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ABSTRACT

Aims. In this paper we investigate the finite deformation of magnetic fields that can enable one to find complex analytical magneto-
hydrostatic (MHS) equilibria. These can be used as input to non-linear simulations.
Methods. In order to find analytical equilibria, one normally has to consider simplifications or exploit a particular symmetry. Even
with these measures, however, the desired equilibrium is often out of analytical reach. Here we describe a method that can work when
traditional methods fail. It is based on the smooth deformation of simple magnetic fields into complex ones.
Results. Examples are given, to demonstrate the method, that are of practical importance in coronal physics. This technique will
prove useful in setting up the initial conditions of non-linear magnetohydrodynamic simulations.
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1. Introduction

The magnetohydrodynamic (MHD) equations are non-linear,
making the search for analytical solutions difficult and interest-
ing. Much progress has been made in the reduced problem of
finding exact magnetohydrostatic (MHS) solutions. MHS equi-
libria are important for modelling purposes and as initial condi-
tions for non-linear MHD simulations. The MHS equations are

∇p = j × B + G, (1)

μ0 j = ∇ × B, (2)

∇ · B = 0, (3)

where B is the magnetic induction (commonly referred to as the
magnetic field), j is the current density, p is the plasma pressure,
μ0 is the magnetic permeability of free space and G represents
any possible body forces, e.g. gravity. There exists a plethora of
methods for solving the above equations and their further simpli-
fications. If the magnetic field has translational, rotational or he-
lical symmetry, the MHS equations can be reduced to one single
elliptic second order partial differential equation. This is known
as a Grad-Shafranov equation (e.g. Biskamp 1997). For exam-
ple, consider G = 0 in Eq. (1) and assume that the invariant
direction is the y-direction, i.e. ∂/∂y = 0. The magnetic field,
satisfying Eq. (3), can be written as

B = ∇ × (Aey) + Byey,

where A is the flux function and By is the y-component of the
magnetic field. Both terms depend only on x and z. After in-
serting this expression into Eqs. (1) and (2) and simplifying, the
Grad-Shafranov equation is

−∇2A = μ0
dp
dA
+ By

dBy
dA
·

The pressure p and magnetic field component By are free func-
tions of A. These have to be chosen or specified by the applica-
tion. For example, consider the application of coronal magnetic

loops with footpoints anchored in a lower boundary (the photo-
sphere). Since, in general, By will not vanish, the footpoints of
loops will be displaced in the y-direction. By is related to this dis-
placement via an integral equation. Only for the simplest fields
can this be solved, in conjunction with the Grad-Shafranov equa-
tion, analytically. An account of this type of problem is given in
Biskamp (1997).

For asymmetric fields or symmetric fields of suffiecient com-
plexity, other ad hoc approaches are required to find MHS equi-
libria. One approach is to consider magnetic fields expressed by
Euler potentials

B = ∇α × ∇y,

where α = α(x, y, z). The magnetic field has no y-component and
the field lines are confined to planes of constant y. Equilibria
with such magnetic fields are called laminated equilibria (Low
1982). Another approach that has been used successfully for
force-free and MHS equilibria is to consider the current density
in terms of Euler potentials (Low 1991, 1992; Neukirch 1997;
Petrie & Neukirch 2000).

Although there has been considerable success with the meth-
ods described above, they are not suitable for every application.
In practice, MHS equilibria are often found numerically by de-
forming simple magnetic fields. These deformations usually take
the form of flows imposed on the boundaries of a computational
domain. Once the deformation is complete, the magnetic field is
left to relax into equilibrium. Based on this technique, we shall
now present a method for deforming simple magnetic fields into
complex ones, analytically. This then allows for an analytical
MHS equilibrium to be found. The method can free the comput-
ing time and resources previously tied up in creating the equilib-
rium by boundary driving and relaxation.

The rest of the paper is laid out as follows: Sect. 2 introduces
the deformation theory. Section 3 presents some illustrative ex-
amples of the theory with applications in coronal physics. The
paper concludes with a summary and discussion in Sect. 4.
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2. Deformation theory

2.1. Introduction

Consider a continuous plasma (or fluid) that occupies a con-
nected open subset of a three dimensional Euclidean point space.
We will refer to such a subset as a configuration of the plasma.
Given a magnetic field, we can choose the plasma to be in an ar-
bitrary configuration, known as a reference configuration. This
can be deformed quasi-statically to a new configuration, known
as the current configuration. Normally in ideal MHD, this ap-
proach takes the form of a Cauchy solution, where a velocity
field u is prescribed and the deformed magnetic field is found
from the induction equation

∂B
∂t
= ∇ × (u × B).

If, however, we are only interested in MHS equilibria, we can
avoid prescribing a velocity to deform the magnetic field and,
hence, ignore the induction equation. This is done by prescrib-
ing the deformation in terms of the coordinate systems of the
reference and current configurations – a technique more com-
mon to solid mechanics (Ogden 1997). In order to deform mag-
netic fields smoothly in this way, several conditions must be met.
These are described in the rest of this section.

2.2. Deformation gradient

Let a typical point of the plasma be labelled by its position vec-
tor X in the reference configuration Cr and x in the current con-
figuration Ct. We suppose the plasma is deformed smoothly1

from one configuration to the other via the mapping

x = x(X).

We ignore time dependence here. The vector field x describes
the deformation of the plasma and is defined for X ∈ Cr. The
deformation gradient tensor F relative to Cr is defined by

F = Grad x =
∂x
∂X
· (4)

Grad denotes the gradient in the reference configuration Cr. For
a fixed time, line elements dX and dx are connected by

dx =
∂x
∂X

dX.

Since a line element cannot disappear, we must have det F � 0.
If we define volume elements to be positive, it follows (Ogden
1997) that

J = det F > 0. (5)

In Cr a magnetic field must satisfy

Div Br = 0,

where Br is the magnetic field in Cr and Div is the divergence
operator in Cr. When the plasma is deformed with deformation
gradient F, we denote the corresponding deformed field in Ct
by Bt. In Ct, the magnetic field must also be divergence-free. We
have

Div Br = Jdiv(J−1FBr) = 0, (6)

1 In this paper, the mapping is a diffeomorphism.

where div is the divergence operator in Ct. A derivation of Eq. (6)
is given in the appendix. From the expression for the divergence
in (6), it follows that

Bt = J−1FBr.

This is the new deformed magnetic field in Ct.
Unlike the magnetic field, there is no simple connection re-

lating the reference and current current densities. In the reference
configuration we have

Curl Br = jr,

and, similarly, in the current configuration,

curl Bt = jt.

By making use of the connection between the Curl and curl
operators (see the appendix), the deformed current density can
be written in terms of the reference magnetic field and the
deformation

jt = J−1FCurl (J−1cBr),

where c = FTF is the right Cauchy-Green deformation tensor.
For the rest of the paper, we shall only be concerned with the

deformation of the magnetic field. We do not consider any con-
straints on the current density, such as ensuring force-free con-
ditions. Any equilibria are determined after the deformation.

3. Examples

In this section we shall illustrate the theory with some simple
examples. First, we shall demonstrate how to construct a defor-
mation gradient tensor and apply it to deforming a magnetic null
point. This is followed by two further applications that are of
practical importance in coronal physics.

3.1. Null point deformation

To construct a deformation gradient tensor, one must choose a
deformation (e.g. a shear, a twist, etc.) and find a suitable map-
ping from the reference to the current configuration that de-
scribes this deformation. We shall illustrate this here by applying
a shear to a magnetic null point.

To put this application into context, null points are of in-
terest as regions where magnetic reconnection is likely to oc-
cur. There have been many simulations of stressed null points
(see Galsgaard & Pontin 2011, and references therein). In these
simulations, the null points are sheared by imposing flows on
the boundaries of the computational domain. This allows one to
study current build-up due to shearing or, if the driving is ceased,
the subsequent relaxation. Using the deformation theory intro-
duced in the previous section, one could shear a null point to
produce the same configuration as boundary shearing would in a
simultation. If one was interested in studying the relaxation of a
sheared null point, the application of this method would remove
the need for initial numerical shearing.

To begin, let us consider a simple, linear, potential null point
defined by

BX = B0X, BY = B0Y, BZ = −2B0Z,

where B0 is a constant. Note that this is a local representation
of the magnetic field and is only valid close to the null point.
Here we will consider the domain (X, Y, Z) ∈ [−l, l]3, where l is
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Fig. 1. A magnetic null point before and after shearing. a) shows the undeformed (reference configuration) potential null point. The spine and the
fan are highlighted. b) shows the effect of the shearing deformation (current configuration).

a suitably small distance from the null point. The position vari-
ables X, Y and Z are written in upper-case. We use the conven-
tion of upper-case for quantities in the reference configuration
and lower-case for those in the current configuration. An image
of the shape of the field lines about the undeformed null point is
displayed in Fig. 1a.

The null point can be described as having a spine and a fan
(as shown in Fig. 1a). Suppose we want to shear the null point
by pushing the two ends of the spine in opposite directions (as
in Galsgaard & Pontin 2011). By “ends”, we refer to where the
spine meets the boundary of the computational domain. To pro-
ceed, we need to find a mapping that will give us the profile we
want and satisfy Eq. (5). For shearing the spine, consider a map-
ping of the form

x = X, y = Y + gZ, z = Z, (7)

where g is an arbirtary function. Here, the only change appears
in the expression for the y coordinate – the direction of shearing.
As we are shearing in the (Y, Z)-plane, y is equal to Y plus a
multiple of Z. For this illustrative example, we shall take g = γ,
a constant.

We now have a mapping that will shear the two ends of the
spine in opposite directions. To construct the deformation gra-
dient tensor, we substitute the mapping into Eq. (4) to get, in
matrix form,

[F] =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 γ
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·
It is clear that J > 0. The magnetic field vector for the linear
null point is now multiplied by the deformation gradient tensor.
At this point, all the variables are with respect to the reference
configuration Cr. To switch to the current configuration Ct, one
applies the mapping (7) to obtain

Bx = B0x, By = B0(y − γz), Bz = −2B0z.

Figure 1b shows how the applied shearing deforms the null
point.

This example demonstrates how one can construct and ap-
ply a deformation gradient tensor. We shall now consider two
further examples from coronal physics, where we shall use the
deformation theory to find full MHS equilibria.

3.2. Sheared arcade

Satellites have revealed the solar atmosphere to be filled with
magnetic loops. Magnetic arcades play an important role in a va-
riety of solar atmospheric phenomena. Long-lasting (relative to
some characteristic time such as the photospheric Alfvén time)
arcades can be modelled as equilibria. A classic problem in coro-
nal physics is the sheared arcade equilibrium. The “standard
solution” is to assume a linear force-free magnetic field. The
Grad-Shafranov equation combined with an equation relating
the footpoint displacement with By is then solved. A full MHS
solution is possible by deforming an unsheared potential arcade.
First, consider a simple potential arcade defined by

BX = B0 cos
(
πX
l

)
exp

(
−πZ

l

)
,

BY = 0,

BZ = −B0 sin
(
πX
l

)
exp

(
−πZ

l

)
,

where B0 and l are constants. The base, Z = 0, represents the
photosphere and X ∈ [−l, l]. Again, upper-case is used for X, Y
and Z here to signify that the variables are in the reference con-
figuration Cr and lower-case will be used for the current configu-
ration Ct. Similar to the previous example, we will now perform
a simple shear in the (X, Y)-plane to deform this potential arcade.
Consider a deformation of the form

x = X, y = Y + γX, z = Z, (8)

where γ is a dimensionless constant. Let {EX , EY , EZ} and
{ex, ey, ez} be Cartesian bases for Cr and Ct, respectively. The
deformation gradient is given by

F = I + γ ey ⊗ EX , (9)

where I is the identity tensor. The matrix representation of the
deformation gradient is

[F] =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
γ 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·
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It follows that, for simple shear, J = 1. This satisfies (5) and, me-
chanically, represents an isochoric (or volume preserving) defor-
mation. Since F is a constant, this is known as a homogeneous
deformation. The deformed magnetic field is, therefore, given by

Bx = B0 cos
(
πx
l

)
exp

(
−πz

l

)
,

By = γB0 cos
(
πx
l

)
exp

(
−πz

l

)
,

Bz = −B0 sin
(
πx
l

)
exp

(
−πz

l

)
·

This magnetic field is not force-free (assuming γ � 0). The
Lorentz force is irrotational, i.e.

curl( j × B) = 0.

This means a MHS equilibrium can be found by solving, di-
rectly, for p in Eq. (1) with G = 0. The result, after some simple
algebra, is

p = p0 −
γ2B2

0

2μ0
cos2

(
πx
l

)
exp

(
−2πz

l

)
,

where p0 is a constant that satisfies

p0 >
γ2B2

0

2μ0
,

to ensure a positive pressure.

3.3. Flux braiding

The twisting and entangling of coronal magnetic field lines by
photospheric footpoint motions is one of the prime candidates
for coronal heating. Braiding causes a build up of magnetic en-
ergy and the formation of strong concentrations of current den-
sity, allowing reconnection to take place. There have been sev-
eral numerical studies where, initially simple, magnetic fields
are deformed by imposing shear/rotational flows on the bound-
aries (e.g. Craig et al. 1986; Longbottom et al. 1998; Galsgaard
2002; De Moortel & Galsgaard 2006). These motions can pro-
duce regions of twisted current concentrations. In the case of
Longbottom et al. (1998), they solve the force-free equations
and find equilibria with twisted current concentrations. Attempts
to find an analytical expression for twisted current concentra-
tions, based on the Grad-Shafranov equation, have proved to
be difficult (Bowness 2011). Here we shall present an analyt-
ical MHS equilibrium containing a twisted current concentra-
tion, based on deformation theory. Consider a domain (X, Y, Z) ∈
[−l, l]3 and a uniform magnetic field given by

BX = 0, BY = 0, BZ = B0,

where B0 is a constant. Since braiding is caused by shearing and
twisting motions, consider the shearing deformation

x = X, y = Y + λ sin
(
πX
l

)
Z, z = Z,

where λ is a dimensionless constant. The corresponding defor-
mation gradient is given by

F = I +
λπ

l
cos

(
πX
l

)
Z ey ⊗ EX + λ sin

(
πX
l

)
ey ⊗ EZ .

This inhomogeneous deformation is isochoric (J = 1) and the
deformed magnetic field in Ct is

Bx = 0, By = B0λ sin
(
πx
l

)
, Bz = B0. (10)

To produce a twisted current concentration, we shall now apply
a torsional deformation to the magnetic field in (10). There is
a new current configuration C′t with Ct now acting as the refer-
ence configuration. Consider a deformation in which each cross-
section remains in its original plane but is rotated through an
angle τz about the z-axis. τ is the constant twist per unit length.
In the (x, y)-plane, the coordinates can be written in polar form

x = r cos θ, y = r sin θ.

The torsional deformation can now be written as

x′ = r cos(τz + θ), y′ = r sin(τz + θ), z′ = z.

Given that {e′x, e′y, e′z} is the Cartesian basis ofC′t , the correspond-
ing deformation gradient is, in matrix form,

[F′] =
[
∂x′

∂x

]
=

⎛⎜⎜⎜⎜⎜⎜⎝
cos(τz) − sin(τz) −τ(sin(τz)x + cos(τz)y)
sin(τz) cos(τz) τ(cos(τz)x − sin(τz)y)

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
Again, J = 1. The deformed magnetic field is given by

Bx = −B0λ sin(τz) sin
(
π

l
(cos(τz)x + sin(τz)y)

)
− B0τy,

By = B0λ cos(τz) sin
(
π

l
(cos(τz)x + sin(τz)y)

)
+ B0τx,

Bz = B0.

Here we have dropped the primes for simplicity. All further vari-
ables and operators are associated with the current configuration,
so there should be no confusion as to what they represent. The
corresponding components of the current density are given by

jx =
B0λτ

μ0

[
sin(τz) sin

(
π

l
(cos(τz)x + sin(τz)y)

)

−π
l

cos(τz)(cos(τz)y − sin(τz)x)

× cos
(
π

l
(cos(τz)x + sin(τz)y)

)]
,

jy = −B0λτ

μ0

[
cos(τz) sin

(
π

l
(cos(τz)x + sin(τz)y)

)

+
π

l
sin(τz)(cos(τz)y − sin(τz)x)

× cos
(
π

l
(cos(τz)x + sin(τz)y)

)]
,

jz =
B0λπ

μ0l
cos

(
π

l
(cos(τz)x + sin(τz)y)

)
+

2B0τ

μ0
·

Figure 2 displays the field line and current concentration geome-
tries for the deformed magnetic field. In Fig. 2a, the effects of
the sine shear profile and the twist can be seen clearly. The iso-
surface of | j| in Fig. 2b is highly reminiscient of that from the
numerical study by Longbottom et al. (1998).

Unlike the sheared arcade, the Lorentz force in this example
is not irrotational. Hence, we cannot solve Eq. (1) with G = 0
directly for p. To find the plasma pressure for MHS balance, we
need to make the RHS of Eq. (1) irrotational. To do this we must
consider G � 0. A, physically sensible, choice for G is

G = −ρ(x, y, z)gez,

A97, page 4 of 6
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Fig. 2. The magnetic field after the shearing and torsional deformations. a) shows some magnetic field lines. b) displays an isosurface of | j| at 90%
of the maximum value.

where ρ is the density and g is the gravitational constant. Solving

curl( j × B − ρgez) = 0,

for the density gives

ρ = ρ0 +
2B2

0λτ
2

gμ0
sin

(
π

l
(cos(τz)x + sin(τz)y)

)

×(cos(τz)y − sin(τz)x).

ρ0 is a function of z that must be chosen to ensure the density
is positive within the domain. This will, in general, depend on l.
Now that the RHS of Eq. (1) is irrotational, we can integrate to
find the pressure. The result is

p = p0 +
B2

0

μ0

[
2lλτ
π

cos
(
π

l
(cos(τz)x + sin(τz)y)

)

−λ
2

2
sin2

(
π

l
(cos(τz)x + sin(τz)y)

)

−λτ sin
(
π

l
(cos(τz)x + sin(τz)y)

)
(cos(τz)x + sin(τz)y)

−τ2(x2 + y2)
]
− ρ0gz.

p0 is a constant that must be chosen to ensure a positive pressure
within the domain.

4. Summary and discussion

In this paper, we have added to the arsenal of methods for finding
analytical MHS equilibria. Inspired by the numerical technique
of imposing flows on a simple magnetic field and then leaving
the system to relax, this new method imposes quasi-static defor-
mations that can can be treated analytically. Once the magnetic
field is suitably deformed, the density can be found by making
the RHS of Eq. (1) irrotational. The scalar potential of this is then
the pressure. The advantage of this method over traditional ones
is that analytical expressions for complex magnetic fields can be
found with relative ease. Three examples of this are given. The
first demonstrates how to construct and apply the deformation

gradient tensor. In this example, it is applied to shearing a null
point.

The second is a classic problem in coronal physics – the
sheared arcade. Normally, an analytical approach is restricted
to considering a linear force-free magnetic field. With this
method, however, a full MHS solution is found by deforming
an unsheared potential arcade.

The third example gives an expression for a twisted current
concentration. Bowness (2011) attempt to produce such a config-
uration using a Grad-Shafranov equation. This does not give the
desired result, however, and they produce their initial condition
by deforming the field numerically.

It is not indended that this method will replace previous ones
but complement them. Its success, as mentioned above, lies in
deriving analytical expressions for complex magnetic fields and
currents with relative ease. The method does have some draw-
backs, however. One is that for the identity in (6) to hold, the
mapping must be suitably well behaved. This means that fields
cannot be deformed with impunity. Another drawback, as illus-
trated by the examples described in this paper, is that the density
and pressure often rely on boundary values to ensure they are
positive. i.e. the equilibria are local, not global, solutions. This
drawback is also associated with more traditional methods (e.g.
Grad-Shafranov) of finding analytical equilibria.

In practice, we believe that the advantages of the method out-
weigh the disadvantages. Although the number of deformations
is limited, it is a large number and allows for the derivation of a
vast range of highly complex magnetic fields from simple ones.
By the examples given, we have demonstrated that the method
can succeed where others fail. It is likely that the method will
be used most in finding magnetic fields for the initial condi-
tions of non-linear simulations. This will save a large amount
of memory and computing time previously used in calculating
the initial magnetic fields by the imposition of driving velocities
on the boundaries.

Appendix A: Derivation of identities

Here, we sketch the proofs of the identity relations required for
the deformation of the magnetic field and the current density.
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A.1. The divergence identity

By Gauss’ theorem, the integral of the divergence of B0 ∈ Cr
over the volume of Cr can be written as a surface integral∫
Cr

Div B0 dV =
∫
∂Cr

B0 · N dS , (A.1)

where ∂Cr is the boundary of Cr. V represents volume and S ,
surface area. Nanson’s formula relates the area differentials of
the reference and current frames

N dS = J−1FTnds.

As in the main body of the text, we use upper-case for the refer-
ence configuration and lower-case for the current configuration.
It follows that the surface integral in (A.1), with respect to Ct is∫
∂Ct

B0 · (J−1FTn) ds =
∫
∂Ct

J−1FB0 · nds.

By Gauss’ theorem,∫
∂Ct

J−1FB0 · nds =
∫
Ct

div (J−1FB0) dv.

To move back to the reference frame, the volume differentials
are related by

dv = JdV.

Hence, it follows that∫
Cr

Div B0 dV =
∫
Cr

Jdiv (J−1FB0) dV,

and this completes the proof.

A.2. The curl identity

An application of Stoke’s theorem for Bt ∈ Ct gives∫
∂Ct

curl Bt · n ds =
∫
Γt

Bt · n dx,

where Γt is the bounding curve. By repositioning the deforma-
tion gradient and applying Stoke’s theorem, one can find∫
Γr

Bt · FN dX =
∫
∂Cr

Curl (FT Bt) · N dS .

Using Nanson’s fomula,∫
∂Ct

Curl (FT Bt)J−1FT n ds =
∫
∂Ct

J−1FCurl (FT Bt) · n ds.

To connect jt with Br, insert Bt = J−1FBr into the last integral.
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