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Abstract   13 

Macroscopic measurements and observations in two-dimensional soil thin sections indicate 14 

that fungal hyphae invade preferentially the larger, air-filled pores in soils. This suggests that 15 

the architecture of soils and the microscale distribution of water are likely to influence 16 

significantly the dynamics of fungal growth. Unfortunately, techniques are lacking at present 17 

to verify this hypothesis experimentally and, as a result, factors that control fungal growth in 18 

soils remain poorly understood. Nevertheless, if only to design appropriate experiments later 19 

on, it is useful to indirectly obtain estimates of the effects involved. Such estimates can be 20 

obtained via simulation, based on detailed micron-scale X-ray computed tomography 21 

information about the soil pore geometry. In this context, this article reports on a series of 22 

simulations resulting from the combination of an individual-based fungal colony growth 23 

model, describing in detail the physiological processes involved in fungal growth, and of a 24 

Lattice Boltzmann model used to predict the distribution of air/liquid interfaces in soils. Three 25 

soil samples with contrasting properties were used as test cases. Several quantitative 26 

parameters, including Minkowski functionals, were used to characterize the geometry of 27 

pores, air/water interfaces, and fungal hyphae. Simulation results show that the water 28 

distribution in the soils is affected more by the pore size distribution than by the porosity of 29 

the soils. The presence of water decreased the colonization efficiency of the fungi, as 30 

evinced by a decline in the magnitude of all fungal biomass functional measures, in all three 31 

samples. The architecture of the soils and water distribution had an effect on the general 32 

morphology of the hyphal network, with a “looped” configuration in one soil, due to growing 33 

around water droplets.. These morphological differences are satisfactorily discriminated by 34 

the Minkowski functionals, applied to the fungal biomass. 35 

Key words: fungal model, soil, Minkowski functionals, lattice Boltzmann model, X-Ray 36 

computed tomography37 
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According to available estimates, there may be as many as 1.5 million species of fungi in 38 

terrestrial ecosystems (Hawksworth 1991). The activity of these fungi is crucial for the growth 39 

of over 90 % of all vascular plants (Allen 1993), for which they constitute an essential life 40 

support network (Bardgett et al., 2005, 2006). Fungi serve important functional roles as 41 

nutrient recyclers and decomposers (Johnson et al., 2005). In exchange for carbon, they 42 

provide soil-borne nutrients that are otherwise difficult for plants to access (White, 2003). 43 

They protect plants against below-ground pathogens (Smith and Read, 1997), and fulfil a 44 

range of other essential ecosystem services (Boumans, 2002). 45 

In soils, fungal colonies grow as an interconnected network of hyphae, collectively 46 

referred to as the mycelium, which propagates through the pore space. The hyphal tips 47 

extend through the porous structure of soils, and, through these tips, the majority of nutrients 48 

are acquired by the fungi (Ashford and Allaway, 2002). Resources are then distributed to the 49 

more rigid fungal structures situated behind these tips, and which constitute the bulk of the 50 

mycelium (Falconer et al., 2008). In part because of the rigidity of hyphae, contrasting with 51 

the plasticity of their tips, and because of the average diameter of single hyphae, typically 52 

much larger than that of bacteria, it has been conjectured for decades that 80 to 90% of 53 

fungal hyphae may be restricted to the larger pores, in most soils. Also, since many fungi 54 

appear to die off under conditions associated with full water saturation (Mitchell and 55 

Alexander, 1962), it is reasonable to expect that fungal hyphae would predominantly occupy 56 

the larger pores in soils, which are most likely to be air-filled under typical field conditions. 57 

This restriction to larger pores has been observed experimentally by a number of 58 

researchers using a variety of microscopic techniques (e.g., Hattori, 1988). Measurements of 59 

fungal spread in light micrographs of soil thin sections, made by Otten et al. (1999) and 60 

Harris et al. (2003), show preferential fungal exploration of the larger pores, and their virtual 61 

absence in the finer ones. These observations are unfortunately mere 2-dimensional 62 

snapshots of an evolving reality that unfolds in three dimensions. Nevertheless, they suggest 63 

that the structure or “architecture” of soils, and more specifically, the geometrical features of 64 

the pore space that this architecture harbors (Letey, 1991; Baveye, 2006), should profoundly 65 
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influence the propagation of fungal hyphae in soils, either directly or via the influence the soil 66 

architecture has on the spatial distribution of water.  67 

At present, it is not yet technically feasible to investigate, in real time, whether, and if so 68 

how, fungal growth dynamics is affected by soil architecture. Part of the needed information 69 

can be obtained, but unfortunately not all of it. Tremendous progress achieved in recent 70 

years in the X-ray computed tomography (CT) of soils, carried out at synchrotron facilities or 71 

using tabletop X-ray CT scanners, now allow researchers to obtain detailed data on the 72 

geometry and topology of soil pores at sub-micron resolution (e.g., Sleutel et al., 2008). Even 73 

taking into account operational problems that still affect the use of X-ray CT in terrestrial 74 

systems, like those stemming from the thresholding/segmentation of CT grayscale images 75 

(Baveye et al., 2010; Iassonov and Tuller, 2010), the resolution that can now be achieved is 76 

in principle adequate to characterize the physical micro-environment of fungal hyphae in 77 

soils. Unfortunately, visualization of the water distribution at that scale remains largely 78 

unfeasible. Tippkötter et al. (2009) have recently been able to determine the distribution of 79 

water in soil macropores using X-ray CT. However, measurements of the micron-scale 80 

distribution of water in soil mesopores will have to await until thresholding issues be 81 

resolved, suitable contrast-enhancing agents be identified, or procedures for dual-energy X-82 

ray CT scanning of soils be worked out, like those routinely used for gamma-ray scanning. A 83 

similar situation pertains to fungal hyphae. The opacity of soils, as well as the virtually 84 

identical X-ray absorption characteristics of hyphae and water, largely account for our 85 

inability at this point in time to non-destructively monitor fungal dynamics in undisturbed soil 86 

environments. If the technological advances of the recent past are any indication of how fast 87 

CT applications in soils are likely to evolve in years to come, it may not take a decade for 88 

researchers to be able to easily monitor fungal and water dynamics at micron scales in soils, 89 

but one is not there yet.  90 

In the mean time, however, if only to help in the design of future experiments, it would be 91 

useful to try to estimate under what conditions the architecture and water regime of soils are 92 

likely to exert a significant influence on fungal dynamics, based on the best information 93 



5 

 

 

 

currently available. In addition, one should also determine what quantitative characteristics of 94 

fungal hyphae, at different stages of their growth, are most sensitive to changes in soil 95 

architecture. Practically, such insight can be obtained at this stage only via simulation. Both 96 

for water dynamics in unsaturated soils and for the propagation of fungal hyphae on agar 97 

plates, sophisticated computer models have been developed in the last decade, and have 98 

been shown to provide a reasonably faithful, mechanistically plausible depiction of the 99 

behavior of real systems. In terms of water dynamics, theoretical approaches such as the 100 

Lattice Boltzmann (LB) models (e.g., Sukop and Thorne, 2006) can predict where 101 

liquid/vapor and liquid/soil interfaces are located at the pore (micro) scale. A key advantage 102 

of LBM over other approaches, e.g., mathematical network models, is their ability to 103 

envisage complex domain geometries, such as those obtained via X-ray CT. LBM has 104 

previously been used to demonstrate phase separation of fluids in a 2-D non-structured 105 

environment (Sukop and Thorne, 2006; Basit and Basit, 2010), a 2-D idealised porous 106 

medium (Sukop and Or, 2003) and a 3-D porous medium (Vogel et. al., 2005). Once the 107 

microscale water distribution is predicted by an LBM model, a computer program describing 108 

in detail the growth and metabolism of fungi in soil pores can be run to identify where one 109 

would expect fungal hyphae to propagate. A model of this process developed by Falconer et 110 

al. (2005, 2007) provides a very detailed account of the intricate network of diffusion 111 

processes and biochemical reactions that lead to hyphal elongation and propagation in 112 

various types of environments, from agar plates to soils. This model has been used, in 113 

particular, to model interactions among fungi, to link fungal individuals to community-scale 114 

patterns on plates and in soils (Falconer et al., 2008, 2010), and to analyze the effect of soil 115 

architecture on fungal growth dynamics.  This model, however, has not yet been coupled 116 

with the output of LBM simulations to describe the combined influence of soil architecture 117 

and heterogeneous water distribution on fungal hyphae propagation. In order to quantify the 118 

impact of soil architecture and water on biomass distribution we can use the Minkowski 119 

functionals. The term “Minkowski functionals” is generally attributed to the collaboration of 120 

Georges Matheron and Jean Serra during their work that gave rise to the field of 121 
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mathematical morphology. The algorithm in its simplest form considers eight nearest 122 

neighbour image elements in 3D space as forming a cell (i.e. a small but discernable 123 

volume) for which measures are estimated based on a robust statistical treatment of the 124 

available information. A prerequisite of the algorithms used is that each image element is 125 

assigned membership of one of two classes; object or background, in other words the image 126 

must first have been segmented using either a simple intensity threshold or some more 127 

advanced technique. The first two measures belonging to the 3D Minkowski functionals are 128 

the familiar volume and surface area about which little needs to be said other than to 129 

reiterate that these are estimated measures based upon a particular scale of observation. In 130 

other words, as more detail is included by employing greater resolution in the imaging 131 

process, it is to be expected that many naturally occurring materials will exhibit significant 132 

changes in measured properties (analogous with fractal problems such as measuring the 133 

length of the British coastline). The remaining measures in 3D space are properly termed 134 

Integral Mean Curvature and Integral Total Curvature neither of which is amenable to simple 135 

and concise explanation; the interested reader is referred to Ohser & Mucklich (2000) for 136 

formal mathematical definitions rooted in set theory and integral geometry. We will use the 137 

Minkowski functionals to characterise the 3D geometry of the soil architecture, water 138 

distribution and the fungal biomass distribution. 139 

 140 

In this general context, the objectives of the research described in this article were 141 

threefold. The first was to draw together a Lattice Boltzmann model of water distribution in 142 

unsaturated soils and Falconer et al.’s (2005, 2007) model of fungal dynamics. A second 143 

objective was to apply the combined model to a 3-D pore scale representation of soil 144 

samples, obtained using X-ray CT. Finally, the last objective was to elucidate the role of soil 145 

architecture and moisture distribution on fungal colonisation and to identify key geometric 146 

parameters that most sensitively quantify this dependence of fungal dynamics on soil 147 

architecture and moisture content (hereafter referred to as water content although the reader 148 

should be aware of the density ratio limitation of the Lattice Boltzmann method used here 149 
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(Sukop & Or ( 2003))). Three different soil samples were selected as test cases, with 150 

contrasting properties. To facilitate the analysis of the simulation results, several Minkowski 151 

functionals are described and used to characterize not only the geometry of the pore space, 152 

as has been done already by other researchers, but also the geometry of the air-water 153 

interfaces and of the fungal biomass. Prospects for future research are discussed in detail. 154 

MATERIALS AND METHODS 155 

Soil sampling and characterization by X-ray computed tomography 156 

Soil samples were taken from experimental plots established at the Scottish Crop research 157 

Institute (Invergowrie, Scotland), on a Dystic-Fluvic Cambisol (FAO) with a sandy loam 158 

texture (Sun et al. 2011). From 2003 onwards, these experimental plots were tilled annually. 159 

Two soil samples, labelled P1 and P2, were taken from the top 0-5 cm from fields ploughed 160 

yearly to a depth of 40 cm and disked, whereas another sample (N) was obtained from a 161 

field subjected to zero tillage treatment, and where seeds have been drilled directly. These 162 

samples were selected on the premise that they would exhibit contrasting pore-size 163 

distributions.  164 

Characterisation of the micro-scale heterogeneity of the soils was achieved by scanning 165 

samples in a Nikon Metrology/METRIS HMX micro-tomography system (Nikon Metrology, 166 

Tring, Herts, UK) at 150 kV and 50 µA, with a 2mm Al filter, and 1200 angular projections. 167 

The radiographs were reconstructed into a 3-D volume using CT-Pro (Nikon Metrology, 168 

Tring, Herts, UK) at a resolution of 35 µm, imported into VGStudiomax (Volume Graphics 169 

GmbH, Heidelberg, Germany) and converted into image stacks with voxel-thick slices. Image 170 

stacks were imported into ImageJ (open source software, National Institute of Health, 171 

Washington, D.C., USA). A median filter was applied prior to automated thresholding using 172 

the ISO-data procedure available in ImageJ. Small cubes, of size 128 * 128 *128 voxels, 173 

were selected from the thresholded volumes to serve as input for the water distribution and 174 

fungal growth simulations. 175 
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Lattice Boltzmann modelling of liquid distribution in soils 176 

The Single-Component, Multiple-Phase Lattice Boltzmann (SCMP-LB) model developed by 177 

Shan and Chen (1993; see also Sukop and Thorne, 2006) was used to predict the water 178 

distribution, and in particular the liquid/vapor and liquid/solid interfaces, in the 3 soil samples 179 

P1, P2, N. Previous research has shown that the SCMP-LB model can be used to predict the 180 

liquid-vapor behavior of a fluid in partially saturated porous media (Sukop and Thorne 2006). 181 

The Lattice Boltzmann model is viewed from a particle perspective where collisions, 182 

streaming, and particle-particle, particle-surface interactions constitute the conceptual 183 

framework. It is considered a bottom up approach to fluid dynamics and requires a reduction 184 

in spatial and temporal state space in order to be tractable. The number of possible particle 185 

positions and microscopic momenta are defined by the lattice used, here we use the D3Q27 186 

which defines a three dimensional lattice with a neighbourhood of 27 containing 27 187 

velocities.  The model implemented here uses the standard collision and steaming operators 188 

as described in Sukop & Thorne (2006)  p 35. The parameters which are well cited in the 189 

literature and used to describe the particle-particle and particle-surface interactions are 190 

described below. Interparticle interactions characterize the forces between fluid particles 191 

where G is the interaction strength and Ψ0 and ρ0 are arbitrary constants. A G < 0 results in 192 

attraction between particles and the force is stronger when the density is higher, therefore 193 

dense regions (liquids) experience a stronger cohesive force than vapour which leads to 194 

surface tension phenomena. In addition to interparticle interactions for porous media the 195 

particle-surface interaction is also required, this can be considered the wettability of the 196 

porous media. The method used is based on Martys and Chen (1996) and is similar to 197 

interparticle force calculation but the number of solid nodes in the neighbourhood is also 198 

considered. By assigning a virtual density (vd) to the solid nodes we can alter the wettability 199 

of the porous media. The higher the vd the stronger the fluid-surface interaction and 200 

therefore the more wettable the surface. Values selected for G, ψ0, ρ0 and vd  (Table 1) were 201 

found in Sukop and Thorne (2006). They were also adopted by Basit and Basit (2010).  202 
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The resulting version of the SCMP-LB model, incorporating solid phase wettability, was 203 

implemented using the open source PALABOS program (available at 204 

http://www.lbmethod.org/palabos/), first in 2-D to reproduce the liquid-vapour phase 205 

separation dynamics described by Sukop and Thorne (2006). The simulations were 206 

performed on a mesh of 128 by 128 pixels. The entire domain was initialised with an average 207 

density of 200 mu.lu-2 (where “mu” denotes a non-dimensional mass and “lu” a lattice unit), 208 

and was perturbed with a random number in the interval [0, 1] at each node. The simulations 209 

were then extended to three dimensions on a volume of 128 x 128 x128 voxels. The SCMP-210 

LB model was run on each soil structure (P1, P2, N), with two levels of wetness determined 211 

by the initial average density of the fluid.  212 

Concretely, as in the 2D simulations, the entire domain was initialised with an average 213 

density (ρo) of 150 or 200 mu.lu-2 and was perturbed with a random number in the interval [0, 214 

1] at each pore node, achieving two levels of partial water saturation, associated respectively 215 

with the vapor and liquid phases. The associated volumetric liquid water content in each 216 

case was determined by selecting a threshold water density above which a voxel is 217 

considered to contain liquid water, and below which it is filled with vapor. This threshold 218 

water density was determined by analysing the functional measures of the water. They 219 

showed a very sudden transition at a certain density, which was used as the threshold value. 220 

The initial average density of ρo = 150 was determined as the lowest value that was possible 221 

while maintaining stability of the SCMP-LB model across the three soil samples, whereas the 222 

use of the value ρo = 200 seemed justified in view of the fact that it has been previously used 223 

in the literature (Sukop and Or, 2003; Sukop and Thorne, 2006; Basit and Basit, 2010). The 224 

surface area and volume, in the form of Minkowski functionals, of the liquid phase is 225 

calculated every 10,000 model iterations to monitor the dynamics of the LB model and to 226 

ensure it is consistent with the 2D case. A periodic boundary was assumed for the 2D and 227 

simulation runs were pursued until the systems reached equilibrium. 228 
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Fungal growth modelling 229 

The model of  Falconer et al. (2005) is individual-based and incorporates the essential 230 

physiological processes of nutrient absorption, within colony biomass transport and 231 

recycling, inhibitor production and growth, and these occur differentially within a single 232 

mycelium as a consequence of local and non-local contexts. This differential behaviour 233 

permits different parts of the mycelium to expand and senesce concurrently as observed in 234 

nature. The assumption is that all species of fungi carry out these processes to varying 235 

degrees and this can be characterized by a trait set. This framework was developed to 236 

capture the minimal set of physiological processes required to reproduce the observed range 237 

in phenotypic response in the growth and development of single and interacting colonies. 238 

These processes are known to be important for vegetative growth of fungi but have not 239 

collectively been incorporated into a single framework. The model formulation represents 240 

individual mycelial network growing in the environment as comprising three fractions: 241 

insulated biomass (bi), non-insulated biomass (bni) and mobile biomass (n). These 242 

essentially relate to but are not limited to older inactive biomass, active hyphal tips and 243 

internal resource respectively. The relative proportion of these components is dynamic and 244 

determined by the physiological processes. Further, a fungal individual is characterised by a 245 

trait set (genotype) which regulates the physiological processes and its interaction with the 246 

environment. The model is based on a set of Partial Differential Equations (Box 1) which 247 

represent the interdependencies amongst the types of biomass - non insulated (bn), 248 

insulated (bi)  and mobile biomass (n) and external resource (s) - and how these change 249 

over space and time.  250 

The set of modelled processes describe uptake of resource from the environment, the 251 

conversion of this resource into mobile biomass, which can be translocated within the 252 

structural fungal network. A key advancement of this modelling framework is the ability to 253 

interconvert the mobile biomass into structural biomass and vice versa. This process allows 254 

the fungal colony to recycle and reallocate its biomass depending on local environmental 255 

context. The colony spreads through space by a diffusion process. The fungal colony can 256 
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also exude an inhibitor field which is proportional to the local mobile biomass concentration. 257 

The presence of a non-self inhibitor field stops local spread of the colony.   258 

This model has been used to show that single (Falconer et al. 2005) and interacting 259 

colony Falconer et al. (2008) morphologies on agar plates, as observed in the laboratory, are 260 

sensitive to the trait set controlling the physiological processes and the environmental 261 

context. Also, simulation results indicate that specific physiological processes (biomass 262 

recycling) are required for survival in resource-limited and heterogeneous environments 263 

(Falconer et al. 2007). We also demonstrated the use of a physiologically-based model to 264 

explore the factors that influence the nature of fungal community diversity, as well as the link 265 

between individual behaviour and the structure and function of fungal communities (Falconer 266 

et al. 2010). 267 

Coupling of fungal growth and SCMP LBM 268 

The Lattice Boltzmann model described above is used to explore the effect of liquid/vapour 269 

and liquid/solid interfaces on fungal colonisation using a completely air filled (dry) sample 270 

and 2 levels of unsaturation (different water contents (wc)). New extensions to the fungal 271 

model include  response to the presence of water. Consistent with experimental work by 272 

Otten et al (1999) we reduce the colony spread, in areas of high fluid density (liquid). The 273 

distribution of fluid density derived from the LBM encapsulates how much vapour and liquid 274 

is present in a given voxel. This density is mapped using linear interpolation to the diffusion 275 

coefficient (Db) governing colony spread (see Box 1) resulting in areas of the pore space with 276 

dense fluid voxels having less colony spread.  Similarly regions of the pore space that are 277 

less dense will have more colony spread allowing more speedy spread. The spread of fungi 278 

is now a function of water content (wc) and structure (v)  i.e. (  function of ( , )
b

D wc v ) A 279 

linear mapping of Db to fluid density was used as this is the simplest continuous mapping 280 

function. 281 
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Box 1 The mathematical model of fungal colony growth as in Falconer et al 2005. The 283 

dependency of Db to water content (wc) via a linear mapping is the main extension of this 284 

work in order to couple with water dynamics.  Dmax and Dmin correspond to the minimum 285 

and maximum diffusion coefficients, 286 

Fungal growth was initiated from a single plane (first z-y plane) of the 3D sample. The 287 

growth of the colony is affected by colony traits and here we aim to assess the effect of 288 

structural heterogeneity and distribution of water on fungal colonisation and not the intrinsic 289 

properties of the colony (i.e. other colony traits) therefore we use the same colony traits in 290 

the three samples (as in Falconer et al 2005). The fungi colonise the 3D structure until it 291 

reaches the opposing plane from the inoculation (termed crossing time). The colonisation 292 

ability of the fungi is described using the Minkowski functionals at the crossing time, as 293 

explained above. 294 
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Geometrical characterization of pores, moisture distribution, and biomass 295 

The development of non-invasive techniques and the interpretation of the output of 296 

modelling studies that predict spatial dynamics and interactions in 3-D, requires the 297 

development of novel spatial descriptors. Simple characteristics such as volume and 298 

connectivity of pores were previously used to analyse the impact on fungal growth (Pajor et 299 

al. 2010; Kravchenko et al.,2011). However, more advanced descriptors can be used for the 300 

3D structures of pore space, water and biomass volumes using the fundamental set of 301 

Minkowski functional measures. In the case of 3-dimensional space, the Minkowski 302 

functionals are a four-tuple of linear measures that describe an object within the space  303 

(Hadwiger 1957).The measures relate to volume, surface area, curvature and the topological 304 

measure Chi (the Euler-Poincare characteristic). The significance of the first two measures 305 

stems from the fact that the volume and surface area of pores within a soil sample strictly 306 

limit the biomass that can be accommodated. The Integral Mean Curvature (IMC) measure 307 

describes the manner in which the surface of an object fills space; a large positive value 308 

implies a surface that is predominantly convex whereas a large negative value implies 309 

concavity. The topological measure, also referred to as the Integral of Total Curvature (ITC) 310 

describes the overall form of an object; a large positive value implies a disjoint object 311 

consisting of many isolated fragments, a large negative value implies an object that is 312 

punctured by many holes. Figure 1 shows the relationship between binary structures and 313 

Minkowski measures for simple geometries. Vogel et al. (2010) apply Minkowski functionals 314 

to (static) soil structures imaged at different resolutions. In this case, each functional 315 

measure is calculated as a distribution over pore size classes (the volume measure can 316 

therefore be interpreted as a dimensionally scaled pore size distribution). This approach 317 

allows information obtained over a range of spatial scales to be combined, thus revealing a 318 

broader picture of structural properties.  319 

The thresholded 3-D tomography images, the water distribution predicted by the LBM model, 320 

and the predicted fungal networks in the three soils, at different water contents, are analysed 321 
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using algorithms described by Ohser and Mucklich (2000) (implemented in bespoke 322 

software) to obtain estimates of the four Minkowski functional measures, i.e., the volume 323 

fraction (VF), surface area (SA), integral mean curvature (IMC), and integral total curvature 324 

(ITC). In fact these measures can provide more intuitive information when expressed as 325 

ratios e.g. the measure-wise ratio of one object relative to another. This cancels out the units 326 

of each measure and makes for numerical values that may be easier to handle and interpret. 327 

Also, the ratio of two distinct measures may be taken for a single object (in which case a 328 

derived physical unit will result) in order to summarise some more abstract property.  329 

These measures are hereafter standardised to the canonical [0, 1] interval, i.e., each 330 

volume image is treated as being a cube of unit sidelength, and standardised Minkowski 331 

functional measures are computed on this basis. In particular, the volume functional measure 332 

is simply the pore (object) volume fraction. When considering water or biomass, the 333 

functional measures are standardised relative to those of the relevant binary (pore-versus-334 

solid) image, i.e., relative to structural features of the soils. In addition to the Minkowski 335 

measures for tomographic images the pore size distribution is calculated.  For each pore 336 

voxel, one determines the sphere of maximum diameter that fits at least partly within the 337 

local pore space with the proviso that pore space having been previously covered by another 338 

sphere is excluded from the calculation. Diameters (exceeding a small threshold) are 339 

recorded and used to compute the pore size distribution (Figure 2). 340 

 341 

Due to the number of methods and models used in this paper we present a schematic which 342 

provides an overview of how these are used in the context of this research (Figure3). 343 

RESULTS AND DISCUSSION 344 

Physical pore space properties and functionals of pore space 345 

The soil structure metrics show that N has the lowest porosity and connected pore fraction 346 

(Table 2). P1 and P2 are similar in terms of porosity and connectivity but the surface area 347 

functional is much less for P1. Surprisingly sample N has a larger surface area than P1 348 
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suggesting a more twisty and tortuous pore space. The IMC and ITC measures are much 349 

larger, by an order of magnitude, for N than P1 and P2 samples. IMC is positive for all three 350 

samples implying that the space that describes the pore surface is convex. IMC for N sample  351 

is large and positive implying a disjoint object consisting of many isolated fragments and this 352 

is consistent with a connected pore fraction of 62.84%. Samples P1 and P2 contain mostly 353 

large pores, with sample P1 containing a higher proportion of larger pores than P2. The 354 

largest pore diameter was 45 voxels in P1 and 30 voxels in P2. The pore size distribution of 355 

N is quite different with all pore diameters smaller than 15 voxels.   356 

Evolution of functionals of liquid phase from SCMP-LB  357 

Using PALABOS and the parameter values in Table 1 we extended the previously published 358 

phase transition dynamics in 2D (Sukop and Thorne 2006, Basit and Basit 2010) to 3D 359 

porous media. Figure 4 a) – c) shows the evolution of phase transition for a 2D, non-360 

structured environment. Figure 4 (d-f) shows the segregation of the vapour/liquid phases 361 

within the pore space for sample. 362 

If we consider all four Minkowski functional measures simultaneously, the liquid volume 363 

is characterised as a point in 4-dimensional Minkowski functional space; a full comparison of 364 

the geometry of the liquid volume therefore tends to become a 5-dimensional problem. In 365 

either case, the high dimensionality requires that the information to be presented either in 366 

tabular form or as a set of graphs. This can be a relatively "indigestable" presentation format 367 

and so there is an incentive to consider only a subset of the functional measures. For 368 

example, the relationship between volume and surface area can be quite informative; for any 369 

given volume the minimum surface area is achieved by a sphere, as the surface area 370 

increases from this minimum then the object becomes less sphere-like and this has 371 

important implications for the relationship between points interior to the object. Hence a 372 

scatter plot of surface area against volume permits an immediate visual comparison of many 373 

different data sets (simulation time points for example) (Figure 5). Here we present the 374 

evolution of surface area and volume functional (ρ0 = 200) for the three structures during the 375 
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course of the SCMP LB simulation. The reduction of both surface area and volume fraction, 376 

as seen for the 3 structures, indicates that aggregation of the higher density phase (liquid) is 377 

occurring due to the interaction forces in the SCMP LB model and the Minkowski functionals, 378 

SA and VF, can be used to determine when the system is in equilibrium. This is consistent 379 

with the 2D droplet formation in Figure4. We can see from Figure 4 a large reduction in the 380 

SA and VF at the second time step and this is due to the interface minimization that occurs 381 

as a result of the interparticle and particle-surface interactions. Essentially the 1st and 2nd 382 

time points on Figure 5 relate to Figure 4a and Figure 4b where we start off with a noisy 383 

density distribution (large SA and VF) and this is subsequently reduced.  The surface area 384 

and volume fraction of the liquid phase are less than the corresponding surface area and 385 

volume fraction of the pore space, as liquid phase is constrained by pore phase. There are 386 

also distinct differences among 3 structures with respect to volume fraction occupied and 387 

surface area and by plotting the volume fraction and surface fraction we can clearly see the 388 

functionals can separate the structures in surface/volume parameter space. The last time 389 

point for SCMP LB model is then used to provide the air/liquid interface configuration and 390 

input into the fungal growth model. There is less change over time for N, compared with P1 391 

and P2. N has a much lower volume fraction but a relatively high surface area, indicating 392 

tortuous distribution. The water content associated with each sample at the two initial 393 

densities was determined providing an indication of the water content of the sample and is 394 

provided in Table 3. The table demonstrates that water content increases with an increase in 395 

average initial density (ρ0) over the three structures, and the water content appears to 396 

increase, not with porosity, but with the increased occurrence of large pore diameters. 397 

To illustrate how water distribution will impact on fungal colonisation the linearly mapped 398 

diffusion coefficients, from fluid density, for fungal spread are shown in Figure 6 for sample 399 

P2 where a) is completely air filled, b) has a water content of 2.96% and c) has a water 400 

content of 4.75%. We can see that large sections of the pore space is liquid filled (dark blue 401 

pixels) as predicted by SCMP Lattice Boltzmann method, and these areas are less likely to 402 
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be invaded by fungal colony. This fundamentally alters the connectivity of the pore volume 403 

and may have consequence for fungal colonisation and interactions.  404 

Fungal Invasion 405 

Inspecting table 4 and Figure 7we conclude that the presence of liquid (water level) has 406 

decreased the magnitude (i.e. ignoring the sign of numbers) of all fungal biomass functional 407 

measures in all three samples. Such a consistent decrease in magnitude strongly indicates a 408 

progressive restriction on growth i.e. fungal colonisation is impeded due to pore space being 409 

made inaccessible by the presence of water. Further evidence supporting this conclusion is 410 

provided by the trend of increased crossing time in relation to water content. We can see that 411 

as the water content is reduced the Minkowski measures for the fungal colony tend towards 412 

that of the pore space, however these are not exactly the same due to areas of the pore 413 

space being disconnected. 414 

Looking in more detail at the functional measures it is possible to deduce some 415 

interesting characteristics of the fungal biomass spatial distributions. In the case of the N 416 

sample, the IMC measure is far greater than that of P1 and P2 while the converse is true in 417 

terms of ITC. These factors, in conjuction with a surface area that is large in relation to the 418 

volume occupied, strongly indicate that N has a more spatially convoluted or tortuous fungal 419 

network. Additionally, the strongly negative ITC measure of N biomass indicates that it is 420 

punctured by many holes i.e. the fungus has grown around many obstacles (solid structure 421 

and water distribution) giving a significantly "looped" morphology. All of these same general 422 

conclusions may, to a lesser degree, be reached for the P1 structure. Contrastingly, in the 423 

case of P2, a large positive value for the ITC measure indicates a significantly disjoint 424 

morphology i.e. the biomass exists as numerous distinct "clumps".  425 

By plotting the surface area vs volume functions we can clearly see that there is 426 

clustering based on structure/sample and some separation within clusters due to water 427 

content. Figure 7 illustrates most variation within P2 cluster, intuitively one might assume the 428 

sample with the largest water content would most strongly inhibit colonisation but it is the 429 

location of the water that is most important. This may be due to the location of the water 430 
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blocking off the growth channels completely. The effect of water is least in the case of the N 431 

structure. 432 

 433 

DISCUSSION AND CONCLUSIONS 434 

We showed that both structure and water distribution impacted on fungal colonization as 435 

characterized by the Minkowski functionals. Water content decreased both surface area and 436 

volume available for biomass for the three samples reflecting reduced ability to colonize. This 437 

decrease is consistent with reduced colonisation due to inaccessibility of pore space due to 438 

presence of liquid. This is the first attempt, as far as the authors are aware, that such 439 

measures, which are a valuable tool describing the geometric structure of an object, have 440 

been applied to fungal networks and fluid distribution. The set of functional measures: 441 

surface area (SA), volume fraction (VF), integral mean curvature (IMC) and integral total 442 

curvature (ITC) forms a multi-dimensional space in which each point summarises key 443 

structural properties. Transformation of structure can thus be understood as motion through 444 

functional space. Although only sub-spaces can be graphically presented (surface vs volume 445 

and ITC vs IMC) these can still provide useful insight into patterns of temporal change and 446 

for classifying fungi response, in terms of colonisation capacity, to structure and moisture. 447 

For both the Surface vs Volume and IMC vs ITC plots we can see clear clustering by 448 

structure, and within these clusters there is variance relating to the effect of water content. 449 

The effect of water content is more apparent in the IMC vs ITC functional space. It seems 450 

however that some structures (N) are less sensitive to the presence of moisture and this can 451 

possibly be explained by the structural characteristics of the soil (small pores and low 452 

porosity therefore low water content). 453 

We have also shown for the first time that a model of fungal growth and dynamics can 454 

be coupled to a model predicting the micro-pore distribution of fluid. The structural 455 

heterogeneity and in particular the pore size distribution appears to effect the distribution of 456 

moisture and this requires further investigation. Future work can investigate effect of water 457 
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distribution on soil samples with similar porosities but different pore size distributions, 458 

although identifying or generating soil samples with specific structural characteristics is not 459 

trivial.  Secondly, this work is an essential step towards extending the model to include 460 

carbon dynamics as it enables to incorporate both particulate and soluble carbon sources. 461 

Here we restricted ourselves to investigating a single set of parameters for fungal growth, as 462 

at this stage we focus on the effect of structure and moisture on fungal colonisation, however 463 

different trait sets may be more or less affected by soil structure and moisture. This coupled 464 

model is an important first step towards developing a framework that can functionally classify 465 

fungi in terms of their essential traits and provide a tool that can predict shifts in colonisation 466 

ability associated with soil management strategies or climate change (changes in rainfall 467 

pattern). 468 
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 560 

FIGURE CAPTIONS 561 

Figure 1. Minkowski measures for simple 3D geometries, middle 2D slice is shown. 562 

Figure 2. Schematic showing the interaction between the various models and quantification 563 

measures used. The middle slice of the 3D soil structure, water distribution and 564 

biomass distribution is shown. Input into the Lattice Botzmann Model (LBM) are the 565 

three structures with varying properties (black = solid, white = pore) - samples from top 566 

to bottom are N, P2 & P1..Output from the LBM is the water distribution represented as 567 

grayscale within pore space. This water distribution together with the connectivity of 568 

pore space effects fungal biomass distribution (white corresponds to presence of 569 

fungal biomass). The Minkowski measures are applied to pore, water and biomass 570 

volumes to characterise their 3D geometry.  571 

Figure 3.Histogram of log transformed pore diameters for the 3 soil samples P1, P2 and N. 572 

Figure 4. Phase separation with parameters specified in Table 1 in a 2-D, non-structured 573 

context at (a) t=0, (b) t=300 and (c) t=1000 iterations, and within a porous environment 574 

at  d) t=0, (e) t = 300 and (f) t =50000 575 

Figure 45 Surface Area (SA) against Volume Fraction (VF) for the water phase of the  3 soil 576 

samples P1, P2, and N. The arrows indicate increasing time. 577 

Figure 6. Distribution of diffusion coefficients affecting colony spread for (a) dry soil sample, 578 

i.e., with no moisture, b) moisture content of 2.96% and c) water content of 4.75% (Table 579 

3). Black and white voxels correspond to solid (Diffusion coefficient = 0) and pore 580 

voxels, respectively (Diffusion coefficient = 250). b) and c) show that the diffusion 581 

coefficients are no longer binary but are a distribution derived from a linear mapping to 582 

water distribution (as predicted by SCMP LB model.) 583 

Figure 7. Plots of the surface area versus Volume fraction (a)  and IMC versus ITC 584 

measures for the biomass (b) at the 3 moisture contents. In the graph (a), P1_Pores, 585 
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P2_Pores, and N_Pores represent the functional measures of pore space. The other 586 

samples are labelled as in Table 3. 587 
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