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1. Introduction

We consider the n-dimensional integral

In(z) = λn

∫ ∞

0

. . .

∫ ∞

0

x
ν1−1

1
. . . xνn−1

n e− f (x1 ,...,xn;z) d x1 . . . d xn, (1)

where

f (x1, . . . , xn; z) =

n
∑

j=1

x
µ j

j
− zx

m1

1 . . . xmn
n , λn =

n
∏

j=1

µ j, (2)

and the factor λn has been added for later convenience. We suppose that the exponents (not

necessarily integers) satisfy µ j > m j > 0, Re (ν j)> 0 (1≤ j ≤ n) and that z denotes a complex
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variable. For convergence of In(z) we require that µ j and m j be further restricted so that the

parameter κ, defined by

κ= 1−
n
∑

j=1

m j

µ j

, (3)

should satisfy 0< κ < 1. The geometrical interpretation of this condition results from consid-

eration of the Newton diagram associated with the phase function f . In the two-dimensional

case n = 2, the Newton diagram is given by the boundary of the convex hull formed by the

point (m1, m2) and the points (µ1, 0) and (0,µ2) situated on the coordinate axes, with the

line joining these last two points being termed the back face. Extension to n ≥ 3 dimensions

is straightforward with the back face being a hyperplane in n dimensions passing through the

points µ j (1 ≤ j ≤ n) on the coordinate axes. The condition 0 < κ < 1 then corresponds to

the internal point (m1, . . . , mn) being situated in front of the back face of the Newton diagram.

In the case n= 1, we have (dropping the subscript 1 on the parameters)

I1(z) = µ

∫ ∞

0

xν−1e−xµ+zxm

d x =

∫ ∞

0

τ(ν/µ)−1e−τ+zτm/µ

dτ,

where κ= 1−(m/µ)< 1. This integral can be expressed as Fi(m/µ,ν/µ; z), where Fi denotes

Faxén’s integral defined by [9, p. 332]

Fi(a, b; z) =

∫ ∞

0

τb−1e−τ+zτa

dτ (0≤ Re(a)< 1, Re(b)> 0).

Consequently, (1) can be considered as an n-dimensional extension of Faxén’s integral. A dif-

ferent extension of Faxén’s integral as a one-dimensional integral with more than one internal

point in the phase function f has been considered in [7]. Another integral that is related to

(1), but with different domains of integration, is

Jn(z) = λn

∫ ∞

−∞

. . .

∫ ∞

−∞

x
ν1−1

1 . . . xνn−1
n e− f (x1,...,xn;z) d x1 . . . d xn, (4)

in which the µ j are now all restricted to be positive even integers. When the exponents ν j are

nonintegers, the integral Jn(z) is specified by taking the integration paths along the negative

x j-axes to be along the upper side of the branch cuts on these axes. Variants of the integral

Jn(z) can also be considered in which p < n of the integrals in (4) are evaluated over the

interval (−∞,∞), with the remainder over the interval [0,∞).
Special cases of the integral In(z) when n = 1 and ν = 1 were first studied asymptoti-

cally in [4, 5], and more generally in [1], using the method of steepest descents. In [13]

the asymptotic expansion of In(z) for large complex z was obtained by application of the

asymptotic theory of the generalised hypergeometric, or Wright, function pΨq(z) defined in

(5). The expansion was found to consist of an exponential expansion, which is dominant in

the sector |arg z| < 1

2
πκ, together with an algebraic expansion dominant in the rest of the z-

plane. An application of the integral In(z) in the particular case n= 2 has been given in [8] in
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the discussion of two-dimensional Laplace integrals with more general phase and amplitude

functions.

More recently, Breen and Wood [3] have discussed an application of In(z) as a representa-

tion of the solutions of certain high-order linear differential equations. One of these equations

has the form

y(n)(z)−
p
∑

r=0

αrzr y(r)(z) = 0 (n> p > 0),

where the αr are arbitrary coefficients. This equation has a basis of solutions given by

y(z; s) =

∫ ∞

0

. . .

∫ ∞

0

x
ν1−1

1 . . . x
νp−1
p exp{szx1 . . . xp − (x

n
1 + . . .+ xn

p)/n} d x1 . . . d xp,

where sn = νp and the exponents νr are related to the coefficients αr in a manner that we do

not specify here. This integral is clearly related to Ip(sz) in (1) with the parameters µ j = n and

m j = 1 (1≤ j ≤ p). The integral representation of solutions of the above differential equation

when there are two lower-order derivatives (p = 2) was first given by Spitzer [18], with the

general case of p < n lower-order derivatives being considered in [16]. These results are

described in [14, pp. 130–133]. In [3] the asymptotics of the solutions y(z; s) were obtained

using the theory developed in [13].

In this paper, we review the asymptotic expansion of the integral In(z) in (1) using the

asymptotic theory of the Wright function. A recent account of the asymptotic theory of the lat-

ter function has been presented in [11] and a discussion of the properties of 0Ψ1(z) (the gen-

eralised Bessel function), together with its application to the solution of fractional diffusion-

wave equations, can be found in [6]. It is shown how the expansion of In(z)may be employed

to determine the asymptotic structure of the integral Jn(z) and its variants when some of the

integrals in (4) are taken over [0,∞).

2. The Expansion of the Wright Function pΨq(z) for |z| →∞

The asymptotic expansion of the integrals In(z) and Jn(z) will be obtained by utilising the

asymptotic theory of the Wright (or generalised hypergeometric) function which we present

in this section. The Wright function pΨq(z) is defined by

pΨq(z) ≡ pΨq

�

(α1, a1), . . . , (αp, ap)

(β1, b1), . . . , (βq, bq)
; z

�

=

∞
∑

k=0

g(k)
zk

k!
, g(k) :=

∏p

r=1 Γ(αr k+ ar)
∏q

r=1 Γ(βr k+ br)
,

(5)

where p and q are nonnegative integers, the parameters αr and βr are real and positive and

ar and br are arbitrary complex numbers. In addition, it is assumed that the αr and ar are

subject to the restriction

αr k+ ar 6= 0,−1,−2, . . . (k = 0,1,2, . . . ; 1≤ r ≤ p) (6)

so that no gamma function in the numerator of (5) is singular. In the special case

αr = βr = 1, the function pΨq(z) reduces to a multiple of the generalised hypergeometric

function pFq((ap); (bq); z); see, for example, [17, p. 40].
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We summarise the asymptotic expansion of the Wright function pΨq(z) for |z| →∞ given

in Wright [20, 21] and Braaksma [2]; for a summary, see also [12, §2.3] and [11]. We first

introduce the parameters associated with g(k) given by

κ= 1+

q
∑

r=1

βr −
p
∑

r=1

αr , h=

p
∏

r=1

ααr
r

q
∏

r=1

β−βr
r ,

ϑ =

p
∑

r=1

ar −
q
∑

r=1

br +
1

2
(q− p), ϑ′ = 1− ϑ, (7)

where, as usual, an empty product has unit value. If it is supposed that αr and βr are such

that κ > 0, then pΨq(z) is uniformly and absolutely convergent for all finite z. It is clear that

pΨq(z) is an entire function of z in this case. If κ = 0, the sum in (1) has a finite radius of

convergence equal to h−1, whereas for κ < 0 the sum is divergent for all nonzero values of

z. The parameter κ will be found to play a critical role in the asymptotic theory of pΨq(z)

by determining the sectors in the z-plane in which its behaviour is either exponentially large,

algebraic or exponentially small in character as |z| →∞.

The exponential expansion Ep,q(z) is given by the formal asymptotic sum

Ep,q(z) = ZϑeZ
∞
∑

j=0

A j Z
− j, Z = κ(hz)1/κ, (8)

where the coefficients A j are those appearing in the inverse factorial expansion of g(s)/s! in

the form
g(s)

Γ(s+ 1)
= κ(hκκ)s
�M−1
∑

j=0

A j

Γ(κs+ ϑ′ + j)
+

O(1)

Γ(κs+ ϑ′ +M)

�

(9)

for |s| → ∞ uniformly in |arg s| ≤ π− ε, ε > 0 and arbitrary positive integer M . The leading

coefficient A0 is specified by

A0 = (2π)
1

2
(p−q)κ−

1

2
−ϑ

p
∏

r=1

α
ar−

1

2
r

q
∏

r=1

β
1

2
−br

r . (10)

The coefficients A j are independent of s and depend only on the parameters p, q, αr , βr , ar

and br . An algorithm for their evaluation in specific cases when αr > 0, βr > 0 is described

in Appendix A.

The algebraic expansion Hp,q(z) follows from the Mellin-Barnes integral representation

[12, §2.3]

pΨq(z) =
1

2πi

∫ ∞i

−∞i

Γ(s)g(−s)(ze∓πi)−sds, |arg(−z)|< 1

2
π(2− κ), (11)

where the upper or lower sign is chosen according as arg z > 0 or arg z < 0, respectively. The

path of integration in (11) is indented near s = 0 to separate∗ the poles of Γ(s) situated at

∗This is always possible when the condition (6) is satisfied.



R. Paris / Eur. J. Pure Appl. Math, 3 (2010), 1006-1031 1010

s = 0,−1,−2, . . . from those of g(−s) at

sk,r = (ar + k)/αr , k = 0,1,2, . . . (1≤ r ≤ p). (12)

In general there will be p such sequences of simple poles though, depending on the values of

αr and ar , some of these poles could be multiple poles or even ordinary points if any of the

Γ(βrs + br) are singular there. Displacement of the integration contour in (11) to the right

over the poles of g(−s) followed by evaluation of the residues then generates the algebraic

expansion of pΨq(z) valid as |z| →∞ in the sector in (11).

If it is assumed that the parameters are such that the poles in (12) are all simple, we

obtain the algebraic expansion given by Hp,q(ze∓πi), where

Hp,q(z) =

p
∑

j=1

α−1
j z−a j/α j Sp,q(z; j) (13)

and Sp,q(z; j) denotes the formal asymptotic sum

Sp,q(z; j) =

∞
∑

k=0

(−)k

k!
Γ

�

k+ a j

α j

�
∏′ p

r=1 Γ(ar −αrsk, j)
∏q

r=1 Γ(br − βrsk, j)
z−k/α j , (14)

with the prime indicating the omission of the term corresponding to r = j in the product. This

expression consists of p expansions with the leading behaviour z−a j/α j (1≤ j ≤ p). When the

parameters αr and ar are such that some of the poles are of higher order, the expansion (13)

is invalid and the residues must then be evaluated according to the multiplicity of the poles

concerned; this will lead to terms involving log z in the algebraic expansion.

We present the asymptotic expansion of pΨq(z) for large |z| only in the case when

0 < κ ≤ 2, since the value of this parameter associated with the integrals (1) and (4) must

satisfy 0< κ < 1. A fuller list of expansion theorems is given in [2, 20, 21]; see also [11]. We

have the following theorems, where throughout we let ε denote an arbitrarily small positive

quantity.

Theorem 1. If 0< κ < 2, then

pΨq(z) ∼

¨

Ep,q(z) +Hp,q(ze∓πi) in |arg z| ≤ 1

2
πκ

Hp,q(ze∓πi) in |arg(−z)| ≤ 1

2
π(2− κ)− ε

(15)

as |z| → ∞. The upper or lower sign in Hp,q(ze∓πi) is chosen according as z lies in the upper or

lower half-plane, respectively.

It is seen that the z-plane is divided into two sectors, with a common vertex at z = 0, by

the rays (the anti-Stokes lines) arg z = ±1

2
πκ. In the sector |arg z| < 1

2
πκ, the asymptotic

character of pΨq(z) is exponentially large, whereas in the complementary sector

|arg(−z)| < 1

2
π(2− κ), pΨq(z) is algebraic in character. The choice of signs in Hp,q(ze∓πi)

results from the fact that the positive real axis arg z = 0 is a Stokes line, where the algebraic
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expansion is maximally subdominant. Since pΨq(z) is an entire function of z, we may write

pΨq(z) = pΨq(ze−2πi). Then, when π≤ arg z < 2π the algebraic expansion is (with the lower

sign) Hp,q(ze−2πi eπi) = Hp,q(ze−πi), and so has the same form as when 0< arg z ≤ π. Hence

the algebraic expansion associated with pΨq(z) can be written alternatively as

Hp,q(ze−πi) in ε≤ arg z ≤ 2π− ε. (16)

The above theorem does not take into account the presence of an exponentially small

contribution beyond the sector |arg z| ≤ 1

2
πκ. This is covered by the more precise result in

the following theorem [2, p. 331], [20, 21].

Theorem 2. If 2

3
≤ κ≤ 2, then

pΨq(z)∼ Ep,q(z) + Ep,q(ze∓2πi) +Hp,q(ze∓πi) (|arg z| ≤ π) (17)

as |z| →∞. When 0< κ < 2

3
, we have

pΨq(z)∼

¨

Ep,q(z) +Hp,q(ze∓πi) in |arg z| ≤ 3

2
πκ− ε

Hp,q(ze∓πi) in 3

2
πκ+ ε≤ |arg z| ≤ π

(18)

as |z| →∞. The upper or lower signs are chosen according as arg z > 0 or arg z < 0, respectively.

Since, when 2

3
≤ κ ≤ 2, Ep,q(z) is exponentially small in 1

2
πκ < |arg z| ≤ π then in the

sense of Poincaré the expansion Ep,q(z) can be neglected. Similarly, E(ze−2πi) is exponentially

small compared to Ep,q(z) in 0 ≤ arg z < π and consequently there is no inconsistency be-

tween (17) and the second expansion in (15). However, in the neighbourhood of arg z = π,

Ep,q(z) and Ep,q(ze∓2πi) are of comparable magnitude and, for real parameters, they combine

to generate a real result on arg z = π. A similar remark applies to the expansion E(ze2πi) in

−π < arg z ≤ 0.

When κ < 2

3
, Ep,q(z) is exponentially small in the sectors 1

2
πκ < |arg z| < 3

2
πκ and the

behaviour of pΨq(z) in the complementary sector 3

2
πκ < |arg z| ≤ π is then algebraic. An

even more precise result can be given by recognising that the rays arg z = ±πκ are also Stokes

lines, where Ep,q(z) is maximally subdominant with respect to Hp,q(ze∓πi). This will result in

the expansion Ep,q(z) switching off (as |arg z| increases) across the Stokes lines arg z = ±πκ.

Thus, when 0< κ < 1, (17) and (18) can be replaced by

pΨq(z) ∼

¨

Ep,q(z) +Hp,q(ze∓πi) in |arg z| ≤ πκ− ε
Hp,q(ze∓πi) in πκ+ ε ≤ |arg z| ≤ π

(19)

as |z| → ∞. In Appendix B we present a numerical example for 2Ψ0(z) which demonstrates

the truth of this assertion; a fuller discussion is given in [10]. Although the expansions in (15)

and (18) are valid asymptotic descriptions, more accurate evaluation will result from using

(19) which takes into account the Stokes phenomenon.† In the application to the integrals

In(z) and Jn(z) we shall employ the expansion of pΨq(z) in the form given in (19).

†The expansion in the neighbourhood of the Stokes lines arg z = 0 and arg z = ±πκ would necessitate a detailed

treatment of the Stokes phenomenon that we do not consider here.
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3. The Expansion of In(z) for |z| →∞

The series representation of the integral In(z) can be obtained by use of the Maclaurin

expansion of the factor exp{zx
m1

1 . . . x
mn
n } in (1) followed by termwise integration to yield

In(z) = λn

∞
∑

k=0

zk

k!

n
∏

r=1

∫ ∞

0

xνr+mr k−1
r exp{−xµr

r } d xr

=

∞
∑

k=0

n
∏

r=1

Γ

�

νr +mr k

µr

�

zk

k!
. (20)

Comparison with (5) shows that the above series is a particular case of the Wright (or gener-

alised hypergeometric) function given by

In(z) = nΨ0

�

(α1, a1), . . . , (αn, an) ; z

�

≡ nΨ0(z), (21)

where the parameters

αr =
mr

µr

, ar =
νr

µr

(1≤ r ≤ n) (22)

and the dash denotes the omission of a parameter sequence.

The asymptotic expansion of In(z) for |z| → ∞ then follows from (19). With κ defined in

(3) (which follows from the definition in (7)) we therefore have

In(z)∼

¨

En,0(z) +Hn,0(ze∓πi) in |arg z| ≤ πκ− ε
Hn,0(ze∓πi) in πκ+ ε≤ |arg z| ≤ π,

(23)

where the exponential expansion En,0(z) and the algebraic expansion Hn,0(ze∓πi) are obtained

from (8), (13) and (14) with p = n, q = 0, and the upper or lower signs are chosen according

as arg z > 0 or arg z < 0, respectively. The leading coefficient A0 in En,0(z) is, from (10),

given by

A0 = (2π)
n/2κ−

1

2
−ϑ

n
∏

r=1

�

mr

µr

�(νr/µr )−
1

2

. (24)

The large |z| behaviour of In(z) is consequently exponentially large in the sector

|arg z| < 1

2
πκ. Outside of this sector the behaviour is dominated by an algebraic expansion,

with a subdominant exponentially small contribution being present in the sectors
1

2
πκ < |arg z| < πκ.

We now give an example of the expansion of In(z) when n= 3; other numerical examples

can be found in [13]. Consider the three-dimensional integral

I3(z) = 36

∫ ∞

0

∫ ∞

0

∫ ∞

0

(x3/x2)
1

2 exp{−(x3
1 + x3

2 + x4
3 − z(x1 x2)

1

2 x3)} d x1d x2d x3,



R. Paris / Eur. J. Pure Appl. Math, 3 (2010), 1006-1031 1013

which is associated with the parameters µ1 = µ2 = 3, µ3 = 4, m1 = m2 =
1

2
, m3 = 1 and

ν1 = 1, ν2 =
1

2
, ν3 =

3

2
. From (21) we therefore have

I3(z) = 3Ψ0

�

(1

6
, 1

3
), (1

6
, 1

6
), (1

4
, 3

8
)

; z

�

≡ 3Ψ0(z). (25)

From (3), (7) and (24) we obtain the parameters

κ = 5

12
, h= 2−5/63−1/3, ϑ = −5

8
, A0 = 4π3/235/851/8.

Then, from (8),

E3,0(z) = Z−5/8eZ
∞
∑

j=0

A j Z
− j, Z = 5

48
(1

3
z3)4/5, (26)

where, by use of the algorithm described in Appendix A, the first few normalised coefficients

c j ≡ A j/A0 are found to be

c1 =
67

144
, c2 =

23785

41472
, c3 =

106119923

89579520
, c4 =

181613304677

51597803520
, c5 =

102937183723339

7430083706880
, . . . .

The poles in (12) are situated at

sk,1 = 2+ 6k, sk,2 = 1+ 6k, sk,3 =
3

2
+ 4k (k = 0,1,2, . . .)

and so are all simple poles. Hence, from (13) and (14), we find the algebraic expansion given

by

H3,0(z) =

3
∑

j=1

µ j

m j

z−ν j/m j S3,0(z; j), (27)

where

S3,0(z; j) =

∞
∑

k=0

(−)k

k!
Γ

�

µ jk+ ν j

m j

�

3
∏

r=1

′
Γ

�

νr −mrsk, j

µr

�

z−µ j k/m j (28)

with the prime denoting the omission of the gamma function factor corresponding to r = j.

Then, from (23) we obtain the expansion

I3(z) ∼

¨

E3,0(z) +H3,0(ze∓πi) in |arg z| ≤ 5

12
π− ε

H3,0(ze∓πi) in 5

12
π+ ε≤ |arg z| ≤ π

(29)

as |z| → ∞. It follows that I3(z) is exponentially large in the sector |arg z| < 5

24
π with the

dominant expansion being algebraic in the rest of the z-plane. In the sectors
5

12
π < |arg z| < 5

24
π the exponential expansion E3,0(z) is subdominant and switches off (as

|arg z| increases) across the Stokes lines arg z = ± 5

12
π. We show in Table 1 the values of the

absolute relative error in the computation of I3(z) as a function of θ = arg z when |z| = 15

using the optimally truncated asymptotic expansions (that is, truncated at or near the least

term in modulus) in (29).



R. Paris / Eur. J. Pure Appl. Math, 3 (2010), 1006-1031 1014

Table 1: Values of the absolute relative error in the computation of I3(z) in (25) when |z| = 15

as a function of θ = arg z using an optimal truncation of the expansions in (29).

θ/π |Rel. Error| θ/π |Rel. Error|

0 5.816× 10−13 0.625 9.259× 10−14

0.125 9.262× 10−14 0.750 2.744× 10−13

0.250 1.612× 10−13 0.875 9.841× 10−14

0.375 3.534× 10−14 1.000 1.727× 10−13

0.500 1.177× 10−13

4. The integral Jn(z)

We can apply a similar treatment to the integral

Jn(z) = λn

∫ ∞

−∞

. . .

∫ ∞

−∞

x
ν1−1

1
. . . xνn−1

n e− f (x1,...,xn;z) d x1 . . . d xn

= λn

∞
∑

k=0

zk

k!

n
∏

r=1

∫ ∞

−∞

xνr+mr k−1
r exp{−xµr

r } d xr ,

where the phase function f and the factor λn are defined in (2) and it is supposed that the

parameters µ j (1 ≤ j ≤ n) appearing in f are positive even integers. In the evaluation of the

above integrals when xr < 0, we shall write xr = |xr |e
πi .

We now introduce the notation e(x) for brevity in this section and define the quantities

Br(k) by

e(x) := eπi x , Br(k) := 1− e(νr +mr k). (30)

Then we find

µr

∫ ∞

−∞

xνr+mr k−1
r exp{−xµr

r } d xr = µr Br(k)

∫ ∞

0

xνr+mr k−1
r exp{−xµr

r } d xr

= Br(k)Γ

�

νr +mr k

µr

�

and hence that

Jn(z) =

∞
∑

k=0

zk

k!

n
∏

r=1

�

Br(k)Γ

�

νr +mr k

µr

��

. (31)

4.1. The Representation of Jn(z) in Terms of nΨ0(z) Functions

Expansion of the product of exponential factors
∏n

r=1 Br(k) in (31) can be achieved by

making use of the standard expansion

(1− z1)(1− z2) . . . (1− zn) = 1−
n
∑

i=1

zi +

n−1
∑

i=1

n
∑

j=i+1

ziz j
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−
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k= j+1

ziz jzk + . . .+ (−)nz1z2 . . . zn.

Substitution of this expansion into (31) with zr = e(νr +mr k) then shows that Jn(z) may be

expressed as a linear combination of nΨ0(z) with rotated argument in the form

Jn(z) = nΨ0(z)−
n
∑

i=1

e(νi) nΨ0(ze(mi)) +

n−1
∑

i=1

n
∑

j=i+1

e(νi + ν j) nΨ0(ze(mi +m j))

−
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k= j+1

e(νi + ν j + νk) nΨ0(ze(mi +m j +mk))+ . . .

+ (−)ne(N) nΨ0(ze(M)), (32)

where we have defined

N := ν1 + . . .+ νn, M := m1 + . . .+mn. (33)

The parameters appearing in each nΨ0 function are those given in (22).

The asymptotic expansion (19), or equivalently (23), can then be employed to deal with

each nΨ0(zeπiω) with argument rotated by ω, it being remembered that nΨ0(z) is an integral

function of z with arg z evaluated modulo 2π. Rather than attempt to present a complicated

general result, we indicate how to proceed with the asymptotic expansion of Jn(z) as |z| →∞
in specific cases in Section 5.

4.2. The Algebraic Contribution to the Expansion of Jn(z)

We consider the contribution to the asymptotic expansion of the integral Jn(z) as

|z| → ∞ that results from the algebraic expansions associated with each nΨ0 function of

rotated argument in (32). It will be shown that this combination of algebraic expansions

cancels in the sector

ε≤ arg z ≤ (2−M)π− ε, (34)

where M is defined in (33), and that consequently the expansion of Jn(z) in this sector is

purely exponential in character.

We shall suppose in this section that all the poles sk, j in (12) are simple; a case when

there are multiple poles present is discussed in Appendix C. Then, the algebraic expansion of

nΨ0(z) associated with the parameters in (22) is, from (13), (14) and (16), given by

Hn,0(ze−πi) =

n
∑

j=1

µ j

m j

h j(z)

valid as |z| →∞ in the sector ε ≤ arg z ≤ 2π− ε, where

h j(z) := (ze−πi)−ν j/m j Sn,0(ze−πi; j) (1≤ j ≤ n) (35)
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and

Sn,0(ze−πi ; j) =

∞
∑

k=0

(−)k

k!
Γ

�

µ jk+ ν j

m j

�

n
∏

r=1

′ Γ

�

νr −mrsk, j

µr

�

(ze−πi)−µ j k/m j .

From the representation of Jn(z) in (32) as a finite sum of nΨ0 functions of rotated argument,

the contribution from the different algebraic expansions when arg z lies in the common sector

(34) can then be written in the form

n
∑

j=1

µ j

m j

n
∑

k=0

(−)kTk, j(z), (36)

where

T0, j(z) = h j(z), T1, j(z) =

n
∑

j1=1

e(ν j1
)h j(ze(m j1

)),

T2, j(z) =

n−1
∑

j1=1

n
∑

j2= j1+1

e(ν j1
+ ν j2

)h j(ze(m j1
+m j2

)),

T3, j(z) =

n−2
∑

j1=1

n−1
∑

j2= j1+1

n
∑

j3= j2+1

e(ν j1
+ ν j2

+ ν j3
)h j(ze(m j1

+m j2
+m j3

)), . . .

and in general, for 1≤ k ≤ n− 1,

Tk, j(z) =

n−k+1
∑

j1=1

n−k+2
∑

j2= j1+1

. . .

n
∑

jk= jk−1+1

e(ν j1
+ . . .+ ν jk

)h j(ze(m j1
+ . . .+m jk

))

with

Tn, j(z) = e(N)h j(ze(M)). (37)

It will be sufficient to consider just one value of j and accordingly we choose j = 1. Since

the µ j (1≤ j ≤ n) are even integers it follows from (35) that

e(ν j)h j(ze(m j)) = h j(z). (38)

We now separate off the term corresponding to j1 = 1 in the sums Tk, j(z) and make repeated

use of (38) to find

T1,1(z) = h1(z) +

n
∑

j1=2

e(ν j1
)h1(ze(m j1

)),

T2,1(z) =

n
∑

j2=2

e(ν j2
)h1(ze(m j2

))+

n−1
∑

j1=2

n
∑

j2= j1+1

e(ν j1
+ ν j2

)h1(ze(m j1
+m j2

)),

T3,1(z) =

n−1
∑

j2=2

n
∑

j3= j2+1

e(ν j2
+ ν j3

)h1(ze(m j2
+m j3

))
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+

n−2
∑

j1=2

n−1
∑

j2= j1+1

n
∑

j3= j2+1

e(ν j1
+ ν j2

+ ν j3
)h1(ze(m j1

+m j2
+m j3

))

and so on. An obvious relabelling of the summation indices then shows that in the inner sum

in (36), taken over 0≤ k ≤ n− 1, all the terms cancel except the last to yield

n−1
∑

k=0

(−)kTk,1(z) = (−)
n−1

2
∑

j1=2

3
∑

j2= j1+1

. . .

n
∑

jn= jn−1+1

e(ν j1
+ . . .+ ν jn

)h1(ze(m j1
+ . . .+m jn

))

= (−)n−1e(ν2 + . . .+ νn)h1(ze(m2 + . . .+mn)).

= (−)n−1e(N)h1(ze(M)) = (−)n−1Tn,1(z)

upon application of (38). It therefore follows that
∑n

k=1(−)
kTk,1(z) ≡ 0. An analogous proce-

dure applies to other values of j ≤ n and so we obtain in the simple-pole case

n
∑

k=0

(−)kTk, j(z)≡ 0 (1≤ j ≤ n) (39)

in the sector (34). The asymptotic expansion of Jn(z) in this sector is therefore purely expo-

nential in character.

4.3. The Integral Kn,p(z)

The procedure described above can be applied to the variant of the integral Jn(z) obtained

by taking p < n integrals evaluated over (−∞,∞) with the rest being evaluated over [0,∞).
Thus, if we define

Kn,p(z) = λn

∫ ∞

0

. . .

∫ ∞

0

�∫ ∞

−∞

. . .

∫ ∞

−∞

x
ν1−1

1 . . . xνn−1
n e− f (x1,...,xn;z) d x1 . . . d xp

�

d xp+1 . . . d xn,

(40)

where it is now supposed that µr (1 ≤ r ≤ p) are even integers and µr > 0 (p + 1 ≤ r ≤ n),

then we obtain following the procedure described in Section 4 the series expansion

Kn,p(z) =

∞
∑

k=0

zk

k!

n
∏

r=1

Γ

�

νr +mr k

µr

� p
∏

r=1

Br(k). (41)

In the evaluation of the integrals when xr < 0 (1≤ r ≤ p) we have again taken xr = |xr |e
πi .

The product
∏p

r=1 Br(k) may be expanded as a sum of exponentials so that Kn,p(z) can

be written as a finite sum of nΨ0(z) functions of rotated argument and parameters given in

(22) in an analogous manner to that in (32). The asymptotic expansion of nΨ0(z) in (19) can

then be employed to obtain the expansion of Kn,p(z) as |z| → ∞. We give an example of the

asymptotic structure of Kn,p(z) in Section 5.



R. Paris / Eur. J. Pure Appl. Math, 3 (2010), 1006-1031 1018

5. Numerical Examples

In this section we give some numerical examples to illustrate the application of the ex-

pansion (19) to the construction of the asymptotic structure of the integrals Jn(z) and Kn,p(z)

defined in (4) and (40).

5.1. Example 1

Let us consider the two-dimensional integral

J2(z) = µ1µ2

∫ ∞

−∞

∫ ∞

−∞

x
ν1−1

1
x
ν2−1

2
exp{−x

µ1

1
− x

µ2

2
+ zx

m1

1
x

m2

2
} d x1d x2, (42)

where ν1, ν2 > 0 and µ1, µ2 are positive even integers. From (32) and (21), this integral can

be expressed in terms of the Wright function 2Ψ0(z) of rotated argument, where

2Ψ0(z)≡ 2Ψ0

�

(
m1

µ1
,
ν1

µ1
), (

m2

µ2
,
ν2

µ2
)

; z

�

.

For simplicity in presentation we only consider the case when m1 = m2 = m. Then we find

from (32)

J2(z) = 2Ψ0(z)− B1 2Ψ0(zeπim) + B2 2Ψ0(ze2πim), (43)

where

B1 = (e
πiν1 + eπiν2), B2 = eπi(ν1+ν2). (44)

Provided ν1 and ν2 are real, it is readily shown that J2(z) possesses a basic symmetry about

the half-rays arg z =ω and arg z =ω−π, where ω = π(1−m). For, upon recalling that the

argument of pΨq(z) can be written modulo 2π, we find‡ from (43) with the above definition

of ω that

J2(zeiω) = eπi(ν1+ν2)
¦

2Ψ0(zeiω+2πim)− (e−πiν1 + e−πiν2) 2Ψ0(zeiω+πim)

+e−πi(ν1+ν2)
2Ψ0(zeiω)
©

= eπi(ν1+ν2)
¦

2Ψ0(ze−iω)− (e−πiν1 + e−πiν2) 2Ψ0(ze−πi)

+e−πi(ν1+ν2)
2Ψ0(zeiω−2πi)
©

= eπi(ν1+ν2)J2(zeiω), (45)

where the bar denotes the complex conjugate. Hence it is sufficient in this case to restrict our

attention to an appropriate half-plane.

We display in Fig. 1 the large-|z| sectorial behaviour of J2(z) in the case µ1 = µ2 = 4 for

different values of m, where we suppose that B1 6= 0. In Fig. 1(a), m = 1

4
(κ = 7

8
) so that

the symmetry line is arg z = 3

4
π, −1

4
π and, from (34), the algebraic expansions cancel in the

‡When m1 6= m2, it can be shown that the symmetry relation (45) still holds with ω = π− 1

2
π(m1 +m2).
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sector (0, 3

2
π). There are three overlapping exponentially large sectors |arg(zeπir/4)| < 7

16
π

(r = 0,1,2), with the expansion in the sector ( 7

16
π, 17

16
π) being exponentially small. It can be

seen that there are sectors in which J2(z) consists of either one, two or three exponentially

large expansions. In Fig. 1(b), m = 1

2
(κ = 3

4
) so that the symmetry line is the imaginary

z-axis and the algebraic expansions cancel in the upper half-plane. There are again three ex-

ponentially large sectors |arg(zeπir/2)| < 3

8
π (r = 0,1,2), which overlap to produce sectors

containing either one or two exponentially large expansions, with the exponentially small sec-

tor now being (3

8
π, 5

8
π). In Fig. 1(c), m = 3

4
(κ = 5

8
) so that the symmetry line is arg z = 1

4
π,

−3

4
π and the algebraic expansions cancel in the sector (0, 1

2
π). The exponentially large sectors

|arg(ze3πir/4)| < 5

16
π (r = 0,1,2) only overlap in the sector ( 3

16
π, 5

16
π), with the behaviour

in the sectors (13

16
π, 15

16
π) and (− 7

16
π,− 5

16
π) consisting of algebraic and exponentially small

expansions. Finally in Fig. 1(d), m = 1 (κ = 1

2
) so that the symmetry line is the real z-axis

and, by (34), there is no longer a sector in which the algebraic expansions cancel. In this

case, there are two non-overlapping exponentially large sectors given by |arg(zeπir )| < 1

4
π

(r = 0,1), with the behaviour of J2(z) in the sectors (1

4
π, 3

4
π) and (−3

4
π,−1

4
π) consisting

of algebraic and exponentially small expansions. If the parameters ν1 and ν2 are such that

B1 = 0, then the number of exponentially large sectors decreases by one.

We now consider the asymptotic expansion of J2(z) in (42) when µ1 = µ2 = 4 in some

specific cases in more detail. We first take m= 1

2
(κ = 3

4
) so that from (43)

J2(z) = 2Ψ0(z)− B1 2Ψ0(ze
1

2
πi) + B2 2Ψ0(ze∓πi), (46)

where we choose the upper or lower sign according as arg z > 0 or arg z < 0, respectively.

Recalling from (19) that the Stokes lines for the exponential expansion Ep,q(z) are given by

arg z = ±πκ, we see that the Stokes lines associated with E2,0(ze
1

2
πir) (r = 0,1,2) are the rays

arg z = ±3

4
π, ±1

4
π; see Fig. 1(b). Taking into account these Stokes lines and the fact that the

algebraic expansions all cancel in the upper half-plane by (34), we find that the exponential

expansion of J2(z) in (46) is then given by

E2,0(z) + B2 E2,0(ze−πi) in (1

4
π, 1

2
π]

E2,0(z)− B1 E2,0(ze
1

2
πi) in (−1

4
π, 1

4
π)

E2,0(z)− B1 E2,0(ze
1

2
πi) + B2 E2,0(zeπi) in [−1

2
π,−1

4
π),

as |z| → ∞ in the right-half plane. The expansion E2,0(z) is obtained from (8) with Z =
3

8
z4/3 and ϑ = 1

4
(ν1 + ν2)− 1. The coefficient A0 is specified by (24) with the coefficients

A j ( j ≥ 1) being determined in specific cases by the algorithm described in Appendix A.

The expansion of J2(z) is exponentially small in the sector (3

8
π, 5

8
π). Although there is an

algebraic expansion present in the lower half-plane, we do not consider its contribution here

as it is subdominant throughout this domain. The exponential expansion in the left-hand

half-plane can be obtained via (45).

For our second case, we take m = 3

4
(κ = 5

8
) and ν1 =

1

2
, ν2 =

3

2
, so that from (44) we
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7π/16

3π/16

−π/16

−7π/16−11π/16

−15π/16

(a)

3π/8

π/4

−π/8

−π/4

−3π/8−5π/8−3π/4

−7π/8

5π/8

3π/4

(b)

5π/16

3π/16

−π/8

−5π/16−5π/8

9π/8

5π/8

13π/16

15π/16

−7π/16

(c)

π/4

−π/4−3π/4

3π/4

(d)

Figure 1: The sectorial behaviour of J2(z) for µ1 = µ2 = 4 and m1 = m2 = m when it is sup-

posed that B1 6= 0: (a) m = 1

4
, (b) m = 1

2
, (c) m = 3

4
and (d) m = 1. The sectors marked with

a circular arc with arrows denote exponentially large sectors. The hatched regions denote

exponentially small behaviour and the shaded regions denote mixed algebraic and exponen-

tially small behaviour. The dashed lines are Stokes lines and the dash-dot line is the axis of

basic symmetry.

have B1 = 0, B2 = 1 and

J2(z) = 2Ψ0(z) + 2Ψ0(ze
3

2
πi) = 2Ψ0(z) + 2Ψ0(ze−

1

2
πi). (47)

The sector in which the algebraic expansions associated with J2(z) cancel is (0, 1

2
π). Refer-

ring to Fig. 2(a), we see that the expansion of J2(z) as |z| → ∞ is exponentially large in the

sector (− 5

16
π, 13

16
π), where E2,0(z) is given by (8) with Z = 5

64
(63/5z8/5) and ϑ = −1

2
. In the

sectors (13

16
π, 9

8
π) and (−5

8
π,− 5

16
π) the expansion of J2(z) is mixed algebraic and exponen-

tially small, whereas due to the presence of the Stokes lines associated with the exponential

expansions on arg z = −5

8
π and arg z = 9

8
π the expansion in the sector |arg(ze−3πi/4)| < 1

8
π

is purely algebraic.
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From (12) and (13), the algebraic expansion H2,0(z) is controlled by the poles situated at

sk,1 =
2

3
+ 16

3
k, sk,2 = 2+ 16

3
k (k = 0,1,2, . . .)

which are all simple, and consequently

H2,0(z) =
16

3

2
∑

j=1

∞
∑

k=0

(−)k

k!
Γ(sk, j)Γ(γ j −

3

16
sk, j)z

−sk, j

with γ1 =
3

8
and γ2 =

1

8
. Taking into account the Stokes lines on arg z = 0 and arg z = 1

2
π for

the algebraic expansions associated with 2Ψ0(z) and 2Ψ0(ze−πi/2), respectively, we see from

(15) and (16) that the algebraic expansion H(z) of J2(z) is given by

H(z) =

(

H2,0(ze−πi) +H2,0(ze
1

2
πi)≡ 0 in (0, 1

2
π)

H2,0(ze−πi) +H2,0(ze−
3

2
πi) in (1

2
π, 2π)

It is easily verified with the above form of H2,0(z) that H(z) ≡ 0 in the sector (0, 1

2
π), in

accordance with (34). Then the asymptotic expansion of J2(z) in (47) has the form

J2(z)∼















E2,0(z) + E2,0(ze−
1

2
πi) in (0, 1

2
π)

E2,0(z) + E2,0(ze−
1

2
πi) +H(z) in (1

2
π, 5

8
π)

E2,0(ze−
1

2
πi) +H(z) in (5

8
π, 9

8
π)

H(z) in (9

8
π, 5

4
π]

as |z| →∞, with that in the remainder of the plane being determined by the symmetry relation

(45).

5π/16

3π/16

−π/8

−5π/16−5π/8

9π/8

5π/8

13π/16

(a)

5π/12

5π/24

−5π/24

−5π/12−7π/12

−19π/24

7π/12

19π/24

(b)

Figure 2: The sectorial behaviour of (a) J2(z) for µ1 = µ2 = 4 and m1 = m2 =
3

4
when it is

supposed that B1 = 0 and (b) of K3,1(z) for µ1 = µ2 = 3, µ3 = 4 and m1 = m2 =
1

2
, m3 = 1.

The sectors marked with a circular arc with arrows denote exponentially large sectors. The

shaded regions denote mixed algebraic and exponentially small behaviour. The dashed lines

are Stokes lines and the dash-dot line is the axis of basic symmetry.
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Finally, we consider m= 1 (κ = 1

2
) and ν1 = ν2 =

1

4
, so that B1 = 2eπi/4 and B2 = i and

J2(z) = (1+ i) 2Ψ0(z)− 2e
1

4
πi

2Ψ0(ze−πi), (48)

where we have replaced the argument of the second Wright function by ze−πi . From Fig. 1(d),

the Stokes lines coincide with the imaginary axis and the symmetry axis is the real axis. The

exponential expansion E2,0(z) in (8) has Z = 1

8
z2 and ϑ = −7

8
. The poles in (12) are all double

situated at sk = 4k+ 1

4
(k = 0,1,2, . . .) and, from (60), we obtain the algebraic expansion in

this case given by

H2,0(z) = −16

∞
∑

k=0

Γ(4k+ 1

4
)

(k!)2
{ψ(4k+ 1

4
)− 1

2
ψ(k+ 1)− log z}z−4k− 1

4 .

Since, by (34), there is no sector in which the algebraic expansions cancel when m = 1, we

obtain the expansion of J2(z) in (48) given by

J2(z) ∼







(1+ i){E2,0(z) +H2,0(ze−πi)}− 2e
1

4
πiH2,0(z) in [0, 1

2
π)

(1+ i)H2,0(ze−πi)− 2e
1

4
πi{E(ze−πi) +H2,0(z)} in (1

2
π,π]

as |z| →∞. The expansion in the lower half-plane can be obtained by (45). The rays arg z =

0, π are Stokes lines for the algebraic expansions H2,0(ze−πi) and H2,0(z), respectively and

the rays arg z = ±1

2
π are Stokes lines for the exponential expansions.

In Table 1 we present the absolute relative errors in the asymptotic expansion of J2(z)

in (46), (47) and (48) for a given value of |z| and varying θ = arg z. In each case the

exponential and algebraic expansions have been optimally truncated, with the exact value

of J2(z) being computed both by evaluation of the Wright functions and also high-precision

numerical quadrature of the integral in (42). We remark that in the three cases considered,

an accurate determination of the subdominant expansions on the Stokes lines would require

a detailed treatment of the Stokes phenomenon.

5.2. Example 2

We consider an example of the integral Kn,p(z) defined in (40) with n= 3, p = 1, namely

K3,1(z) = 36

∫ ∞

−∞

�∫ ∞

0

∫ ∞

0

(x3/x2)
1

2 exp{−(x3
1 + x3

2 + x4
3 − z(x1 x2)

1

2 x3} d x1d x2

�

d x3,

which is associated with the parameters µ1 = µ2 = 3, µ3 = 4, m1 = m2 =
1

2
, m3 = 1 and

ν1 = 1, ν2 =
1

2
, ν3 =

3

2
. From (41), we therefore find

K3,1(z) =

∞
∑

k=0

zk

k!

3
∏

r=1

Γ

�

νr +mr k

µr

�

(1− e(ν3 +m3k))
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Table 2: Values of the absolute relative error in the computation of J2(z) when µ1 = µ2 = 4

and m1 = m2 = m as a function of θ = arg z.

m= 1

2
, ν1 =

1

2
, ν2 = 1 m= 3

4
, ν1 =

1

2
, ν2 =

3

2
m = 1, ν1 = ν2 =

1

4

|z| = 20 |z| = 20 |z| = 15

θ/π |Rel. Error| θ/π |Rel. Error| θ/π |Rel. Error|

0 2.172× 10−10 0.250 8.081× 10−14 0 4.869× 10−11

0.125 3.326× 10−10 0.375 2.528× 10−13 0.125 9.220× 10−12

0.250 1.228× 10−9 0.500 1.104× 10−12 0.250 4.427× 10−14

0.375 3.939× 10−8 0.625 2.528× 10−13 0.375 1.025× 10−15

0.500 1.756× 10−4 0.750 1.414× 10−13 0.500 5.061× 10−15

−0.125 3.326× 10−10 0.875 7.550× 10−14 0.625 1.046× 10−15

−0.250 3.684× 10−10 1.000 7.014× 10−14 0.750 5.306× 10−14

−0.375 3.326× 10−10 1.125 2.584× 10−13 0.875 9.220× 10−12

−0.500 2.172× 10−10 1.250 1.058× 10−13 1.000 4.869× 10−11

= 3Ψ0(z) + i 3Ψ0(ze∓πi),

where the 3Ψ0(z) function is that defined in (25) with the same parameter values.

It is easily shown that K3,1(ze±πi) = iK3,1(z), where the bar denotes the complex conju-

gate, so that there is a basic symmetry about the imaginary axis. The sectorial behaviour of

K3,1(z) is shown in Fig. 2(b) with κ = 5

12
. There are two exponentially large sectors, four

sectors with mixed algebraic and exponentially small behaviour and two sectors straddling

the imaginary axis of angular width 1

6
π (bounded by the Stokes lines) in which the large-|z|

behaviour is algebraic. From the asymptotic expansion of 3Ψ0(z) given in (29) we then obtain

K3,1(z) ∼











E3,0(z) +H3,0(ze−πi) + iH3,0(z) in (0, 5

12
π)

H3,0(ze−πi) + iH3,0(z) in ( 5

12
π, 1

2
π]

E3,0(z) +H3,0(zeπi) + iH3,0(z) in (− 5

12
π, 0)

H3,0(zeπi) + iH3,0(z) in [−1

2
π,− 5

12
π)

as |z| → ∞, where the expansions E3,0(z) and H3,0(z) are given in (26), (27) and (28). The

expansion of K3,1(z) in the left-hand half-plane is described by the above symmetry relation.

6. Concluding Remarks

We have shown how the n-dimensional analogues of Faxén’s integral in (1), (4) and (40)

can be expressed in terms of either a single Wright function nΨ0(z), or a linear combination

of such functions with rotated arguments. Knowledge of the asymptotic expansion of nΨ0(z)

for |z| → ∞ then enables the asymptotic structure of these integrals to be determined. Not

surprisingly, this asymptotic structure becomes more complicated the larger the value of n.

The asymptotic behaviour of nΨ0(z) for large |z| consists of an exponential expansion and

an algebraic expansion. The formal sum En,0(z) is a compact representation of the exponential
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expansion in the n-dimensional case. The evaluation of the coefficients in this expansion can

be easily carried out in specific cases for low values of n, although the computational effort in-

volved in their calculation rapidly increases with the dimension of the integrals. The algebraic

expansion Hn,0(z) consists, in general, of n different expansions each with its own asymptotic

scale. The occurrence of terms in log z (when n≥ 2) depends to a considerable degree on the

symmetry in the associated Newton diagram of the phase function f (x1, . . . , xn; z) defined in

(2).
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Appendix A. An algorithm for the computation of the coefficients c j = A j/A0

We describe an algorithm for the computation of the normalised coefficients A j/A0 ap-

pearing in the exponential expansion Ep,q(z) in (8). Methods of computing these coefficients

by recursion in the case when αr = βr = 1 have been given by Riney [15] and Wright [22].

Here we describe an algebraic method valid for arbitrary αr > 0 and βr > 0; see also [12,

pp. 46–49].

We rewrite the inverse factorial expansion (9) in the form

g(s)Γ(κs+ ϑ′)

Γ(s+ 1)
= κA0(hκ

κ)s
�M−1
∑

j=0

c j

(κs+ ϑ′) j
+

O(1)

(κs+ ϑ′)M

�

, (49)

for |s| → ∞ uniformly in |arg s| ≤ π− ε, where g(s) is the ratio of gamma functions defined

in (5), (a) j = Γ(a+ j)/Γ(a) and c j = A j/A0. Introduction of the scaled gamma function Γ∗(z)

defined by

Γ∗(z) := Γ(z)(2π)−
1

2 ezz
1

2
−z
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leads to the representation

Γ(αs+ a) = Γ∗(αs+ a)(2π)
1

2 e−αs(αs)αs+a− 1

2 e(αs; a),

where

e(αs; a) = exp

�

(αs+ a− 1

2
) log

�

1+
a

αs

�

− a

�

.

Some straightforward algebra then shows that the left-hand side of (49) becomes

g(s)Γ(κs+ ϑ′)

Γ(s+ 1)
= κA0(hκ

κ)sR(s)Υ(s), (50)

where

Υ(s) =

∏p

r=1 Γ
∗(αrs+ ar)
∏q

r=1 Γ
∗(βrs+ br)

Γ∗(κs+ ϑ′)

Γ∗(s+ 1)

and

R(s) =

∏p

r=1 e(αrs; ar)
∏q

r=1 e(βrs; br)

e(κs;ϑ′)

e(s; 1)
.

Substitution of (50) into (49) finally produces

R(s)Υ(s) =

M−1
∑

j=0

c j

(κs+ ϑ′) j
+

O(1)

(κs+ ϑ′)M
(51)

as |s| →∞ in |arg s| ≤ π− ε.
Now let χ = (κs)−1 and expand R(s) and Υ(s) for χ → 0 making use of the well-known

expansion [19, p. 71], [12, p. 32]

Γ∗(z)∼
∞
∑

k=0

(−)kγkz−k (|z| →∞; |arg z| ≤ π− ε),

where γk are the Stirling coefficients. The first few coefficients are given by γ0 = 1, γ1 = −
1

12
,

γ2 =
1

288
, γ3 =

139

51840
, . . . . Some routine algebra then yields

Γ∗(αs+ a) = 1−
γ1κχ

α
+O(χ2), e(αs; a) = 1+

κχ

2α
a(a− 1) +O(χ2),

whence

R(s) = 1+
κχ

2

(

p
∑

r=1

ar(ar − 1)

αr

−
q
∑

r=1

br(br − 1)

βr

−
ϑ

κ
(1− ϑ)

)

+O(χ2),

Υ(s) = 1+
κχ

12

(

p
∑

r=1

1

αr

−
q
∑

r=1

1

βr

+
1

κ
− 1

)

+O(χ2).
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Upon equating coefficients of χ in (51) we obtain

c1 =
1

2
κ(A + 1

6
B), (52)

where

A =
p
∑

r=1

ar(ar − 1)

αr

−
q
∑

r=1

br(br − 1)

βr

−
ϑ

κ
(1− ϑ),

B =
p
∑

r=1

1

αr

−
q
∑

r=1

1

βr

+
1

κ
− 1.

The higher coefficients are then obtained by continuation of this expansion process applied

to R(s) and Υ(s) in (51) with the help of Mathematica. In specific cases (i.e., with numerical

values for the various parameters) it is possible to generate the coefficients in this manner

quite easily. In our computations we have used up to a maximum of 40 coefficients.

Appendix B. The Asymptotic Expansion of 2Ψ0(z)

We demonstrate the validity of the assertion in (19) concerning the asymptotic expansion

of the Wright function pΨq(z) as |z| → ∞ by considering a particular case. Let us take p = 2,

q = 0 with the parameter values α1 = α2 =
1

4
and ν1 = ν2 =

1

8
; that is, we consider the

function

2Ψ0(z) ≡ 2Ψ0

�

(1

4
, 1

8
), (1

4
, 1

8
)

; z

�

=

∞
∑

k=0

zk

k!
Γ2(1

4
k+ 1

8
). (53)

From (7), this function is associated with the parameters κ = 1

2
, h = 1

2
and ϑ = −3

4
. The

exponential expansion is, from (8) and (10), then given by

E2,0(z) = Z−3/4eZ
∞
∑

j=0

A j Z
− j, Z = 1

8
z2, (54)

where A0 = 29/4π; we have employed coefficients with j ≤ 28 in our computations (see

Appendix A). The first ten coefficients c j ≡ A j/A0 for 2Ψ0(z) in (53) are listed in Table 3.

Table 3: The coefficients c j for 1≤ j ≤ 10 associated with the function in (53).

j c j j c j

1 13

16
2 729

512

3 31575

8192
4 7432635

524288

5 554191155

8388608
6 100179200205

268435456

7 10645956497295

4294967296
8 10406881110208275

549755813888

9 1437596137005803775

8796093022208
10 443063017349580803175

281474976710656
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From (11), the Mellin-Barnes integral representation for 2Ψ0(z) in (53) is given by

2Ψ0(z) =
1

2πi

∫ ∞i

−∞i

Γ(s)Γ2(1

8
− 1

4
s)(ze∓πi)−sds (|arg(−z)| < 3

4
π),

where the upper or lower sign is chosen according as arg z > 0 or arg z < 0, respectively

and the integration path separates the poles of Γ(s) from the sequence of double poles of

Γ2(1

8
− 1

4
s) situated at s = 4k+ 1

2
, k = 0,1,2, . . . . Displacement of the integration path over

the sequence of double poles and evaluation of the residues leads to the algebraic expansion

H2,0(ze∓πi) = −16

∞
∑

k=0

Γ(4k+ 1

2
)

(k!)2
(ze∓πi)−4k− 1

2

�

ψ(4k+ 1

2
)− 1

2
ψ(k+ 1)− log(ze∓πi)

�

, (55)

where ψ denotes the logarithmic derivative of the gamma function; compare (60).

Theorems 1 and 2 show that 2Ψ0(z) is exponentially large given by (54) in the sector

|arg z| < 1

4
π, with the dominant expansion in the rest of the z-plane being the algebraic

expansion in (55). The exponential expansion E2,0(z), which is subdominant in the sectors
1

4
π < |arg z| < 3

4
π, is maximally subdominant on the rays (the Stokes lines) arg z = ±1

2
π.

Accordingly, as |arg z| increases, the expansion E2,0(z) should undergo a Stokes phenomenon

and switch off smoothly across the rays arg z = ±1

2
π, to leave the algebraic expansion

H2,0(ze∓πi) in the sectors 1

2
π < |arg z| ≤ π, as stated in (19); that is

2Ψ0(z) ∼

¨

E2,0(z) +H2,0(ze∓πi) in |arg z| ≤ 1

2
π− ε

H2,0(ze∓πi) in 1

2
π+ ε≤ |arg z| ≤ π

(56)

as |z| →∞.

To demonstrate this, we set z = |z|eiθ and define the Stokes multiplier S(θ) (at fixed |z|)
for the Stokes line arg z = 1

2
π by

2Ψ0(z) = H
opt

2,0 (ze∓πi) + A0Z−3/4eZ S(θ),

where the superscript ‘opt’ denotes that the algebraic expansion is truncated at its optimal

truncation point and Z is defined in (54). In the first half of Table 4 we show the values§

of Re (S) for varying θ in the neighbourhood of θ = 1

2
π when |z| = 15, where the value of

2Ψ0(z) has been computed by high-precision summation of (53). The second half of Table 4

displays the absolute error in the computation of 2Ψ0(z) using the asymptotic expansion in

(56) in the sector 1

2
π≤ θ ≤ 3

4
π with the same value of |z|. The values in the column labelled

(a) were obtained using the first expansion in (56), that is with the exponential expansion

retained in the sector 1

2
π < θ ≤ 3

4
π, whereas those in the column labelled (b) were obtained

using the second expansion in (56). Both asymptotic series were truncated at their respective

optimal truncation points. The first half of Table 4 confirms that the exponential expansion

E2,0(z) switches off (as arg z increases) across the Stokes line arg z = 1

2
π to leave the algebraic

§The Stokes multiplier S(θ ) has a small imaginary part that we do not show.
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Table 4: The variation of the real part of the Stokes multiplier S(θ) and the absolute error in

the computation of 2Ψ0(z) for different θ in the sector 1

2
π ≤ θ ≤ 3

4
π when |z| = 15: (a) with

E2,0(z) and (b) without E2,0(z).

θ/π Re(S) θ/π Re(S) θ/π |Error| (a) |Error| (b)

0.40 0.97776 0.51 0.32448 0.50 4.010× 10−13 3.662× 10−13

0.45 0.94397 0.52 0.20592 0.55 2.819× 10−12 1.324× 10−13

0.47 0.83063 0.53 0.11579 0.60 1.571× 10−10 7.241× 10−14

0.48 0.72932 0.54 0.05599 0.65 7.955× 10−8 4.808× 10−14

0.49 0.60226 0.55 0.02191 0.70 2.036× 10−4 3.569× 10−14

0.50 0.46177 0.60 0.00008 0.75 1.222× 10−0 2.854× 10−14

expansion H2,0(ze−πi) in the remainder of the upper half-plane; a similar behaviour applies

across the Stokes line arg z = −1

2
π. The values of the absolute error in the second half of the

table clearly indicate that a uniform accuracy over the sector 1

2
π < θ ≤ 3

4
π is achievable by

discarding the exponential expansion in this sector in accordance with the second expansion

in (56).

We remark that a detailed analysis of the Stokes multiplier has been carried out in [10]

for the more general function pΨ0(z) with the parameters αr = 1/n (1 ≤ r ≤ p), for positive

integer n, and general¶ ar (1 ≤ r ≤ p). It was shown that for large |z| the leading behaviour

of the Stokes multiplier S(θ) across the Stokes lines θ = ±πκ is given by

S(θ) ≃ 1

2
± 1

2
erf [(θ ∓πκ)(2κ/n)−1/2(|z|/n)1/(2κ)] (|z| →∞)

respectively, where erf denotes the error function and κ = 1− (p/n). Specialisation to the

values p = 2, n = 4, to correspond to (53), shows the smooth transition of S(θ) across the

Stokes lines θ = ±1

2
π, thereby confirming the above viewpoint.

Appendix C. The Algebraic Expansion of Jn(z) in the Case of Double Poles

When some, or all, of the poles in (12) are multiple, the analysis of the algebraic con-

tributions to the integral Jn(z) presented in Section 4.2 no longer applies. The treatment of

the multiple-pole case in general would be very tedious. Accordingly, we demonstrate in the

case n = 2 when double poles are present that the cancelation of the algebraic expansions

associated with Jn(z) continues to hold in the sector (34), where m = m1 +m2.

The algebraic expansion for the Wright function 2Ψ0(z) associated with the parameters

αr , ar (r = 1,2) as |z| → ∞ is given by (16) with p = 2, q = 0. The form of the expansion

H2,0(ze−πi) in (13) and (14) has to be modified to take into account the presence of the

double poles. From the Mellin-Barnes representation in (11), we have

2Ψ0(z) =
1

2πi

∫ ∞i

−∞i

Γ(s)Γ(a1 −α1s)Γ(a2 −α2s)(ze±πi)−sds (57)

¶It is assumed the parameters are such that only simple poles arise in the corresponding integral (11).
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valid in |arg(−z)| < 1

2
π(1 + α1 + α2), where the upper or lower sign is chosen according

as arg z > 0 or arg z < 0, respectively. The two sequences of poles that contribute to the

algebraic expansion are, from (12), sm,r = (ar +m)/αr (r = 1,2; m = 0,1,2, . . .), where we

suppose for some nonnegative integers k, ℓ that

sk,1 =
a1 + k

α1

=
a2 + ℓ

α2

(58)

for double poles to arise. The algebraic expansion H2,0(ze−πi), obtained by displacement of

the integration path in (57) to the right over the above poles, then becomes

H2,0(ze−πi) =

2
∑

j=1

α−1
j
(ze−πi)−a j/α j S′2,0(ze−πi ; j) + G(z) (59)

where the prime denotes the deletion of the terms in the asymptotic sum (14) corresponding

to the double poles. The contribution G(z) resulting from the double poles may be shown to

be

G(z) =
1

α1α2

∑

k,ℓ

(−)k+ℓ+1

k!ℓ!
Γ(sk,1)(ze−πi)−sk,1{ψ(sk,1)−α1ψ(k+1)−α2ψ(ℓ+1)− log(ze−πi)},

(60)

where summation is over the integers k, ℓ satisfying (58) and ψ(z) denotes the logarithmic

derivative of the gamma function.

The integral J2(z) is associated with the function 2Ψ0(z) with the parameters αr = mr/µr ,

ar = νr/µr (r = 1,2), where µr are positive even integers. The contribution to the algebraic

expansion of J2(z) from the first series on the right-hand side of (59) (resulting from the

simple poles) vanishes in the sector (34) by virtue of the discussion in Section 4.2. To deal

with the contribution from the double poles, we note that G(z) may be written in the form

G(z) =
∑

k,ℓ

(ze−πi)−λk{ck,ℓ+ dk,ℓ log (ze−πi)},

where ck,ℓ and dk,ℓ are coefficients independent of z and

λk :=
ν1 +µ1k

m1

=
ν2 +µ2ℓ

m2

. (61)

Recalling that e(x)≡ exp(πi x), we then see that

e(ν1)G(ze(m1)) = G(z) +πim1

∑

k,ℓ

dk,ℓ(ze−πi)−λk .

From (32) with n= 2, the contribution to the algebraic expansion of J2(z) resulting from the

logarithmic series G(z) in the common sector (34) is then

G(z) − e(ν1)G(ze(m1))− e(ν2)G(ze(m2)) + e(ν1 + ν2)G(ze(m1 +m2))
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= −πim1

∑

k,ℓ

dk,ℓ(ze−πi)−λk − e(ν2)G(ze(m2))

+e(ν2)

�

G(ze(m2)) +πim1

∑

k,ℓ

dk,ℓ(ze(m2 − 1))−λk

�

= πim1

∑

k,ℓ

dk,ℓ(ze−πi)−λk {e(ν2 −m2λk)− 1} ≡ 0

since e(ν2 − m2λk) = 1 by (61). Thus, the algebraic expansion associated with J2(z) when

double poles are present similarly vanishes in the sector (34).


