Am = 1, it is clear that P2m(n) is a polynomial in n of degree 2m and has
the form

P2m(n) = 2−2mn2m + · · ·+A0(c′ −m)m.

We can then invoke Lemma 1 to obtain

P2m(n) = A0(c′ −m)m
((ξ2m + 1))n

((ξ2m))n
,

where, provided (c′ − m)m 6= 0, the (ξ2m) are the nonvanishing zeros of the associated
parametric polynomial given by (6.2). It then follows that

F (x) = (1∓ x)2a
∞∑
n=0

(2a)n(c−m− 1
2 )n

(2c− 1)n

((ξ2m + 1))n
((ξ2m))n

(±2x)n

n!

thereby establishing the first part of Theorem 6.
The second quadratic transformation formula (6.3) can be established in a similar man-

ner. We again let F (x) be given by (6.7), where X is now defined by X ≡ 4x/(1 + x)2.
Then from (6.8) and the quadratic transformation (6.6) we find mutatis mutandis that

F (x) =
(1 + x)2a

A0

m∑
k=0

Ak
(2a)2k
(c)k

xk 2F1

(
2a+ 2k, 2a− c+ k + 1

c+ k

∣∣∣∣x)

=
(1 + x)2a

A0

m∑
k=0

Ak
(2a)2k
(c)k

∞∑
n=k

(2a+ 2k)n−k(2a− c+ k + 1)n−k
(c+ k)n−k

xn

(1)n−k

=
(1 + x)2a

A0

∞∑
n=0

(2a)n(2a− c+ 1)n
(c)n

xn

n!
P2m(n),

where now

P2m(n) ≡
m∑
k=0

(−1)kAk
(2a− c+ 1)k

(−n)k(2a+ n)k. (6.10)

The polynomial P2m(n) is clearly of degree 2m and possesses the form

P2m(n) =
n2m

(2a− c+ 1)m
+ · · ·+A0.
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Provided (2a− c+ 1)m 6= 0, we may invoke Lemma 1 thus giving

P2m(n) = A0
((η2m + 1))n

((η2m))n
,

where the (η2m) are the nonvanishing zeros of the associated parametric polynomial Q2m(t)
given by (6.4). It then follows that

F (x) = (1 + x)2a
∞∑
n=0

(2a)n(2a− c+ 1)n
(c)n

((η2m + 1))n
((η2m))n

xn

n!
,

which establishes (6.3) and so completes the proof of Theorem 6.

In the case r = 1, m1 = 1, we see with f1 = f that the associated parametric polynomials
Q2(t) given by (6.2) and (6.4) are respectively

1
4 t

2 + ( 1
4 − f)t+ f(c− 3

2 ) and
t2 − 2at+ f(2a− c+ 1)

2a− c+ 1
.

The zeros of these polynomials are respectively

ξ1,2 = 2f − 1
2 ± [(2f − 1

2 )2 − 4f(c− 3
2 )]1/2 and η1,2 = a± [a2 − f(2a− c+ 1)]1/2.

Thus, from (6.1) and (6.3), we obtain the quadratic transformations

3F2

(
a, a+ 1

2 ,
c,

f + 1
f

∣∣∣∣ x2

(1∓ x)2

)

= (1∓ x)2a 4F3

(
2a, c− 3

2 ,
2c− 1,

ξ1 + 1,
ξ1,

ξ2 + 1
ξ2

∣∣∣∣± 2x

)
(6.11)

provided c 6= 3
2 , and

3F2

(
a, a+ 1

2 ,
c,

f + 1
f

∣∣∣∣ 4x

(1 + x)2

)

= (1 + x)2a 4F3

(
2a, 2a− c+ 1,

c,
η1 + 1,
η1,

η2 + 1
η2

∣∣∣∣x) (6.12)

provided c 6= 2a+ 1. The transformation (6.11) was found in an equivalent form by Rakha
et al. in [16].

We note that when c = 2a + 1 in (6.11) and c = 2a in (6.12) the 4F3 functions reduce
to lower order 3F2 functions. Furthermore, when c = 2a+ p+ 1 in (6.12) with p a positive
integer, we obtain

3F2

(
a, a+ 1

2 ,
2a+ p+ 1,

f + 1
f

∣∣∣∣ 4x

(1 + x)2

)
= (1 + x)2a 4F3

(
−p, 2a,

2a+ p+ 1,
η1 + 1,
η1,

η2 + 1
η2

∣∣∣∣x) ,
where η1,2 = a± (a2 +pf)1/2, and the right-hand side of this transformation is a polynomial
in x of degree p. We compare this with Whipple’s quadratic transformation [14, p. 130]
expressed in the form

3F2

(
a, a+ 1

2 ,
2a+ b+ 1,

f + b
f

∣∣∣∣ 4x

(1 + x)2

)
= (1 + x)2a 3F2

(
−b, 2a, 2a− f + 1

2a+ b+ 1, f

∣∣∣∣− x) ,
where b 6= −1−2a is otherwise arbitrary. In the particular cases b = 1 and p = 1, it is easily
seen that the right-hand sides of both transformations reduce to

(1 + x)2a
(

1 +
a(2a− f + 1)

(a+ 1)f
x

)
.
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It is worth mentioning that in general when the result of a transformation is proportional to
a polynomial Sp(x) of degree p, then it not essential to determine the zeros of the associated
parametric polynomial Qµ(t) of degree µ for the transformation in order to compute the
coefficients of powers of x in Sp(x), since these coefficients may be obtained directly by use
of Pµ(n) = Qµ(−n) itself. Thus in the specialization c = 2a + p + 1 just discussed above,
P2m(n) given by (6.10) may be used with the result for F (x) directly preceding it in order
to compute the coefficients of xn (0 ≤ n ≤ p) in the expression for F (x).

Finally, we make an observation concerning the derivation of the generalized quadratic
transformations (6.1) and (6.3). A quadratic transformation for 2F1(α, β; γ |x) exists if and
only if any of the quantities

±(1− γ), ±(α− β), ±(α+ β − γ)

are such that either one of them equals 1
2 or two of them are equal [15, p. 560]. It has

been possible to obtain the transformations (6.1) and (6.3) since the corresponding Gauss
functions that appear in the expansion (6.8) satisfy a condition of the type α − β = − 1

2
for 0 ≤ k ≤ m. An example where it is does not seem possible to apply a quadratic
transformation to each of the Gauss functions in (6.8) is given by

r+2Fr+1

(
a, b,

a+ b+ 1
2 ,

(fr +mr)
(fr)

∣∣∣∣X) , X ≡ 4x(1− x). (6.13)

In this case, the third condition above for the functions 2F1(a+ k, b+ k; a+ b+ k + 1
2 |X),

with 0 ≤ k ≤ m, has the form α + β − γ = k − 1
2 ; that is, a quadratic transformation only

exists when k = 0 and k = 1. Consequently, we are compelled to take r = 1, m = 1 in
(6.13). Thus, omitting the details for brevity, we find by a similar analysis described in [17]

3F2

(
a, b,

a+ b+ 1
2 ,
f + 1
f

∣∣∣∣X) = (1− 2x)−1 4F3

(
2a− 1, 2b− 1,
a+ b+ 1

2 ,
ξ1 + 1,
ξ1,

ξ2 + 1
ξ2

∣∣∣∣x) ,
where X is defined in (6.13),

ξ1,2 = A+ 1
2 ± [(A+ 1

2 )2 − 2Af ]1/2, A =
(2a− 1)(2b− 1)

2(a+ b− f)− 1

and it is supposed that a, b 6= 1
2 , f 6= a+ b− 1

2 .

7. Summation theorems

In this section we shall show that Lemma 4 may be employed to quickly and efficiently
obtain the following summation theorem.

Theorem 6. Suppose (mr) is a sequence of positive integers such that m ≡ m1 + · · ·+mr.
Then provided that Re (c− a− b) > m we have

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣ 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

m∑
k=0

Ak
A0

(−1)k(a)k(b)k
(1 + a+ b− c)k

, (7.1)

where the Ak (0 ≤ k ≤ m) are defined by (2.9). Moreover when c = b+1, then (7.1) reduces
to the Karlsson-Minton summation formula given by

r+2Fr+1

(
a, b,
b+ 1,

(fr +mr)
(fr)

∣∣∣∣ 1) =
Γ(1 + b)Γ(1− a)

Γ(1 + b− a)

(f1 − b)m1 . . . (fr − b)mr

(f1)m1
. . . (fr)mr

, (7.2)

where Re (−a) > m1 + · · ·+mr − 1.
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Proof: In (2.8) let x = 1, s = 2, a1 = a, a2 = b where for convergence of F(1) we must
have Re (c− a− b) > m. Thus we obtain

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣ 1) =
1

A0

m∑
k=0

Ak
(a)k(b)k

(c)k
2F1

(
a+ k, b+ k

c+ k

∣∣∣∣ 1) . (7.3)

Note that each 2F1(1) converges since Re (c − a − b) > m ≥ k ≥ 0. Thus employing the
Gauss summation theorem given by

2F1

(
a, b
c

∣∣∣∣ 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re (c− a− b) > 0

and the identity (5.5), we find for nonnegative integers k that

2F1

(
a+ k, b+ k

c+ k

∣∣∣∣ 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(−1)k(c)k
(1 + a+ b− c)k

.

Combining this with (7.3) we then obtain (7.1).
Now set c = b+ 1 in (7.1) thus giving

r+2Fr+1

(
a, b,
b+ 1,

(fr +mr)
(fr)

∣∣∣∣ 1) =
Γ(1 + b)Γ(1− a)

Γ(1 + b− a)

1

A0

m∑
k=0

(−1)kAk(b)k, (7.4)

where the Ak (0 ≤ k ≤ m) are given by

Ak =

m∑
j=k

{
j
k

}
σm−j , A0 = (f1)m1

. . . (fr)mr
(7.5)

and the σj (0 ≤ j ≤ m) are defined by (2.5). However,

m∑
k=0

(−1)kAk(b)k =

m∑
k=0

m∑
j=k

{
j
k

}
σm−j(−1)k(b)k

=

m∑
j=0

σm−j

j∑
k=0

{
j
k

}
(−1)k(b)k,

where by (2.2)
j∑

k=0

{
j
k

}
(−1)k(b)k = (−b)j .

Thus using (2.5) we have

m∑
k=0

(−1)kAk(b)k =

m∑
j=0

σm−j (−b)j = (f1 − b)m1
. . . (fr − b)mr

which, when combined with (7.4) and (7.5), yields (7.2). This evidently completes the proof
of Theorem 6.

We remark that the summation formula (7.1) has previously been deduced in [18], where
a slightly more complex result is recorded. For previous work pertaining to the Karlsson-
Minton summation formula (7.2) see the references cited in [18].
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8. Examples and concluding remarks

We now present some examples of the theorems developed in this paper; the cases r = 1,
m = 1 have already been mentioned. Consider first the case r = 2 with m1 = m2 = 1, so
that the associated parametric polynomial for the transformations (1.2) and (1.3) is given
by [1]

Q2(t) = αt2 − ((α+ β)λ+ β)t+ f1f2λ(λ+ 1), (8.1)

where λ = c− b− 2 and

α = (f1 − b)(f2 − b), β = f1f2 − b(b+ 1).

If we choose b = 1, c = 1
3 , f1 = 2

3 and f2 = 1
2 then

Q2(t) = 1
6 (t2 − 14t+ 80

9 ),

so that the zeros are ξ1 = 2
3 and ξ2 = 40

3 . We then have the first Euler and Kummer-type
transformation formulas

4F3

(
a, 1, 5

3 ,
3
2

1
3 ,

2
3 ,

1
2

∣∣∣∣∣x
)

= (1− x)−a 4F3

(
a, − 8

3 ,
5
3 ,

43
3

1
3 ,

2
3 ,

40
3

∣∣∣∣∣ x

x− 1

)
,

3F3

(
1, 5

3 ,
3
2

1
3 ,

2
3 ,

1
2

∣∣∣∣∣x
)

= ex 3F3

(
− 8

3 ,
5
3 ,

43
3

1
3 ,

2
3 ,

40
3

∣∣∣∣∣− x
)
,

where a is a free parameter.
Our second example has r = 1 where we consider in turn the cases with m1 = 2 and

m1 = 3. When m1 = 2, then λ = c− b− 2 and the associated parametric polynomial Q2(t)
for the first Euler and Kummer-type transformations takes the form

Q2(t) = At2 +Bt+ C,

where

A = (f − b)2, B = (b)2 + 2bλ(f + 1)− (2λ+ 1)(f)2, C = (f)2(λ)2.

We remark that the latter Q2(t) is easily seen to reduce to (8.1) in which f1 = f and
f2 = f + 1. In the particular case b = 5

3 , c = 4
3 and f = 1

3 , we find

Q2(t) = 1
81 (36t2 − 348t+ 112),

so that ξ1 = 1
3 and ξ2 = 28

3 . When m1 = 3, the cubic polynomial Q3(t) with b = 1, c = 7
4

and f = 2 reduces to
Q3(t) = − 1

8 (48t3 + 192t2 + 234t+ 135),

so that ξ1 = − 5
2 and ξ2,3 = − 3

4 ±
3
4 i. Hence, with m1 = 2 and m1 = 3 respectively, we

obtain from (1.3) the first Euler-type transformation formulas

3F2

(
a, 5

3 ,
7
3

4
3 ,

1
3

∣∣∣∣∣x
)

= (1− x)−a 3F2

(
a, − 7

3 ,
31
3

1
3 ,

28
3

∣∣∣∣∣ x

x− 1

)
,

3F2

(
a, 1, 5

7
4 , 2

∣∣∣∣∣x
)

= (1− x)−a 5F4

(
a, − 9

4 , −
3
2 ,

1
4 + 3

4 i,
1
4 −

3
4 i

7
4 , −

5
2 , −

3
4 + 3

4 i, −
3
4 −

3
4 i

∣∣∣∣∣ x

x− 1

)
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and from (1.2) the Kummer-type transformation formulas

2F2

(
5
3 ,

7
3

4
3 ,

1
3

∣∣∣∣∣x
)

= ex 2F2

(
− 7

3 ,
31
3

1
3 ,

28
3

∣∣∣∣∣− x
)
,

2F2

(
1, 5

7
4 , 2

∣∣∣∣∣x
)

= ex 4F4

(
− 9

4 , −
3
2 ,

1
4 + 3

4 i,
1
4 −

3
4 i

7
4 , −

5
2 , −

3
4 + 3

4 i, −
3
4 −

3
4 i

∣∣∣∣∣− x
)
.

We remark that, in the case m1 = 2, a contraction of the order of the hypergeometric
functions on the right-hand side has been possible since c = ξ1 + 1 = 4

3 .
As a third example, we consider the second Euler-type transformation (1.4) with r = 2

and m1 = m2 = 1. With the parameters a = 1
3 , b = 1

2 , c = 1 and f1 = 1
4 , f2 = 2, so that

λ = − 3
2 and λ′ = − 4

3 , we find from (5.10) the associated parametric polynomial given by

Q2(t) = 1
72 ( 15

2 t
2 + 23t+ 12),

which has the zeros η1 = − 2
3 , η2 = − 12

5 . This yields the second Euler-type transformation
formula

4F3

(
1
3 ,

1
2 ,

5
4 , 3

1, 1
4 , 2

∣∣∣∣∣x
)

= (1− x)−11/6 4F3

(
− 3

2 , −
4
3 ,

1
3 , −

7
5

1, − 2
3 , −

12
5

∣∣∣∣∣x
)
.

Finally, we give a fourth example by setting in (1.2) mj = 1, fj = c (1 ≤ j ≤ r) and
b = c+ 1. Thus m = r, λ = −r − 1 and we have

r+1Fr+1

(
c+ 1,
c,

. . . ,

. . . ,
c+ 1
c

∣∣∣∣x) = ex r+1Fr+1

(
−r − 1,
c,

(ξr + 1)
(ξr)

∣∣∣∣− x) , (8.2)

where the (ξr) are the nonvanishing zeros of the transformation’s respective associated para-
metric polynomial of degree r. However, we shall show that the polynomial of degree r + 1
on the right-hand side of (8.2) may be written explicitly. For since(

(c+ 1)n
(c)n

)p
=
(

1 +
n

c

)p
= c−p

p∑
k=0

(
p
k

)
nkcp−k,

for positive integer p, we have

pFp

(
c+ 1,
c,

. . . ,

. . . ,
c+ 1
c

∣∣∣∣x) = c−p
p∑
k=0

(
p
k

)
cp−k

∞∑
n=0

nk
xn

n!
,

where we have interchanged the order of summation. Now employing Lemma 3 we see that

∞∑
n=0

nk
xn

n!
=

k∑
j=0

{
k
j

} ∞∑
n=0

xn+j

n!
= ex

k∑
j=0

{
k
j

}
xj ,

so that

pFp

(
c+ 1,
c,

. . . ,

. . . ,
c+ 1
c

∣∣∣∣x) = c−pexRp(c;x), (8.3)

where we have defined the polynomial of degree p

Rp(c;x) ≡
p∑
k=0

(
p
k

)
cp−k

k∑
j=0

{
k
j

}
xj .

Interchanging the order of summation in the latter we may write

Rp(c;x) =

p∑
j=0

p∑
k=j

cp−k
(
p
k

){
k
j

}
xj . (8.4)
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Although (8.3) is indicated in [19, Section 7.12.4, p. 593], Prudnikov et al. do not provide
the explicit formula (8.4) for Rp(c;x), but only give a recurrence relation by which these
polynomials may be computed. Thus from (8.2) and (8.3) we have

r+1Fr+1

(
−r − 1,
c,

(ξr + 1)
(ξr)

∣∣∣∣− x) = c−r−1Rr+1(c;x),

where the (ξr) are the nonvanishing zeros of the associated parametric polynomial alluded
to above.

We remark that when c = 1, since [12, (6.15), p. 265]

p∑
k=0

(
p
k

){
k
j

}
=

{
p+ 1
j + 1

}
,

we find

Rp(1;x) =

p∑
j=0

{
p+ 1
j + 1

}
xj ,

so that from (8.3)

pFp

(
2, . . . , 2
1, . . . , 1

∣∣∣∣x) = ex
p∑
j=0

{
p+ 1
j + 1

}
xj . (8.5)

Equation (8.5) is recorded in [19] in an equivalent form along with the particular cases
1 ≤ p ≤ 7.

The analogous special case when mj = 1, fj = c (1 ≤ j ≤ r) and a = b = c in the
transformations (1.3) and (1.4), so that λ = −r in both cases, is discussed in [9], where it is
shown that explicit representations for the polynomials of degree r on the right-hand sides
of these transformations can be derived.

In this investigation we have developed an essentially elementary algebraic method for
obtaining transformation and summation formulas respectively for generalized hypergeomet-
ric functions and series of unit argument with integral parameter differences. The salient
feature employed herein is Lemma 4, whereby under mild restrictions such hypergeometric
functions and series can be written in a useful way as a finite sum of Gauss or confluent
functions. We have provided several examples to indicate the efficiency and power of this
method.
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