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1. Introduction

The generalized hypergeometric function pFq(x) is defined for complex parameters and argument
by the series

pFq

(

a1, a2, . . . , ap

b1, b2, . . . , bq

∣

∣

∣

∣

x

)

=

∞
∑

k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k

xk

k!
. (1.1)

When q = p this series converges for |x| < ∞, but when q = p − 1 convergence occurs when
|x| < 1. However, when only one of the numeratorial parameters aj is a negative integer or zero,
then the series always converges since it is simply a polynomial in x of degree −aj . In (1.1)
the Pochhammer symbol, or ascending factorial, (a)k is defined by (a)0 = 1 and for k ≥ 1 by
(a)k = a(a+ 1) . . . (a+ k − 1). However, for all integers k we write simply

(a)k =
Γ(a+ k)

Γ(a)
.

In what follows we shall adopt the convention of writing the finite (except where noted otherwise)
sequence of parameters (a1, . . . , ap) simply by (ap) and the product of p Pochhammer symbols by

((ap))k ≡ (a1)k . . . (ap)k,

with an empty product p = 0 reducing to unity.
In [1–4] we derived in various ways transformation formulas for the generalized hypergeometric

functions r+1Fr+1(x) and r+2Fr+1(x), where here and below at least r pairs of numeratorial and
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denominatorial parameters differ by arbitrary positive integers. In particular, in [4] we stated
without proof that the generalized hypergeometric function r+1Fr+1(x) in which r + 1 pairs of
numeratorial and denominatorial parameters differ by arbitrary positive integers may be written
as a product of ex and a certain polynomial in x. In Section 3 we shall provide a proof of this
result and discuss its implications.

In [1, 4, 5] we showed that essentially the same methods used to obtain the transformation for-
mulas alluded to above may be employed to deduce the Karlsson-Minton and other more general
summation formulas for the r+2Fr+1(1) generalized hypergeometric series with unit argument. In
the present investigation we shall derive in Section 4 in a similar manner analogous summation
formulas for generalized hypergeometric series of the type r+2Fr+1(

1

2
) with half unit argument.

Finally, in Section 5 we shall consider a certain quadratic transformation for the 3F2(x) hyper-
geometric function.

2. Preliminary results

We record two lemmas and a theorem that we shall utilize in the sequel. Lemmas 1 and 2
are proved respectively in [1] and [4] and Theorem 1 is proved in [4]. The notation {n

k} will be
employed to denote the Stirling numbers of the second kind. These nonnegative integers represent
the number of ways to partition n objects into k nonempty sets and arise for nonnegative integers
n in the generating relation [6, p. 262]

xn =
n

∑

k=0

{

n
k

}

(−1)k(−x)k,

{

n
0

}

= δ0n,

where δ0n is the Kronecker symbol.

Lemma 1. For nonnegative integers j define

Sj ≡
∞
∑

n=0

nj λn

n!
, S0 ≡

∞
∑

n=0

λn

n!
,

where the infinite sequence (λn) is such that Sj converges for all j. Then

Sj =

j
∑

k=0

{

j
k

} ∞
∑

n=0

λn+k

n!
.

Lemma 2. For nonnegative integer s let (as) denote a parameter sequence containing s elements,
where when s = 0 the sequence is empty. Let (as +k) denote the sequence when k is added to each
element of (as). Let F(x) denote the generalized hypergeometric function with r numeratorial
and denominatorial parameters differing by the positive integers (mr), namely

F(x) ≡ r+sFr+1

(

(as),
c,

(fr +mr)
(fr)

∣

∣

∣

∣

x

)

,

where by (1.1) convergence of the series representation for the latter occurs in an appropriate
domain depending on the values of s and the elements of the parameter sequence (as). Then

F(x) =
1

A0

m
∑

k=0

xkAk
((as))k

(c)k
sF1

(

(as + k)
c+ k

∣

∣

∣

∣

x

)

,

where m = m1 + · · · +mr, the coefficients Ak are defined by

Ak ≡
m

∑

j=k

{

j
k

}

σm−j , A0 = (f1)m1
. . . (fr)mr

, Am = 1 (2.1)
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and the σj (0 ≤ j ≤ m) are generated by the relation

(f1 + x)m1
· · · (fr + x)mr

=

m
∑

j=0

σm−jx
j . (2.2)

Theorem 1. Let (mr) be a nonempty sequence of positive integers and define m ≡ m1+· · ·+mr.
Then if b 6= fj (1 ≤ j ≤ r), (λ)m 6= 0, where λ ≡ c− b−m, we have the transformation formula

r+1Fr+1

(

b,
c,

(fr +mr)
(fr)

∣

∣

∣

∣

x

)

= ex
m+1Fm+1

(

λ,
c,

(ξm + 1)
(ξm)

∣

∣

∣

∣

− x

)

, (2.3)

where |x| < ∞. The (ξm) are the nonvanishing zeros of the associated parametric polynomial
Qm(t) of degree m given by

Qm(t) =

m
∑

j=0

σm−j

j
∑

k=0

{

j
k

}

(b)k(t)k(λ− t)m−k,

where the σj (0 ≤ j ≤ m) are determined by the generating relation (2.2).

In the following Section 3 we shall consider the generalized hypergeometric function w(x)
defined for |x| <∞ by

w(x) ≡ r+1Fr+1

(

(fr+1 +mr+1)
(fr+1)

∣

∣

∣

∣

x

)

,

where (mr+1) is a sequence of positive integers. It is evident that w(x) is an entire function.

3. Properties of w(x)

If in Theorem 1 we set b = fr+1 +mr+1, c = fr+1 and define m ≡ m1 + · · ·+mr, M ≡ m+mr+1,
then λ = −M , (−M)m 6= 0 and we find from (2.3) that

w(x) = ex
m+1Fm+1

(

−M,
fr+1,

(ξm + 1)
(ξm)

∣

∣

∣

∣

− x

)

.

The (ξm) are the nonvanishing zeros of the associated parametric polynomial of degree m given
by

Qm(t) =

m
∑

j=0

σm−j

j
∑

k=0

{

j
k

}

(fr+1 +mr+1)k(t)k(−M − t)m−k,

where the σj (0 ≤ j ≤ m) are generated by (2.2).
Thus it is evident that w(x) is proportional to a polynomial in x of degree at most M which

we define as

PM (x) ≡ m+1Fm+1

(

−M,
fr+1,

(ξm + 1)
(ξm)

∣

∣

∣

∣

− x

)

.

Moreover, since ex can never vanish it follows that the entire function w(x) has at most M zeros
in the complex plane. However, we shall obtain an explicit representation for PM (x) which shows
that its degree is exactly M .

Theorem 2. Let (mr+1) be a sequence of positive integers such that M ≡ m1 + · · · + mr+1

and let (fr+1) be a sequence of complex numbers such that (f1)m1
. . . (fr+1)mr+1

is nonvanishing.
Then

w(x) = exPM (x),
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where PM (x) is a polynomial of degree M given by

PM (x) =
1

B0

M
∑

k=0

Bkx
k, Bk ≡

M
∑

j=k

{

j
k

}

ρ
M-j

.

Here
B0 = (f1)m1

. . . (fr+1)mr+1
, BM = 1,

and the ρj (0 ≤ j ≤M) are generated by the relation

(f1 + x)m1
. . . (fr+1 + x)mr+1

=

M
∑

j=0

ρ
M-j

xj .

Proof: Note that

((fr+1 +mr+1))n

((fr+1))n
=

(f1 + n)m1

(f1)m1

. . .
(fr+1 + n)mr+1

(fr)mr+1

,

where the numeratorial expression on the right-hand side of the latter may be written as

(f1 + n)m1
. . . (fr+1 + n)mr+1

=

M
∑

j=0

ρ
M-j

nj . (3.1)

Thus by (1.1)

w(x) ≡ r+1Fr+1

(

(fr+1 +mr+1)
(fr+1)

∣

∣

∣

∣

x

)

=

∞
∑

n=0

((fr+1 +mr+1))n

((fr+1))n

xn

n!

=
1

(f1)m1
. . . (fr+1)mr+1

M
∑

j=0

ρ
M-j

∞
∑

n=0

nj x
n

n!
,

where the order of the summations has been interchanged.
Now employing Lemma 1 we have

∞
∑

n=0

nj x
n

n!
=

j
∑

k=0

{

j
k

} ∞
∑

n=0

xn+k

n!
= ex

j
∑

k=0

{

j
k

}

xk

so that

w(x) =
ex

(f1)m1
. . . (fr+1)mr+1

M
∑

j=0

ρ
M-j

j
∑

k=0

{

j
k

}

xk,

where
M
∑

j=0

ρ
M-j

j
∑

k=0

{

j
k

}

xk =

M
∑

k=0





M
∑

j=k

{

j
k

}

ρ
M-j



xk.

Defining

Bk ≡
M
∑

j=k

{

j
k

}

ρ
M-j

(0 ≤ k ≤M),

we note that when k = 0 the only contribution to the j-summation comes from j = 0, so that by
using (3.1) we find

B0 = ρ
M

= (f1)m1
. . . (fr+1)mr+1

.
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In addition when k = M , the only contribution to the latter summation comes from j = M , so
that by again using (3.1) we see that

BM = ρ0 = 1.

Thus

w(x) =
ex

B0

M
∑

k=0

Bkx
k (3.2)

which evidently completes the proof. 2

Thus we also have the following.

Corollary 1. The entire function w(x) has exactly M zeros in the complex plane.

We remark that Ki and Kim [7] only show the existence of at most M zeros for w(x), whereas
from (3.2) we can in principle obtain all of the M zeros. For example,

2F2

(

f + 1,
f,

g + 1
g

∣

∣

∣

∣

x

)

= ex

(

1

fg
x2 +

f + g + 1

fg
x+ 1

)

,

and here the zeros of P2(x) are

x1,2 = − 1

2
(f + g + 1 ± [(f − g)2 + 2f + 2g + 1]1/2).

4. Summation formulas for r+2Fr+1(
1

2
)

In [4] we employed Lemma 2 to readily obtain a generalization of the Karlsson-Minton summation
formula which is given in the following.

Theorem 3. Suppose (mr) is a sequence of positive integers such that m = m1 + · · ·+mr. Then
provided that Re (c− a− b) > m we have

r+2Fr+1

(

a, b,
c,

(fr +mr)
(fr)

∣

∣

∣

∣

1

)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

m
∑

k=0

Ak

A0

(−1)k(a)k(b)k

(1 + a+ b− c)k
,

where the Ak (0 ≤ k ≤ m) are given by (2.1).

However we may also utilize Lemma 2 to obtain summation formulas for r+2Fr+1(
1

2
). To this

end we note the following (see, for example, [8, Section 7.3.7 (3)–(6)]) summations for 2F1(
1

2
)

given by

2F1

(

a, b
1

2
a+ 1

2
b− 1

2

∣

∣

∣

∣

1

2

)

=
√
π

{

Γ(1

2
a+ 1

2
b+ 1

2
)

Γ(1

2
a+ 1

2
)Γ(1

2
b+ 1

2
)

+
2Γ(1

2
a+ 1

2
b− 1

2
)

Γ(a)Γ(b)

}

, (4.1)

2F1

(

a, b
1

2
a+ 1

2
b

∣

∣

∣

∣

1

2

)

=
√
π

{

Γ(1

2
a+ 1

2
b)

Γ(1

2
b)Γ(1

2
a+ 1

2
)

+
Γ(1

2
a+ 1

2
b)

Γ(1

2
a)Γ(1

2
b+ 1

2
)

}

, (4.2)

2F1

(

a, b
1

2
a+ 1

2
b+ 1

2

∣

∣

∣

∣

1

2

)

=
√
π

Γ(1

2
a+ 1

2
b+ 1

2
)

Γ(1

2
a+ 1

2
)Γ(1

2
b+ 1

2
)
, (4.3)

2F1

(

a, b
1

2
a+ 1

2
b+1

∣

∣

∣

∣

1

2

)

=
2
√
π

a− b

{

Γ(1

2
a+ 1

2
b+1)

Γ(1

2
a)Γ(1

2
b+ 1

2
)
− Γ(1

2
a+ 1

2
b+1)

Γ(1

2
b)Γ(1

2
a+ 1

2
)

}

. (4.4)
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Setting x = 1

2
, s = 2, (as) = (a, b), c = 1

2
(a + b + n), where n = −1, 0, 1, 2, in the first two

equations of Lemma 2, we see that

r+2Fr+1

(

a, b,
1

2
a+ 1

2
b+ 1

2
n,

(fr +mr)
(fr)

∣

∣

∣

∣

1

2

)

=

m
∑

k=0

(

1

2

)k
Ak

A0

(a)k(b)k

(1

2
a+ 1

2
b+ 1

2
n)k

2F1

(

a+ k, b+ k
1

2
a+ 1

2
b+ 1

2
n+ k

∣

∣

∣

∣

1

2

)

, (4.5)

where when r = 0, (fr) and (fr +mr) are empty and we define m ≡ 0. Thus the Gauss series

2F1(
1

2
) in (4.5) with respectively n = −1, 0, 1, 2 correspond to the left-hand sides of (4.1)–(4.4)

with a 7→ a+ k and b 7→ b + k. Combining these with (4.5) we therefore deduce the following.

Theorem 4. Let (mr) be an arbitrary sequence of positive integers such that m ≡ m1 + · · ·+mr

and (fr) a sequence of complex numbers such that (f1)m1
. . . (fr)mr

6= 0. Then

r+2Fr+1

(

a, b,
1

2
a+ 1

2
b− 1

2
,
(fr +mr)

(fr)

∣

∣

∣

∣

1

2

)

=
2
√
π

A0

Γ(1

2
a+ 1

2
b− 1

2
)

Γ(a)Γ(b)

m
∑

k=0

(

1

2

)k

Ak

{

1 +
Γ(a+k)Γ(b+k)(a+b−1+2k)

4Γ(1

2
a+ 1

2
+ 1

2
k)Γ(1

2
b+ 1

2
+ 1

2
k)

}

, (4.6)

r+2Fr+1

(

a, b,
1

2
a+ 1

2
b,

(fr +mr)
(fr)

∣

∣

∣

∣

1

2

)

=
2a+b−2

A0

√
π

Γ(1

2
a+ 1

2
b)

Γ(a)Γ(b)

m
∑

k=0

2kAk

{

Γ(1

2
a+ 1

2
k)Γ(1

2
b+ 1

2
+ 1

2
k) − Γ(1

2
b+ 1

2
k)Γ(1

2
a+ 1

2
+ 1

2
k)

}

, (4.7)

r+2Fr+1

(

a, b,
1

2
a+ 1

2
b+ 1

2
,
(fr +mr)

(fr)

∣

∣

∣

∣

1

2

)

=
2a+b−2

A0

√
π

Γ(1

2
a+ 1

2
b+ 1

2
)

Γ(a)Γ(b)

m
∑

k=0

2kAk Γ(1

2
a+ 1

2
k)Γ(1

2
b+ 1

2
k), (4.8)

r+2Fr+1

(

a, b,
1

2
a+ 1

2
b+1,

(fr +mr)
(fr)

∣

∣

∣

∣

1

2

)

=
2a+b−2

A0

√
π

a+ b

a− b

Γ(1

2
a+ 1

2
b)

Γ(a)Γ(b)

m
∑

k=0

2kAk

{

Γ(1

2
b+ 1

2
k)Γ(1

2
a+ 1

2
k+ 1

2
) − Γ(1

2
a+ 1

2
k)Γ(1

2
b+ 1

2
k+ 1

2
)
}

,

(4.9)
where the Ak (0 ≤ k ≤ m) are given by (2.1).

We have used the duplication formula

√
π Γ(2z) = 22z−1Γ(z)Γ(z + 1

2
) (4.10)

to obtain (4.7)–(4.9). Thus, when r = 0, the sequences (fr) and (fr + mr) are empty so that
m = 0 and (4.6)–(4.9) reduce respectively to (4.1)–(4.4). Since (4.9) is not valid when a = b we
may use l’Hôpital’s rule and (4.10) to obtain the limiting case of (4.9), namely

r+2Fr+1

(

a, a,
a+ 1,

(fr +mr)
(fr)

∣

∣

∣

∣

1

2

)

=
2a−1a

A0

m
∑

k=0

Ak(a)k

{

ψ(1

2
a+ 1

2
k+ 1

2
) − ψ(1

2
a+ 1

2
k)

}

,
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where ψ is the digamma or psi function. When r = 0 we retrieve

2F1

(

a, a
a+ 1

∣

∣

∣

∣

1

2

)

= 2a−1a
{

ψ(1

2
a+ 1

2
) − ψ(1

2
a)

}

which is found in [8, Section 7.3.7 (16)] in an equivalent form.
In addition, if we let r = 1, m1 = 1 and f1 = f , so that A0 = f , A1 = 1, then we obtain from

(4.9) and (4.10) after some straightforward algebra the result (when a 6= b)

3F2

(

a, b,
1

2
a+ 1

2
b+1,

f + 1
f

∣

∣

∣

∣

1

2

)

=
√
π

(

a+ b

a− b

)

Γ(1

2
a+ 1

2
b)

{

(a− f)/f

Γ(1

2
b)Γ(1

2
a+ 1

2
)
− (b − f)/f

Γ(1

2
a)Γ(1

2
b+ 1

2
)

}

,

which has been obtained by Rathie and Pogány in [9].

5. A quadratic transformation for 3F2(x)

In [4] by utilizing Lemma 2 we derived two quadratic transformations for

r+2Fr+1

(

a, a+ 1

2
,

c,
(fr +mr)

(fr)

∣

∣

∣

∣

X

)

,

where X ≡ x2/(1 ± x)2 and X ≡ 4x/(1 + x)2. As discussed below certain parametric conditions
guaranteeing the existence of a quadratic transformation for the Gauss function 2F1(x) restrict
the existence of more general quadratic transformations for r+2Fr+1(x) when the decomposition
Lemma 2 is employed. We illustrate this by deducing a quadratic transformation that necessarily
is restricted to r = 1 thus giving the quadratic transformation for 3F2(x) in the following theorem.

Theorem 5. Suppose a, b 6= 1

2
and f 6= a+ b+ 1

2
. Then

3F2

(

a, b,
a+ b+ 1

2
,
f + 1
f

∣

∣

∣

∣

4x(1 − x)

)

= (1 − 2x)−1
4F3

(

2a− 1, 2b− 1,
a+ b+ 1

2
,

ξ1 + 1,
ξ1,

ξ2 + 1
ξ2

∣

∣

∣

∣

x

)

, (5.1)

where ξ1, ξ2 are given by

ξ1,2 = α+ 1

2
± [(α+ 1

2
)2 − 2αf ]1/2, α =

(2a− 1)(2b− 1)

2(a+ b− f) − 1
. (5.2)

The transformation (5.1) holds in a neighborhood of x = 0.

Proof: From Lemma 2 we have the expansion of r+2Fr+1(z), with r pairs of parameters differing
by the positive integers (mr), as a finite sum of 2F1(z) functions in the form

r+2Fr+1

(

a, b,
c,

(fr +mr)
(fr)

∣

∣

∣

∣

z

)

=
1

A0

m
∑

k=0

zkAk
(a)k(b)k

(c)k
2F1

(

a+ k, b+ k
c+ k

∣

∣

∣

∣

z

)

, (5.3)

where the coefficients Ak are defined by (2.1). If we set r = 1, m1 = 1 and f1 = f in the above
expansion we obtain the particular case

3F2

(

a, b,
c,

f + 1
f

∣

∣

∣

∣

z

)

= 2F1

(

a, b
c

∣

∣

∣

∣

z

)

+
abz

cf
2F1

(

a+ 1, b+ 1
c+ 1

∣

∣

∣

∣

z

)

. (5.4)
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Now let z = X ≡ 4x(1 − x) and define

F (x) ≡ 3F2

(

a, b,
a+ b+ 1

2
,
f + 1
f

∣

∣

∣

∣

X

)

.

Then, from (5.4) with c = a+ b+ 1

2
, we find

F (x) = 2F1

(

a, b
a+ b+ 1

2

∣

∣

∣

∣

X

)

+
ab

cf
X 2F1

(

a+ 1, b+ 1
a+ b+ 3

2

∣

∣

∣

∣

X

)

. (5.5)

We now make use of two quadratic transformation formulas for the Gauss hypergeometric function
[10, Section 15.3, (22) and (24)], namely

2F1

(

a, b
a+ b− j + 1

2

∣

∣

∣

∣

X

)

= (1 − 2x)−j
2F1

(

2a− j, 2b− j
a+ b− j + 1

2

∣

∣

∣

∣

x

)

, (5.6)

where j = 0, 1. Application of these transformations with j = 0 and j = 1 respectively to the
first and second hypergeometric functions in (5.5) then leads to

F (x) = (1 − 2x)−1

{

(1 − 2x) 2F1

(

2a, 2b
a+ b+ 1

2

∣

∣

∣

∣

x

)

+

4ab

cf
x(1 − x) 2F1

(

2a+ 1, 2b+ 1
a+ b+ 3

2

∣

∣

∣

∣

x

)}

. (5.7)

From (1.1) it can be seen that for arbitrary values of c

2F1

(

2a, 2b
c

∣

∣

∣

∣

x

)

=
∞
∑

n=0

(2a)n(2b)n

(c)n

xn

n!

=

∞
∑

n=0

(2a− 1)n(2b− 1)n

(c)n

xn

n!

(2a− 1 + n)(2b− 1 + n)

(2a− 1)(2b− 1)
,

x 2F1

(

2a, 2b
c

∣

∣

∣

∣

x

)

=

∞
∑

n=1

(2a)n−1(2b)n−1

(c)n−1

xn

(n− 1)!

=
∞
∑

n=0

(2a− 1)n(2b− 1)n

(c)n

xn

n!

n(c− 1 + n)

(2a− 1)(2b− 1)
,

x 2F1

(

2a+ 1, 2b+ 1
c+ 1

∣

∣

∣

∣

x

)

=

∞
∑

n=1

(2a+ 1)n−1(2b+ 1)n−1

(c+ 1)n−1

xn

(n− 1)!

=
c

4ab

∞
∑

n=0

(2a− 1)n(2b− 1)n

(c)n

xn

n!

n(2a− 1 + n)(2b− 1 + n)

(2a− 1)(2b− 1)
,

and

x2
2F1

(

2a+ 1, 2b+ 1
c+ 1

∣

∣

∣

∣

x

)

=

∞
∑

n=2

(2a+ 1)n−2(2b+ 1)n−2

(c+ 1)n−2

xn

(n− 2)!

=
c

4ab

∞
∑

n=0

(2a− 1)n(2b− 1)n

(c)n

xn

n!

n(n− 1)(c− 1 + n)

(2a− 1)(2b− 1)
,
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where obvious adjustments to the summation index n have been made. Then, upon setting
c = a+ b+ 1

2
in the above sums, we obtain from (5.7)

F (x) =
(1 − 2x)−1

(2a− 1)(2b− 1)

∞
∑

n=0

(2a− 1)n(2b− 1)n

(a+ b+ 1

2
)n

xn

n!
P2(n),

where, with γ ≡ f−1(a+ b− 1

2
) − 1,

P2(n) = (2a− 1 + n)(2b− 1 + n)

(

1 +
n

f

)

− n

(

2 +
n− 1

f

)

(a+ b− 1

2
+ n)

= γn2 +

(

γ +
1

f
(2a− 1)(2b− 1)

)

n+ (2a− 1)(2b− 1). (5.8)

The quadratic P2(n) can be factored to yield

P2(n) = γ(n+ ξ1)(n+ ξ2),

where, provided a, b 6= 1

2
and f 6= a + b − 1

2
, ξ1 and ξ2 are given by (5.2). Since γξ1ξ2 =

(2a− 1)(2b− 1), we therefore see that

F (x) = (1 − 2x)−1

∞
∑

n=0

(2a− 1)n(2b− 1)n

(a+ b+ 1

2
)n

xn

n!

(n+ ξ1)(n+ ξ2)

ξ1 ξ2

= (1 − 2x)−1

∞
∑

n=0

(2a− 1)n(2b− 1)n

(a+ b+ 1

2
)n

(ξ1 + 1)n(ξ2 + 1)n

(ξ1)n (ξ2)n

xn

n!
,

where we have made use of the fact that (λ + 1)n/(λ)n = (n + λ)/λ. This yields (5.1) and so
completes the proof. 2

We remark that when f = a+ b− 1

2
, the coefficient γ = 0 and the polynomial P2(n) becomes

linear with ξ1 = f . The formula (5.1) then reduces to the quadratic transformation (5.6) with
j = 1.

If we try to apply the same reasoning to the more general function with r pairs of parameters
differing by the positive integers (mr)

r+2Fr+1

(

a, b,
a+ b+ 1

2
,

(fr +mr)
(fr)

∣

∣

∣

∣

X

)

, (5.9)

we obtain from (5.3) a series of m+ 1 terms involving the Gauss functions

Fk ≡ 2F1

(

a+ k, b+ k
a+ b+ k + 1

2

∣

∣

∣

∣

X

)

(0 ≤ k ≤ m).

A quadratic transformation for 2F1(α, β; γ |x) exists if and only if any of the quantities

±(1 − γ), ±(α− β), ±(α+ β − γ)

are such that either one of them equals 1

2
or two of them are equal [10, p. 560]. In this case, the

third condition above for the functions Fk, with 0 ≤ k ≤ m, has the form α+β− γ = k− 1

2
; that

is, a quadratic transformation exists only when k = 0 and k = 1. Consequently, we are compelled
to take r = 1, m = 1 in (5.9).
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