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Abstract

We provide generalizations of two of Euler’s classical transformation formulas for
the Gauss hypergeometric function extended to the case of the generalized hypergeo-
metric function r+2Fr+1(x) when there are additional numeratorial and denominatorial
parameters differing by unity. The method employed to deduce the latter is also im-
plemented to obtain a Kummer-type transformation formula for r+1Fr+1(x) that was
recently derived in a different way.
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1. Introduction

The well-known Euler transformation formulas for the Gauss hypergeometric function 2F1(x)
state that

2F1

(

a, b
c

∣

∣

∣

∣

x

)

= (1 − x)−a
2F1

(

a, c − b
c

∣

∣

∣

∣

x

x − 1

)

, (1.1)

where x lies in the domain |x| < 1, Re (x) < 1
2
, and

2F1

(

a, b
c

∣

∣

∣

∣

x

)

= (1 − x)c−a−b
2F1

(

c − a, c − b
c

∣

∣

∣

∣

x

)

(1.2)

valid in |x| < 1. In [1], Rathie and Paris derived an extension of the first transformation
(1.1) that is equivalent to

3F2

(

a, b, f + 1
c, f

∣

∣

∣

∣

x

)

= (1 − x)−a
3F2

(

a, c − b − 1, ξ + 1
c, ξ

∣

∣

∣

∣

x

x − 1

)

, (1.3a)
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where

ξ =
f(c − b − 1)

f − b
(1.3b)

and x lies in the domain |x| < 1, Re (x) < 1
2
. Equation (1.3a) was suggested by a less general

result due to Exton [2] in the case f = 1
2
b.

In Section 3 we shall derive a generalization of the first Euler transformation (1.1) to
include additional numeratorial and denominatorial parameters differing by unity that we
record in Theorem 2. We give two methods of proof for this extension: the first method relies
on a reduction formula for a certain Kampé de Fériet function, whereas the second method
employs a reduction to a finite sum of 2F1(x) functions. Then in Theorem 3 of Section 4
by employing the second method used to obtain Theorem 2, we shall obtain the analogous
extension of the second Euler transformation (1.2). A similar approach is also employed to
deduce a Kummer-type transformation formula for the generalized hypergeometric function

r+1Fr+1(x); see also [3].
In what follows the Pochhammer symbol (a)k for integers k is defined by (a)k ≡ Γ(a +

k)/Γ(a) and the product of r Pochhammer symbols is written as

((fr))k ≡ (f1)k . . . (fr)k,

where an empty product (r = 0) reduces to unity. A finite sequence (except where noted
otherwise) of parameters f1, . . . , fr is denoted simply by (fr). The symbol {n

k} will be used
to denote the Stirling numbers of the second kind. These nonnegative integers represent
the number of ways to partition a set of n objects into k nonempty subsets and arise for
nonnegative integers n in the generating relation

xn =

n
∑

k=0

{

n
k

}

(−1)k(−x)k,

{

n
0

}

= δ0n, (1.4)

where δ0n is the Kronecker symbol; for an introduction to Stirling numbers and their prop-
erties, see for example [4].

2. Preliminary results

We shall require two lemmas and a theorem whose proofs are found in [5].

Lemma 1. For nonnegative integers j define

Sj ≡
∞
∑

k=0

kj λk

k!
, S0 ≡

∞
∑

k=0

λk

k!
,

where the infinite sequence (λk) is such that Sj converges for all j. Then

Sj =

j
∑

ℓ=0

{

j
ℓ

} ∞
∑

k=0

λk+ℓ

k!
.

Lemma 2. Consider the polynomial in n of degree µ ≥ 1 given by

Pµ(n) ≡ α0n
µ + α1n

µ−1 + . . . + αµ−1n + αµ,

where α0 6= 0 and αµ 6= 0. Then we may write

Pµ(n) = αµ
((ξµ + 1))n

((ξµ))n
,
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where the (ξµ) are the nonvanishing zeros of the polynomial Qµ(t) defined by

Qµ(t) ≡ α0(−t)µ + α1(−t)µ−1 + . . . + αµ−1(−t) + αµ.

The following theorem concerns a specialization of a generalized hypergeometric function
in two variables called the Kampé de Fériet function. For a brief introduction to the latter
see [5] or [6].

Theorem 1. Suppose b 6= fj (1 ≤ j ≤ r) and (c− b− r)r 6= 0. Then we have the reduction
formula for the Kampé de Fériet function

F p:r+1;0
q:r+1;0

(

(ap) : b, (fr + 1) ;
(bq) : c, (fr) ;

∣

∣

∣

∣

− x, x

)

= p+r+1Fq+r+1

(

c − b − r, (ap), (ξr + 1)
c, (bq), (ξr)

∣

∣

∣

∣

x

)

,

where a solid horizontal line indicates an empty parameter sequence. The (ξr) are the non-
vanishing zeros of the associated parametric polynomial of degree r given by

Qr(t) =

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ(t)ℓ(c − b − r − t)r−ℓ, (2.1)

where the sr−j (0 ≤ j ≤ r) are determined by the generating relation

(f1 + x) . . . (fr + x) =

r
∑

j=0

sr−jx
j . (2.2)

Note that when f1 = . . . = fr = f , then sr−j = (
r
j)f

r−j for 0 ≤ j ≤ r.

Equation (2.1) may be written in a slightly more compact form by defining

λ ≡ c − b − r

and observing that {n
k} = 0 when k > n. Then, for an arbitrary sequence (Bℓ), we have

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

Bℓ =

r
∑

j=0

sr−j

r
∑

ℓ=0

{

j
ℓ

}

Bℓ

=
r
∑

ℓ=0

Bℓ

( r
∑

j=0

{

j
ℓ

}

sr−j

)

=
r
∑

ℓ=0

Bℓ

( r
∑

j=ℓ

{

j
ℓ

}

sr−j

)

.

Thus defining

Aℓ ≡
r
∑

j=ℓ

{

j
ℓ

}

sr−j (2.3)

and setting Bℓ = (b)ℓ(t)ℓ(λ − t)r−ℓ, we see that (2.1) may be written as

Qr(t) =

r
∑

ℓ=0

Aℓ(b)ℓ(t)ℓ(λ − t)r−ℓ . (2.4)
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3. The first generalized Euler-type transformation

We are now ready to state and prove Theorem 2 below in two different ways.

Theorem 2. Suppose b 6= fj (1 ≤ j ≤ r) and (λ)r 6= 0. Then

r+2Fr+1

(

a, b, (fr + 1)
c, (fr)

∣

∣

∣

∣

x

)

= (1 − x)−a
r+2Fr+1

(

a, λ, (ξr + 1)
c, (ξr)

∣

∣

∣

∣

x

x − 1

)

, (3.1)

where λ = c − b − r and |x| < 1, Re (x) < 1
2
. The (ξr) are the nonvanishing zeros of the

associated parametric polynomial Qr(t) given by (2.4). Furthermore, when r = 0, (3.1)
reduces to the first Euler transformation formula for 2F1(x) given by (1.1).

Proof I. Consider

F (y) ≡ (1 − y)−a
r+2Fr+1

(

a, b, (fr + 1)
c, (fr)

∣

∣

∣

∣

y

y − 1

)

=

∞
∑

m=0

(a)m(b)m

(c)mm!

((fr + 1))m

((fr))m
(−y)m(1 − y)−a−m.

Since for |y| < 1

(1 − y)−a−m =

∞
∑

n=0

(a + m)n

n!
yn (3.2)

we have, upon noting the identity

(α)m+n = (α)m(α + m)n = (α)n(α + n)m , (3.3)

F (y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n
(b)m

(c)m

((fr + 1))m

((fr))m

(−y)myn

m! n!

= F 1:r+1;0
0:r+1;0

(

a :
:

b,
c,

(fr + 1)
(fr)

;
;

∣

∣

∣

∣

− y, y

)

.

Now applying Theorem 1 with p = 1, q = 0 and a1 = a we find

F (y) = r+2Fr+1

(

a, c − b − r, (ξr + 1)
c, (ξr)

∣

∣

∣

∣

y

)

so that

(1 − y)−a
r+2Fr+1

(

a, b, (fr + 1)
c, (fr)

∣

∣

∣

∣

y

y − 1

)

= r+2Fr+1

(

a, c − b − r, (ξr + 1)
c, (ξr)

∣

∣

∣

∣

y

)

.

The (ξr) are the nonvanishing zeros of the associated parametric polynomial of degree r
given by

Qr(t) =

r
∑

ℓ=0

Aℓ(b)ℓ(t)ℓ(c − b − r − t)r−ℓ,

where the Aℓ are given by (2.3). Finally, letting y = x/(x − 1) we deduce Theorem 2. 2

The second proof of Theorem 2 provided next dispenses with the reduction formula for
the Kampé de Fériet function given in Theorem 1, but relies instead on (1.1) and Lemmas
1 and 2.
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Proof II. Let

F (x) ≡ r+2Fr+1

(

a, b, (fr + 1)
c, (fr)

∣

∣

∣

∣

x

)

. (3.4)

Since
((fr + 1))n

((fr))n
=

(f1 + n) . . . (fr + n)

f1 . . . fr
,

we have

F (x) =
1

f1 . . . fr

r
∑

j=0

sr−j

∞
∑

n=0

nj (a)n(b)n

(c)n

xn

n!
,

where the coefficients sr−j (0 ≤ j ≤ r) are defined by (2.2) and the order of summation has
been interchanged. Now applying Lemma 1 to the n-summation we obtain upon use of (3.3)

F (x) =
1

f1 . . . fr

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

} ∞
∑

n=0

(a)n+ℓ(b)n+ℓ

(c)n+ℓ

xn+ℓ

n!

=
1

f1 . . . fr

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(a)ℓ(b)ℓ

(c)ℓ
xℓ

∞
∑

n=0

(a + ℓ)n(b + ℓ)n

(c + ℓ)n

xn

n!

=
1

f1 . . . fr

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(a)ℓ(b)ℓ

(c)ℓ
xℓ

2F1

(

a + ℓ, b + ℓ
c + ℓ

∣

∣

∣

∣

x

)

. (3.5)

The result (3.5) has expressed the hypergeometric function in (3.4) as a finite sum of Gauss
hypergeometric functions with coefficients involving the Stirling numbers of the second kind
and the sj (0 ≤ j ≤ r) which are defined implicitly by the generating relation (2.2).

We can now apply the first Euler transformation (1.1) to the 2F1(x) functions in (3.5)
to find

2F1

(

a + ℓ, b + ℓ
c + ℓ

∣

∣

∣

∣

x

)

= (1 − x)−a−ℓ
2F1

(

a + ℓ, c − b
c + ℓ

∣

∣

∣

∣

x

x − 1

)

= (1 − x)−a−ℓ
∞
∑

n=0

(a + ℓ)n

(c + ℓ)n

(c − b)n

n!

(

x

x − 1

)n

=
(−x)−ℓ

(1 − x)a

∞
∑

n=ℓ

(a + ℓ)n−ℓ(c − b)n−ℓ

(c + ℓ)n−ℓ(1)n−ℓ

(

x

x − 1

)n

.

Upon noting that
1

(1)n−ℓ
=

(−1)ℓ(−n)ℓ

n!
, (a + ℓ)n−ℓ =

(a)n

(a)ℓ
(3.6)

and, with λ = c − b − r and p ≡ r − ℓ, that

(c − b)n−ℓ =
Γ(λ + n + p)

Γ(λ + r)
=

(λ)n+p

(λ)r
=

(λ)n(λ + n)p

(λ)r
, (3.7)

we then obtain

xℓ
2F1

(

a + ℓ, b + ℓ
c + ℓ

∣

∣

∣

∣

x

)

= (1 − x)−a (c)ℓ

(λ)r(a)ℓ

∞
∑

n=ℓ

(a)n(λ)n

(c)nn!

(

x

x − 1

)n

(−n)ℓ(λ + n)r−ℓ.
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Substitution of this last result into (3.5) then leads to

F (x) = (1 − x)−a
∞
∑

n=0

(a)n(λ)n

(c)nn!

(

x

x − 1

)n

× 1

f1 . . . fr (λ)r

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ(−n)ℓ(λ + n)r−ℓ, (3.8)

where the order of summation has been interchanged and the summation index n = ℓ has
been replaced by n = 0 since (−n)ℓ = 0 when n < ℓ.

With

Pr(n) ≡
r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ(−n)ℓ(λ + n)r−ℓ, (3.9)

it is shown in [5, p. 968] that Pr(n) is a polynomial in n of degree r that takes the form

Pr(n) = (f1 − b) . . . (fr − b)nr + . . . + f1 . . . fr (λ)r, (3.10)

where, when r > 1, the intermediate coefficients of powers of n may be computed by using
(3.9). Now assuming b 6= fj (1 ≤ j ≤ r) and (λ)r 6= 0, we may invoke Lemma 2 to obtain

Pr(n) = f1 . . . fr (λ)r
((ξr + 1))n

((ξr))n
, (3.11)

where the (ξr) are the nonvanishing zeros of

Qr(t) =

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ(t)ℓ(λ − t)r−ℓ. (3.12)

Finally, combining (3.8), (3.9) and (3.11) we have

r+2Fr+1

(

a, b, (fr + 1)
c, (fr)

∣

∣

∣

∣

x

)

= (1 − x)−a
∞
∑

n=0

(a)n(λ)n

(c)nn!

((ξr + 1))n

((ξr))n

(

x

x − 1

)n

and, recalling that (3.12) may be written as (2.4), the proof of Theorem 1 is evident. 2

If r = 1, then λ = c − b − 1. Thus letting f1 = f (so that s0 = 1, s1 = f) and replacing
n by −t in (3.10), we see immediately that

Q1(t) = (b − f)t + f(c − b − 1)

whose nonvanishing zero ξ is given by

ξ =
f(c − b − 1)

f − b
. (3.13)

Thus, when r = 1, Theorem 2 reduces to (1.3a) and (1.3b) obtained previously in [1] and
subsequently also in [8].

4. The second generalized Euler-type transformation

We now state Theorem 3 below which provides a generalization of the second Euler trans-
formation (1.2). This result will be established by following the second method of proof
employed in Section 3.

6



Theorem 3. Suppose1 (1 + a + b − c)r 6= 0 and (λ)r 6= 0, (λ′)r 6= 0. Then

r+2Fr+1

(

a, b, (fr + 1)
c, (fr)

∣

∣

∣

∣

x

)

= (1 − x)c−a−b−r
r+2Fr+1

(

λ, λ′, (ξr + 1)
c, (ξr)

∣

∣

∣

∣

x

)

(4.1)

valid in |x| < 1, where λ = c− b− r and λ′ = c− a− r. The (ξr) are the nonvanishing zeros
of the associated parametric polynomial Qr(t) of degree r given by

Qr(t) =

r
∑

ℓ=0

(−1)ℓAℓ(a)ℓ(b)ℓ(t)ℓ(λ − t)p(λ
′ − t)p Gp,ℓ(t), (4.2)

where p ≡ r − ℓ, the coefficients Aℓ are defined by (2.3) and

Gp,ℓ(t) ≡ 3F2

(

−p, ℓ + t, 1 − c + t
1 − λ − p + t, 1 − λ′ − p + t

∣

∣

∣

∣

1

)

. (4.3)

Furthermore, when r = 0, (4.1) reduces to the second Euler transformation given by (1.2).

Proof. We commence with the expression for F (x) defined by (3.4) as a finite sum of

2F1(x) functions given by (3.5). Application of (1.2) to each of the latter functions yields

xℓ
2F1

(

a + ℓ, b + ℓ
c + ℓ

∣

∣

∣

∣

x

)

= xℓ(1 − x)c−a−b−ℓ
2F1

(

c − a, c − b
c + ℓ

∣

∣

∣

∣

x

)

= (1 − x)c−a−b−r

p
∑

k=0

(−p)k

k!

∞
∑

n=0

(c − a)n(c − b)n

(c + ℓ)n

xn+ℓ+k

n!

upon expansion of the factor (1−x)r−ℓ by the binomial theorem, where p ≡ r− ℓ. If we now
change the summation index n 7→ n + ℓ + k and make use of (3.6), (3.7) and the identity

(α)−k = (−1)k/(1 − α)k, (4.4)

the right-hand side of the above equation can be written as

(1 − x)c−a−b−r

p
∑

k=0

(−p)k

k!

∞
∑

n=ℓ+k

(c − a)n−ℓ−k(c − b)n−ℓ−k

(c + ℓ)n−ℓ−k(1)n−ℓ−k
xn

= (1 − x)c−a−b−r (−1)ℓ(c)ℓ

(λ)r(λ′)r

×
p
∑

k=0

(−p)k

k!

∞
∑

n=0

(λ)n(λ′)n

(c)n

xn

n!
(λ + n)p−k(λ′ + n)p−k(−n)ℓ+k(1 − c − n)k,

where we have replaced the summation index n = ℓ + k by n = 0 since (−n)ℓ+k = 0 for
n < ℓ + k.

Hence, from (3.5), we obtain

F (x) =
(1 − x)c−a−b−r

f1 . . . fr (λ)r(λ′)r

∞
∑

n=0

(λ)n(λ′)n

(c)n

xn

n!
Pr(n) (4.5)

upon interchanging the order of summation, where now

Pr(n) ≡
r
∑

j=0

sr−j

j
∑

ℓ=0

(−1)ℓ

{

j
ℓ

}

(a)ℓ(b)ℓRp(n) =
r
∑

ℓ=0

(−1)ℓAℓ(a)ℓ(b)ℓRp(n).

1The following are necessary conditions for the nonvanishing of the (ξr); sufficient conditions are given
below.
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Here Rp(n) is defined by

Rp(n) ≡
p
∑

k=0

(−p)k

k!
(λ + n)p−k(λ′ + n)p−k(−n)ℓ+k(1 − c − n)k

and the coefficients Aℓ are given by (2.3).
We shall show below that Pr(n) is a polynomial in n of degree r having the form

Pr(n) = α0n
r + · · · + f1 . . . fr (λ)r(λ

′)r,

where α0 is given by (4.9). Assuming that the coefficient α0 6= 0 and (λ)r 6= 0, (λ′)r 6= 0,
we may then invoke Lemma 2 to obtain

Pr(n) = f1 . . . fr (λ)r(λ
′)r

((ξr + 1))n

((ξr))n
, (4.6)

where the (ξr) are the nonvanishing zeros of

Qr(t) =

r
∑

ℓ=0

(−1)ℓAℓ(a)ℓ(b)ℓ

p
∑

k=0

(−p)k

k!
(λ − t)p−k(λ′ − t)p−k(t)ℓ+k(1 − c + t)k (4.7a)

=

r
∑

ℓ=0

(−1)ℓAℓ(a)ℓ(b)ℓ(t)ℓ(λ − t)p(λ
′ − t)pGp,ℓ(t). (4.7b)

In (4.7b) the identities (3.3) and (4.4) have been employed to express the sum over k in
(4.7a) in terms of the 3F2(1) series given by Gp,ℓ(t) in (4.3). For brevity in the sequel we
shall work with Qr(t) instead of Pr(n).

To determine the degree of the polynomial Qr(t) we employ Sheppard’s transformation
of the 3F2(1) series given in [7, p. 141], namely

3F2

(

−n, a, b
d, e

∣

∣

∣

∣

1

)

=
(d − a)n(e − a)n

(d)n(e)n
3F2

(

−n, a, 1 − s
a − n − d + 1, a − n − e + 1

∣

∣

∣

∣

1

)

,

where n is a nonnegative integer and s = d+e−a−b+n is the parametric excess. Application
of this identity to Gp,ℓ(t) then leads to

Gp,ℓ(t) =
(1 − λ − p − ℓ)p(1 − λ′ − p − ℓ)p

(1 − λ − p + t)p(1 − λ′ − p + t)p
3F2

(

−p, t + ℓ, 1 − s
λ + ℓ, λ′ + ℓ

∣

∣

∣

∣

1

)

,

where s = 1 + a + b − c + r. Finally, employing the identity (4.4) we obtain from (4.7b)

Qr(t) =

r
∑

ℓ=0

(−1)ℓAℓ(a)ℓ(b)ℓ(t)ℓ(λ + ℓ)p(λ
′ + ℓ)p 3F2

(

−p, t + ℓ, 1 − s
λ + ℓ, λ′ + ℓ

∣

∣

∣

∣

1

)

. (4.8)

It is now seen that t only appears in a single numeratorial parameter of the 3F2(1) series on
the right-hand side of (4.8). Consequently 3F2(1) is a polynomial in t of degree p = r − ℓ
provided that s 6= 1, 2, . . . , p, which is equivalent to the condition (1 + a + b− c)r 6= 0. Since
(t)ℓ is a polynomial in t of degree ℓ, it follows that Qr(t) is a polynomial in t of degree
ℓ + p = r and hence must have the form

Qr(t) = α0(−t)r + · · · + αr−1(−t) + αr.

In the latter the coefficient of tr is (−1)rα0 which can be determined as follows. The
highest power of t in the 3F2(1) series in (4.8) arises from the last term when it is expressed
as a k-summation; that is when k = p

(−1)p(t + ℓ)p(1 − s)p

(λ + ℓ)p(λ′ + ℓ)p
=

(−1)p(1 − s)p

(λ + ℓ)p(λ′ + ℓ)p
tp + · · · .

8



Then, recalling that p = r − ℓ, we find

(−1)rα0 =

r
∑

ℓ=0

(−1)p+ℓAℓ(a)ℓ(b)ℓ(1 − s)p

thus giving

α0 = (−1)r(1 + a + b − c)r

r
∑

ℓ=0

(−1)ℓAℓ
(a)ℓ(b)ℓ

(1 + a + b − c)ℓ
. (4.9)

Since Qr(0) = αr, the coefficient αr is obtained as follows. By noting that when t = 0 the
only contribution to the double sum in (4.7a) arises when k = ℓ = 0 we obtain

αr = A0(λ)r(λ
′)r = sr(λ)r(λ

′)r = f1 . . . fr (λ)r(λ
′)r, (4.10)

where (2.2) and (2.3) have been utilized.
Then, provided α0 6= 0, αr 6= 0 by Lemma 2, the zeros (ξr) of the associated parametric

polynomial Qr(t) are nonvanishing. This requires that (λ)r 6= 0 and (λ′)r 6= 0 for the
coefficient αr 6= 0; a necessary condition for α0 6= 0 is (1 + a + b − c)r 6= 0, since if this is
satisfied then (1 + a + b − c)ℓ 6= 0 for ℓ < r, so that the ℓ-summation in (4.9) exists as a
finite value. A sufficient condition for α0 6= 0 is that the finite sum in (4.9) does not vanish.
With these restrictions, it then follows from (4.5) and (4.6) that

F (x) = (1 − x)c−a−b−r
∞
∑

n=0

(λ)n(λ′)n

(c)n

((ξr + 1))n

((ξr))n

xn

n!
,

thereby establishing Theorem 3. 2

If r = 1, then λ = c − b − 1 and λ′ = c − a − 1. Then letting f1 = f we find from (4.7a)
(or immediately from (4.9) and (4.10)) that

Q1(t) = ((c − λ − λ′ − 1)f − ab)t + λλ′f.

This yields the transformation formula

3F2

(

a, b,
c,

f + 1
f

∣

∣

∣

∣

x

)

= (1 − x)c−a−b−1
3F2

(

c − a − 1, c − b − 1,
c,

ξ + 1
ξ

∣

∣

∣

∣

x

)

, (4.11a)

where ξ is the nonvanishing zero of Q1(t) given by

ξ =
f(c − a − 1)(c − b − 1)

ab + f(c − a − b − 1)
. (4.11b)

This result has also been obtained by Maier [8] who employed different methods. We remark
that, for the second Euler-type transformation, the zero ξ given by (4.11b) depends on the
four parameters a, b, c and f , whereas for the first Euler-type transformation, the zero ξ
given by (3.13) is independent of the parameter a.

5. Generalized Kummer-type transformation

If we set p = q = 0 in the results given in Theorem 1, we immediately obtain, upon recalling
(2.3), the following [5]
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Theorem 4. Suppose b 6= fj (1 ≤ j ≤ r) and (c − b − r)r 6= 0. Then

r+1Fr+1

(

b, (fr + 1)
c, (fr)

∣

∣

∣

∣

x

)

= ex
r+1Fr+1

(

c − b − r, (ξr + 1)
c, (ξr)

∣

∣

∣

∣

− x

)

, (5.1)

where the (ξr) are the nonvanishing zeros of the associated parametric polynomial of degee
r given by (2.4).

Note that when r = 0, (5.1) reduces to Kummer’s classical transformation formula for the
confluent hypergeometric function, namely

1F1

(

b
c

∣

∣

∣

∣

x

)

= ex
1F1

(

c − b
c

∣

∣

∣

∣

− x

)

. (5.2)

We indicate below another proof of Theorem 4 that does not rely on the reduction
formula for the Kampé de Fériet function given in Theorem 1. We shall omit the obvious
details since this proof is very similar to Proof II of Theorem 2. Theorem 4 has also been
discussed in [3], where a slightly different derivation that utilizes the generating relation
(1.4) has been given.

Proof. Calling the left-hand side of (5.1) F (x), we follow the same procedure leading to
(3.5) to find

F (x) =
1

f1 . . . fr

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ

(c)ℓ
xℓ

1F1

(

b + ℓ
c + ℓ

∣

∣

∣

∣

x

)

=
ex

f1 . . . fr

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ

(c)ℓ
xℓ

1F1

(

c − b
c + ℓ

∣

∣

∣

∣

− x

)

, (5.3)

where we have utilized the Kummer transformation (5.2). Now

xℓ
1F1

(

c − b
c + ℓ

∣

∣

∣

∣

− x

)

= xℓ
∞
∑

n=0

(c − b)n

(c + ℓ)n

(−x)n

n!
= (−1)ℓ

∞
∑

n=ℓ

(c − b)n−ℓ

(c + ℓ)n−ℓ

(−x)n

(1)n−ℓ
,

so that using the identities in (3.6) and (3.7) we may write the last expression above as

(c)ℓ

(λ)r

∞
∑

n=0

(λ)n

(c)n

(−x)n

n!
(−n)ℓ(λ + n)r−ℓ,

where λ = c − b − r and we have replaced the summation index n = ℓ by n = 0 since
(−n)ℓ = 0 for n < ℓ.

Substitution of this result into (5.3), followed by an interchange in the order of summa-
tions, then leads to

F (x) =
ex

f1 . . . fr(λ)r

∞
∑

n=0

(λ)n

(c)n

(−x)n

n!

r
∑

j=0

sr−j

j
∑

ℓ=0

{

j
ℓ

}

(b)ℓ(−n)ℓ(λ + n)r−ℓ.

Now recalling (3.9) we therefore deduce

r+1Fr+1

(

b, (fr + 1)
c, (fr)

∣

∣

∣

∣

x

)

=
ex

f1 . . . fr(λ)r

∞
∑

n=0

(λ)n

(c)n

(−x)n

n!
Pr(n).

Finally, utilizing (3.11) we have for the right-hand side of the above equation

ex
∞
∑

n=0

(λ)n

(c)n

((ξr + 1))n

((ξr))n

(−x)n

n!
,
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where the (ξr) are the nonvanishing zeros of Qr(t) given by (3.12), or equivalently by (2.4).
The proof of Theorem 4 is evidently complete. 2

It is noteworthy that the generalized first Euler-type and Kummer-type transformations
have the same associated parametric polynomial. See [3, 5] for additional results pertaining
to the latter polynomial.

We note that when r = 1, Theorem 4 yields

2F2

(

b, f + 1
c, f

∣

∣

∣

∣

x

)

= ex
2F2

(

c − b − 1, ξ + 1
c, ξ

∣

∣

∣

∣

− x

)

, (5.4)

where ξ is given by (3.13). This Kummer-type transformation was first deduced by Paris [9]
and generalized a transformation for the above 2F2(x) with f = 1

2
b given by Exton [2] and

rederived using other methods by Miller [10]. Other derivations of (5.4) have been recorded
in [1, 11, 12].

We remark that the methods employed herein have been utilized in [13] to obtain a gen-
eralization of the Karlsson-Minton summation formula. They can also be brought to bear on
quadratic transformations of certain specializations of the generalized hypergeometric func-
tion in (3.4); these quadratic transformations will be given elsewhere [14]. As an example,
we have

Theorem 5. Suppose (c − r − 1
2
)r 6= 0. Then

r+2Fr+1

(

a, a + 1
2
,

c,
(fr + 1)

(fr)

∣

∣

∣

∣

x2

(1 ∓ x)2

)

= (1 ∓ x)2a
2r+2F2r+1

(

2a, c − r − 1
2
,

2c − 1,
(ξ2r + 1)

(ξ2r)

∣

∣

∣

∣

± 2x

)

(5.5)

valid in |x| < 1
2
. The (ξ2r) are the nonvanishing zeros of the associated parametric polyno-

mial of degree 2r given by

Q2r(t) =

r
∑

ℓ=0

2−2ℓAℓ (t)2ℓ (c − r − 1
2
− t)r−ℓ,

where the coefficients Aℓ are defined by (2.3).

When r = 0, we note that (5.5) reduces to the Gaussian quadratic transformation

2F1

(

a, a + 1
2

c,

∣

∣

∣

∣

x2

(1 ∓ x)2

)

= (1 ∓ x)2a
2F1

(

2a, c − 1
2

2c − 1,

∣

∣

∣

∣

± 2x

)

given in [15, Eq. (15.3.20)]. When r = 1, we see with f1 = f that the associated parametric
polynomial is

Q2(t) = 1
4
t2 + (1

4
− f)t + f(c − 3

2
),

which possesses the zeros

ξ1,2 = 2f − 1
2
± [(2f − 1

2
)2 − 4f(c− 3

2
)]1/2.

Thus we obtain the quadratic transformation

3F2

(

a, a + 1
2
,

c,
f + 1

f

∣

∣

∣

∣

x2

(1 ∓ x)2

)

= (1 ∓ x)2a
4F3

(

2a, c − 3
2
,

2c − 1,
ξ1 + 1,

ξ1,
ξ2 + 1

ξ2

∣

∣

∣

∣

± 2x

)

as found in an equivalent form by Rakha et al. [16].
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6. Examples

We give below some examples of the transformation formulas developed in this paper. The
case corresponding to r = 1 of these transformations is covered by (1.3a), (1.3b), (4.11a),
(4.11b) and (5.4). When r = 2, the associated parametric polynomial for the generalized
first Euler-type and Kummer-type transformations is given by [5]

Q2(t) = αt2 − ((α + β)λ + β)t + f1f2λ(λ + 1), (6.1)

where λ = c − b − 2 and

α = (f1 − b)(f2 − b), β = f1f2 − b(b + 1).

If we take b = 3
2
, c = 1 and f1 = 1

2
, f2 = 3

4
then

Q2(t) = 3
4
(t2 − 17

4
t + 15

8
),

which possesses the zeros ξ1 = 1
2

and ξ2 = 15
4

. From (3.1) and (5.1), we therefore have the
first Euler and Kummer-type transformation formulas

4F3

(

a, 3
2
, 3

2
, 7

4

1, 1
2
, 3

4

∣

∣

∣

∣

∣

x

)

= (1 − x)−a
4F3

(

a, − 5
2
, 3

2
, 19

4

1, 1
2
, 15

4

∣

∣

∣

∣

∣

x

x − 1

)

,

where a is a free parameter, and

3F3

(

3
2
, 3

2
, 7

4

1, 1
2
, 3

4

∣

∣

∣

∣

∣

x

)

= ex
3F3

(

− 5
2
, 3

2
, 19

4

1, 1
2
, 15

4

∣

∣

∣

∣

∣

− x

)

.

The associated parametric polynomial (4.7a) for the second Euler-type transformation
when r = 2, a = b = 1, c = 1

2
and f1 = 1

3
, f2 = 1

6
is

Q2(t) = − 5
72

(11t2 + 47t − 45
4

),

so that ξ1 = − 9
2

and ξ2 = 5
22

. Hence, from (4.1) with λ = λ′ = − 5
2
, we have the second

Euler-type transformation

4F3

(

1, 1, 4
3
, 7

6

1
2
, 1

3
, 1

6

∣

∣

∣

∣

∣

x

)

= (1 − x)−7/2
4F3

(

− 5
2
, − 5

2
, − 7

2
, 27

22

1
2
, − 9

2
, 5

22

∣

∣

∣

∣

∣

x

)

.

The zeros of the associated parametric polynomial (6.1) in this case are ξ1,2 = (11±√
97)/8

(independently of a), so from (3.1) we have the first Euler-type transformation

4F3

(

a, 1, 4
3
, 7

6

1
2
, 1

3
, 1

6

∣

∣

∣

∣

∣

x

)

= (1 − x)−a
4F3

(

a, − 5
2
, 1

8
(19 +

√
97), 1

8
(19 −√

97)

1
2
, 1

8
(11 +

√
97), 1

8
(11 −√

97)

∣

∣

∣

∣

∣

x

x − 1

)

.

We remark that when the associated parametric polynomials Qr(t) given by (3.12) and
(4.7a) are of degree r ≥ 2 and the parameters are all real, the possibility of complex zeros
(ξr) arises; see also [3]. For example, if a = b = 1, c = 3

2
and f1 = 1

3
, f2 = 1

4
the associated

parametric polynomial given by (4.7a) for the second Euler-type transformation becomes

Q2(t) = 17
48

(t2 + 3
17

t + 9
68

)

and the zeros are ξ1,2 = 3
34

(−1 ± 4i).
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Finally, we consider a third example by setting f1 = . . . = fr = f and a = b = c in (3.1)
and (4.1). Thus, for |x| < 1, defining

F (x) ≡ r+1Fr

(

a, f + 1, . . . , f + 1
f, . . . , f

∣

∣

∣

∣

x

)

since λ = λ′ = −r we have

F (x) = (1 − x)−a
r+1Fr

(

−r, (ξr + 1)
(ξr)

∣

∣

∣

∣

x

x − 1

)

= (1 − x)−a−r
r+2Fr+1

(

−r,−r,
a,

(ηr + 1)
(ηr)

∣

∣

∣

∣

x

)

,

where the (ξr) and (ηr) are the nonvanishing zeros2 of respective parametric polynomials of
degree r. The above equation shows that F (x) is proportional to some polynomial in x of
degree r. We shall show that this polynomial may be written explicitly.

For since
(

(f + 1)n

(f)n

)r

=

(

1 +
n

f

)r

= f−r
r
∑

k=0

(

r
k

)

nkf r−k,

for positive integer r, we have

F (x) =

r
∑

k=0

(

r
k

)

f−k
∞
∑

n=0

nk (a)nxn

n!
,

where we have interchanged the order of summation. Now employing Lemma 1, we see that

∞
∑

n=0

nk (a)nxn

n!
=

k
∑

j=0

{

k
j

} ∞
∑

n=0

(a)n+j
xn+j

n!
= (1 − x)−a

k
∑

j=0

{

k
j

}

(a)j

(

x

1 − x

)j

,

where we have made use of (3.2) and (3.3). Thus

F (x) = (1 − x)−a
r
∑

k=0

(

r
k

)

f−k
k
∑

j=0

{

k
j

}

(a)j

(

x

1 − x

)j

. (6.2)

Next introducing the coefficients

γj(f) ≡
r
∑

k=j

{

k
j

}(

r
k

)

f−k (6.3)

in (6.2) after an interchange of the order of summation, we deduce that

F (x) = (1 − x)−a
r
∑

j=0

(a)jγj(f)

(

x

1 − x

)j

, (6.4)

where we note that the right-hand side of this equation provides the analytic continuation
of r+1Fr(x) for x 6= 1. Now defining the polynomial in x of degree r

Ξr(a, f |x) ≡
r
∑

j=0

(a)jγj(f)xj ,

2For the (ηr) to be nonvanishing when a = b = c we must have (1 + a)r 6= 0 and α0 given by (4.9) must
also be nonzero.
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we have

r+1Fr

(

a, f + 1, . . . , f + 1
f, . . . , f

∣

∣

∣

∣

x

)

= (1 − x)−a Ξr

(

a, f

∣

∣

∣

∣

x

1 − x

)

. (6.5)

This leads to the results

r+1Fr

(

−r, (ξr + 1)
(ξr)

∣

∣

∣

∣

x

)

= Ξr(a, f |x)

and

r+2Fr+1

(

−r,−r,
a,

(ηr + 1)
(ηr)

∣

∣

∣

∣

x

)

= (1 − x)r Ξr

(

a, f

∣

∣

∣

∣

x

1 − x

)

.

Moreover, since [4, (6.15), p. 265]

r
∑

k=0

{

k
j

}(

r
k

)

=

{

r + 1
j + 1

}

,

we see from (6.3) and (6.4) when f = 1 that

r+1Fr

(

a, 2, . . . , 2
1, . . . , 1

∣

∣

∣

∣

x

)

= (1 − x)−a
r
∑

j=0

(a)j

{

r + 1
j + 1

}(

x

1 − x

)j

. (6.6)

The results given by (6.5) and (6.6) do not appear to be recorded in the literature. However,
(6.6) is given by Prudnikov et al. [17, Section 7.10.1, p. 572] in an equivalent form only for
a = 2.

7. Concluding remarks

In this paper we have derived Euler and Kummer-type transformation formulas for the gen-
eralized hypergeometric functions r+2Fr+1(x) and r+1Fr+1(x) in which r numeratorial and
corresponding denominatorial parameters differ by unity. However, the methods presented
herein may be further developed to extend these results to where the corresponding param-
eters differ by arbitrary positive integers [14]. The question naturally arises as to whether
such transformations may be extended even further to cases where there are no restrictions
whatsoever on the parameters. In answering this we note that at least for the particular
case of 2F2(a, b; c, d|x), a Kummer-type transformation has been found [9, Eq. (3)] for the
latter function in terms of an infinite series of 2F2(−x) functions. Thus we can only hope
that the developments presented in this work as in [3, 5, 14] will stimulate further interest
and research in this important area of classical special functions.

Just as the mathematical properties of the Gauss hypergeometric function 2F1(x) and its
confluent form 1F1(x) are already of immense and significant utility in mathematical physics
and numerous other areas of pure and applied mathematics, the elucidation and discovery
of properties of the generalized hypergeometric functions considered herein should certainly
eventually prove useful to further developments in the broad areas alluded to above.

Acknowledgement: The authors are indebted to an anonymous referee for a careful
reading of the original submission and thoughtful and pertinent suggestions regarding its
improvement.
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