Certain transformations and summations for generalized hypergeometric series with integral parameter differences

A. R. Miller \dagger
Formerly Professor of Mathematics at George Washington University, 1616 18th Street NW, No. 210, Washington, DC 20009-2525, USA

and

R. B. Paris

Division of Complex Systems, University of Abertay Dundee, Dundee DD1 1HG, UK
r.paris@abertay.ac.uk

Abstract

Certain transformation and summation formulas for generalized hypergeometric series with integral parameter differences are derived.

Mathematics Subject Classification: 33C15, 33C20
Keywords: Generalized hypergeometric series, Quadratic transformation, Summation theorems

1. Introduction

The generalized hypergeometric function ${ }_{p} F_{q}(x)$ is defined for complex parameters and argument by the series

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p} \tag{1.1}\\
b_{1}, b_{2}, \ldots, b_{q}
\end{array} \right\rvert\, x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{x^{k}}{k!} .
$$

When $q=p$ this series converges for $|x|<\infty$, but when $q=p-1$ convergence occurs when $|x|<1$. However, when only one of the numeratorial parameters a_{j} is a negative integer or zero, then the series always converges since it is simply a polynomial in x of degree $-a_{j}$. In (1.1) the Pochhammer symbol, or ascending factorial, $(a)_{k}$ is defined by $(a)_{0}=1$ and for $k \geq 1$ by $(a)_{k}=a(a+1) \ldots(a+k-1)$. However, for all integers k we write simply

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}
$$

In what follows we shall adopt the convention of writing the finite (except where noted otherwise) sequence of parameters $\left(a_{1}, \ldots, a_{p}\right)$ simply by $\left(a_{p}\right)$ and the product of p Pochhammer symbols by

$$
\left(\left(a_{p}\right)\right)_{k} \equiv\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}
$$

with an empty product $p=0$ reducing to unity.
In $[1-4]$ we derived in various ways transformation formulas for the generalized hypergeometric functions ${ }_{r+1} F_{r+1}(x)$ and ${ }_{r+2} F_{r+1}(x)$, where here and below at least r pairs of numeratorial and
denominatorial parameters differ by arbitrary positive integers. In particular, in [4] we stated without proof that the generalized hypergeometric function ${ }_{r+1} F_{r+1}(x)$ in which $r+1$ pairs of numeratorial and denominatorial parameters differ by arbitrary positive integers may be written as a product of e^{x} and a certain polynomial in x. In Section 3 we shall provide a proof of this result and discuss its implications.

In $[1,4,5]$ we showed that essentially the same methods used to obtain the transformation formulas alluded to above may be employed to deduce the Karlsson-Minton and other more general summation formulas for the ${ }_{r+2} F_{r+1}(1)$ generalized hypergeometric series with unit argument. In the present investigation we shall derive in Section 4 in a similar manner analogous summation formulas for generalized hypergeometric series of the type ${ }_{r+2} F_{r+1}\left(\frac{1}{2}\right)$ with half unit argument. Finally, in Section 5 we shall consider a certain quadratic transformation for the ${ }_{3} F_{2}(x)$ hypergeometric function.

2. Preliminary results

We record two lemmas and a theorem that we shall utilize in the sequel. Lemmas 1 and 2 are proved respectively in [1] and [4] and Theorem 1 is proved in [4]. The notation $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ will be employed to denote the Stirling numbers of the second kind. These nonnegative integers represent the number of ways to partition n objects into k nonempty sets and arise for nonnegative integers n in the generating relation [6, p. 262]

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{k}(-x)_{k}, \quad\left\{\begin{array}{l}
n \\
0
\end{array}\right\}=\delta_{0 n}
$$

where $\delta_{0 n}$ is the Kronecker symbol.
Lemma 1. For nonnegative integers j define

$$
S_{j} \equiv \sum_{n=0}^{\infty} n^{j} \frac{\lambda_{n}}{n!}, \quad S_{0} \equiv \sum_{n=0}^{\infty} \frac{\lambda_{n}}{n!}
$$

where the infinite sequence $\left(\lambda_{n}\right)$ is such that S_{j} converges for all j. Then

$$
S_{j}=\sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} \sum_{n=0}^{\infty} \frac{\lambda_{n+k}}{n!} .
$$

Lemma 2. For nonnegative integer s let $\left(a_{s}\right)$ denote a parameter sequence containing s elements, where when $s=0$ the sequence is empty. Let $\left(a_{s}+k\right)$ denote the sequence when k is added to each element of $\left(a_{s}\right)$. Let $\mathcal{F}(x)$ denote the generalized hypergeometric function with r numeratorial and denominatorial parameters differing by the positive integers $\left(m_{r}\right)$, namely

$$
\mathcal{F}(x) \equiv{ }_{r+s} F_{r+1}\left(\begin{array}{cc|c}
\left(a_{s}\right), & \left(f_{r}+m_{r}\right) & x \\
c, & \left(f_{r}\right) & x
\end{array}\right)
$$

where by (1.1) convergence of the series representation for the latter occurs in an appropriate domain depending on the values of s and the elements of the parameter sequence $\left(a_{s}\right)$. Then

$$
\mathcal{F}(x)=\frac{1}{A_{0}} \sum_{k=0}^{m} x^{k} A_{k} \frac{\left(\left(a_{s}\right)\right)_{k}}{(c)_{k}}{ }_{s} F_{1}\left(\begin{array}{c|c}
\left(a_{s}+k\right) \\
c+k & x
\end{array}\right),
$$

where $m=m_{1}+\cdots+m_{r}$, the coefficients A_{k} are defined by

$$
A_{k} \equiv \sum_{j=k}^{m}\left\{\begin{array}{l}
j \tag{2.1}\\
k
\end{array}\right\} \sigma_{m-j}, \quad A_{0}=\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r}\right)_{m_{r}}, \quad A_{m}=1
$$

and the $\sigma_{j}(0 \leq j \leq m)$ are generated by the relation

$$
\begin{equation*}
\left(f_{1}+x\right)_{m_{1}} \cdots\left(f_{r}+x\right)_{m_{r}}=\sum_{j=0}^{m} \sigma_{m-j} x^{j} \tag{2.2}
\end{equation*}
$$

Theorem 1. Let $\left(m_{r}\right)$ be a nonempty sequence of positive integers and define $m \equiv m_{1}+\cdots+m_{r}$. Then if $b \neq f_{j}(1 \leq j \leq r),(\lambda)_{m} \neq 0$, where $\lambda \equiv c-b-m$, we have the transformation formula

$$
{ }_{r+1} F_{r+1}\left(\left.\begin{array}{cc}
b, & \left(f_{r}+m_{r}\right) \tag{2.3}\\
c, & \left(f_{r}\right)
\end{array} \right\rvert\, x\right)=e^{x}{ }_{m+1} F_{m+1}\left(\begin{array}{cc|c}
\lambda, & \left(\xi_{m}+1\right) \\
c, & \left(\xi_{m}\right) & -x
\end{array}\right)
$$

where $|x|<\infty$. The $\left(\xi_{m}\right)$ are the nonvanishing zeros of the associated parametric polynomial $Q_{m}(t)$ of degree m given by

$$
Q_{m}(t)=\sum_{j=0}^{m} \sigma_{m-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}(b)_{k}(t)_{k}(\lambda-t)_{m-k}
$$

where the $\sigma_{j}(0 \leq j \leq m)$ are determined by the generating relation (2.2).
In the following Section 3 we shall consider the generalized hypergeometric function $w(x)$ defined for $|x|<\infty$ by

$$
w(x) \equiv{ }_{r+1} F_{r+1}\left(\begin{array}{c|c}
\left(f_{r+1}+m_{r+1}\right) \\
\left(f_{r+1}\right) & x
\end{array}\right)
$$

where $\left(m_{r+1}\right)$ is a sequence of positive integers. It is evident that $w(x)$ is an entire function.

3. Properties of $w(x)$

If in Theorem 1 we set $b=f_{r+1}+m_{r+1}, c=f_{r+1}$ and define $m \equiv m_{1}+\cdots+m_{r}, M \equiv m+m_{r+1}$, then $\lambda=-M,(-M)_{m} \neq 0$ and we find from (2.3) that

$$
w(x)=e^{x}{ }_{m+1} F_{m+1}\left(\begin{array}{cc|c}
-M, & \left(\xi_{m}+1\right) & -x) . \\
f_{r+1}, & \left(\xi_{m}\right) & -x) .
\end{array}\right.
$$

The $\left(\xi_{m}\right)$ are the nonvanishing zeros of the associated parametric polynomial of degree m given by

$$
Q_{m}(t)=\sum_{j=0}^{m} \sigma_{m-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}\left(f_{r+1}+m_{r+1}\right)_{k}(t)_{k}(-M-t)_{m-k}
$$

where the $\sigma_{j}(0 \leq j \leq m)$ are generated by (2.2).
Thus it is evident that $w(x)$ is proportional to a polynomial in x of degree at most M which we define as

$$
\mathcal{P}_{M}(x) \equiv{ }_{m+1} F_{m+1}\left(\left.\begin{array}{cc}
-M, & \left(\xi_{m}+1\right) \\
f_{r+1}, & \left(\xi_{m}\right)
\end{array} \right\rvert\,-x\right) .
$$

Moreover, since e^{x} can never vanish it follows that the entire function $w(x)$ has at most M zeros in the complex plane. However, we shall obtain an explicit representation for $\mathcal{P}_{M}(x)$ which shows that its degree is exactly M.

Theorem 2. Let $\left(m_{r+1}\right)$ be a sequence of positive integers such that $M \equiv m_{1}+\cdots+m_{r+1}$ and let $\left(f_{r+1}\right)$ be a sequence of complex numbers such that $\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r+1}\right)_{m_{r+1}}$ is nonvanishing. Then

$$
w(x)=e^{x} \mathcal{P}_{M}(x)
$$

where $\mathcal{P}_{M}(x)$ is a polynomial of degree M given by

$$
\mathcal{P}_{M}(x)=\frac{1}{B_{0}} \sum_{k=0}^{M} B_{k} x^{k}, \quad B_{k} \equiv \sum_{j=k}^{M}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} \rho_{M-j}
$$

Here

$$
B_{0}=\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r+1}\right)_{m_{r+1}}, \quad B_{M}=1
$$

and the $\rho_{j}(0 \leq j \leq M)$ are generated by the relation

$$
\left(f_{1}+x\right)_{m_{1}} \ldots\left(f_{r+1}+x\right)_{m_{r+1}}=\sum_{j=0}^{M} \rho_{M-j} x^{j}
$$

Proof: Note that

$$
\frac{\left(\left(f_{r+1}+m_{r+1}\right)\right)_{n}}{\left(\left(f_{r+1}\right)\right)_{n}}=\frac{\left(f_{1}+n\right)_{m_{1}}}{\left(f_{1}\right)_{m_{1}}} \ldots \frac{\left(f_{r+1}+n\right)_{m_{r+1}}}{\left(f_{r}\right)_{m_{r+1}}}
$$

where the numeratorial expression on the right-hand side of the latter may be written as

$$
\begin{equation*}
\left(f_{1}+n\right)_{m_{1}} \ldots\left(f_{r+1}+n\right)_{m_{r+1}}=\sum_{j=0}^{M} \rho_{M-j} n^{j} \tag{3.1}
\end{equation*}
$$

Thus by (1.1)

$$
\begin{gathered}
w(x) \equiv{ }_{r+1} F_{r+1}\left(\left.\begin{array}{c}
\left(f_{r+1}+m_{r+1}\right) \\
\left(f_{r+1}\right)
\end{array} \right\rvert\, x\right)=\sum_{n=0}^{\infty} \frac{\left(\left(f_{r+1}+m_{r+1}\right)\right)_{n}}{\left(\left(f_{r+1}\right)\right)_{n}} \frac{x^{n}}{n!} \\
=\frac{1}{\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r+1}\right)_{m_{r+1}}} \sum_{j=0}^{M} \rho_{M-j} \sum_{n=0}^{\infty} n^{j} \frac{x^{n}}{n!}
\end{gathered}
$$

where the order of the summations has been interchanged.
Now employing Lemma 1 we have

$$
\sum_{n=0}^{\infty} n^{j} \frac{x^{n}}{n!}=\sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} \sum_{n=0}^{\infty} \frac{x^{n+k}}{n!}=e^{x} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} x^{k}
$$

so that

$$
w(x)=\frac{e^{x}}{\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r+1}\right)_{m_{r+1}}} \sum_{j=0}^{M} \rho_{M-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} x^{k}
$$

where

$$
\sum_{j=0}^{M} \rho_{M-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} x^{k}=\sum_{k=0}^{M}\left(\sum_{j=k}^{M}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} \rho_{M-j}\right) x^{k}
$$

Defining

$$
B_{k} \equiv \sum_{j=k}^{M}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} \rho_{M-j} \quad(0 \leq k \leq M)
$$

we note that when $k=0$ the only contribution to the j-summation comes from $j=0$, so that by using (3.1) we find

$$
B_{0}=\rho_{M}=\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r+1}\right)_{m_{r+1}}
$$

In addition when $k=M$, the only contribution to the latter summation comes from $j=M$, so that by again using (3.1) we see that

$$
B_{M}=\rho_{0}=1
$$

Thus

$$
\begin{equation*}
w(x)=\frac{e^{x}}{B_{0}} \sum_{k=0}^{M} B_{k} x^{k} \tag{3.2}
\end{equation*}
$$

which evidently completes the proof.
Thus we also have the following.
Corollary 1. The entire function $w(x)$ has exactly M zeros in the complex plane.
We remark that Ki and Kim [7] only show the existence of at most M zeros for $w(x)$, whereas from (3.2) we can in principle obtain all of the M zeros. For example,

$$
{ }_{2} F_{2}\left(\begin{array}{c|c}
f+1, g+1 & x \\
f, & g
\end{array}\right)=e^{x}\left(\frac{1}{f g} x^{2}+\frac{f+g+1}{f g} x+1\right),
$$

and here the zeros of $\mathcal{P}_{2}(x)$ are

$$
x_{1,2}=-\frac{1}{2}\left(f+g+1 \pm\left[(f-g)^{2}+2 f+2 g+1\right]^{1 / 2}\right)
$$

4. Summation formulas for ${ }_{r+2} F_{r+1}\left(\frac{1}{2}\right)$

In [4] we employed Lemma 2 to readily obtain a generalization of the Karlsson-Minton summation formula which is given in the following.

Theorem 3. Suppose $\left(m_{r}\right)$ is a sequence of positive integers such that $m=m_{1}+\cdots+m_{r}$. Then provided that $\operatorname{Re}(c-a-b)>m$ we have

$$
{ }_{r+2} F_{r+1}\left(\begin{array}{cc}
a, b, & \left(f_{r}+m_{r}\right) \\
c, & \left(f_{r}\right)
\end{array} 1\right)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \sum_{k=0}^{m} \frac{A_{k}}{A_{0}} \frac{(-1)^{k}(a)_{k}(b)_{k}}{(1+a+b-c)_{k}}
$$

where the $A_{k}(0 \leq k \leq m)$ are given by (2.1).
However we may also utilize Lemma 2 to obtain summation formulas for ${ }_{r+2} F_{r+1}\left(\frac{1}{2}\right)$. To this end we note the following (see, for example, $\left[8\right.$, Section 7.3.7 (3)-(6)]) summations for ${ }_{2} F_{1}\left(\frac{1}{2}\right)$ given by

$$
\begin{align*}
{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
a, b \\
\frac{1}{2} a+\frac{1}{2} b-\frac{1}{2}
\end{array} \right\rvert\, \frac{1}{2}\right) & =\sqrt{\pi}\left\{\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}+\frac{2 \Gamma\left(\frac{1}{2} a+\frac{1}{2} b-\frac{1}{2}\right)}{\Gamma(a) \Gamma(b)}\right\}, \tag{4.1}\\
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, b \\
\frac{1}{2} a+\frac{1}{2} b
\end{array} \right\rvert\, \frac{1}{2}\right) & =\sqrt{\pi}\left\{\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b\right)}{\Gamma\left(\frac{1}{2} b\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2}\right)}+\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b\right)}{\Gamma\left(\frac{1}{2} a\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}\right\}, \tag{4.2}\\
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, b \\
\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}
\end{array} \right\rvert\, \frac{1}{2}\right) & =\sqrt{\pi} \frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}, \tag{4.3}\\
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, b \\
\frac{1}{2} a+\frac{1}{2} b+1
\end{array} \right\rvert\, \frac{1}{2}\right) & =\frac{2 \sqrt{\pi}}{a-b}\left\{\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b+1\right)}{\Gamma\left(\frac{1}{2} a\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}-\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b+1\right)}{\Gamma\left(\frac{1}{2} b\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2}\right)}\right\} . \tag{4.4}
\end{align*}
$$

Setting $x=\frac{1}{2}, s=2,\left(a_{s}\right)=(a, b), c=\frac{1}{2}(a+b+n)$, where $n=-1,0,1,2$, in the first two equations of Lemma 2, we see that

$$
\begin{align*}
{ }_{r+2} F_{r+1}\left(\begin{array}{cc}
a, b, & \left(f_{r}+m_{r}\right) \\
\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2} n, & \left(f_{r}\right)
\end{array} \frac{1}{2}\right) \\
=\sum_{k=0}^{m}\left(\frac{1}{2}\right)^{k} \frac{A_{k}}{A_{0}} \frac{(a)_{k}(b)_{k}}{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2} n\right)_{k}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
a+k, b+k \\
\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2} n+k
\end{array} \right\rvert\, \frac{1}{2}\right), \tag{4.5}
\end{align*}
$$

where when $r=0,\left(f_{r}\right)$ and $\left(f_{r}+m_{r}\right)$ are empty and we define $m \equiv 0$. Thus the Gauss series ${ }_{2} F_{1}\left(\frac{1}{2}\right)$ in (4.5) with respectively $n=-1,0,1,2$ correspond to the left-hand sides of (4.1)-(4.4) with $a \mapsto a+k$ and $b \mapsto b+k$. Combining these with (4.5) we therefore deduce the following.

Theorem 4. Let $\left(m_{r}\right)$ be an arbitrary sequence of positive integers such that $m \equiv m_{1}+\cdots+m_{r}$ and $\left(f_{r}\right)$ a sequence of complex numbers such that $\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r}\right)_{m_{r}} \neq 0$. Then

$$
\begin{align*}
& { }_{r+2} F_{r+1}\left(\begin{array}{cc|c}
a, b, & \left(f_{r}+m_{r}\right) & \frac{1}{2} \\
\frac{1}{2} a+\frac{1}{2} b-\frac{1}{2}, & \left(f_{r}\right) &
\end{array}\right) \\
& =\frac{2 \sqrt{\pi}}{A_{0}} \frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b-\frac{1}{2}\right)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{m}\left(\frac{1}{2}\right)^{k} A_{k}\left\{1+\frac{\Gamma(a+k) \Gamma(b+k)(a+b-1+2 k)}{4 \Gamma\left(\frac{1}{2} a+\frac{1}{2}+\frac{1}{2} k\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}+\frac{1}{2} k\right)}\right\}, \tag{4.6}\\
& { }_{r+2} F_{r+1}\left(\begin{array}{cc|c}
a, b, & \left(f_{r}+m_{r}\right) & \frac{1}{2} \\
\frac{1}{2} a+\frac{1}{2} b, & \left(f_{r}\right) &
\end{array}\right) \\
& =\frac{2^{a+b-2}}{A_{0} \sqrt{\pi}} \frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b\right)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{m} 2^{k} A_{k}\left\{\Gamma\left(\frac{1}{2} a+\frac{1}{2} k\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}+\frac{1}{2} k\right)-\Gamma\left(\frac{1}{2} b+\frac{1}{2} k\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2}+\frac{1}{2} k\right)\right\}, \tag{4.7}\\
& { }_{r+2} F_{r+1}\left(\begin{array}{cc|c}
a, b, & \left(f_{r}+m_{r}\right) & \frac{1}{2} \\
\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}, & \left(f_{r}\right) &
\end{array}\right) \\
& =\frac{2^{a+b-2}}{A_{0} \sqrt{\pi}} \frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{m} 2^{k} A_{k} \Gamma\left(\frac{1}{2} a+\frac{1}{2} k\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2} k\right), \tag{4.8}\\
& { }_{r+2} F_{r+1}\left(\begin{array}{cc|c}
a, b, & \left(f_{r}+m_{r}\right) & \frac{1}{2} \\
\frac{1}{2} a+\frac{1}{2} b+1, & \left(f_{r}\right) &
\end{array}\right) \\
& =\frac{2^{a+b-2}}{A_{0} \sqrt{\pi}} \frac{a+b}{a-b} \frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2} b\right)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{m} 2^{k} A_{k}\left\{\Gamma\left(\frac{1}{2} b+\frac{1}{2} k\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} k+\frac{1}{2}\right)-\Gamma\left(\frac{1}{2} a+\frac{1}{2} k\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2} k+\frac{1}{2}\right)\right\}, \tag{4.9}
\end{align*}
$$

where the $A_{k}(0 \leq k \leq m)$ are given by (2.1).
We have used the duplication formula

$$
\begin{equation*}
\sqrt{\pi} \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{4.10}
\end{equation*}
$$

to obtain (4.7)-(4.9). Thus, when $r=0$, the sequences $\left(f_{r}\right)$ and $\left(f_{r}+m_{r}\right)$ are empty so that $m=0$ and (4.6)-(4.9) reduce respectively to (4.1)-(4.4). Since (4.9) is not valid when $a=b$ we may use l'Hôpital's rule and (4.10) to obtain the limiting case of (4.9), namely

$$
{ }_{r+2} F_{r+1}\left(\left.\begin{array}{cc}
a, a, & \left(f_{r}+m_{r}\right) \\
a+1, & \left(f_{r}\right)
\end{array} \right\rvert\, \frac{1}{2}\right)=\frac{2^{a-1} a}{A_{0}} \sum_{k=0}^{m} A_{k}(a)_{k}\left\{\psi\left(\frac{1}{2} a+\frac{1}{2} k+\frac{1}{2}\right)-\psi\left(\frac{1}{2} a+\frac{1}{2} k\right)\right\}
$$

where ψ is the digamma or psi function. When $r=0$ we retrieve

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
a, a & \frac{1}{2} \\
a+1 & \frac{1}{2}
\end{array}\right)=2^{a-1} a\left\{\psi\left(\frac{1}{2} a+\frac{1}{2}\right)-\psi\left(\frac{1}{2} a\right)\right\}
$$

which is found in $[8$, Section 7.3 .7 (16)] in an equivalent form.
In addition, if we let $r=1, m_{1}=1$ and $f_{1}=f$, so that $A_{0}=f, A_{1}=1$, then we obtain from (4.9) and (4.10) after some straightforward algebra the result (when $a \neq b$)

$$
{ }_{3} F_{2}\left(\begin{array}{cc|c}
a, b, & f+1 & \frac{1}{2} \\
\frac{1}{2} a+\frac{1}{2} b+1, & f &
\end{array}\right)=\sqrt{\pi}\left(\frac{a+b}{a-b}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b\right)\left\{\frac{(a-f) / f}{\Gamma\left(\frac{1}{2} b\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2}\right)}-\frac{(b-f) / f}{\Gamma\left(\frac{1}{2} a\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}\right\}
$$

which has been obtained by Rathie and Pogány in [9].

5. A quadratic transformation for ${ }_{3} F_{2}(x)$

In [4] by utilizing Lemma 2 we derived two quadratic transformations for

$$
{ }_{r+2} F_{r+1}\left(\left.\begin{array}{cc}
a, a+\frac{1}{2}, & \left(f_{r}+m_{r}\right) \\
c, & \left(f_{r}\right)
\end{array} \right\rvert\, X\right)
$$

where $X \equiv x^{2} /(1 \pm x)^{2}$ and $X \equiv 4 x /(1+x)^{2}$. As discussed below certain parametric conditions guaranteeing the existence of a quadratic transformation for the Gauss function ${ }_{2} F_{1}(x)$ restrict the existence of more general quadratic transformations for ${ }_{r+2} F_{r+1}(x)$ when the decomposition Lemma 2 is employed. We illustrate this by deducing a quadratic transformation that necessarily is restricted to $r=1$ thus giving the quadratic transformation for ${ }_{3} F_{2}(x)$ in the following theorem.

Theorem 5. Suppose $a, b \neq \frac{1}{2}$ and $f \neq a+b+\frac{1}{2}$. Then

$$
\begin{align*}
& { }_{3} F_{2}\left(\begin{array}{cc|c}
a, b, & f+1 & 4 x(1-x) \\
a+b+\frac{1}{2}, & f &
\end{array}\right. \\
& =(1-2 x)^{-1}{ }_{4} F_{3}\left(\begin{array}{ccc|c}
2 a-1,2 b-1, & \xi_{1}+1, & \xi_{2}+1 & x \\
a+b+\frac{1}{2}, & \xi_{1}, & \xi_{2} & x
\end{array}\right), \tag{5.1}
\end{align*}
$$

where ξ_{1}, ξ_{2} are given by

$$
\begin{equation*}
\xi_{1,2}=\alpha+\frac{1}{2} \pm\left[\left(\alpha+\frac{1}{2}\right)^{2}-2 \alpha f\right]^{1 / 2}, \quad \alpha=\frac{(2 a-1)(2 b-1)}{2(a+b-f)-1} \tag{5.2}
\end{equation*}
$$

The transformation (5.1) holds in a neighborhood of $x=0$.

Proof: From Lemma 2 we have the expansion of ${ }_{r+2} F_{r+1}(z)$, with r pairs of parameters differing by the positive integers $\left(m_{r}\right)$, as a finite sum of ${ }_{2} F_{1}(z)$ functions in the form

$$
{ }_{r+2} F_{r+1}\left(\left.\begin{array}{cc|}
a, b, & \left(f_{r}+m_{r}\right) \tag{5.3}\\
c, & \left(f_{r}\right)
\end{array} \right\rvert\, z\right)=\frac{1}{A_{0}} \sum_{k=0}^{m} z^{k} A_{k} \frac{(a)_{k}(b)_{k}}{(c)_{k}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
a+k, b+k \\
c+k
\end{array} \right\rvert\, z\right)
$$

where the coefficients A_{k} are defined by (2.1). If we set $r=1, m_{1}=1$ and $f_{1}=f$ in the above expansion we obtain the particular case

$$
{ }_{3} F_{2}\left(\left.\begin{array}{cc|}
a, b, & f+1 \tag{5.4}\\
c, & f
\end{array} \right\rvert\, z\right)={ }_{2} F_{1}\left(\begin{array}{c|c}
a, b \\
c & z
\end{array}\right)+\frac{a b z}{c f}{ }_{2} F_{1}\left(\begin{array}{c|c}
a+1, b+1 & z \\
c+1 & z
\end{array}\right) .
$$

Now let $z=X \equiv 4 x(1-x)$ and define

$$
F(x) \equiv{ }_{3} F_{2}\left(\begin{array}{cc|c}
a, b, & f+1 & X \\
a+b+\frac{1}{2}, & f & X
\end{array}\right) .
$$

Then, from (5.4) with $c=a+b+\frac{1}{2}$, we find

$$
F(x)={ }_{2} F_{1}\left(\left.\begin{array}{c|}
a, b \tag{5.5}\\
a+b+\frac{1}{2}
\end{array} \right\rvert\, X\right)+\frac{a b}{c f} X_{2} F_{1}\left(\left.\begin{array}{c|c}
a+1, b+1 \\
a+b+\frac{3}{2}
\end{array} \right\rvert\, X\right) .
$$

We now make use of two quadratic transformation formulas for the Gauss hypergeometric function [10, Section 15.3, (22) and (24)], namely

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c|}
a, b \tag{5.6}\\
a+b-j+\frac{1}{2}
\end{array} \right\rvert\, X\right)=(1-2 x)^{-j}{ }_{2} F_{1}\left(\left.\begin{array}{c}
2 a-j, 2 b-j \\
a+b-j+\frac{1}{2}
\end{array} \right\rvert\, x\right),
$$

where $j=0,1$. Application of these transformations with $j=0$ and $j=1$ respectively to the first and second hypergeometric functions in (5.5) then leads to

$$
\begin{align*}
& F(x)=(1-2 x)^{-1}\left\{(1-2 x)_{2} F_{1}\left(\left.\begin{array}{c|}
2 a, 2 b \\
a+b+\frac{1}{2}
\end{array} \right\rvert\, x\right)+\right. \\
& \left.\frac{4 a b}{c f} x(1-x)_{2} F_{1}\left(\begin{array}{c|c}
2 a+1,2 b+1 \\
a+b+\frac{3}{2} & x
\end{array}\right)\right\} . \tag{5.7}
\end{align*}
$$

From (1.1) it can be seen that for arbitrary values of c

$$
\begin{aligned}
{ }_{2} F_{1}\left(\left.\begin{array}{c}
2 a, 2 b \\
c
\end{array} \right\rvert\, x\right) & =\sum_{n=0}^{\infty} \frac{(2 a)_{n}(2 b)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \frac{(2 a-1+n)(2 b-1+n)}{(2 a-1)(2 b-1)}, \\
x_{2} F_{1}\left(\left.\begin{array}{c}
2 a, 2 b \\
c
\end{array} \right\rvert\, x\right) & =\sum_{n=1}^{\infty} \frac{(2 a)_{n-1}(2 b)_{n-1}}{(c)_{n-1}} \frac{x^{n}}{(n-1)!} \\
& =\sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \frac{n(c-1+n)}{(2 a-1)(2 b-1)}, \\
x_{2} F_{1}\left(\left.\begin{array}{c}
2 a+1,2 b+1 \\
c+1
\end{array} \right\rvert\, x\right) & =\sum_{n=1}^{\infty} \frac{(2 a+1)_{n-1}(2 b+1)_{n-1}}{(c+1)_{n-1}} \frac{x^{n}}{(n-1)!} \\
& =\frac{c}{4 a b} \sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \frac{n(2 a-1+n)(2 b-1+n)}{(2 a-1)(2 b-1)},
\end{aligned}
$$

and

$$
\begin{aligned}
x^{2}{ }_{2} F_{1}\left(\left.\begin{array}{c}
2 a+1,2 b+1 \\
c+1
\end{array} \right\rvert\, x\right) & =\sum_{n=2}^{\infty} \frac{(2 a+1)_{n-2}(2 b+1)_{n-2}}{(c+1)_{n-2}} \frac{x^{n}}{(n-2)!} \\
& =\frac{c}{4 a b} \sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \frac{n(n-1)(c-1+n)}{(2 a-1)(2 b-1)},
\end{aligned}
$$

where obvious adjustments to the summation index n have been made. Then, upon setting $c=a+b+\frac{1}{2}$ in the above sums, we obtain from (5.7)

$$
F(x)=\frac{(1-2 x)^{-1}}{(2 a-1)(2 b-1)} \sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{\left(a+b+\frac{1}{2}\right)_{n}} \frac{x^{n}}{n!} P_{2}(n)
$$

where, with $\gamma \equiv f^{-1}\left(a+b-\frac{1}{2}\right)-1$,

$$
\begin{align*}
P_{2}(n) & =(2 a-1+n)(2 b-1+n)\left(1+\frac{n}{f}\right)-n\left(2+\frac{n-1}{f}\right)\left(a+b-\frac{1}{2}+n\right) \\
& =\gamma n^{2}+\left(\gamma+\frac{1}{f}(2 a-1)(2 b-1)\right) n+(2 a-1)(2 b-1) \tag{5.8}
\end{align*}
$$

The quadratic $P_{2}(n)$ can be factored to yield

$$
P_{2}(n)=\gamma\left(n+\xi_{1}\right)\left(n+\xi_{2}\right),
$$

where, provided $a, b \neq \frac{1}{2}$ and $f \neq a+b-\frac{1}{2}, \xi_{1}$ and ξ_{2} are given by (5.2). Since $\gamma \xi_{1} \xi_{2}=$ $(2 a-1)(2 b-1)$, we therefore see that

$$
\begin{aligned}
F(x) & =(1-2 x)^{-1} \sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{\left(a+b+\frac{1}{2}\right)_{n}} \frac{x^{n}}{n!} \frac{\left(n+\xi_{1}\right)\left(n+\xi_{2}\right)}{\xi_{1} \xi_{2}} \\
& =(1-2 x)^{-1} \sum_{n=0}^{\infty} \frac{(2 a-1)_{n}(2 b-1)_{n}}{\left(a+b+\frac{1}{2}\right)_{n}} \frac{\left(\xi_{1}+1\right)_{n}\left(\xi_{2}+1\right)_{n}}{\left(\xi_{1}\right)_{n}\left(\xi_{2}\right)_{n}} \frac{x^{n}}{n!}
\end{aligned}
$$

where we have made use of the fact that $(\lambda+1)_{n} /(\lambda)_{n}=(n+\lambda) / \lambda$. This yields (5.1) and so completes the proof.

We remark that when $f=a+b-\frac{1}{2}$, the coefficient $\gamma=0$ and the polynomial $P_{2}(n)$ becomes linear with $\xi_{1}=f$. The formula (5.1) then reduces to the quadratic transformation (5.6) with $j=1$.

If we try to apply the same reasoning to the more general function with r pairs of parameters differing by the positive integers $\left(m_{r}\right)$

$$
{ }_{r+2} F_{r+1}\left(\begin{array}{cc|c}
a, b, & \left(f_{r}+m_{r}\right) & X \tag{5.9}\\
a+b+\frac{1}{2}, & \left(f_{r}\right) & X), ~
\end{array}\right.
$$

we obtain from (5.3) a series of $m+1$ terms involving the Gauss functions

$$
F_{k} \equiv{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
a+k, b+k \\
a+b+k+\frac{1}{2}
\end{array} \right\rvert\, X\right) \quad(0 \leq k \leq m)
$$

A quadratic transformation for ${ }_{2} F_{1}(\alpha, \beta ; \gamma \mid x)$ exists if and only if any of the quantities

$$
\pm(1-\gamma), \quad \pm(\alpha-\beta), \quad \pm(\alpha+\beta-\gamma)
$$

are such that either one of them equals $\frac{1}{2}$ or two of them are equal [10, p. 560]. In this case, the third condition above for the functions F_{k}, with $0 \leq k \leq m$, has the form $\alpha+\beta-\gamma=k-\frac{1}{2}$; that is, a quadratic transformation exists only when $k=0$ and $k=1$. Consequently, we are compelled to take $r=1, m=1$ in (5.9).

References

[1] A. R. Miller, Certain summation and transformation formulas for generalized hypergeometric series, J. Comput. Appl. Math. 231 (2009) 964-972.
[2] A. R. Miller and R. B. Paris, A generalized Kummer-type transformation for the ${ }_{p} F_{p}(x)$ hypergeometric function, Canadian Math. Bulletin (to appear 2011).
[3] A. R. Miller and R. B. Paris, Euler-type transformations for the generalized hypergeometric function ${ }_{r+2} F_{r+1}(x)$ (submitted for publication 2010).
[4] A. R. Miller and R. B. Paris, Transformation formulas for the generalized hypergeometric function with integral parameter differences (submitted for publication 2010).
[5] A. R. Miller and H. M. Srivastava, Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument, Integral Transforms and Special Functions (in press 2010).
[6] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second ed., Addison-Wesley, Upper Saddle River, 1994.
[7] H. Ki and Y.-O. Kim, On the zeros of some generalized hypergeometric functions, J. Math. Anal. Appl. 243 (2000) 249-260.
[8] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, vol. 3, Gordon and Breach, New York, 1990.
[9] A. K. Rathie and T. K. Pogány, New summation formula for ${ }_{3} F_{2}\left(\frac{1}{2}\right)$ and a Kummer-type II transformation of ${ }_{2} F_{2}(x)$, Mathematical Communications 13 (2008) 63-66.
[10] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965.

