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Abstract
We obtain summation formulas for the hypergeometric series 3F>(1) with at least one pair
of numeratorial and denominatorial parameters differing by a negative integer. The results
derived for the latter are used to obtain Kummer-type transformations for the generalized
hypergeometric function 2 F>(z) and reduction formulas for certain Kampé de Fériet functions.
Certain summations for the partial sums of the Gauss hypergeometric series 2 F1(1) are also
obtained.
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1. Introduction

In this paper we consider Clausen’s hypergeometric function sFs(x) evaluated at unit argument

r = 1, namely
a, b, c > (a)k(b)k(c)k

F 1) = — 1.1

’ ( f.9 ) ,; (Di(g) k! (1)

where at least one pair of numeratorial and denominatorial parameters differs by a negative integer.

The Pochhammer symbol, or ascending factorial, (a)y is defined for all integers k (positive, negative
and zero) and complex a by

_T(a+k)
(@ = —F @
where I'(x) is the gamma function. The series 3F»(1) defined by (1.1) always converges provided
that either the parametric excess s = f 4+ g — a — b — ¢ is such that Re(s) > 0 or one of the
numeratorial parameters is a negative integer.
When a pair of numeratorial and denominatorial parameters differs by a positive integer m,
Karlsson [3] has deduced the summation formula

3F2(a,b,f4}m 1)_I‘(c (c—a—1b) ’"( ) (=1)%(a)w(b)x (1.2)
=0

c, I'(c—a)l'(c—1b) r(l+a+b—c)’
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where here and in the sequel we assume that the parameters of the hypergeometric series 5F5(1)
are such that it converges and the summation formula for it makes sense. A generalization of (1.2)
has been obtained in [9] and rederived in [10] in a somewhat simpler form, namely

ab, (fr+m) | ) _T@OT(c—a—b) <~ (=1)"(a)x(b)
r2Fr < e (f) ’1) = T(e—a)l(c—b) kzzoa’“ (I ta+b—c)’ (13)
where m = mj + - -+ + m,, (f.) denotes the parameter sequence (f1,..., f.) and it can be shown
[11] for 0 < k < m that
—1)* _
ap = %T“rlF’r‘ ( k, (fr(—};?;%) '1> . (1.4)

In view of the summation formula (1.2) one may ask for an analogous formula for 3F»(1) where
at least one pair of numeratorial and denominatorial parameters differs by a negative integer. To
this end we shall derive in the present investigation the following summation formulas for positive
integers n and p, namely

a,b, n _ nll-¢n DIl +c—a-b) " (=n)p(b— o)
3F2( c n—l—l‘l)_(l—a)n(l—b)n Mot Te 5 2= o 19

a,b, ¢ (1 —a)(b)n I'(c) () =2 (1—a)kb—c)
3F2(b+n,c+1’1)_ =R <I‘(1+c—a)_I‘(1+b—a)Z(1+b—a)kk!>

(1.6)
and
a,b, n B = p—1 (1 = ¢)ktn
F( ¢, n+p’1)‘(p)",§(_”k(")’“< k ) (1= @krn(l = D)t
I(c)T(c—a—1b — n—1 (c—a—"b)kip
== P G e et el

k=0

Equations (1.5) [6, (B.5)] and (1.6) [5, (11)] are conjectures due to Milgram who deduced
them by means of experimental mathematics. We shall prove (1.5), (1.6) and an equivalent form
of (1.6) in Section 3. The summation formula (1.7) will be proved in Section 4. Finally, in
Section 5 we shall employ these summation theorems to deduce four Kummer-type transformations
for the hypergeometric function 3F>(x) and certain reduction formulas for the Kampé de Fériet
function. In the next Section 2 we shall establish four preliminary lemmas and a corollary which
is a consequence of (1.5)

2. Preliminary results

We shall first prove the specialization p = 1 of (1.7).

Lemma 1. For positive integers n we have the summation formula

3F2<a,b, n ‘1> nl(1—c)p L'(e)T(c—a—b) < c—a—b) 2.1)

¢, n+1 _(1—a)n(1—b)n_1"(c—a T(c—b) k:l 1—a (1=0)

provided Re(c —a —b) > —



Proof: Consider

a,b, f v @e® (Fe 2"
(0L ””)‘2 GRS
Since (f)r/(f + 1)k = f/(f + k), we have
a,b, f (a) xf Tk
:cf3F2( Ui ) fz kf+k o

Then differentiation with respect to = of both sides of this equation and division of the result by

faf=1 gives
abz a+1,0+1, f+1 a, b, f B a,b
7c(f+1)3F2< e+, f+2‘x)+3F2< e fH1 =201 %)
Now setting = 1 and assuming Re(c — a — b) > —1, we have the recurrence relation
a+1,b4+1, f+1 _o(f+1) a,b a,b, f
3F2 ( e+ 1, f+2 ’1) = ab 2F1 c 1 —3F2 , f+1 1 . (22)
We shall prove (2.1) by induction. For n = 1, (2.1) reduces to

o (0] i (- e )

which is true and may be obtained by specializing (2.5) with p = 2, ¢ = 1, x = 1 and an application
of the Gauss summation theorem for oF;(1); see [4, 3.13.3(41)]. Suppose (2.1) is true for an
arbitrary but fixed positive integer n. This is the induction hypothesis. Then by the recurrence
relation (2.2) and the induction hypothesis we have for f =n

a,b,n+1 _(e=1)(n+1) a—1,b—-1 a—1,b—1, n
3F2< c, n+2’1)_(a—1)(b—1) 2F1 c—1 1) —sh? c—1, n+1 1

_ (c=1)(n+1) (I‘(c— DI(l+c—a=b)  nl2-0pn
(a—=1)(b—-1) Te—al(c=b)  (2- ) (2—=b)n
Tlc—1DI'(1+c—a—b) < r(1+c—a—0)
+ I'(c—a)(c—b) Z 2—a (2 —b)g k)’

where we have employed the Gauss summation formula to evaluate oF(1). However
z": 1+c—a—b) (1—a)(1—0b) ’il
2-br  (+1)(c—a-b)

=1 k=2

(—mn — Dg(c—a—Db)
(1 — a)k(l — b)k

(- a)-b) [(EC(n-Dilc—a=b)  (nt(c—a-1b)
(n—i—l)(c—a—b)(; A—apd-0r (-a)d_b )

which when used together with the previous result yields upon simplification

o <a,b,n+1 ‘1> _ ((n+1)!(1—c)n+1 r(c)r(c_a_b)’i (—n — Dplc —a — by

¢, n+2 1—a)ps1(1 —b)ny1  T(c—a)(c—b) (1—a)s(1— D)

Thus by the principle of mathematical induction this completes the proof. O

k=1

Following Slater [14, p. 83] we define for nonnegative integers n the partial sum to n+ 1 terms
of the Gauss function of unit argument

o1 (

1) =3 (e

and prove the following.



Lemma 2. For nonnegative integers n

14+b), - -
2Fl(a,cb 1) :( +b) 3F2( n,b,c—a 1>'

n! 1+b,c
Proof: From [14, (2.6.3), p. 81] and [1, Corollary 3.3.5, p. 142] we have respectively

)

n

Z a k (1+a+n) (1—|—b+n) a7b,c+n
= (c) kk' T T+ +at+b+n) > 2\ 1+a+b+n,ec
abc P()T(s) b e
F s Uy 1) = 2 y s 1
° 2< g ) I‘(g—a)I‘(s+a)3 2 f,s+a ’

where s is the parametric excess. If in this last identity we replace ¢ — ¢+ n and then let f = ¢,
g=14+a+b+n, we find

and

2 a,b,c+n ) = 'l+a+b+n)'(1) 7 c—b,—n )
2\ 1+atv+ne|) T TA+b+nT(1+a) > Yelta
T +a+b+n)(1) 7 —a,—n |y
T T fa+n)(1+b)° 2 cl+b
upon interchanging the parameters a and b.
Hence
S (a’)k(b)k F(1+b+n) —TL,b,C—CL
> = 3 F 1
= (¢)rk! P1+b)T(n+1) 1+4+0b,c
and this proves the lemma. O

Lemma 3. For positive integers n

c—a—b g~ _(=n)i(d " (—n)i(e—a—b)y
c—b Z(b—nfk(l—a z:: 1—a)i(1—0b) (2:3)

k=1 k=1
)

Z Jilc—a=b)y  n(c—a-Db) 7 1-n,1,1+c—a—-1> 1
— l—a A-b)r  (Q1-a1-b*"7 2—a,2-b '

Proof: It is evident by adjusting the summation index that

S (kb= n(c=b) l—n1,14+b-c
2 b—n)k(l—a)k_(b—n)(l—a)3F2< 1+b-n2-a

k=1

and

Thus, upon replacmg n+— n+ 1, we see that (2.3) is equivalent to

-n,1,1+b—c n+1-5b -n,1,1+c—a—"b
3F2( 2—ab—n 1)— 1-b 3F2( 2—a,2—b ‘1) (2.4)
This result may be obtained from the transformation [1, p. 142]
TLO[ﬁ 7(6_05)" —n,oz,5—5
3F2< 5, € ) ()n 3F2(6,1+a—e—n !
witha=1,=14b—¢, § =2 —a and e = b — n. Thus (2.3) and (2.4) are equivalent and this
proves the lemma. O

We define the product of p Pochhammer symbols

((ap))k = (a1)k -~ (ap)k,

where when p = 0 the product reduces to unity.



Lemma 4. For positive integers n

el e

x ) ni b_n —!. (2.5)

=0

(ap
vl ( (bg — )
Proof: Let us denote the left-hand side of (2.5) by S. Then, since

1 ~nl

we have

k=n
Use of the identity
_ =DM a—n)
(O[)k*’n« (1 _ a)n

then yields

and the lemma follows. O

We remark that (2.5) is recorded incorrectly in [13, 7.2.3 (19)], but certainly the result is well
known. Although we shall prove (1.5) in Section 3 we now exploit the a < b symmetry of this
result to obtain the following.

Corollary 1. For nonnegative integers n

ab |\ (1+a)(1+b)y = (—n)e(l+a+b—c)
2 ( ¢ ’1>n B (¢)nn! kgo (1+a)e(1+b) (2.6)

Proof: Since the right-hand side of (1.5) must remain the same when the parameters a and b
are interchanged, it follows that

1 & (=n)elb—o) (—n)w(
c—b —= (b—n)K(l—a) _c—aZ (a

Now replace a+— 1 —a+n and ¢ +— 1+ b — ¢+ n so that

1 S (—n)ple—1—n) - r(c—a—10)
c—l—nZ (b—kn)k(a—n);C _c—a—bZ 1—a 1—b)k'

k=1 k=1

By reversing the index k — n — k in the left-hand summation and employing the identity
(1—-a),
(1 — Oz)k ’

we have upon replacinga+— 1—a,b—1—bandc— 2 —c

& () 1 a+b—c)
Z (c)kk! _c—a—b Vn— 1n'z '

k=0

(a— n)n—k = (_1)n_k

Finally, by adjusting the index k in the right-hand summation and then letting n — n 4 1 in the
resulting equation, we deduce (2.6). O



3. Proof of Milgram’s conjectures

That Milgram’s (1.5) is equivalent to (2.1) is seen by means of Lemma 3. Moreover, Milgram
suggests that (1.5) can be obtained by employing the Thomae two-term relation [1, Corollary
a,b,c
3F» (

3.3.6, p. 143
1
f9 )

together with the conjecture (1.6) and this does indeed yield (1.5). Next we shall give a derivation
of (1.6), which we restate below.

1) - D(W)D(s+a)(s+c) 3F2 ( s+a,s+c¢

Theorem 1. For positive integers n

ab ¢ I(1—a)(b)n T'(c) (1 —a)s(b— o)
3Fy 1] = - .
b+n,c+1 (b—c)n I'(l4+c¢—a) 1+b—a — (I14+b—a)k!

[ﬁ

Proof: We employ one of Thomae’s three-term relations for 3F5(1) given by [13, 7.4.4 (3)]
o (abe]) _ _TAOM@IE-b) T bbb 1]
2\ g T TOD(f-bI(g-b) T(1+b—a) > 2\ 1+b—al+b—c
I'(Hr
)T

(g)T(b—r¢) I'(1—a) P el+c—fi14+c—g 1
(b )3 2 l+c—a,1+c—0 ’

+

f
I(f
f
I(f—c)l(g—c) T(14+c—a
>

where Re(f +g9g—a—b—c¢)
integers n the result

a,b, ¢ ~ (0)n TA+or(1-a)
3F2<b+n,c+1'1>_(b—c)n I'l4c—a)

0. In this set f = b+ n and g = c+ 1, thus giving for positive

+

c0)  TOITA-a) 1—n,bb—c
(c—b)(n) T(1+b—a)’ 2(1+b—a,1+b—c 1)' (3.1)

Now in Lemma 2 let a — 1 —a,b—b—c, c+— 1+b—a and n — n — 1 thus yielding
)
Q,

which when used together with (3.1) completes the proof of the theorem. O

[4

(1 —a)e(b =)k (14+b—c)n1 F< 1—n,b—cb

1—|—b—akk' T (1) l+b—c,1+b—a

(b—c)n 1—n,bb—c
1+b—a,14+b—c

k=0

~ (b-or(n) ™’

It appears that Theorem 1 could also be obtained from [13, 7.2.3 (21)] by specialization, but
the latter result is incorrect and, moreover, its origin is unknown.

4. Proof of (1.7)

Employing Lemma 4, we have for positive integers p

—1
a,b, 1 _ —pb—p S k(0= D)k g
_ p 3 P
3F2(Cp+1 )—fpw 2F1( c—p ') S x ,
k=0
where

—1)Ppl(1 = ¢y
5;05 b
(I —a)p(l—0),



Now differentiation of this identity n times with respect to x yields

G en (s ) e (8@ - se)
7

p—1 n k—
_x(a=p)k(b—p) dra®P
S2(r) = Z c—p)rk! dax™

where

a [ Cpb—
51(55)5%[55 p2F1<a Cp_p b

and

e

Recalling Leibniz’s rule

k=0
and o
@x” = (=1)"(=v)pz" ™",
we may write
a+n,b+n,n+1 _(Onlp+1)né, 2~ So(x
3F2( ctnmntp+l }x)— (@)n ()] <Sl() Sal ))’ (4.1)
where
_(n _qynk gh—n—p (a—=p)r(b—p a—p+kb—p+k .
si@=3(3) oy SO (PR PR L)
e D DTy TP
Sa(w) = e kz:%) (c —p)ik! (p = F)na”. (4.3)

In (4.1) — (4.3) set z = 1 and replace a — a —n, b— b—n and ¢+ ¢ —n. Then by using in (4.2)
the Gauss summation theorem

7 (a—n—p+k,b—n—p+k ’1) Flc—=n—p+k)(c—a—b+n+p—k)
2 Fy

c—n—p+k N I(c—a)l(c—0) ’
we have
a,b,n+1 _ (=1)P(n+p)! (c=n)y, (1—c+n),
3F2(C,n+p+1‘1>_ n! (@a—n)p(b—n), 1—a+n)p(l—>b+n),
_1\n+1 F(C—?’L—p)
X <( TS + Tc—al(c—0) T) , (4.4)
where
N~ (a—n—phlb—n—pk 0=k
_k:O (c—n—p k!
and

T

>

(1) G0 Gacsta == pao=n—phlle—ab+n-+ph)
k=0



If, in the first sum S in (4.4), we reverse the summation index k — p — k and note that

__ T (=Dm** _I(n 1 D ek
e T U ae TR W T
we obtain
CT@r)  Te-n—p) DT §n (0 duk (Pl
5= I'c) T(a—n—pL(b-—n—p) Z (1—a)pir(l =b)ptr T(k)

k:l

Now adjusting the summation index so that it starts at £ = 0 and using

co = (711,

T'(a)T'(b) I'(c—n—p) (=1)n*1p!
Ie) Tla—n-pl-n-p) (-1

p—1 (1_0)71 1
XZ Fn+ 1) < f >(1_a) it . (4.5)

ntkt1 (1= b)nyrtt

we find

Proceeding in a similar manner for the second sum 7' in (4.4), upon redefining the summation
index k — n — k and using the symmetry of the binomial coefficient, we have

I'(a)T(b)T(c —a— - ( ) - (c—a—"b)kip

Fla=n—-pL'(b—n—p z;) (1= @)ksp(L = D)igp

T =

(4.6)

Finally, combining (4.4) — (4.6) followed by some routine simplification and then replacing n —
n — 1, we deduce the summation formula (1.7). O

5. Transformation and reduction formulas

Few Kummer-type transformations (containing a finite number of terms) for the confluent hyperge-
ometric function 2 F»(x) are extant in the literature. Miller [7] deduced the two-term Kummer-type
transformation due to Exton [2]

1+%a e b—a—-1,24a-0b
2F2<b, % x)—e 2F2< b, 1+a_b}—$), (51)
which has been extended by Paris [12] who obtained
e+l . b—a—1, £+1
2F2<Z,CC x)_eQFQ( (Z 55 ‘—x) (5.2)
where
c(l+a-0)
=127
a—c

Paris [12] also obtained a multiple-term Kummer-type transformation given by

n k
a, c+n e ny\ b—a, c+n
(5 ) e () e () 0

b, ¢
k=0

- a:> , (5.3)



where n is a positive integer. Moreover, specialization of the result [4, 9.1 (34)] recorded by Luke

gives
(5] ]) = e S (51 ])

whereupon letting f = ¢+ n and employing Kummer’s transformation for the confluent hyperge-
ometric function 1 Fy (x) we easily obtain for n a positive integer

(50 - () im0

b,
k=0

~a). (5.

In each of the results (5.1) — (5.4) one pair of numeratorial and denominatorial parameters in
the left-hand 3 F5(z) function differs by a positive integer. In what follows we shall employ the
summation formulas (1.5) — (1.7) and (3.1) to obtain multiple-term Kummer-type transformations
for 9 F»(x) in which at least one pair of numeratorial and denominatorial parameters differs by a
negative integer. For this, we shall make use of the expansion

avb _ — _kaavb (_I)k
2F2 (C,f x) =€ ZBFQ ( C,f ‘1) %l (55)
k=0
which can be obtained by specialization from a more general result recorded in [16, p. 166]. In
(1.5) — (1.7) now let a = —k thus giving for nonnegative integers k respectively

—k,b, n . (1_C)n(1)k ~ (—n)g(b—c)g (1+C—b)k(1)k
F( 2 n+1'1>‘<1—b>n<1+n>k ; R N

kb, c (D) (s e (b—c) (140
3F2<b+"7c+1‘1>_(b—0)n ((14‘0)1@_5 1+0), (1+b+€)k>’ (5.7)

JF) < —k,b, n ‘ 1> _ E:Az S:Z;nw (1)x - n 232 (c=b)pse (c=b+p+0)(1)
=0

¢, n+p nte (Ltn+ 0 = (1=bpre Q+p+Oplc)e
(5.8)
where for nonegative integers ¢ the coefficients A, and By are defined by
n (1-— 1 1- 1
A = (P)n (=P By = () _(1=n)e (5.9)

n—1I 00 n+e -0l & p+e

Then, employing (5.5) we deduce respectively the multiple-term Kummer-type transformation
formulas

(2 ) = [ (a9

_g(_(g)_é%;g)é 2F2(”§,_b’ 1414’”)1’ (5.10)
2F2<b—lli,n, c—il’x):ew(b(f)Z)n 1F1( +1’_ )‘%7[2813 1F1(1i:ie‘_ )]
(5.11)




b ¢ c—b+p+/¢ 1
+E B p+ o Fy ’ — . 12
e P+€ ( ) I+p f‘ I>] (5 )

In a similar manner we obtain from (3.1) the alternative form of (5.7) given by

" < e ‘ 1) - <b(f)z>n ((1(?2» - Céf: ?{f

— (1 =n)y (e
b+0)b—c+0)0 (1+b+f)k>' (5.13)

This in turn yields the alternative form of the Kummer—type transformation (5.11), namely

2F2(b4lzn 046—1 ’x) _em(b(f)Z)n [1F1 (cj—l "x)

(1 —n)y 1
n—1lzb+e —c—i—@)ﬂ!lFI(l—i—b-i-ﬂ‘_‘r)]' (5.14)

We remark that Prudnikov et al. [13, 7.12.1(2)] records for positive integers n the identity

(ot ) =g b (5 ) S n (18 )

This also yields, upon use of Kummer’s transformation for ; Fi(z), the transformation (5.11).

The above transformations for 3F5(z) can also be obtained as specializations of reduction
formulas for certain hypergeometric functions in two variables known as the Kampé de Fériet
function. The latter function in two complex variables is defined by the double infinite series (see,
for example, [15])

rgu [ (ar) : (ag); (Yu)
F ( )

s:t;v

Thus, employing the identity [8]

) ) )k
Fi55 ( EZ; Z? ~ F2< ﬁ;b‘ ) % (5.15)

together with (5.6) — (5.8) and (5.13) four reduction formulas for the Kampé de Fériet function
may be obtained. For brevity, we record only the two salient results obtained respectively from

(5.7) and (5.8), namely
(51 = o) - o b (1)

AR SN
- > 2 (G

k=0

(bs): b+mn, c+1; _
n—1
e (b—o) (ar), 1+¢
b2 () T“F”l(ws),ubw z (5.16)
and
p—1
20 (((ap): b, no; — Y (1 —¢)pie (ay), 1 B
F“O((bs) e, ntp; — | x)_;%Ala—b)nH”lFS“ (bs)y Lhbn+e| 7
n—1
(c=b)p+e (ar),c—b+p+4¢,1
B 4 1N T Fs ’ ' - 5 .1
+£z:% =0 2 (b)), e l4ptt x (5.17)



where a solid horizontal line indicates an empty parameter sequence, and the coefficients A, and
By are given by (5.9).

We remark that (5.5), (5.11) and (5.12) may respectively be obtained from (5.15), (5.16) and
(5.17) by specializing the latter three results with r = s = 0.

6. Concluding remarks

Although in the present investigation we have derived several conjectured and new summation
formulas for the series 3F»(1) in which one pair of numeratorial and denominatorial parameters
differs by a negative integer, there remains open the problem of deducing a summation formula for

the series
3F2 ( a’, b7 f 1) ,

c, f+n
where n is a positive integer and a, b, ¢ and f are arbitrary complex numbers. We hope that the
developments presented herein will stimulate further interest in this problem.

References

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
[2] H. Exton, On the reducibility of the Kampé de Fériet function, J. Comput. Appl. Math. 83 (1997) 119-121.

(3] P. W. Karlsson, Hypergeometric functions with integral parameter differences, J. Math. Phys. 12 (1971)
270-271.

[4] Y. L. Luke, The Special Functions and their Approximations Vol. I and II, Academic Press, San Diego, 1969.

[5] M. S. Milgram, On some sums of digamma and polygamma functions, (available at http://www.arxiv.org/)
preprint 2004.

[6] M. S. Milgram, On hypergeometric 3F5(1), (available at http://www.arxiv.org/) preprint 2006.

[7] A.R. Miller, On a Kummer-type transformation for the generalized hypergeometric function 2 F», J. Comput.
Appl. Math. 157 (2003) 507-509.

[8] A. R. Miller, A summation formula for Clausen’s series 3F>(1) with an application to Goursat’s function
2F5(z), J. Phys. A: Math. Gen. 38 (2005) 3541-3545.

[9] A. R. Miller and H. M. Srivastava, Karlsson-Minton summation theorems for the generalized hypergeometric
series of unit argument, Integral Transforms and Special Functions 21 (2010) 603-612.

[10] A.R. Miller and R. B. Paris, Transformation formulas for the generalized hypergeometric function with integral
parameter differences (to appear in Rocky Mountain J. Math. 2011).

[11] A. R. Miller and R. B. Paris, On a result related to transformations and summations of generalized hyperge-
ometric series (submitted for publication 2010).

[12] R. B. Paris, A Kummer-type transformation for a o F» hypergeometric function, J. Comput. Appl. Math. 173
(2005) 379-382.

[13] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 3, Gordon and Breach, New
York, 1990.

[14] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

[15] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester,
1985.

[16] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester, 1984.

11



