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Abstract

The aim in this research note is to provide an extension of Saalschütz’s summation the-
orem for the series r+3Fr+2(1) when r pairs of numeratorial and denominatorial parameters
differ by positive integers. The result is obtained by exploiting a generalization of an Euler-
type transformation recently derived by Miller and Paris [9].
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1. Introduction

The generalized hypergeometric function pFq(x) may be defined for complex parameters and
argument by the series

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣x) =

∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

xk

k!
. (1.1)

When q = p this series converges for |x| < ∞, but when q = p − 1 convergence occurs when
|x| < 1. However, when only one of the numeratorial parameters aj is a negative integer or zero,
then the series always converges since it is simply a polynomial in x of degree −aj . In (1.1) the
Pochhammer symbol or ascending factorial (a)n is given by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1 (n = 0)
a(a+ 1) . . . (a+ n− 1) (n ∈ N),

where Γ is the gamma function. The parametric excess s of the above series is defined by

s =

q∑
r=1

br −
p∑

r=1

ar.
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We shall adopt the convention of writing the finite sequence of parameters (a1, . . . , ap) simply by
(ap) and the product of p Pochhammer symbols by

((ap))k ≡ (a1)k . . . (ap)k,

where an empty product p = 0 reduces to unity. It is evident that whenever generalized hyperge-
ometric functions of special argument reduce to Gamma functions the results are of considerable
importance in applications. Until 1990, only a few classical summation theorems for 2F1, 3F2 and
for higher order series were known. Subsequently, some progress has been made in generalizing
these classical summation theorems; see [1, 3, 4, 5, 7, 10, 13, 15].

In our present investigation we shall be concerned with the following summation theorem due
to Saalschütz [14, p. 49]

3F2

(
−n, a, b

c, 1 + a+ b− c− n

∣∣∣∣ 1) =
(c− a)n(c− b)n
(c)n(c− a− b)n

, (1.2)

where n is a nonnegative integer. Such a series is said to be Saalschützian since the parametric
excess s = 1. As shown in [14, p. 49], this follows from taking the well-known Euler transformation

(1− x)a+b−c
2F1

(
a, b
c

∣∣∣∣x) = 2F1

(
c− a, c− b

c

∣∣∣∣x) (1.3)

and equating coefficients of xn on both sides of the equation. An extension of Saalschütz’s theorem
has been considered recently by Rakha and Rathie in [13] who showed that

4F3

(
−n, a, b,

c, 2 + a+ b− c− n,
f + 1
f

∣∣∣∣ 1) =
(c− a− 1)n(c− b− 1)n

(c)n(c− a− b− 1)n

(η + 1)n
(η)n

,

where

η =
(c− a− 1)(c− b− 1)f

ab+ (c− a− b− 1)f
.

As an application of this result these authors also established the quadratic transformation

(1 + x)−2a3F2

(
a, b,

a+ b+ 3
2 ,
f + 1
f

∣∣∣∣ 4x

(1 + x)2

)
= 4F3

(
2a, a− b− 1

2 ,
a+ b+ 3

2 ,
ω1 + 1,
ω1,

ω2 + 1
ω2

∣∣∣∣− x) ,
(1.4)

where
ω1,2 = a±

[
a2 + (a+ 1

2 )(a+ b− 1
2 )f/(b− f)

]1/2
.

In [9], a generalization of the Euler transformation (1.3), when r pairs of numeratorial and
denominatorial parameters differ by positive integers (mr), was obtained in the form

r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x)

= (1− x)c−a−b−mm+2Fm+1

(
c− a−m, c− b−m,

c,
(ηm + 1)

(ηm)

∣∣∣∣x) (1.5)

when |x| < 1. Here (ηm) are the nonvanishing zeros of the associated parametric polynomial
Qm(t) of degree m ≡ m1 + · · ·+mr given by

Qm(t) =

m∑
k=0

Bk(a)k(b)k(t)kGm,k(t) (1.6)
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with
Bk ≡ (−1)kAk(c− a−m+ k)m−k(c− b−m+ k)m−k

and

Gm,k(t) ≡ 3F2

(
−m+ k, t+ k, c− a− b−m
c− a−m+ k, c− b−m+ k

∣∣∣∣ 1) .
For 0 ≤ k ≤ m, the function Gm,k(t) is a polynomial in t of degree m − k. The coefficients Ak

are defined by

Ak =

m∑
j=k

S
(k)
j σm−j , A0 = (f1)m1 . . . (fr)mr , Am = 1, (1.7)

where S
(k)
j is the Stirling number of the second kind and the coefficients σj (0 ≤ j ≤ m) are

generated by

(f1 + x)m1
. . . (fr + x)mr

=

m∑
j=0

σm−jx
j .

The case m1 = · · · = mr = 1 in (1.5) has been given earlier in [8], and also in [6] using
different methods. When (mr) is empty we define m = 0; in this case (1.5) reduces to the Euler
transformation (1.3). In Section 2, we shall employ the same approach described in [14, p. 49] to
the transformation formula (1.5) in our proof of the extension of Saalschütz’s theorem to r+3Fr+2

series.

2. The extension of Saalschütz’s theorem

The extension of Saalschütz’s summation theorem is given by the following:

Theorem 1. Let (mr) be a set of positive integers and define m ≡ m1 + · · · + mr. Let n be a
nonnegative integer. Then

r+3Fr+2

(
−n, a, b,

c, 1 + a+ b− c+m− n,
(fr +mr)

(fr)

∣∣∣∣ 1) =
(c− a−m)n(c− b−m)n

(c)n(c− a− b−m)n

((ηm + 1))n
((ηm))n

,

(2.1)
where (ηm) are the nonvanishing zeros of the associated parametric polynomial Qm(t) of degree
m defined in (1.6).

Proof: From (1.5) we have

m+2Fm+1

(
c− a−m, c− b−m,

c,
(ηm + 1)

(ηm)

∣∣∣∣x)

= (1− x)m+a+b−c
r+2Fr+1

(
a, b,
c,

(fr +mr)
(fr)

∣∣∣∣x) .
The coefficient of xn on the left-hand side is

(c− a−m)n(c− b−m)n
(c)n n!

((ηm + 1))n
((ηm))n

(2.2)

and this must equal the coefficient of xn on the right-hand side. With

Dk ≡ (−1)k
(
m+ a+ b− c

k

)
,
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this latter coefficient is given by

n∑
k=0

Dn−k
(a)k(b)k
(c)k k!

((fr +mr))k
((fr))k

=

n∑
k=0

(−1)n−kΓ(1 + a+ b− c+m)

(n− k)! Γ(1 + a+ b− c+m− n+ k)

(a)k(b)k
(c)k k!

((fr +mr))k
((fr))k

=
(c− a− b−m)n

n!

n∑
k=0

(−n)k
k!

(a)k(b)k
(c)k (1 + a+ b− c+m− n)k

((fr +mr))k
((fr))k

=
(c− a− b−m)n

n!
r+3Fr+2

(
−n, a, b,

c, 1 + a+ b− c+m− n,
(fr +mr)

(fr)

∣∣∣∣ 1) ,
where we have used the identities

(−n)k =
(−1)kn!

(n− k)!
,

Γ(1− α)

Γ(1− α− n)
= (−1)n(α)n.

Equating this coefficient to that in (2.2) we then obtain the desired summation (2.1) 2

3. Examples

In the case r = 1 and m1 = m = 1 we have from (2.1)

4F3

(
−n, a, b,

c, 2 + a+ b− c− n,
f + 1
f

∣∣∣∣ 1) =
(c− a− 1)n(c− b− 1)n

(c)n(c− a− b− 1)n

(η + 1)n
(η)n

, (3.1)

where η is the zero of the first-degree parametric polynomial obtained from (1.6)

Q1(t) = −{f(c− a− b− 1) + ab}t+ (c− a− 1)(c− b− 1)f,

whence

η =
(c− a− 1)(c− b− 1)f

ab+ (c− a− b− 1)f
.

This result was derived in [13] using a different approach.
A special case of (3.1), which may be of some interest, is obtained when c = 1 + a− b, so that

η = (a− 2b)f/(2f − a), to yield

4F3

(
−n, a, b,

1 + a− b, 1 + 2b− n,
f + 1
f

∣∣∣∣ 1) =
(a− 2b)n(−b)n

(1 + a− b)n(−2b)n

{
1 +

n(2f − a)

(a− 2b)f

}
,

where we have used the fact that (η + 1)n/(η)n = (η + n)/η. This result was obtained earlier by
Kim, Rathie and Paris by other means who used it to obtain a reduction formula for the Kampé
de Fériet function [2]. In the above result, if we let f = 1

2a we obtain

4F3

(
−n, a, b, 1 + 1

2a

c, 1 + 2b− n, 1
2a

∣∣∣∣∣ 1
)

=
(a− 2b)n(−b)n

(1 + a− b)n(−2b)n
(a 6= 2b),

which is a known summation; see [14, Appendix III, Eq. (17)].
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Also, in the case r = 1 with m = 2, we find from (1.7) that A0 = f(1 + f), A1 = 2(1 + f) and
A2 = 1. Introducing the abbreviated notation

λ ≡ c− a− 2, λ′ ≡ c− b− 2, σ ≡ c− a− b− 2,

we obtain from (1.6) the quadratic parametric polynomial (with zeros η1 and η2) given by

Q2(t) = A0(λ)2(λ′)2

{
1− 2σt

λλ′
+

(t)2(σ)2
(λ)2(λ′)2

}
−A1abt(λ+ 1)(λ′ + 1)

{
1− σ(1 + t)

(λ+ 1)(λ′ + 1)

}
+A2(a)2(b)2t(1 + t)

= A0(λ)2(λ′)2

{
1− 2Bt

λλ′
+
Ct(1 + t)

(λ)2(λ′)2

}
,

where

B ≡ σ +
ab

f
, C ≡ (σ)2 +

2abσ

f
+

(a)2(b)2
(f)2

.

Then, from (2.1),

4F3

(
−n, a, b,

c, 3 + a+ b− c− n,
f + 2
f

∣∣∣∣ 1) =
(c− a− 2)n(c− b− 2)n

(c)n(c− a− b− 2)n

(η1 + 1)n
(η1)n

(η2 + 1)n
(η2)n

. (3.2)

For example, if a = 3
2 , b = 2, c = 5

4 and f = 1 we find

Q2(t) = 3465
256 {1 + 40

99 t−
16
495 t(1 + t)},

which has the zeros η1 = − 9
4 and η2 = 55

4 .
Finally, we consider the case r = 2 with m1 = m2 = 1 (so that m = 2). If we take a = 1

3 ,
b = 1

2 , c = 1, f1 = 1
4 and f2 = 2, we find the parametric polynomial

Q2(t) = 1
72{12 + 31

2 t+ 15
2 t(1 + t)}

which has the zeros η1 = − 2
3 and η2 = − 12

5 . Then from (2.1) we obtain

5F4

(
−n, a, b, 5

4 , 3
c, 3 + a+ b− c− n, 1

4 , 2

∣∣∣∣ 1) =
(c− a− 2)n(c− b− 2)n

(c)n(c− a− b− 2)n

( 1
3 )n (− 7

5 )n

(− 2
3 )n (− 12

5 )n
.

Similarly, other results can also be obtained.

Remark. Two other quadratic transformations, different from that in (1.4), have been presented
by Miller and Paris [9, Section 6] in the form

(1 + x)−2a3F2

(
a, a+ 1

2 ,
c,

f + 1
f

∣∣∣∣ x2

(1 + x)2

)
= 4F3

(
2a, c− 3

2 ,
2c− 1,

ξ1 + 1,
ξ1,

ξ2 + 1
ξ2

∣∣∣∣− 2x

)
(3.3)

provided c 6= 3
2 , where

ξ1,2 = 2f − 1
2 ± [(2f − 1

2 )2 − 4(c− 3
2 )f ]1/2,

and

(1 + x)−2a3F2

(
a, a+ 1

2 ,
c,

f + 1
f

∣∣∣∣ 4x

(1 + x)2

)
= 4F3

(
2a, 2a− c+ 1,

c,
η1 + 1,
η1,

η2 + 1
η2

∣∣∣∣x) (3.4)
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provided c 6= 2a+ 1, where

η1,2 = a± [a2 − (2a− c+ 1)f ]1/2.

In the same paper, the authors also derived the extension of both these quadratic transformations
in the more general case of r pairs of numeratorial and denominatorial parameters differing by
positive integers. It should be pointed out that the results in (3.3) and (3.4) were also obtained
in [11] and [12], repectively, following different methods.

Acknowledgement: Y. S. Kim acknowledges the support of the Wonkwang University Research
Fund (2012).
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Korean Math. Soc. 48(1) (2011) 151–156.

[14] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

[15] R. Vidunas, A generalization of Kummer’s identity, Rocky Mountain J. Math. 32(2) (2002) 919–936.

6


