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Abstract: This is the continuation of Vinogradov, Paris, Yanushkevichiene (2012a) (see [34]).
Members of the power-variance family of distributions became popular in stochastic modelling
which necessitates a further investigation of their properties. Here, we establish Zolotarev duality
of the refined saddlepoint-type approximations for all members of this family thereby providing
an interpretation of the Letac–Mora reciprocity of the corresponding NEF’s. Several illustrative
examples are given. Subtle properties of related special functions are established.

1 Introduction

This is the second part of a series of two articles. The first part of our article quoted as reference
[34] is referred to as [VPY1] throughout. The notation is consistent with, and the attached list of
references complements that of [VPY1].

Our interest in the PVF is motivated by the elegant mathematical properties of this class (in-
cluding their connections with particular special functions) as well as by their increasing popularity
in stochastic modelling. For instance, the members of the Poisson-exponential EDM, which cor-
respond to p = 3/2 and are discussed just below formula (3.23) in [VPY1] as well as in Example
4.3, emerge in the studies on the evolution of branching–fluctuating particle systems and their
continuous–state limits. We refer to Vinogradov (2007a, 2007c, 2007d), and Hochberg and Vino-
gradov (2009) for more detail. The latter article discusses such topics as the temporal forward
evolution of the cluster structure of such particle systems and their limits, and also their backward
evolution towards a Poisson field (see pp. 256–257 therein). The latter phenomenon is consistent
with the fact that specific subclasses of the Poisson-gamma class can sometimes “degenerate” into
either a Poisson or a gamma distribution (compare Vinogradov (2004a, pp. 1022–1023) or Kaas
(2005, p. 9)).

Although the following list of references is incomplete, it still gives some insight into how diverse
is the area of applications of the PVF. Thus, financial applications were discussed, among others, by
Lee and Whitmore (1993), Barndorff-Nielsen and Shephard (2001), and Vinogradov (2002, 2004b,
2008; see also the references therein) who applied Tweedie laws with p ∈ (−∞, 0]∪ (2,+∞) for the
description of the random movements of equities. Their use provides an advantage, as compared to
the stable laws per se, since in contrast to stable distributions, the majority of the members of the
PVF possess finite moments, whereas their scaling properties given by [VPY1, form. (3.28) and
(3.31)] are quite comparable to those of the class of the stable distributions.
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In turn, the rapidly growing interest in the development of more adequate stochastic models
for numerous sets of clustered data necessitates further studies of the delicate properties of the
Poisson-gamma subclass of the Tweedie family, which corresponds to p ∈ (1, 2) and is characterized
by [VPY1, form. (3.23)–(3.25)]. The Poisson-gamma class was originally introduced by Fisher
and Cornish (1960, p. 223) to describe “the total rainfall for a given period” for many localities.
In addition, we refer to Le Cam (1961, p. 167; see also the references therein) for an important
special case and a comprehensive review of the early work pertaining to the stochastic theory of
precipitation. More recently, Jørgensen and de Souza (1997), and Smyth and Jørgensen (2002)
employed the Poisson-gamma subclass of the PVF to fit Property & Casualty Insurance data. The
Tweedie distributions have also been used to address some problems in biology (cf., for example,
Kendal (2002, 2007)), genetics (cf., for example, Kendal (2004)), and medicine (cf., for example,
Kendal et al. (2000)). Thus, Kendal et al. (2000), Kendal (2002, 2004) demonstrated a good fit of
members of Tweedie EDM’s with p ∈ (1, 2) for numerous biological data as compared to Poisson
distributions.

Hougaard (2000) considered some applications of the Tweedie family in survival analysis. The
use of the members of the PVF in the time series and longitudinal data analyses for non-normal
data is the subject of the papers by Jørgensen and Tsao (1999), and by Jørgensen and Song (1998,
2006, 2007). Kendal and Jørgensen (2011a, 2011b) discussed various relations between the Poisson-
gamma distributions, the data clustering, weak convergence to members of the PVF and Taylor’s
power law, whereas Jørgensen et al. (2011, Subsec. 2.3) constructed a class of the self–similar–type
stochastic processes with dependent increments, whose marginals belong to the PVF.

Next, we present a few references that consider applications of the PVF in such areas as damage
accumulation in complex structures (cf., for example, Ditlevsen (1990, p. 334)), nature preservation
and ecology (cf., for example, Friis-Hansen and Ditlevsen (2003, form. (17)), and climatology (cf.,
for example, Hasan and Dunn (2011)). It seems appropriate to comment on some of the empirical
findings of the latter two articles. Thus, it appears that the empirically confirmed exponential law
for the oil spills in Øresund and in Great Belt which was established by Friis-Hansen and Ditlevsen
(2003, form. (17)) for their compound Poisson model is consistent with the possibility of deriving
the gamma approximation for the compound Poisson-gamma class described above. At the same
time, Hasan and Dunn (2011) demonstrated that for the amount of monthly rainfall in various
locations in Australia, one can incur both gamma and the compound Poisson-gamma distributions.
In turn, this necessitates the consideration of the entire Tweedie family, and not just a part of it.
Additional information on possible applications of the Poisson-gamma subclass of the PVF can be
found in Withers and Nadarajah (2011, p. 16).

For this Poisson-gamma class, several numerical estimates for the value(s) of the power param-
eter p have been derived. For instance, Kendal (2004) obtained that p ≈ 1.51 for a particular set of
biological data, whereas for the model considered by Hasan and Dunn (2011), the typical p ≈ 1.6.
Withers and Nadarajah (2011, Sec.’s 4–6) address such aspects of the statistical inference for the
class of the Poisson-gamma distributions as the MLE, the construction of the method of moments
estimators, and the assessment of their quality.

2 Some auxiliary results on reciprocity and special functions

The property of the reciprocity of a pair of NEF’s is applicable in a rather general setting, and has
already found numerous interpretations in the fluctuation theory of Lévy processes and random
walks (cf., for example, Letac and Mora (1990, Th.’s 5.3 and 5.6), Kokonendji (2001, Th. 1 and
comment below that theorem), Kokonendji and Khoudar (2006, Th. 2 and Cor. 3)). Recall that in
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the context of the Tweedie family, the reciprocity transformation is given by [VPY1, form (4.2)].
Note that a combination of [VPY1, form. (1.1) and (4.2)] stipulates that ∀p ∈ (2, 3), any Tweedie
r.v. Twp(µ, λ) does not possess a reciprocal (compare Letac and Mora (1990, p. 24)).

Lemma 2.1 Fix the arbitrary values of p ∈ ∆ \ (2, 3), µ ∈ Ωp and λ ∈ R1
+. Then

the collection {ζp,µ,λ(s), − ζ3−p,1/µ,λ(−s)} is a pair of inverse functions. (2.1)

Proof of Lemma 2.1. It follows with some effort from Vinogradov (2004a, Prop. 1.1.i-vi). 2

Remark 2.2 The analytical property (2.1) stipulates a correspondence between the c.g.f.’s of the
reciprocal pair of the members of the PVF whose values p and p′ of the power parameter satisfy
[VPY1, form (4.2)] (compare Tweedie (1984, pp. 584–585), and Letac and Mora (1990, Th. 5.2)).
Also, Lemma 2.1 (which refines slightly Letac and Mora (1990, Th. 5.2)) corrects a misprint made
by Vinogradov (2004a, Prop. 1.1.vii).

For p ≤ 0, the already known probabilistic interpretation of the Letac–Mora reciprocity is ex-
pressed in terms of the law of the first passage times for the spectrally negative Hougaard stochastic
processes (see Letac and Mora (1990, p. 25) or Vinogradov (2002, Th. 4.1 and Cor. 4.1)). It is rel-
evant that the same probabilistic property is closely related to Zolotarev duality, which is specified
in Proposition 2.3 and Corollary 2.4.

In the case of the extreme stable laws, Zolotarev’s result on the duality of a pair of the p.d.f.’s of
the stable distributions with parameters {α ∈ (1, 2]; β = −1} and {α′ := 1/α ∈ [1/2, 1); β′ := 1}
can be given in an equivalent form as follows:

Proposition 2.3 For arbitrary fixed values of p ∈ (−∞, 0] and λ ∈ R1
+, and y ∈ R1

+,

fp,0,λ(y) ≡ yρp−1 · f3−p,∞,λ(yρp). (2.2)

Proof of Proposition 2.3. The validity of (2.2) is obtained with some effort by combining
Zolotarev (1986, form. (2.3.3)), [VPY1, form. (3.9)–(3.11)] with some calculus. 2

A subsequent application of the “exponential tilting transformation” (which is employed for
the derivation of [VPY1, form. (3.14)]) yields the following relationship between the p.d.f.’s of the
members of a reciprocal pair of Tweedie r.v.’s Twp(µ, λ) and Twp′(µ′, λ′)}, whose parameters are
related by means of [VPY1, form. (4.2)], in the case where these r.v.’s are obtained by an exponential
tilting of the extreme stable laws Twp(0, λ) with p ≤ 0, and Twp′(+∞, λ′) with p′ = 3 − p ≥ 3,
respectively. (The latter r.v.’s are characterized by [VPY1, form. (3.34)–(3.35)].)

Corollary 2.4 For arbitrary fixed values of p ∈ (−∞, 0] ∪ [3,+∞), µ ∈ Ωp, λ ∈ R1
+, and y ∈ R1

+,

fp,µ,λ(y) ≡ yρp−1 · exp{−θp · (y − 1) +Ap · (yρp − 1)} · f3−p,1/µ,λ(yρp). (2.3)

Proof of Corollary 2.4. Combine [VPY1, form. (3.7), (3.8), (3.14)] with (2.2). 2

In Section 3, we will explain why Zolotarev–type duality per se does not hold in the Poisson-
gamma case, for which p ∈ (1, 2) (with the exception of the trivial, self-reciprocal case of p = 3/2
or ρ = 1 considered in Remark 3.2.i). However, Theorem 3.1.i reveals in particular that if one
considers the class of the Poisson-gamma distributions then an analogue of Zolotarev–type duality
remains valid for the refined saddlepoint–type approximations (with an arbitrary fixed number of
refining terms of decreasing magnitude) for the densities of the absolutely continuous components
of these distributions. This partly supports the statement made by Letac and Mora (1990, p. 24,
lines 19–20).
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It is known that the reciprocity of Tweedie EDM’s with the values of the reciprocal pair {p, p′}
comprising the two-point set {1; 2} can be interpreted in terms of the well-known result on the
Poisson flow of arrivals in the case of exponential inter-arrival times. In addition, Theorem 3.1.ii
provides the new interpretation of this relationship between two specific c.g.f.’s in terms of an
identity relationship which involves the corresponding Poincaré series (see (3.2)).

The remainder of this section contains relevant information on particular special functions.

Definition 2.5 The general Wright function with p numeratorial and q denominatorial gamma
functions, where p and q are non-negative integers, is given by

pΨq(z) :=
∞∑

k=0

∏p
r=1 Γ(ar · k + cr)∏q
r=1 Γ(br · k + dr)

· zk

k!
, (2.4)

where the parameters ar, br are real and positive, cr, dr are arbitrary real constants and it is
supposed that ar · k + cr /∈ {0,−1,−2, . . .} (k ∈ {0, 1, 2, . . . }; 1 ≤ r ≤ p).

Numerous asymptotic representations for the general Wright function (2.4) and their heuristic
interpretation are isolated into Subsection 5.1. See formulas (5.3) and (5.7)–(5.8) therein.

In its turn, pΨq(z) belongs to a wider class of Fox H-functions. We refer the reader to Janson
(2010) for several additional examples of the probability distributions that are closely related to
H-functions, and to Schneider (1986, form. (2.13) and (2.16)).

The specific parts of the proof of [VPY1, Lm. 4.6.i], which is given in Appendix A, are isolated
into the separate Subsections 5.1 and 5.2. In addition, the methodology employed in the proof of
that lemma is related to the so-called “Stokes phenomenon” which is well familiar to specialists
in the Theory of Special Functions; see, for example, Paris (2011a, Sec. 1.7). As with any other
developed branch of mathematics, the Theory of Special Functions has its own tool-box comprised
of theory-specific methods and results. According to Paris (2011a, p. 78), “the root cause” of
this fundamental phenomenon “is a consequence of asymptotically approximating a given function,
which possesses a certain multi-valued structure, in terms of approximants of a different multi-
valued structure.” It is relevant that such approximants, which the specialists in the Theory of
Special Functions frequently call the algebraic and the exponential (or the exponentially small)
expansions, respectively, independently emerged in several articles and monographs on analytical
Probability Theory without any reference to the Stokes phenomenon. [VPY1, Lm. 4.6.i] delineates
this important connection, thereby paving the road for further use of the Stokes phenomenon in
Probability Theory and Theoretical Statistics. That lemma plays an essential role in the proof of
[VPY1, Th. 4.8], which is given in Appendix B.

3 Extending Zolotarev–Type Duality for Tweedie EDM’s

First, observe that an identity-type result which would be analogous to the identity (2.3) cannot
hold for values of p ∈ (1, 2) (except for the self-reciprocal case of p = 3/2, which is considered in
Remark 3.2.i). This is because [VPY1, form. (3.26)] implies that for 1 < p < 2, the ratio of the
functions fp,µ,λ(y) and yρp−1 · f3−p,1/µ,λ(yρp) (multiplied by a particular exponential factor) does
not converge to 1 as y ↓ 0.

At the same time, the following result, which stipulates an analogue of Zolotarev duality for the
members of the PVF for which both p and p′ belong to [1, 2], holds for the Poincaré series which
correspond to the respective reciprocal pairs which are contained in this family. In view of (2.3),
the same assertion on a relationship between the Poincaré series trivially holds in the case where
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both p and p′ belong to (−∞, 0] ∪ [3,+∞). Also, in part (ii) of the following assertion we choose
to use ρ2 (which is equal to 0 by [VPY1, form. (2.6)]) instead of just writing 0 in order to stress
the similarity between (2.3), (3.1) and (3.2).

Theorem 3.1 Fix y ∈ R1
+. Then

(i) For arbitrary fixed values of p ∈ ∆ \ ({1} ∪ [2, 3)), µ ∈ Ωp and λ ∈ R1
+, the following Poincaré

series are identical:

Fp,µ(y, λ) ≡ yρp−1 · exp{−θp · (y − 1) +Ap · (yρp − 1)} · F3−p,1/µ(yρp , λ). (3.1)

(ii) For arbitrary fixed µ ∈ R1
+ and λ ∈ y−1 ·N, the following Poincaré series are identical:

F2,µ(y, λ) ≡ yρ2−1 · exp{−θ2 · (y − 1) + λ · log y} · F1,1/µ(yρ2 , λ). (3.2)

Proof of Theorem 3.1. (i) The validity of (3.1) for p ∈ (−∞, 0]∪ [3,+∞) follows from (2.3). For
p ∈ (1, 2), (3.1) follows from the combination of [VPY1, Prop. 4.1.ii, Th. 4.8.i2 and Cor. 4.9.ii].
(ii) The validity of (3.2) follows from [VPY1, Prop. 4.1.iii and Th. 4.8, parts (i1) and (i3)]. 2

Remark 3.2 (i) In the case where p = 3/2, a stronger exact result holds, as compared to the
identity (3.1) for the corresponding Poincaré series. In this self-reciprocal case, ρ3/2 = 1. A
subsequent combination of [VPY1, form. (3.7)–(3.8), (3.25) and (4.4)] yields the following identity:

f3/2,µ,λ(y) ≡ y1−1 · exp{−θ3/2 · (y − 1) +A3/2 · (y1 − 1)} · f3/2,1/µ,λ(y),

where y ∈ R1
+ (compare (2.3)).

(ii) Since yρ2 ≡ 1, the Poincaré series which emerges on the right-hand side of (3.2) does not
depend on y. Also, it is straightforward to verify that for arbitrary fixed µ ∈ R1

+ and λ ∈ R1
+, and

for a fixed y ∈ R1
+, limp→2{Ap · (yρp − 1)} = λ · log y. This limiting result stresses a connection

between (3.1) and (3.2).

4 Special Cases

In this section we concentrate on three special cases in which the function φ(ρ, 0, z) can be expressed
in terms of standard special functions (see (4.1), (4.9) and (4.16)). The first two cases were discussed
in a related setting in Zolotarev (1986, form. (2.8.33) and (2.8.31), respectively), whereas the third
case was considered, among others, by Vinogradov (2007a, form. (2.5)–(2.6)) and Hochberg and
Vinogradov (2009, form. (2.4)–(2.5)). Also, (4.6), (4.14) and (4.22) provide closed-form expressions
for the refined saddlepoint-type approximation [VPY1, form. (4.17)] in the cases where p takes on
the values 4, 5/2 and 3/2, respectively. Examples 4.1 and 4.2 illustrate part (ii3) of [VPY1, Th.
4.8], whereas Example 4.3 addresses the simplest special case where the conditions of part (ii2) of
this theorem are fulfilled.

Example 4.1 Suppose that ρ (= −α) = −2/3 or p = 4. It can be shown with some effort by
combining [VPY1, form. (3.10)] with Zolotarev (1986, form. (2.8.32)) that for complex z,

φ(−2/3, 0,−z) ≡
√

3
π
· exp

(
− 2

27
· z3

)
·W1/2,1/6

(
4
27
· z3

)
. (4.1)

Hereinafter, Wk,m(z) denotes the Whittaker function; see Abramowitz and Stegun (1965, p. 505).
See also Gorenflo et al. (1999, p. 390) for a similar representation.

5



By [VPY1, form. (3.14)], the p.d.f. f4,µ,λ(x) of Tweedie r.v. Tw4(µ, λ) is as follows:

f4,µ,λ(x) = x−1 · φ(ρ4, 0, B4,λ · xρ4) · e−θ4·x−A4 . (4.2)

Here, the argument x > 0, and the parameters which emerge in (4.2) are specified below:

ρ4 = −2/3, B4,λ = −λ1/3 · 32/3/2, θ4 = λ/(3 · µ3), A4 = −λ/(2 · µ2).

A combination of (4.1)–(4.2) with [VPY1, form. (4.15)] allows us to construct the Poincaré
series for the p.d.f. f4,µ,λ(x) as x ↓ 0 in closed form as well as to specify the values of the Zolotarev
polynomials in the case where ρ = −2/3 (see (4.4)–(4.6) and (4.7)), respectively). In particular,
an application of [VPY1, form. (4.15)] shows that as z → +∞,

φ(−2/3, 0,−z) ∼ 2z3/2

3 ·
√

π
· exp

(
−4z3

27

)
·
∞∑

k=0

Zk

(
−2

3

)
· (8z3/81)−k. (4.3)

In view of the closed-form representations for the Zolotarev polynomials given in [VPY1, Remark
4.3.ii], in the case where ρ = −2/3 the first few have the following values:

Z0

(
−2

3

)
= 1, Z1

(
−2

3

)
=

1
2 · 33

, Z2

(
−2

3

)
= − 5 · 7

23 · 36
, Z3

(
−2

3

)
=

5 · 7 · 11 · 13
24 · 310

, . . .

For simplicity, assume for now that µ = ∞ and λ = 1. Setting z := 32/3/(2x2/3), we combine (4.2)
and (4.3) to obtain that as x ↓ 0,

f4,∞,1(x) ∼ x−2

√
2π

· exp
(
− 1

6x2

)
·
∞∑

k=0

Zk

(
−2

3

)
· (9x2)k. (4.4)

To consider the general case where the values of µ ∈ (0,+∞] and λ ∈ R1
+ are arbitrary and

fixed, we apply a slightly different approach which involves the Whittaker-function representation
(4.1). Evidently, its combination with (4.2) yields that for x ∈ R1

+,

f4,µ,λ(x) =

√
3
π
· x−1 · exp

(
− λ

12 · x2
+

λ

2 · µ2
− λ · x

3 · µ3

)
·W1/2,1/6

(
λ

6 · x2

)
. (4.5)

The following Poincaré series for Wk,m(z) for large z is given in Gradshteyn and Ryzhik (2007,
form. (9.229)):

Wk,m(z) ∼ zk · e−z/2 ·

{
1 +

{m2 − (k − 1
2)2}

1! · z
+
{m2 − (k − 1

2)2} · {m2 − (k − 3
2)2}

2! · z2
+ · · ·

}
.

In turn, a combination of the above formula with (4.5) implies that as x ↓ 0,

f4,µ,λ(x) ∼
√

λ√
2π · x4

· exp
(
− λ

6 · x2
− λ · x

3 · µ3
+

λ

2 · µ2

)
·
∞∑

j=0

(−1)j ·
(

1
6

)
j

·
(
−1

6

)
j

· (6x2/λ)j . (4.6)

Here we have utilized the Pochhammer-symbol notation introduced in [VPY1, form. (2.11)]. The
representation (4.6) is seen to be consistent with (4.4) (which pertains to the case where µ = ∞ and
λ = 1). Finally, a comparison of the Poincaré series which emerges on the right-hand side of (4.6)
with that from (4.4) enables one to evaluate all Zolotarev polynomials in the case when ρ = −2/3.
Thus, ∀j ∈ Z+

Zj(−2/3) = (−2/3)j · (1/6)j · (−1/6)j . (4.7)
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It is worth mentioning that a combination of the results presented in Example 4.1 with [VPY1,
form. (3.14) and (4.4)] shows that for x ∈ R1,

f−1,µ,λ(x) ≡
√

3
π
· x−1 · exp

(
−λ · x3

12
+ λ · µ2 · x/2− λ · µ3/3

)
·W1/2,1/6

(
λ · x3

6

)
. (4.8)

Here, µ ∈ [0,+∞) and λ ∈ R1
+ are fixed. Moreover, the Poincaré series for the p.d.f. f−1,µ,λ(x) as

x → +∞ with its terms expressed in the closed form (involving the Pochhammer-symbol notation)
can be easily constructed by combining (2.3) with (4.6) and would illustrate [VPY1, Th. 4.8.ii2].
We leave this to the reader, although the consideration of a closely related subclass of the extreme
stable laws with index α (= α−1) = 3/2 and skewness β = −1 was overlooked in both Zolotarev
(1986, p. 159) and Uchaikin and Zolotarev (1999, Sec. 6.6).

Example 4.2 Suppose that ρ = −1/3 or p = 5/2. It can be shown with some effort by combining
[VPY1, form. (3.10)] with Zolotarev (1986, form. (2.8.31)) that for complex z,

φ(−1/3, 0,−z) ≡ z3/2

3π
·K1/3

(
2 · z3/2

3 ·
√

3

)
, (4.9)

where Kν(z) denotes the modified Bessel function of the second kind (or MacDonald function).
Next, it follows from [VPY1, form. (4.15)] that as z → +∞,

φ(−1/3, 0,−z) ∼ 3−1/4 · z3/4

2
√

π
· exp

(
−2 · z3/2

3 ·
√

3

)
·
∞∑

k=0

Zk

(
−1

3

)
· (2z3/2/(9 ·

√
3))−k. (4.10)

Observe that [VPY1, Remark 4.3.ii] implies that in the case when ρ = −2/3 the first few Zolotarev
polynomials are as follows:

Z0

(
−1

3

)
= 1,Z1

(
−1

3

)
= − 5

23 · 33
,Z2

(
−1

3

)
=

5 · 7 · 11
27 · 36

,Z3

(
−1

3

)
= − 5 · 7 · 11 · 13 · 17

210 · 310
, . . .

By analogy with Example 4.1, we now proceed to construct the Poincaré series for the p.d.f.
f5/2,µ,λ(x) as x ↓ 0 in closed form and also to specify the values of the Zolotarev polynomials
in the case when ρ = −1/3 (see (4.14) and (4.15), respectively).

Now, we apply [VPY1, form. (3.14)] to conclude that the p.d.f. f5/2,µ,λ(x) of the r.v. Tw5/2(µ, λ)
takes on the following form:

f5/2,µ,λ(x) = x−1 · φ(ρ5/2, 0, B5/2,λ · xρ5/2) · e−θ5/2·x−A5/2 . (4.11)

Here, x > 0, and the parameters which emerge on the right-hand side of (4.11) are as follows:

ρ5/2 = −1/3, B5/2,λ = −121/3 · λ2/3, θ5/2 = 2 · λ/(3 · µ3/2), A5/2 = −2 · λ/
√

µ.

For simplicity, for now we will concentrate on the case characterized by µ = ∞ and λ = 1. Let
us use (4.10) setting the argument z of the Wright function φ(−1/3, 0,−z), which emerges in that
formula, to be equal to 2 · (3/2)1/3 · x−1/3 (compare to (4.11) and the above expression where the
parameters emerging in (4.11) are specified). After some algebra, we find that as x ↓ 0,

f5/2,∞,1(x) ∼
exp[−4

3 · x
−1/2]

√
2π · x5/2

·
∞∑

j=0

Zj(−1/3) · (3/4)j · xj/2 =
exp[−4

3 · x
−1/2]

√
2π · x5/2

×
(
1− 5

3 · 25
x1/2 +

5 · 7 · 11
32 · 211

x− 5 · 7 · 11 · 13 · 17
34 · 216

x3/2 +
5 · 7 · 11 · 13 · 17 · 19 · 23

35 · 223
x2 − · · ·

)
.

(4.12)
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In the general case where µ ∈ (0,+∞] and λ ∈ R1
+ are arbitrary and fixed, a combination of (4.9)

and (4.11) implies that for x ∈ R1
+,

f5/2,µ,λ(x) =
2 · λ√

3 · π · x3/2
· exp

[
− 2 · λ · x

3 · µ3/2
+

2 · λ
µ1/2

]
·K1/3

( 4 · λ
3 ·
√

x

)
. (4.13)

The implementation of an approach parallel to that used in Example 4.1 now requires the consid-
eration of the following Poincaré series for K1/3(z) for large values of z, which can be found in
Abramowitz and Stegun (1965, form. (9.7.2)):

K1/3(z) ∼
√

π/(2z) · e−z

×
{

1 +
4/9− 1
23 · z

+
(4/9− 1) · (4/9− 9)

2! · (23 · z)2
+

(4/9− 1) · (4/9− 9) · (4/9− 25)
3! · (23 · z)3

+ ...
}

.

It then follows from (4.13) that as x ↓ 0,

f5/2,µ,λ(x) ∼
√

λ√
2π · x5/2

· exp
[
− 4 · λ

3
x−1/2 − 2 · λ · x

3 · µ3/2
+

2 · λ
√

µ

]
×

∞∑
j=0

(−1)j

j!
·
(

3
23 · λ

)j

· (1/6)j · (5/6)j · xj/2.

(4.14)

It is evident that (4.14) is consistent with (4.12). Similar to Example 4.1, we now derive the fol-
lowing closed-form expression (in terms of the Pochhammer symbols) for the Zolotarev polynomials
in the case when ρ = −1/3. Thus, it follows by comparison of (4.12) with (4.14) that ∀j ∈ Z+,

Zj(−1/3) =
(−1/2)j

j!
· (1/6)j · (5/6)j . (4.15)

Example 4.3 Suppose that ρ = 1 or p = 3/2. The validity of the following identity

φ(1, 0, z) ≡ z−1/2 · I1(2 · z1/2), (4.16)

∀z ∈ C \ {0} can be established with a little effort; it is then trivially extended by continuity to be
valid at the origin. Hereinafter, I1(·) denotes the modified Bessel function of the first kind; see
Abramowitz and Stegun (1965, form. (9.6.6) and (9.6.10)).

By Fisher and Cornish (1960, p. 222), the law of the r.v. Tw3/2(µ, λ) has an absolutely
continuous component in R1

+ whose density f3/2,µ,λ(x) admits the following representation:

f3/2,µ,λ(x) =
2 · λ√

x
· exp

{
−θ3/2 · (x + µ)

}
· I1(4 · λ ·

√
x) (4.17)

(compare Vinogradov (2007a, form. (2.6))). In addition, it follows from [VPY1, form. (3.25)] that

f3/2,µ,λ(x) = x−1 · φ(ρ3/2, 0, B3/2,λ · xρ3/2) · e−θ3/2·x−A3/2 . (4.18)

Here, x > 0, and the parameters which emerge on the right-hand side of (4.18) are as follows:
ρ3/2 = 1, B3/2,λ = 4 · λ2, θ3/2 = 2 · λ/

√
µ, A3/2 = 2 · Φ3/2 = 2 · λ · √µ. It is straightforward to

demonstrate that formulas (4.16), (4.17) and (4.18) are consistent.
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Next, a combination of (4.16) with the Poincaré series for I1(z) given in Abramowitz and Stegun
(1965, form. (9.7.1)) yields that as x → +∞,

φ(1, 0, 4λ2 · x) ∼
√

λ

2π
· x1/4 · exp[4λ ·

√
x] ·

∞∑
k=0

(−1
2)k · (3

2)k

k! · 23k · λk
· x−k/2

=

√
λ

2π
· x1/4 · exp[4λ ·

√
x] ·
{

1− 3
25 · λ ·

√
x
− 3 · 5

211 · λ2 · x
+ · · ·

}
.

(4.19)

At the same time, it easily follows from [VPY1, form. (3.14)] (with z := 4λ2 · x) that as x → +∞,

φ(1, 0, 4λ2 · x) ∼
(

λ

2π

)1/2

· x1/4 · exp[4λ ·
√

x] ·
∞∑

k=0

Zk(1) · (4λ ·
√

x)−k. (4.20)

Similar to the previous examples, [VPY1, Remark 4.3.ii] yields that for ρ = 1, the first few Zolotarev
polynomials are as follows: Z0(1) = 1, Z1(1) = −3/23, Z2(1) = −3 · 5/27, Z3(1) = −3 · 5 · 7/210.

It is evident that (4.19) and (4.20) are consistent. Their comparison implies that ∀j ∈ Z+,

Zj(1) =
(−1

2)j · (3
2)j

2j · j!
. (4.21)

Finally, a combination of (4.18), (4.20) and (4.21) yields that as x → +∞,

f3/2,µ,λ(x) ∼
√

λ

2π
· x−3/4 · exp{−θ3/2 · (

√
x−√µ)2} ·

∞∑
k=0

(−1
2)k · (3

2)k

k! · 23k · λk
· x−k/2. (4.22)

Note that the main term of the Poincaré series which emerges on the right-hand side of (4.22) was
previously given by Vinogradov (2007a, form. (2.7)).

5 Appendix A. Proof of [VPY1, Lemma 4.6.i]

We will demonstrate that the coefficients of the Poincaré series for the function φ(ρ, 0, z) when
ρ > 0 and argument z → +∞ have the same form as the respective coefficients — the Zolotarev
polynomials Zk(ρ) — of the Poincaré series for φ(ρ, 0, z) when ρ ∈ (−1, 0) and argument z → −∞.
Recall that these series are given in [VPY1, form. (4.14) and (4.15)], respectively.

From Wright (1935a, pp. 257–258), the function φ(ρ, 0, z) admits a Poincaré series of the form
[VPY1, form. (4.14)] when ρ > 0 and z → +∞, with the Zolotarev polynomials Zk(ρ) replaced by
certain (potentially different) functions of ρ. For now, we shall denote these coefficients by Z̃k(ρ).
Wright (1935a, p. 258) stipulated that Z̃1(ρ) ≡ Z1(ρ) ≡ −(ρ + 2) · (2ρ + 1)/24 and described the
following algorithm for the derivation of these coefficients. Fix an arbitrary ρ ∈ R1

+ and consider
the following auxiliary function of argument v ∈ (0,+∞), which is indexed by ρ:

Gρ(v) :=
{

1 +
ρ + 2

3
· v +

(ρ + 2) · (ρ + 3)
3 · 4

· v2 + ...

}1/2

.

For non-negative integer m, denote the coefficient of v2m in the Taylor series expansion of the
function Gρ(v)−2m−1 in ascending powers of v about zero by Km(ρ). Then

Z̃k(ρ) = Km(ρ) · 2π · ((ρ + 1)/2)m+1/2/Γ(m + 1/2). (5.1)
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However, we shall employ a different algorithm for the determination of these coefficients which is
explained in Subsection 5.1. Our use of an alternative method is quite justifiable, since it employs
the machinery of the Theory of Special Functions, which was already developed for a wider class
introduced by Definition 2.5.
5.1 Asymptotics of the General Wright Function pΨq(z)
First, we introduce some notation. Consider the following parameters associated with (2.4):

κ := 1 +
q∑

r=1

br −
p∑

r=1

ar, h :=
p∏

r=1

aar
r ·

q∏
r=1

b−br
r , ϑ :=

p∑
r=1

cr −
q∑

r=1

dr + 1
2 · (q− p),

ϑ′ := 1− ϑ, A := (2π)(p−q)/2 · κ−ϑ−1/2 ·
p∏

r=1

acr−1/2
r ·

q∏
r=1

b−dr+1/2
r . (5.2)

If ar and br are such that κ > 0 then it follows by the ratio test that the function pΨq(z) is uniformly
and absolutely convergent for all finite (complex) z.

The asymptotic expansion of pΨq(z) for large complex z is discussed in Wright (1935b) and
Braaksma (1963); see also Paris and Kaminski (2001, pp. 55–58). In particular, these results
stipulate that for 0 < κ < 2,

pΨq(z) ∼


Ep,q(z) + Hp,q(z · e∓πi) in | arg z| ≤ 1

2 · πκ

Hp,q(z · e∓πi) in | arg(−z)| < 1
2 · π(2− κ)

(5.3)

as |z| → ∞, where the upper or lower signs are chosen according as z lies in the upper or lower
half-plane of C, respectively. The quantity Ep,q(z) denotes the exponential expansion defined by

Ep,q(z) := A ·Xϑ · eX ·
∞∑

j=0

Cj(ρ) ·X−j , X := κ · (h · z)1/κ, (5.4)

where the coefficients Cj(ρ) (with C0(ρ) ≡ 1) are those appearing in the following inverse factorial
expansion for positive integer M

1
Γ(s + 1)

·
∏p

r=1 Γ(ar · s + cr)∏q
r=1 Γ(br · s + dr)

= κ·A·(h·κκ)s ·


M−1∑
j=0

Cj(ρ)
Γ(κs + ϑ′ + j)

+
O(1)

Γ(κs + ϑ′ + M)

 (5.5)

valid for |s| → ∞ in the sector | arg s| < π. Throughout the remainder of this section, M denotes
an arbitrary fixed positive integer.

The quantity Hp,q(z) denotes the algebraic expansion whose precise form depends on the param-
eters of the numeratorial gamma functions in (2.4) and results from the evaluation of the residues
at the poles of a Mellin-Barnes integral representation for pΨq(z). (We refer to Paris and Kaminski
(2001) for a thorough consideration of such representations.) In the most straightforward case,
where all the poles are simple, we have

Hp,q(z) =
p∑

r=1

a−1
m ·

∞∑
k=0

(−1)k

k!
·
∏p′

r=1 Γ(cr − ar · km)∏q
r=1 Γ(dr − br · km)

· Γ(km) · z−km , km =
k + cm

am
, (5.6)

which holds provided that the sequences km for k = 0, 1, 2, . . . (1 ≤ m ≤ p) are all distinct. Here,
the prime denotes the omission of the term corresponding to r = m in the product. When the
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parameters ar and cr are such that some of the poles are of higher order, the residues must be
evaluated according to the multiplicity of the poles concerned and will result in terms involving
log z in the algebraic expansion.

When 0 < κ < 2, we have from (5.3) the following single dominant exponential expansion:

pΨq(z) ∼ Ep,q(z) (5.7)

as z → +∞. When κ ≥ 2, the expansion of pΨq(z) as z → +∞ consists of additional exponential
expansions of the type Ep,q(z), but with the argument of z rotated by multiples of 2π. However,
as these additional expansions are subdominant compared to Ep,q(z) on the positive real z-axis, we
may still say that the dominant expansion of pΨq(z) as z → +∞ is given by (5.7) when κ > 0.

It is important that for the purposes of this work we had to establish a new, more subtle result
on the behavior of the general Wright function pΨq(z) as compared to (5.3). Thus, in Subsection
5.2 we shall require the following asymptotic expansion for the function pΨq(z) in the case where
p = 0, q = 1 and 0 < κ < 1 on certain critical rays in C, which are known as Stokes lines.

A more precise form of (5.3) when 0 < κ < 1, which specifies the behavior on these rays, is
given by

pΨq(z) ∼


Ep,q(z) + Hp,q(z · e∓πi) in | arg z| < π · κ

1
2 · Êp,q(z) + Ho

p,q(z · e∓πi) on arg z = ±π · κ

Hp,q(z · e∓πi) in | arg(−z)| < π · (1− κ),

(5.8)

where in the middle expression the upper and lower signs are chosen together. The superscript “o”
signifies that the algebraic expansions Hp,q(z · e∓πi) are optimally truncated at, or near, the terms
of least magnitude and Êp,q(z) denotes the expansion Ep,q(z) augmented by the addition of a series
of the form

∑
B̂j · |X|−j−1/2 on the rays arg z = ±π ·κ. Paris (2011b) was able to prove (5.8) only

in the following two special cases:
(i) p = 1, q ≥ 0 and (ii) p ≥ 1, q = 0 with all the ar equal.
We will apply the middle equation in (5.8) to the case of pΨq(·) with p = 1, q = 0 in (5.13).

It can be shown that the exponential expansion Ep,q(z), which emerges on the right-hand side
of (5.8), is dominant as |z| → ∞ in the sector | arg z| < 1

2 · π · κ and is exponentially small in the
sectors 1

2 · π · κ < | arg z| < π · κ. The rays arg z = ±π · κ, where Ep,q(z) is maximally subdominant
with respect to the algebraic expansion, are the Stokes lines. In the neighborhood of these rays, the
asymptotic structure of pΨq(z) is associated with a Stokes phenomenon, where the coefficient (the
Stokes multiplier) of the subdominant exponential term undergoes a smooth, but rapid, transition
(at fixed large |z|) from the value 1, when | arg z| is somewhat less than π · κ, to the value 0, when
| arg z| is somewhat greater than π · κ. This transition is approximated by an error function whose
argument is a measure of the angular separation from the Stokes lines; see Paris and Kaminski
(2001, Ch. 6) for details and the references therein. On the Stokes lines, the multiplier has the
value 1/2 to leading order.
5.2 The Asymptotic Expansions of φ(ρ, 0,±z)
In the case of the function φ(ρ, 0, z) with ρ > 0, which is defined by [VPY1, form. (2.2)], we have
p = 0, q = 1 (with b1 = ρ and d1 = 0) and, from (5.2), the associated parameters

κ = 1 + ρ > 0, h = ρ−ρ, ϑ = ϑ′ = 1/2, A = (2π)−1/2 · ρ1/2/κ. (5.9)

A combination of (5.9) with the statement made below (5.2) implies that the function φ(ρ, 0, z) =
0Ψ1(z) is uniformly and absolutely convergent for all finite (complex) z.
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It then follows from (5.6) and (5.7) that H0,1(z) ≡ 0 and hence, for each fixed ρ ∈ R1
+,

φ(ρ, 0, z) ∼
( ρ

2π · κ

)1/2
· (h · z)1/(2κ) · exp[κ · (hz)1/κ] ·

∞∑
j=0

Cj(ρ) · (κ · (hz)1/κ)−j (5.10)

as z → +∞. Substitution of the above parameter values into (5.10) then leads to the expansion

φ(ρ, 0, z) ∼ (ρ · z)1/2·(1+ρ)√
2π · (1 + ρ)

· exp[(1 + ρ) · (ρ−ρ · z)1/(1+ρ)] ·
∞∑

j=0

ρj · Cj(ρ) ·
(
(1 + ρ) · (ρz)1/(1+ρ)

)−j

as z → +∞, which may be compared with [VPY1, form. (4.14)]. It now remains to determine the
coefficients Cj(ρ). In addition, we intoduce the related coefficients Ẑj(ρ), which we define by

Cj(ρ) ≡ ρ−j · Ẑj(ρ). (5.11)

In fact, the quantities Zj(ρ), Z̃j(ρ), and Ẑj(ρ), which are defined by [VPY1, form. (4.12)], (5.1)
and (5.11), respectively, turn out to be identical. However, this result was not given a priori, and
its validity will follow from our proof. Hence, for now we should assume that these coefficients may
be different.

In our discussion on the asymptotics of the function φ(ρ, 0,−z) as z → +∞ with ρ ∈ (−1, 0),
we shall denote the associated parameters κ, h, ϑ and A with a hat to distinguish them from those
in (5.9). With r := −ρ (0 < r < 1), we replace the gamma function on the right-hand side of
[VPY1, form. (4.14)] by the equivalent expression obtained from the following reflection formula
for the gamma function:

−z · Γ(−z) · Γ(z) = π/ sin(πz). (5.12)

Hence,

φ(ρ, 0,−z) =
1

2πi
·
∞∑

k=1

Γ(1 + rk)
k!

·
{

(z · eπiκ̂)k − (z · e−πiκ̂)k
}

=
1

2πi
·
{

1Ψ0(z · eπiκ̂)− 1Ψ0(z · e−πiκ̂)
}

, (5.13)

where, from (2.4) and (5.2) with p = 1, q = 0 and a1 = r, c1 = 1, we have the associated parameters

κ̂ = 1− r, ĥ = rr, ϑ̂ = ϑ̂′ = 1/2, Â = (2πr)1/2/κ̂.

For z → +∞, the arguments z · e±πiκ̂ in (5.13) are situated on the Stokes lines arg z = ±π · κ̂,
respectively. Consequently, from (5.13) and the second relation in (5.8) we obtain

φ(ρ, 0,−z) ∼ 1
2πi

·
{

1
2 · Ê1,0(z · eπiκ̂)− 1

2 · Ê1,0(z · e−πiκ̂) + Ho
1,0(z · eπiκ̂−πi)−Ho

1,0(z · e−πiκ̂+πi)
}

as z → +∞, where

Ê1,0(z) := E1,0(z)± i · (|X| · e∓π·i)ϑ · e−|X| ·
∞∑

j=0

B̂j · |X|−j−1/2 (arg z = ±π · κ)

and from (5.6) the algebraic expansion is given by

H1,0(z) =
1
r
·
∞∑

k=0

(−1)k

k!
· Γ
(

k + 1
r

)
· z−(k+1)/r.
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The coefficients B̂j , which we do not specify here, depend on Cj(ρ) and are real. It is readily
seen that H1,0(z · eπiκ̂−πi)−H1,0(z · e−πiκ̂+πi) ≡ 0, so that the algebraic expansions present in the
combination (5.13) cancel. From (5.4), together with the fact that since ϑ = 1/2 the series involving
the coefficients B̂j present in Ê1,0(z) cancel in the combination (5.13), we therefore deduce that

φ(ρ, 0,−z) ∼ 1
4πi

·
{

E1,0(zeπiκ̂)− E1,0(ze−πiκ̂)
}

=
( r

2πκ̂

)1/2
· (ĥ · z)1/(2κ̂) · exp[−κ̂ · (ĥ · z)1/κ̂] ·

∞∑
j=0

(−1)jĈj(r)
(
κ̂ · (ĥ · z)1/κ̂

)−j

=
(−ρ · z)1/(2(1+ρ))√

2π(1 + ρ)
· exp[−(1 + ρ) · ((−ρ)−ρ · z)1/(1+ρ)]

×
∞∑

j=0

(−r)j · Ĉj(r) ·
(
(1 + ρ) · (−ρz)1/(1+ρ)

)−j

(5.14)

as z → +∞, upon substitution of the above values for κ̂ and ĥ and replacement of r by −ρ.
Comparison with [VPY1, form. (4.14)] shows that the coefficients Ĉj(r) in (5.14) are specified by
(−r)j · Ĉj(r) = Zj(ρ), whence

Ĉj(−ρ) = ρ−j · Zj(ρ) (j = 0, 1, 2, . . .). (5.15)

5.3 Calculation of the Coefficients Cj(ρ)
From (5.5), the coefficients Cj(ρ) in the Poincaré series in (5.10) are defined by means of the inverse
factorial expansion

Γ(κ · s + 1
2)

Γ(s + 1) · Γ(ρ · s)
= κ ·A(h · κκ)s ·


M−1∑
j=0

Cj(ρ)
(κ · s + 1

2)j
+

O(1)
(κ · s + 1

2)M

 (5.16)

as |s| → ∞ in | arg s| < π, where the parameters κ, h and A are specified in (5.9). The algorithm
for the determination of the coefficients Cj(ρ) that we describe here was presented in Paris and
Kaminski (2001, p. 46); see also Paris (2010, Appendix).

Next, we introduce the scaled gamma function Γ∗(z) defined by

Γ∗(z) := (2π)−1/2 · ez · z1/2−z · Γ(z) (5.17)

which, in view of (5.12), satisfies

Γ∗(−z) · Γ∗(z) = 1/(1− e±2πiz), (5.18)

where the upper or lower sign is chosen according as 0 < arg z < π or −π < arg z < 0, respectively.
Then for a ∈ R1

+ and arbitrary b, this enables us to write

Γ(a · s + b) = (2π)1/2 · e−as · (as)as+b−1/2 · e(a · s; b) · Γ∗(a · s + b),

where
e(u; b) := e−b · (1 + b/u)u+b−1/2 = exp{(u + b− 1/2) · log (1 + b/u)− b}.

From [VPY1, form. (4.8)], we obtain the large-s expansions

Γ∗(a · s + b) = 1 +
1

12a · s
+

1− 24b

288 · (as)2
+O(s−3);

13



e(a · s; b) = 1 +
b(b− 1)
2 · as

+
b2

24 · (as)2
· (3b2 − 10b + 9) +O(s−3).

Then, (5.16) can be written in terms of the scaled gamma function in the form

R(s) ·Υ(s) =
M−1∑
j=0

Cj(ρ)
(κs + 1

2)j
+

O(1)
(κ · s + 1

2)M
, (5.19)

where

Υ(s) :=
Γ∗(κ · s + 1

2)
Γ∗(s + 1) · Γ∗(ρ · s)

, R(s) :=
e(κ · s; 1

2)
e(s; 1) · e(ρ · s; 0)

.

Setting χ := (κ · s)−1, we obtain from (5.19) after some routine algebra that

R(s) ·Υ(s) = 1− (2ρ + 1) · (ρ + 1)
24 · ρ

· χ +
(2ρ + 1)2 · (ρ + 1)2

1152 · ρ2
· χ2 +O(χ3)

= C0(ρ) + C1(ρ) · χ + (C2(ρ)− 1
2
· C1(ρ)) · χ2 +O(χ3).

Equating coefficients of powers of χ, we therefore find

C0(ρ) = 1, C1(ρ) = −(2ρ + 1) · (ρ + 2)
24 · ρ

, C2(ρ) =
(2ρ + 1) · (ρ + 2)

1152 · ρ2
· (2ρ2 − 19ρ + 2).

Higher coefficients are obtained by continuation of this expansion process with the help of Math-
ematica. In this manner we have determined the coefficients Cj(ρ) up to j = 30. By comparison
with the Zolotarev polynomials Zk(ρ) in [VPY1, Remark 4.3.ii], we verified numerically that

Cj(ρ) = ρ−j · Zj(ρ) (j ≤ 30). (5.20)

5.4 Analytical Proof of Relation (5.20) for Any Integer j ≥ 0
From (5.5), the coefficients Ĉj(r) which appear in (5.14)–(5.15) are specified by the inverse factorial
expansion

Γ(κ̂s + 1
2) · Γ(1 + rs)

Γ(s + 1)
= κ̂ · Â · (ĥ · κ̂κ̂)s ·


M−1∑
j=0

Ĉj(r)
(κ̂s + 1

2)j
+

O(1)
(κ̂s + 1

2)M

 (5.21)

valid as |s| → ∞ in the sector | arg s| < π, where we recall that M is an arbitrary positive
integer. Next, we employ (5.17) to rewrite Γ(1 + rs) and Γ(ρ · s) which emerge in (5.21) and
(5.16), respectively. A combination of these expressions with (5.16) and (5.21), and the formula
Γ(1 + z) = z · Γ(z) stipulates that under the same assumptions on the complex values of s,

Γ(κ̂s + 1
2) · Γ∗(rs)

Γ(s + 1)
= s−rs−1/2 · ers · κ̂κ̂s ·


M−1∑
j=0

Ĉj(r)
(κ̂s + 1

2)j
+

O(1)
(κ̂s + 1

2)M

 ,

Γ(κs + 1
2)

Γ(s + 1) · Γ∗(ρs)
= sρs−1/2 · e−ρs · κκs ·


M−1∑
j=0

Cj(ρ)
(κs + 1

2)j
+

O(1)
(κs + 1

2)M

 .
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In turn, a combination of the above two representations with some algebra implies that

M−1∑
j=0

Cj(ρ)
(κs + 1

2)j
+

O(1)
(κs + 1

2)M
=

Λr,ρ(s)
Γ∗(rs) · Γ∗(ρs)

·


M−1∑
j=0

Ĉj(r)
(κ̂s + 1

2)j
+

O(1)
(κ̂s + 1

2)M


as |s| → ∞ in the sector | arg s| < π, where

Λr,ρ(s) :=
Γ(κs + 1/2)
Γ(κ̂s + 1/2)

· κ̂κ̂s

κκs
· (s/e)−(r+ρ)·s.

Now, recall that in our case, r = −ρ. Therefore, κ̂ = κ and Λ−ρ,ρ(s) ≡ 1. From (5.18),

Γ∗(−ρs) · Γ∗(ρs) = 1/(1− e2πiρs) ∼ 1

for |s| → ∞ in 0 < arg s < π and ρ > 0. This yields the result that for an arbitrary M ∈ N,

M−1∑
j=0

Cj(ρ)
(κs + 1

2)j
=

M−1∑
j=0

Ĉj(−ρ)
(κs + 1

2)j
+

O(1)
(κs + 1

2)M

as |s| → ∞ in 0 < arg s < π, where the exponentially small terms present in Γ∗(−ρs) · Γ∗(ρs)
have been absorbed into the order term. By comparison of corresponding coefficients and a simple
induction argument combined with (5.15), it then follows that

Cj(ρ) = Ĉj(−ρ) = ρ−j · Zj(ρ) (j = 0, 1, 2, . . .). (5.22)

It remains to combine (5.11) and (5.22) to get that Ẑj(ρ) = Zj(ρ). 2

6 Appendix B. Proof of [VPY1, Theorem 4.8]

(ii) The validity of (ii1) is established by combining [VPY1, form. (2.2), (2.9), (4.1), and (4.9)]
with some routine algebra. In particular, one should set z := y · λ + 1 in [VPY1, form. (4.9)] in
order to derive the Poincaré series for 1/(y · λ)!.
(ii3) The proof is obtained by combining [VPY1, form. (2.6), (2.9), (3.7)–(3.9), (3.14), (4.1) and
(4.15)].
(ii2) In the case where p ∈ (−∞, 0], we first combine the result of part (ii3) with [VPY1, Prop.
4.1.ii and form. (2.6), (2.9), (3.7)–(3.9), (3.14), (4.1)–(4.3)] and (2.3). This implies that fp,µ,λ(y)
admits the following Poincaré series as y → +∞:

fp,µ,λ(y) ∼ Fp,µ,λ(y) ·
∞∑

k=0

Zk(ρ3−p) · (2− p)2k

(yp−1 · λ)k
. (6.1)

The rest follows from a combination of [VPY1, form. (4.2)–(4.3) and (4.13)] with (6.1).
For p ∈ (1, 2), the proof involves a combination of [VPY1, form. (2.6), (2.9), (3.7)–(3.9), (3.25),

(4.1), (4.14)].
(i) The proof of (i1) is identical to that of (ii1), since one obtains the same Poincaré series for
1/(y · λ)! when a factor of the product y · λ approaches +∞, whereas the other one is kept fixed.
(i2) The proof relies on a combination of the rightmost representation in [VPY1, form. (3.33)] with
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parts (ii2) and (ii3) in the cases where p ∈ (−∞, 0]∪ (1, 2) and p ∈ (2,+∞), respectively. Thus, we
get the following Poincaré series as y ∈ R1

+ is fixed and λ → +∞:

fp,µ,λ(y) ∼ λ1/(2−p) · F
p,Φ

1/(2−p)
p ,1

(y · λ1/(2−p)) ·
∞∑

k=0

Zk(ρp) · (p− 1)2k

((y · λ1/(2−p))2−p · 1)k
. (6.2)

Recall that Φp is given by [VPY1, form. (3.6)]. Next, the validity of the identity

λ1/(2−p) · F
p,Φ

1/(2−p)
p ,1

(y · λ1/(2−p)) ≡ Fp,µ,λ(y) (6.3)

follows by combining [VPY1, form. (2.9) and (4.1)]. The rest is obtained from a combination of
(6.2)–(6.3).
(i3) It is derived by combining [VPY1, form. (2.9), (3.4), (4.1) and (4.9)] with some algebra. 2
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