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Abstract. In 1997, Exton [J. Comput. Appl. Math. 88 (1997) 269-274] obtained a general trans-
formation involving hypergeometric functions by elementary manipulation of series. A number
of hypergeometric identities that had not been previously recorded in the literature were then
deduced by application of Gauss’ second summation theorem and other known hypergeometric
summation theorems. However, some of the results stated by Exton contain errors. It is the
purpose of this note to present the corrected forms of these hypergeometric identities.
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1. INTRODUCTION

The generalized hypergeometric function with p numeratorial and ¢ denominator-
ial parameters is defined by the series [2, p. 41]
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where (a), = I'(a +n)/ I (a) is the Pochhammer symbol (or ascending factorial).
When g = p this series converges for |x| < oo, but when ¢ = p — 1 convergence
occurs when |x| < 1. However, when only one of the parameters a; is a negative
integer or zero, then the series (1.1) terminates and so always converges since it
becomes a polynomial in x of degree —a; .

In [1], Exton obtained a number of hypergeometric identities which had not been
previously recorded in the literature. Exton based his investigation on the following
general transformation which he obtained by elementary manipulation of series [1,

n=0

Eq. (1.8)]
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The domain of validity in the x-plane depends on the particular values of p, g and
the various parameters. For example, if p = ¢ then (1.2) holds in general for |x| < 1.
When one of the numeratorial parameters c¢; equals a negative integer, the resulting
expansion (1.2) involves finite sums and convergence at x = =£1 is assured. Then,
upon letting x = +1 in (1.2) followed by application of Gauss’ second summation
theorem and other well-known summation formulas listed in [2, Appendix III], Exton
deduced several interesting hypergeometric identities.

2. EXTON’S RESULTS IN CORRECTED FORM

We have discovered that some of these results are incorrect. Following the same
method used by Exton, notably the equation (1.2), we find that his corrected results
are as stated below. In the following N denotes a positive integer.

Exton’s result (2.5) should read
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Exton’s result (3.2) should read
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We also note that Exton’s results for the equations (2.9), (3.4) and (3.6) are correct,
but his (3.7) is not a new result since the right-hand side is the same as that in (3.6)
and so yields a simple identity between two » F; (%) functions. In addition, we cannot
derive the results in (3.5), (3.8) and (3.9), nor could we verify them numerically. They
should therefore be taken to be incorrect.
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