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Exponentially small expansions in the asymptotics of the
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Abstract

We consider exponentially small expansions present in the asymptotics of the gen-
eralised hypergeometric function, or Wright function, pΨq(z) for large |z| that have not
been considered in the existing theory. Our interest is principally with those functions
of this class that possess either a finite algebraic expansion or no such expansion and
with parameter values that produce exponentially small expansions in the neighbour-
hood of the negative real z axis. Numerical examples are presented to demonstrate the
presence of these exponentially small expansions.
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1. Introduction

We consider the generalised hypergeometric function, or Wright function, defined by

pΨq(z) =
∞∑

n=0

g(n)
zn

n!
, g(n) =

∏p
r=1 Γ(αrn+ ar)∏q
r=1 Γ(βrn+ br)

, (1.1)

where p and q are nonnegative integers, the parameters αr and βr are real and positive and
ar and br are arbitrary complex numbers. We also assume that the αr and ar are subject
to the restriction

αrn+ ar 6= 0, −1, −2, . . . (n = 0, 1, 2, . . . ; 1 ≤ r ≤ p) (1.2)

so that no gamma function in the numerator in (1.1) is singular. In the special case αr =
βr = 1, the function pΨq(z) reduces to a multiple of the ordinary hypergeometric function
pFq((a)p; (b)q; z) [1, p. 40].

We introduce the parameters associated with g(n) given by

κ = 1 +
q∑

r=1

βr −
p∑

r=1

αr, h =
p∏

r=1

ααr
r

q∏

r=1

β−βr
r ,

ϑ =
p∑

r=1

ar −
q∑

r=1

br + 1
2 (q − p), ϑ′ = 1 − ϑ. (1.3)
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If it is supposed that αr and βr are such that κ > 0 then pΨq(z) is uniformly and absolutely
convergent for all finite z. If κ = 0, the sum in (1.1) has a finite radius of convergence equal
to h−1, whereas for κ < 0 the sum is divergent for all nonzero values of z. The parameter
κ will be found to play a critical role in the asymptotic theory of pΨq(z) by determining
the sectors in the z plane in which its behaviour is either exponentially large, algebraic or
exponentially small in character as |z| → ∞.

The determination of the asymptotic expansion of pΨq(z) for |z| → ∞ and finite values
of the parameters has a long history; for details, see [2, §2.3]. The earliest asymptotic result
concerning (1.1) appears to be due to Stokes [3], who used a discrete analogue of Laplace’s
method for integrals when αr = βr = 1 and positive values of ar and br, to obtain the leading
behaviour of pΨq(z) when z → +∞. More precise investigations of (1.1) were carried out by
Wright [4, 5] and in a long and detailed investigation by Braaksma [6] into the asymptotics
of a more general class of integral function than (1.1). An account of the derivation of
the asymptotic expansion of pΨq(z) for large |z| based on the Euler-Maclaurin summation
formula, together with an application of this theory to the asymptotics of the solutions of
a class of high-order ordinary differential equation, is described in [2]. A discussion of the
properties of 0Ψ1(z) (the generalised Bessel function) and its application to the solution of
fractional diffusion-wave equations has been given in [7].

The development of exponentially precise asymptotics during the past two decades has
shown that retention of exponentially small expansions, which had previously been neglected
in asymptotics, are vital for a high-precision description; see the review papers [8, 9] and
also [10, §6.3]. An earlier example, which illustrated the advantage of retaining terms that
are exponentially small compared with other terms in the asymptotic expansion of a certain
integral, was given in [11, p. 76]. Although such terms are negligible in the Poincaré sense,
their inclusion can significantly improve the numerical accuracy. In this paper we shall
be concerned with exponentially small contributions present in the asymptotic expansion
of pΨq(z) for |z| → ∞. Such terms are of particular significance when the parameters in
(1.1) are such that there is a sector enclosing the negative real axis in which the dominant
asymptotic behaviour of pΨq(z) is either exponentially small or involves a finite algebraic
expansion. Numerical examples are given to demonstrate the presence of these exponentially
small subdominant contributions.

The paper is structured as follows. In §2 we present a summary of the standard results
concerning the asymptotics of pΨq(z) for large |z|. In §3 we consider exponentially small
expansions present in 0Ψq(z), which possess no algebraic expansion, and in §4 describe
numerical calculations that demonstrate their existence. In §5 we discuss the case when
pΨq(z) possesses an algebraic expansion consisting of a finite number of terms. An algorithm
for the computation of the coefficients appearing in the exponential expansions of pΨq(z) is
given in an appendix.

2. Standard asymptotic theory for |z| → ∞

In this section we state the standard asymptotic expansions of the integral function pΨq(z)
as |z| → ∞ with κ > 0 and finite values of the parameters given in [5, 6]; see also [10, §2.3].
To present these results we first introduce the exponential expansion E(z) and the algebraic
expansion H(z) associated with pΨq(z), together with an integral representation that will
be used in our discussion.

3.1 Preliminaries. The exponential expansion of E(z) is given by the formal asymptotic
sum

E(z) = ZϑeZ
∞∑

j=0

AjZ
−j, Z = κ(hz)1/κ, (2.1)
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where the coefficients Aj are those appearing in the inverse factorial expansion of g(s)/s!
given by

g(s)
Γ(s+ 1)

= κ(hκκ)s

{M −1∑

j=0

Aj

Γ(κs+ ϑ′ + j)
+

O(1)
Γ(κs+ ϑ′ +M)

}
(2.2)

for |s| → ∞ uniformly in | arg s| ≤ π − ǫ, ǫ > 0; see (A.1). The leading coefficient A0 is
specified by

A0 = (2π)
1
2 (p−q)κ− 1

2 −ϑ

p∏

r=1

α
ar − 1

2
r

q∏

r=1

β
1
2 −br
r . (2.3)

The coefficients Aj are independent of s and depend only on the parameters p, q, αr, βr, ar

and br. An algorithm for their evaluation in specific cases is described in Appendix A.
The algebraic expansion H(z) follows from the Mellin-Barnes integral representation [10,

§2.3]

pΨq(z) =
1

2πi

∫ ∞i

− ∞i

Γ(s)g(−s)(ze∓πi)−sds, | arg(−z)| < 1
2π(2 − κ) (2.4)

where the path of integration is indented near s = 0 to separate1 the poles of Γ(s) situated
at s = 0, −1, −2, . . . from those of g(−s) at

s = (ar + k)/αr, k = 0, 1, 2, . . . (1 ≤ r ≤ p). (2.5)

The upper or lower sign in (2.4) is chosen according as arg z > 0 or arg z < 0, respectively.
In general there will be p such sequences of simple poles though, depending on the values
of αr and ar, some of these poles could be multiple poles or even ordinary points if any of
the Γ(βrs + br) are singular there. Displacement of the contour to the right over the poles
of g(−s) then generates the algebraic expansion of pΨq(z) valid in the sector in (2.4). If it
is assumed that the parameters are such that the poles in (2.5) are all simple we obtain the
algebraic expansion given by H(ze∓πi), where

H(z) =
p∑

m=1

α−1
m z−am/αmSp,q(z;m) (2.6)

and Sp,q(z;m) denotes the formal asymptotic sum

Sp,q(z;m) =
∞∑

k=0

(−)k

k!
Γ

(
k + am

αm

) ∏′ p
r=1 Γ(ar − αr(k + am)/αm)∏q
r=1 Γ(br − βr(k + am)/αm)

z−k/αm , (2.7)

with the prime indicating the omission of the term corresponding to r = m in the product.
This expression consists of p expansions each with the leading behaviour z−am/αm (1 ≤ m ≤
p). When the parameters αr and ar are such that some of the poles are of higher order,
the expansion (2.7) is invalid and the residues must then be evaluated according to the
multiplicity of the poles concerned; this will lead to terms involving log z in the algebraic
expansion.

For future reference, we note that the integral in (2.4) may be analytically continued by
bending back the path of integration into a loop with endpoints at infinity in the third and
fourth quadrants; see Fig. 1(a). Thus we obtain

pΨq(z) =
1

2πi

∫

C

Γ(s)g(−s)(ze∓πi)−sds, (2.8)

where C denotes a (possibly indented) loop described in the positive sense that encloses only
the poles of Γ(s). From Stirling’s formula Γ(z) ∼ (2π)

1
2 e−zzz− 1

2 for large |z| in | arg z| < π,
1This is always possible when the condition (1.2) is satisfied.
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the dominant behaviour of the modulus of the integrand as |s| → ∞ is controlled by the
factor exp{κRe(s) log |s|}, so that the integral in (2.8) converges without restriction on arg z
when κ > 0 [10, §2.4 and p. 186].

(a)

C

0- 1-2- 3

(b)

C C

0- 1-2- 3

Figure 1: (a) The integration path C and (b) the displaced path C′ when there is a finite number
of poles on the right of C. The heavy dots denote poles of the integrand.

3.2 Statement of the expansion theorems. The asymptotic expansion of pΨq(z) for
large |z| has been given in [4, 5, 6]. We have the following theorems, where throughout we
let ǫ denote an arbitrarily small positive quantity.

Theorem 1 If 0 < κ < 2, then

pΨq(z) ∼
{
E(z) +H(ze∓πi) in | arg z| ≤ 1

2πκ
H(ze∓πi) in | arg(−z)| ≤ 1

2π(2 − κ) − ǫ
(2.9)

as |z| → ∞. The upper or lower sign in H(ze∓πi) is chosen according as z lies in the upper
or lower half-plane, respectively.

It is seen that the z plane is divided into two sectors, with a common vertex at z = 0, by
the rays (the anti-Stokes lines) arg z = ± 1

2πκ. In the sector | arg z| < 1
2πκ, the asymptotic

character of pΨq(z) is exponentially large, whereas in the complementary sector | arg(−z)| <
1
2π(2 − κ), pΨq(z) is algebraic in character. The positive real axis arg z = 0 is a Stokes line,
where the algebraic expansion is maximally subdominant.

Theorem 2 If κ = 2 then

pΨq(z) ∼ E(z) + E(ze∓2πi) +H(ze∓πi), (2.10)

as |z| → ∞ in the sector | arg z| ≤ π. The upper or lower signs are chosen according as
arg z > 0 or arg z < 0, respectively.

The rays arg z = ± 1
2πκ now coincide with the negative real axis. It follows that pΨq(z)

is exponentially large in character as |z| → ∞ except in the neighbourhood of arg z =
±π, where it is of the mixed type with the algebraic expansion becoming asymptotically
significant.

Theorem 3 When κ > 2 we have

pΨq(z) ∼
P∑

r=−P

E(ze2πir) (| arg z| ≤ π) (2.11)

as |z| → ∞ in the sector | arg z| ≤ π. The integer P is chosen such that 2P + 1 is the
smallest odd integer satisfying 2P + 1 > 1

2κ.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPTExponentially small expansions 5

In this case the asymptotic behaviour of pΨq(z) is exponentially large for all values of arg z.
The exponential sums E(ze2πir) are exponentially large as |z| → ∞ for values of arg z
satisfying | arg z + 2πr| < 1

2πκ and | arg z| ≤ π. The expansion when κ > 2 in [5] was
given in terms of the two dominant expansions only, viz. E(z) + E(ze∓2πi), corresponding
to r = 0 and r = ∓1 in (2.11).

In Wright [4, 5] and Braaksma [6], two further theorems were given when κ < 2 covering
the subdominant exponential expansion. These are2:

Theorem 4 If 0 < κ < 2 then

pΨq(z) ∼ E(z) +H(ze∓πi) (2.12)

as |z| → ∞ in | arg z| ≤ min{π − ǫ, 3
2πκ − ǫ}. The upper or lower sign is chosen according

as arg z > 0 or arg z < 0, respectively.

It is clear that when 2
3 ≤ κ < 2 the expansion in a sector that includes the negative real

axis must be

pΨq(z) ∼ E(z) + E(ze∓2πi) +H(ze∓πi) (| arg z| ≤ π). (2.13)

Since E(z) is exponentially small in 1
2πκ < | arg z| ≤ π, then in the sense of Poincaré,

the expansion E(z) can be neglected and there is no inconsistency between the second
expansion in (2.9) and (2.12). Similarly, E(ze−2πi) is exponentially small compared to E(z)
in 0 ≤ arg z < π and there is no inconsistency between (2.12) and (2.13). However, in the
neighbourhood of arg z = π, these last two expansions are of comparable magnitude and,
for real parameters, they combine to generate a real result on arg z = π. A similar remark
applies to the expansion E(ze2πi) in −π < arg z ≤ 0. The expansion (2.13) is discussed in
[12].

We observe that, when κ < 2
3 , E(z) is exponentially small in the sectors 1

2πκ < | arg z| <
3
2πκ. The behaviour of pΨq(z) in the complementary sector 3

2πκ < | arg z| ≤ π is then
algebraic and we have

pΨq(z) ∼ H(ze∓πi) (3
2πκ+ ǫ ≤ | arg z| ≤ π; 0 < κ < 2

3 ). (2.14)

Theorem 5 If p = 0, so that g(s) has no poles and κ > 1, then H(z) ≡ 0. When 1 < κ < 2,
we have the expansion

0Ψq(z) ∼ E(z) + E(ze∓2πi) (2.15)

as |z| → ∞ in the sector | arg z| ≤ π. The upper or lower sign is chosen according as
arg z > 0 or arg z < 0, respectively. The dominant expansion 0Ψq(z) ∼ E(z) holds in the
reduced sector | arg z| ≤ π − ǫ.

It can be seen that (2.15) agrees with (2.13) when H(z) ≡ 0. Braaksma [6, p. 331,
Eq. (12.18)] gave the expansion (2.15) valid in a sector straddling the negative real axis
given by π − ǫ′ ≤ arg z ≤ π + ǫ′, where 0 < ǫ′ < 1

2π(1 − 1
2κ).

In [12] an examination of Theorems 4 and 5 has been carried out in some detail. A
numerical investigation showed that (2.13) is valid when 2

3 ≤ κ < 2 and that, when κ < 2
3 ,

the exponential expansion E(z) in Theorem 4 switches off (as | arg z| increases) across the
Stokes lines arg z = ±πκ, where E(z) is maximally subdominant with respect to H(ze∓πi);
see [13, §3] for an analytical discussion in a particular case. Similarly in Theorem 5, it was
found that the expansions E(ze∓2πi) switch off (as | arg z| decreases) across the Stokes lines
arg z = ± 1

2π(2 − κ), where they are maximally subdominant with respect to E(z). Thus,
although the expansions in (2.12) and (2.15) are valid asymptotic descriptions, more acurate

2Wright [5] incorrectly gave the sector in Theorem 4 as | arg z| ≤ min{π, 3
2
πκ − ǫ}
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evaluation will result from taking into account the Stokes phenomenon as certain rays are
crossed.

3. Functions with no algebraic expansion

We first consider the case of (1.1) with p = 0 so that, from (2.6), the algebraic expansion
H(z) ≡ 0. We write ξ = ze∓πi, where the upper or lower sign is chosen according as
0 ≤ arg z ≤ π or −π ≤ arg z ≤ 0, respectively. Then we have

0Ψq(z) =
∞∑

n=0

(−ξ)n

n!

{ q∏

r=1

Γ(βrn+ br)
}−1

,

where, from (1.3),

κ = 1 +
q∑

r=1

βr > 1, h =
q∏

r=1

β−βr
r , ϑ = 1

2q −
q∑

r=1

br.

From (2.8), use of the reflection formula for the gamma function produces

0Ψq(z) =
1

2πi

∫

C

Γ(s)
{ q∏

r=1

Γ(br − βrs)
}−1

ξ−sds

=
(2π)−q

2πi

∫

C

Γ(s)
q∏

r=1

Γ(1 − br + βrs) Ξ(s) ξ−sds, (3.1)

where

Ξ(s) = 2q

q∏

r=1

sinπ(br − βrs). (3.2)

Since there are no poles of the integrand in (3.1) to the right of the contour of integration
we are free to expand C as far to the right as we please (but with endpoints at infinity still
in Re(s) < 0), so that |s| is everywhere large on the expanded loop. We shall continue
to denote this expanded loop by C. On the expanded loop C we can employ the inverse
factorial expansion obtained from (A.2)

Γ(s)
q∏

r=1

Γ(1 − br + βrs) =
κ(hκκ)−s

(2π)−q





M −1∑

j=0

(−)jAjΓ(κs+ ϑ − j) + ρM (s)Γ(κs+ ϑ − M)





(3.3)
valid for |s| → ∞ in | arg s| ≤ π − ǫ, where M is a positive integer. The remainder function
ρM (s) is analytic in s except at the points s = (br − 1 − k)/βr, k = 0, 1, 2, . . . (1 ≤ r ≤ q)
and s = −k, where the left-hand side of (3.3) has poles, and is such that ρM (s) = O(1)
as |s| → ∞ in | arg s| ≤ π − ǫ. The coefficients Aj are the same as those appearing in the
expansion (2.2) with p = 0, where

A0 = (2π)− 1
2 qκ− 1

2 −ϑ

q∏

r=1

β
1
2 −br
r (3.4)

from (2.3). An algorithm for the computation of the Aj is described in Appendix A.
The function Ξ(s) introduced in (3.2) has the expansion

Ξ(s) =
N∑

k=1

B̂ke
−πiωks (N = 2q), (3.5)
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where

ω1 =
q∑

r=1

βr = κ − 1, ωk ≥ ωk+1, ωN = −ω1,

and

B̂1 = i−q exp(πi
q∑

r=1

br) = e−πiϑ, B̂N = eπiϑ.

We introduce the variables

X = κ(hξ)1/κ, Xk = Xeπiωk/κ (3.6)

and make use of the standard result [10, §3.3]

κ

2πi

∫

C

Γ(κs+ ϑ − j)z−κsds = zϑ−je−z

valid for all arg z when C is a loop in the positive sense enclosing all the poles of the
integrand with endpoints at infinity in Re(s) < 0; compare Fig. 1(a). Substitution of (3.3)
and (3.5) into (3.1) (with the expanded contour C) then leads to

0Ψq(z) =
N∑

k=1

B̂k

{
κ

2πi

∫

C

X−κs
k

M −1∑

j=0

(−)jAjΓ(κs+ ϑ − j) ds+RM,k

}

=
N∑

k=1

B̂k

{
Xϑ

k e
−Xk

M −1∑

j=0

(−)jAjX
−j
k +RM,k

}
,

where the remainder RM,k is given by

RM,k =
κ

2πi

∫

C

ρM (s)Γ(κs+ ϑ − M)X−κs
k ds.

It is shown in [6, §10.1; 10, p. 72, Lemma 2.8] that an order estimate for the above
remainder integral is

|RM,k | = O(Xϑ−M
k e−Xk) (|Xk | → ∞)

valid in the sector | arg Xk | < π; that is, in the sectors | arg ξ + πωk| < πκ (1 ≤ k ≤ N).
Since we can write ωk = ω1 − λk, with 0 ≤ λk ≤ 2ω1, it follows that the sectors of validity
for the order estimate of RM,k correspond to

−π(2ω1 − λk) − π < arg ξ < π(1 + λk) (1 ≤ k ≤ N).

The common sector of validity of the above order estimate for RM,k with 1 ≤ k ≤ N
is consequently | arg ξ| ≤ π − ǫ. Hence we obtain the expansion valid for |z| → ∞ in
| arg(−z)| ≤ π − ǫ

0Ψq(z) =
N∑

k=1

B̂kX
ϑ
k e

−Xk

{M −1∑

j=0

(−)jAjX
−j
k +O(X−M

k )
}
.

An equivalent expansion valid in a narrower sector has been given in [14, p. 370].
We now define the formal exponential expansion E∗(ξ) by

E∗(ξ) = Xϑe−X
∞∑

j=0

(−)jAjX
−j, (3.7)
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where X is defined in (3.6). Since, from (2.1) and (3.6), X = Ze∓πi/κ then some straight-
forward algebra using the values of ωj, B̂j (j = 1, N) defined above shows that

B̂1E∗(ξeπiω1) + B̂NE∗(ξeπiωN ) = E(z) + E(ze∓2πi), (3.8)

where E(z) is defined in (2.9). We then finally obtain the expansion

0Ψq(z) ∼ E(z) + E(ze∓2πi) +
N −1∑

k=2

B̂kE∗(ξeπiωk), ξ = ze∓πi (3.9)

valid as |z| → ∞ in | arg(−z)| ≤ π − ǫ.

Remark: In certain cases the function

1Ψ1(z) =
∞∑

n=0

zn Γ(αn+ a)
n! Γ(βn+ b)

,

with β = Mα, where M is a positive integer, can be expressed in terms of a 0ΨM −1(z)
function. To see this we apply the multiplication formula for the gamma function [15,
p. 256]

Γ(nz) = (2π)
1
2 (1−n)nnz− 1

2

n−1∏

j=0

Γ(z +
j

n
) (n ∈ N) (3.10)

to obtain

1Ψ1(z) = (2π)
1
2 (M −1)M

1
2 −b

∞∑

n=0

(M−βz)n

n!
Γ(αn+ a)

∏M −1
r=0 Γ(αn+M−1(b + r))

.

If a takes on any of the values b′
r = (b + r)/M (r = 0, 1, 2, . . . ,M − 1) then the gamma

function in the numerator will cancel with one of the gamma functions in the denominator
and the associated algebraic expansion H(z) ≡ 0. We then have

1Ψ1(z) = (2π)
1
2 (M −1)M

1
2 −b

0ΨM −1(M−βz) (β = Mα) (3.11)

with the parameters br appearing in 0ΨM −1 given by {b′
1, b

′
2, . . . , ∗, . . . , b′

M }, where the
asterisk denotes the omission of one of the values. A similar reduction applies when there are
one or more additional gamma functions in the numerator with the same α and appropriate
values of the ar.

4. Numerical examples

We consider cases of 0Ψq(z) with q ≥ 2, since the expansion (3.9) for the so-called generalised
Bessel function 0Ψ1(z) (also called the Wright function in [7]) with q = 1 has N = 2 and
so merely reproduces Theorem 5 when 1 < κ < 2; when κ ≥ 2, the expansion is covered by
Theorems 2 and 3. A hyperasymptotic expansion of this function for a more extended range
of parameters is given in [16].

For our first example we take q = 2 and consider the function

0Ψ2(z) ≡ F (z) =
∞∑

n=0

zn

n! Γ(β1n+ b1)Γ(β2n+ b2)
, (4.1)

which is associated with the parameters κ = 1+β1 +β2, ϑ = 1 − b1 − b2 and h = β−β1
1 β−β2

2 .
In the expansion (3.5) with N = 4 it is easily found that

B̂2 = eπi(b1−b2), ω2 = β1 − β2, B̂3 = e−πi(b1−b2), ω3 = β2 − β1.
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From (3.9), we then obtain the asymptotic expansion

F (z) ∼ E(z) + E(ze∓2πi)

+eπi(b1−b2)E∗(ξeπi(β1−β2)) + e−πi(b1−b2)E∗(ξe−πi(β1−β2)) (4.2)

for |z| → ∞ in | arg(−z)| ≤ π − ǫ. Comparison with Theorems 5 and 2 shows that when
κ ≤ 2 there are two additional exponential expansions present. These additional expansions
are both exponentially small on arg z = ±π when κ ≤ 2, since cos(π|β1 − β2|/κ) > 0 when
0 < β1 < 1 and 0 < β2 < 1. We note that in the case of real parameters this result correctly
yields a real expansion on the negative real axis arg ξ = 0.

In the case β1 = β2, the above expansion simplifies to

F (z) ∼ E(z) + E(ze∓2πi) + 2 cosπ(b1 − b2)E∗(ξ) (4.3)

for |z| → ∞ in | arg(−z)| ≤ π − ǫ. The upper or lower signs in (4.2) and (4.3) are chosen
according as arg z > 0 or arg z < 0, respectively. It is clearly sufficient for real parameters
to consider values of z satisfying 0 ≤ arg z ≤ π and this we do throughout this section. To
simplify the presentation of the results we consider only the expansion (4.3) with β1 = β2 = β
and define

B = 2 cosπ(b1 − b2). (4.4)

We use the subscript o to denote the optimal truncation of the exponential expansions in
(2.1) and (3.7) at the index j = Mo. The optimally truncated expansion is thus written as
Eo(z) and corresponds to truncation of the asymptotic series for E(z) at or near the smallest
term in absolute value. An algorithm for the computation of the normalised coefficients
cj = Aj/A0, where the leading coefficient A0 is given in (3.4), is described in Appendix A.
We have employed up to a maximum of 50 coefficients in our computations; the first ten
coefficients cj for 0Ψ2(z) in (4.1) are listed in Table 1 for the particular case b1 = 1

2 , b2 = 1
3

and β = 1
2 .

j cj j cj

1 1
8 2 755

3456

3 23995
82944 4 3779875

23887872

5 − 707843675
573308928 6 − 2003005174555

247669456896

7 − 6799898722925
220150628352 8 − 167659489967405975

3423782572130304

9 38105945075838591875
82170781731127296 10 69697248975034272366775

11832592569282330624

Table 1: The coefficients cj for 1 ≤ j ≤ 10 for the sum (4.1) when b1 = 1
2
, b2 = 1

3
and β = 1

2
.

We have computed F (z) for different parameters on the negative real axis arg z = π
where, provided the parameters are real, we have from (4.3)

F (z) ∼ 2ReE(z) +BE∗(ze−πi) (arg z = π).

In Table 2 we show the absolute values of F (z) − 2ReEo(z) compared with BE∗(ze−πi) for
different parameters b1 and b2. The results clearly confirm the presence of the expansion
BE∗(ze−πi) on the negative real axis and, furthermore, that when |b1 −b2| = 1

2 the coefficient
multiplying E∗(ze−πi) is indeed zero as predicted by (4.4). This last conclusion follows from
the fact that, when b1 = 1, b2 = 1

2 , the value of |F (z) − 2ReEo(z)| is many orders of
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β = 1
4 z = 50eπi κ = 3

2

b1 b2 Mo |F (z) − 2ReEo(z)| |BE∗(ze−πi)|
1
2

1
3 30 2.725323 × 10−15 2.725323 × 10−15

1 3
4 32 4.769551 × 10−16 4.769551 × 10−16

1 1
2 38 1.626169 × 10−33 † 1.0308 × 10−15

β = 1
2 z = 100eπi κ = 2

b1 b2 Mo |F (z) − 2ReEo(z)| |BE∗(ze−πi)|
1
2

1
3 32 1.399376 × 10−13 1.399374 × 10−13

1 3
4 39 1.891199 × 10−14 1.891198 × 10−14

1 1
2 40 2.422766 × 10−26 † 4.3853 × 10−14

β = 2
3 z = 100eπi κ = 7

3

b1 b2 Mo |F (z) − 2ReEo(z)| |BE∗(ze−πi)|
1
2

1
3 30 1.552472 × 10−10 1.552475 × 10−10

1 3
4 32 2.408476 × 10−11 2.408719 × 10−11

1 1
2 38 3.744984 × 10−19 † 5.3847 × 10−11

Table 2: Values of the absolute error in F (z) − 2Re Eo(z) in (4.1) compared with |BE∗(ze−πi)| for different
parameters on arg z = π. The expansion E(z) is optimally truncated at index Mo and the dagger denotes
the value of |E∗(ze−πi)| without the coefficient B (which vanishes when b1 = 1, b2 = 1

2
).

magnitude smaller than the value of |E∗(ze−πi)| (without the coefficient B). Table 3 shows
our computations for complex values of z = |z|eiθ when 1

2π ≤ θ ≤ π. It can be seen that
as we approach arg z = 1

2π, the value in the second column begins to differ significantly
from the corresponding value in the third column. This is not due to any imprecision in
the expansion (4.3) or in our computations, but can be ascribed to the Stokes phenomenon
which we discuss below.

θ/π |F (z) − Eo(z)| |BE∗(ze−πi)|

1.00 4.295293 × 10−18 4.295292 × 10−18

0.95 5.951357 × 10−18 5.951359 × 10−18

0.90 1.574211 × 10−17 1.574212 × 10−17

0.85 7.818456 × 10−17 7.818201 × 10−17

0.80 7.108583 × 10−16 7.093135 × 10−16

0.70 3.021297 × 10−13 3.031269 × 10−13

0.60 7.334040 × 10−10 8.131071 × 10−10

0.50 4.268643 × 10−6 7.993992 × 10−6

Table 3: Values of the absolute error in F (z)− Eo(z) in (4.1), where Eo(z) ≡ Eo(z)+Eo(ze−2πi), compared
with |BE∗(ze−πi)| for z = 40eiθ , b1 = 1

2
, b2 = 3

4
and β = 1

10
(κ = 6

5
).

When 1 < κ < 2, the function in (4.1) is exponentially large in the sector | arg z| < 1
2πκ

and exponentially small in the sector | arg(−z)| < 1
2π(2 − κ). The expansion E(ze−2πi) in
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(4.3) is subdominant in the upper half plane but combines with E(z) on the negative real
axis to give (for real b1 and b2) a real expansion. Since the exponential factors associated
with E(z) and E(ze−2πi) are exp (|Z|eiθ/κ) and exp (|Z|ei(θ−2π)/κ), respectively, the greatest
difference between these factors occurs when

sin
(
θ

κ

)
= sin

(
θ − 2π
κ

)
;

that is, when θ = 1
2π(2 − κ). Consequently, as arg z decreases in the upper half-plane from

the value π, we expect that the expansion E(ze−2πi) should switch off across the Stokes line
arg z = 1

2π(2 − κ). An analogous reasoning shows that the greatest difference between the
exponential factors associated with E(z) and E∗(ze−πi) in (4.3) occurs when

sin
(
θ

κ

)
= sin

(
π − θ

κ

)
;

that is, on the ray θ = 1
2π. Thus, as arg z decreases in the upper half-plane from the value π

we would expect the subdominant expansion E∗(ze−πi) to switch off across the Stokes line
arg z = 1

2π. Similar considerations apply to E(ze2πi) and E∗(zeπi) across the Stokes lines
arg z = − 1

2π(2 − κ) and arg z = − 1
2π in the lower half-plane.

To demonstrate the truth of this assertion, we choose β = 1
10 (so that κ = 6

5 ) in (4.1);
the exponentially large sector is then | arg z| < 3

5π and the Stokes lines in the upper half
plane are θ = 1

2π and θ = 2
5π. We define the Stokes multipliers S1(θ) and S2(θ) (at constant

|z|) associated with the expansions E∗(ze−πi) and E(ze−2πi) as follows. For the Stokes
multiplier associated with the expansion E∗(ze−πi) we set

F (z) = Eo(z) + Eo(ze−2πi) +BA0X
ϑe−X S1(θ),

where we recall that the subscript o denotes that the exponential expansions are opti-
mally truncated and are therefore finite sums. To detect the switching-off of the expansion
E(ze−2πi), we choose |b1 − b2| = 1

2 so that B = 0 (thereby eliminating the contribution from
E∗(ze−πi)), and define the Stokes multiplier associated with the expansion E(ze−2πi) when
B = 0 by

F (z) = Eo(z) +A0(Ze−2πi/κ)ϑ exp(Ze−2πi/κ)S2(θ).

In Table 4 we present the variation of the real part3 of the Stokes multipliers S1(θ) and
S2(θ) in the neighbourhood of θ = 1

2π and θ = 2
5π. It is seen that these multipliers exhibit

the familiar smooth transition across their respective Stokes lines. This viewpoint can be
confirmed for a particular case of (4.1), where it is possible to make a routine application of
the saddle-point method applied to a Laplace-type integral representation; see Appendix B.

To conclude this section we present the expansions for the function

0Ψq(z) ≡ F (z) =
∞∑

n=0

zn

n!

{ q∏

r=1

Γ(βrn+ br)
}−1

(4.5)

in the cases q = 3 and q = 4. For simplicity in presentation, we shall assume that the βj = β
and that the bj are all real (the results are easily modified when these assumptions are not
satisfied). This simplification results in the coefficients B̂k in (3.5) satisfying

B̂k = B̂N −k (1 ≤ k ≤ N/2; N = 2q),

where the bar denotes the complex conjugate. When q = 3 (N = 8), we have from (3.5)
ω2 = ω3 = ω4 = β, ω5 = ω6 = ω7 = −β and B̂k = −i exp(πi

∑ ′
br) (2 ≤ k ≤ 4), where the

3The Stokes multipliers possess a small imaginary part that is not shown.
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|z| = 40, b1 = 1
2 , b2 = 3

4 |z| = 20, b1 = 1
4 , b2 = 3

4

θ/π ReS1(θ) θ/π ReS2(θ)

0.80 0.9848 1.00 0.9908
0.70 0.9825 0.80 0.9896
0.60 0.8920 0.60 0.9862
0.56 0.7792 0.55 0.9575
0.54 0.7029 0.50 0.8679
0.52 0.6161 0.45 0.6893
0.50 0.5227 0.40 0.4477
0.48 0.4276 0.35 0.2230
0.46 0.3361 0.30 0.0797
0.40 0.1229 0.20 0.0020

Table 4: Variation of the real part of the Stokes multipliers S1(θ) and S2(θ) associated with (4.1) about
the Stokes lines θ = 1

2
π and θ = 2

5
π when β = 1

10
.

prime denotes that the coefficient of bk−1 is replaced by −1 in the summation. Then

B1 =
4∑

r=2

B̂r = −i{eπi(b1+b2−b3) + eπib32 cosπ(b1 − b2)}, B2 =
7∑

r=5

B̂r = B1.

From (3.9) we therefore obtain the expansion

F (z) ∼ E(z) + E(ze∓2πi) +B1E∗(ξeπiβ) +B1E∗(ξe−πiβ) (4.6)

when q = 3 as |z| → ∞ in | arg z| ≤ π − ǫ.
When q = 4 (N = 16), we obtain after some routine algebra ωk = 2β (2 ≤ k ≤ 5),

ωk = 0 (6 ≤ k ≤ 11), ωk = −2β (12 ≤ k ≤ 15) and

B̂k = − exp (πi
∑ ′

br) (2 ≤ k ≤ 5), B̂k = exp (πi
∑ ′′

br) (6 ≤ k ≤ 8),

where the double prime denotes that the coefficients of bk−5 and b4 are replaced by −1 in
the summation. This yields the coefficients

B1 =
5∑

r=2

B̂r = −eπi(b1+b2)2 cosπ(b3 − b4) − eπi(b3+b4)2 cosπ(b1 − b2), B3 =
15∑

r=12

B̂r = B1,

B2 =
11∑

r=6

B̂r = 2 cosπ(b1 + b2 − b3 − b4) + 4 cosπ(b1 − b2) cos π(b3 − b4).

Then, from (3.9),

F (z) ∼ E(z) + E(ze∓2πi) +B1E∗(ξe2πiβ) +B2E∗(ξ) +B1E∗(ξe−2πiβ) (4.7)

when q = 4 as |z| → ∞ in | arg z| ≤ π − ǫ. In both (4.6) and (4.7) we recall that ξ = ze∓πi

and that the upper or lower signs are chosen according as arg z > 0 or arg z < 0, respectively.
Both these expansions correctly produce a real result (for real bj) on the negative real axis.
When the βj are not all equal it is clear from (3.9) that more subdominant expansions can
appear.
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In Tables 5 and 6 we display the results of computations for q = 3 and q = 4 on
the negative real axis using (4.6) and (4.7). Table 5 shows the case q = 3 for a range of
parameters yielding different values of B1. In the case B1 = 0, we have shown the absolute
value of E∗(ξeπiβ), which is many orders of magnitude greater than the error in F (z) using
an optimally truncated 2ReE(z), thereby confirming its absence. Table 6 shows similar
calculations for the case q = 4 with β = 1

5 . In the case when either B1 or B2 (or both)
is zero we have shown only the absolute values of the associated exponential expansions.
The first set of values (with B1 = 0) confirms the absence of the expansion E∗(ξe2πiβ),
whereas the second set of values (with B1 = 0 and B2 = 0) confirms the absence of both
the expansions E∗(ξe2πiβ) and E∗(ξ). In the final entry of Table 6, where B1, B2 6= 0,
it is seen that the third column confirms the presence of the expansion E∗(ξe2πiβ), but
that our calculations are not sufficiently precise to be able to confirm the presence of the
sub-subdominant expansion E∗(ξ) in this case.

β = 1
4 , b1 = 7

12 , b2 = 5
12 , b3 = − 1

2 β = 1
4 , b1 = 1

3 , b2 = 2
3 , b3 = 1

B1 = 1 +
√

3, z = |z|eπi B1 = 0, z = |z|eπi

|z| |F (z) − 2ReEo(z)| |2ReB1E∗(ξeπiβ)| |F (z) − 2ReEo(z)| |E∗(ξeπiβ)|

50 3.009092 × 10−12 3.008661 × 10−12 6.167912 × 10−30 5.092623 × 10−14

80 7.988609 × 10−16 7.988522 × 10−16 3.208815 × 10−36 3.149887 × 10−18

100 1.000311 × 10−17 1.000326 × 10−17 2.704118 × 10−33 9.825482 × 10−20

150 4.196439 × 10−23 4.196644 × 10−23 1.127316 × 10−41 2.178074 × 10−24

β = 1
3 , b1 = 1

4 , b2 = 1, b3 = 3
4 β = 1

3 , b1 = 1
3 , b2 = 1

2 , b3 = 3
4

B1 = 1, z = |z|eπi B1
.= −1.48356 − 0.25882i, z = |z|eπi

|z| |F (z) − 2ReEo(z)| |2ReB1E∗(ξeπiβ)| |F (z) − 2ReEo(z)| |2ReB1E∗(ξeπiβ)|

50 1.446717 × 10−12 1.521726 × 10−12 6.515015 × 10−11 6.514059 × 10−11

80 4.133266 × 10−15 4.124276 × 10−15 2.427855 × 10−13 2.429876 × 10−13

100 3.343169 × 10−15 3.342621 × 10−15 1.024392 × 10−15 1.008831 × 10−15

150 1.840213 × 10−18 1.840202 × 10−18 7.682549 × 10−18 7.695989 × 10−18

Table 5: Values of the absolute error in F (z) − 2Re Eo(z) in (4.5) with q = 3 on the negative real
axis compared with |2ReB1E∗(ξeπiβ)| for different β and parameters bj . The exponential expansions are
optimally truncated.

5. Functions with a finite algebraic expansion

We now turn to consideration of the function pΨq(z) in the special case when the algebraic
expansion H(z) in (2.6) is finite. From (2.8), we have the integral representation

pΨq(z) =
1

2πi

∫

C

Γ(s)g(−s) ξ−sds, (5.1)

where ξ = ze∓πi and C denotes a loop in the positive sense enclosing only the poles of
Γ(s) at s = 0, −1, −2, . . . . A finite algebraic expansion will result when, in addition to
the restriction (1.2), the parameters are such that the zeros of g(−s) cancel all but a finite
number of the poles at s = (ar +k)/αr (k = 0, 1, 2, . . . ; 1 ≤ r ≤ p). The sum of the residues
at the finite set of poles s = (am + k)/αm (0 ≤ k ≤ k0(m); 1 ≤ m ≤ p) will be denoted
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β = 1
5 , b1 = 1

6 , b2 = 1
3 , b3 = 2

3 , b4 = 5
6

B1 = 0, B2 = 1, z = |z|eπi

|z| |F (z) − 2ReEo(z)| |E∗(ξe2πiβ)| |B2E∗(ξ)|

30 4.972565 × 10−13 1.482075 × 10−10 4.972569 × 10−13

50 1.685216 × 10−16 1.169696 × 10−13 1.685216 × 10−16

80 1.086265 × 10−20 5.703438 × 10−17 1.086265 × 10−20

100 4.256578 × 10−23 1.875656 × 10−18 4.256578 × 10−23

120 2.682152 × 10−25 4.362680 × 10−20 2.682152 × 10−25

β = 1
5 , b1 = 5

4 , b2 = 3
4 , b3 = 1

2 , b4 = 1

B1 = 0, B2 = 0, z = |z|eπi

|z| |F (z) − 2ReEo(z)| |E∗(ξe2πiβ)| |E∗(ξ)|

30 3.432624 × 10−26 1.822456 × 10−11 1.154181 × 10−13

50 4.796958 × 10−31 4.832596 × 10−14 2.535357 × 10−17

80 4.709347 × 10−36 1.973750 × 10−17 1.098475 × 10−21

100 2.278757 × 10−38 2.358151 × 10−19 3.566169 × 10−24

120 4.541513 × 10−41 4.049120 × 10−21 1.927266 × 10−26

β = 1
5 , b1 = 1

6 , b2 = 1
6 , b3 = 3

4 , b4 = 1

B1
.= −2.12132 + 0.18947i, B2

.= 2.31079, z = |z|eπi

|z| |F (z) − 2ReEo(z)| |2ReB1E∗(ξe2πiβ)| |B2E∗(ξ)|

30 6.160597 × 10−10 5.986047 × 10−10 1.105646 × 10−12

50 6.506430 × 10−13 6.542411 × 10−13 3.620406 × 10−16

80 3.349512 × 10−16 3.353693 × 10−16 2.266096 × 10−20

100 8.317661 × 10−18 8.318711 × 10−18 8.762217 × 10−23

120 1.851550 × 10−19 1.850054 × 10−19 5.462822 × 10−25

Table 6: Values of the absolute error in F (z) − 2Re Eo(z) in (4.5) with q = 4 on the negative real axis
compared with the other expansions for different parameters bj . The exponential expansions are optimally
truncated.

by Hf (ze∓πi), where the subscript f designates ‘finite’, and is given by (2.6) with the sums
Sp,q(z;m) in (2.7) replaced by finite sums over 0 ≤ k ≤ k0(m), viz.

Sp,q(z;m) =
k0(m)∑

k=0

(−)k

k!
Γ

(
k + am

αm

) ∏′ p
r=1 Γ(ar − αr(k + am)/αm)∏q
r=1 Γ(br − βr(k + am)/αm)

z−k/αm . (5.2)

The contour C is now displaced to the right over this finite set of poles; see Fig. 1(b).
The displaced contour, which we shall call C′, still has endpoints at infinity in Re(s) < 0.
Then we have

pΨq(z) =
1

2πi

∫

C′
Γ(s)g(−s) ξ−sds+Hf (ze∓πi). (5.3)

The integral in (5.3) can be dealt with in exactly the same manner as that discussed in §3.
Use of the reflection formula for the gamma function leads to

1
2πi

∫

C′
Γ(s)g(−s)ξ−sds =

(2π)p−q

2πi

∫

C′
Γ(s)

∏q
r=1 Γ(1 − br + βrs)∏p
r=1 Γ(1 − ar + αrs)

Ξ(s) ξ−sds,
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where

Ξ(s) = 2q−p

∏q
r=1 sinπ(br − βrs)∏p
r=1 sinπ(ar − αrs)

. (5.4)

From (A.2), we have the inverse factorial expansion

Γ(s)
∏q

r=1 Γ(1 − br + βrs)∏p
r=1 Γ(1 − ar + αrs)

=

κ(hκκ)−s

(2π)p−q

{M −1∑

j=0

(−)jAjΓ(κs+ ϑ − j) +O(1)Γ(κs+ ϑ − M)
}

for |s| → ∞ in | arg s| ≤ π − ǫ, where M is a positive integer. The coefficients Aj (which
depend on the parameters) are determined in particular cases by the algorithm described in
Appendix A.

Since the integrand in (5.3) has no poles to the right of C′, the sines in the numerator
of Ξ(s) in (5.4) must cancel with those in the numerator, with the consequence that Ξ(s)
must be expandable as a series of exponentials in the form

Ξ(s) =
N∑

k=1

B̂ke
−πiωks, (5.5)

where N depends on the parameter values,

ω1 =
q∑

r=1

βr −
p∑

r=1

αr = κ − 1, ωk ≥ ωk+1, ωN = −ω1

and
B̂1 = e−πiϑ, B̂N = eπiϑ.

Then the same reasoning leading to (3.9) shows that (with ξ = ze∓πi)

pΨq(z) ∼ E(z) + E(ze∓2πi) +
N −1∑

k=2

B̂kE∗(ξeπiωk) +Hf (ze∓πi) (5.6)

for |z| → ∞ in | arg(−z)| ≤ π − ǫ, where the upper or lower signs are chosen according as
arg z > 0 or arg z < 0, respectively.

In the simple case p = q = 1, corresponding to the function

1Ψ1(z) ≡ F (z) =
∞∑

n=0

zn

n!
Γ(αn+ a)
Γ(βn+ b)

=
1

2πi

∫

C

Γ(s)
Γ(a − αs)
Γ(b − βs)

ξ−sds, (5.7)

the coefficients B̂k can be determined explicitly. For a finite algebraic expansion, it is easily
shown that, for positive integer M , we require

β = Mα, γ := b − Ma ∈ N. (5.8)

If γ = 0, −1, −2, . . . , there are no poles on the right of C and accordingly H(z) ≡ 0, whereas
if γ = 1, 2, . . . there is a finite number k0(1) ≡ k0 = ⌈γ/M⌉ of such poles, where ⌈x⌉ denotes
the smallest integer not less than x. The algebraic expansion in this last case is therefore

Hf (ze∓πi) =
1
α

k0∑

k=0

(−)k

k!
Γ((k + a)/α)
Γ(γ − Mk)

ξ−(k+a)/α. (5.9)
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In terms of the new variable u := αs − a, the function Ξ(s) is given by

Ξ(s) =
sinπ(b − βs)
sinπ(a − αs)

= (−)γ sinπMu

sinπu

= (−)γ

{⌊M/2⌋∑

r=1

2 cosπ(M − 2r + 1)u+ δM

}
,

where δM = 0 (M even), 1 (M odd). It is then easily seen in (5.5) that N = M and4

ωk = (M − 2k + 1)α, B̂k = (−)γ eπi(M −2k+1)a (1 ≤ k ≤ M).

An example closely related to (5.7), with α = 1/M , β = 1, a = 1/(2M) and b = 1
2 , has

been studied in [17] in connection with the asymptotics of a generalised incomplete gamma
function.

In Table 7 we show computations for the case M = 3 and integer γ = b− 3a for different
parameter values on the negative real axis, where from (5.6) we obtain the expansion

F (z) ∼ E(z) + E(ze∓2πi) + cosπγ E∗(ξ) +Hf (ze∓πi), (5.10)

with Hf (ze∓πi) defined in (5.9). We remark that the results when κ = 2 are more precise
than when κ < 2. This results from the fact that when κ = 2 the algebraic expansion and
ReE(z) are both of algebraic order with E∗(ξ) being subdominant, whereas when κ < 2,
ReE(z) is subdominant and E∗(ξ) is sub-subdominant. It is therefore more difficult to
detect numerically the expansion E∗(ξ) when κ < 2.

As a second example, we take p = 2, q = 1 and consider the sum

F (z) =
∞∑

n=0

zn

n!
Γ(1

4n+ b − 1
6 )Γ(1

4n+ b − 1
3 )

Γ(3
2n+ 6b)

, (5.11)

for which κ = 2, ϑ = −4b − 1 and the integer M in (5.8) satisfies M = 6. The integral
representation in (5.1) for this function is associated with two poles on the right of the
(possibly indented) contour C at s = 4b − 4

3 and s = 4b − 2
3 . From (5.2) with k0(1) =

k0(2) = 1, we then have the finite algebraic expansion given by

Hf (ze∓πi) = 4(ze∓πi)−4b+ 4
3

{
Γ(4b − 4

3 )Γ(1
6 ) + Γ(4b − 2

3 )Γ(− 1
6 )(ze∓πi)− 2

3

}
.

To deal with the function Ξ(s) in this case we make use of the multiple-angle expansion of
sinnθ for positive integer n [18, p. 119]

sinnθ = 2n−1
n−1∏

j=0

sin
(
θ +

πj

n

)
.

Then, from (5.4),

−Ξ(s) =
2−1 sinπ(3

2s − 6b)
sinπ(1

4s − b+ 1
6 ) sinπ(1

4s − b+ 1
3 )

= 24 sinπ(1
4s − b)

5∏

j=3

sinπ(1
4s − b+ 1

6j)

= e−πis+4πib + i
√

3e− 1
2πis+2πib − 2 − i

√
3e

1
2πis−2πib + eπis−4πib.

4Since κ = 1 + β − α and ϑ = a − b = a(1 − M) − γ, this correctly produces ω1 = (M − 1)α = κ − 1 and

B̂1 = (−)γ eπi(M −1)a = e−πiϑ.
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β = 3
2 (κ = 2), a = 1

2 , b = 11
2 β = 3

2 (κ = 2), a = 1
2 , b = 13

2

γ = 4, z = |z|eπi γ = 5, z = |z|eπi

|z| F̂ (z) − 2ReEo(z) cosπγ E∗(ξ) F̂ (z) − 2ReEo(z) cosπγ E∗(ξ)

100 4.755780 × 10−11 4.753537 × 10−11 −5.620471 × 10−12 −5.615518 × 10−12

200 4.739104 × 10−14 4.739146 × 10−14 −3.859942 × 10−15 −3.859482 × 10−15

300 3.274243 × 10−16 3.274256 × 10−16 −2.151689 × 10−17 −2.151612 × 10−17

400 5.678609 × 10−18 5.678610 × 10−18 −3.208375 × 10−19 −3.208393 × 10−19

500 1.724549 × 10−19 1.724549 × 10−19 −8.671458 × 10−21 −8.671433 × 10−21

β = 1 (κ = 5
3 ), a = 1

4 , b = 15
4 β = 1 (κ = 5

3 ), a = 1
4 , b = 19

4

γ = 3, z = |z|eπi γ = 4, z = |z|eπi

|z| F̂ (z) − 2ReEo(z) cosπγ E∗(ξ) F̂ (z) − 2ReEo(z) cosπγ E∗(ξ)

100 −8.950444 × 10−14 −8.984340 × 10−14 7.761350 × 10−15 7.648353 × 10−15

200 −3.679767 × 10−19 −3.674985 × 10−19 1.994065 × 10−20 2.010004 × 10−20

300 −2.229504 × 10−23 −2.229400 × 10−23 9.453819 × 10−25 9.452937 × 10−25

400 −5.372028 × 10−27 −5.372107 × 10−27 1.904813 × 10−28 1.904202 × 10−28

500 −3.123141 × 10−30 −3.123180 × 10−30 9.640370 × 10−32 9.640878 × 10−32

Table 7: Values of the error in F̂ (z) − 2Re Eo(z) in (5.7) on the negative real axis, where F̂ (z) ≡ F (z) −
Hf (ze−πi), compared with cos πγ E∗(ξ) for M = 3 and different a, b and β. The exponential expansions
are optimally truncated.

It follows that in (5.5) we have N = 5, ω1 = −ω5 = 1, ω2 = −ω4 = 1
2 , ω3 = 0 and

B̂1 = e−πiϑ, B̂2 = − √
3e− 1

2πiϑ, B̂3 = 2, B̂4 = − √
3e

1
2πiϑ, B̂5 = eπiϑ.

Then, from (5.6), we obtain the expansion (when b is assumed to be real)

F (z) ∼ E(z) + E(ze∓2πi) + Re [B′E∗(ξe
1
2πi)] + 2E∗(ξ) +Hf (ze∓πi) (5.12)

for |z| → ∞ in | arg(−z)| ≤ π − ǫ, where B′ = −2
√

3e− 1
2 πiϑ. Since κ = 2, the contribution

2ReE(z) is of algebraic order on the negative real axis, whereas E∗(iξ) = O(exp(−Xe 1
4πi))

and E∗(ξ) = O(exp(−X)), where X = (2/3)3/4(2|z|)1/2 by (3.6). In Table 8 we show
the absolute error in the computation of F (z) − Hf (ze−πi) − 2ReEo(z) compared with
the subdominant contribution ReB′E∗(iξ) on arg z = π. As E∗(ξ) is sub-subdominant
on arg z = π, it was not possible to detect this second exponential expansion. To do this
would require a hyperasymptotic evaluation of F (z) on the lines of that described for the
generalised Bessel function in [16].



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT18 R. B. Paris

b = 4
3 , z = |z|eπi b = 3

2 , z = |z|eπi

|z| × 103 |F̂ (z) − 2ReEo(z)| |ReB′E∗(iξ)| |F̂ (z) − 2ReEo(z)| |ReB′E∗(iξ)|

0.50 7.615899 × 10−16 7.654058 × 10−16 4.076785 × 10−17 4.082330 × 10−17

1.00 1.050252 × 10−19 1.052048 × 10−19 5.934098 × 10−21 5.928711 × 10−21

2.00 7.092803 × 10−25 7.094341 × 10−25 3.322751 × 10−26 3.338537 × 10−26

4.00 4.900488 × 10−32 4.900787 × 10−32 3.275716 × 10−33 3.274615 × 10−33

5.00 1.689375 × 10−34 1.689422 × 10−34 6.472057 × 10−36 6.471997 × 10−36

Table 8: Values of the absolute error in F̂ (z) − 2Re Eo(z) in (5.11) on the negative real axis, where

F̂ (z) ≡ F (z) − Hf (ze−πi), compared with Re B′E∗(iξ) for different b. The exponential expansions are
optimally truncated.

6. Discussion and concluding remarks

We have examined the generalised hypergeometric function, or Wright function, pΨq(z)
defined in (1.1) and determined exponentially small expansions present in its asymptotic
description for |z| → ∞. Such contributions are of relevance in high-precision evaluation,
particularly when κ ≤ 2 and the algebraic expansion H(z) in a sector surrounding the
negative real axis either vanishes or is finite. In such situations, it is then possible to detect
numerically certain exponentially small series without the need for hyperasymptotics. In
situations corresponding to κ > 2, the function pΨq(z) is exponentially large throughout the
z plane and exponentially small expansions are, generally speaking, of less significance and
a fortiori are more difficult to detect numerically.

The expansions we have developed primarily had parameter values corresponding to
κ ≤ 2. However, these expansions remain valid for κ > 2 but, as mentioned above, they are
of less importance in this domain. For example, the function in (4.1) when β1 = β2 = 1
reduces to a multiple of the standard generalised hypergeometric function 0F2(b1, b2; z) with
κ = 3. Application of Theorem 3 (with P = 1), combined with the fact that, from (2.1) and
(3.7), E(ze±2πi) = e±πiϑE∗(ξ) (when κ = 3), consequently yields

0F2(b1, b2; z)
Γ(b1)Γ(b2)

∼ E(z) + E(ze∓2πi) + e±πiϑE∗(ξ) (| arg z| ≤ π). (6.1)

It is clear that the coefficient of the exponentially small expansion E∗(ξ) in (6.1) cannot be
correct since, for real parameters, it does not yield a real expansion on the negative real z
axis. Our result in (4.3) has the coefficient of E∗(ξ) replaced by 2 cosπ(b1 −b2) and so yields

0F2(b1, b2; z)
Γ(b1)Γ(b2)

∼ E(z) + E(ze∓2πi) + 2 cosπ(b1 − b2)E∗(ξ) (| arg z| ≤ π)

as |z| → ∞, in agreement with the expansion of 0F2(b1, b2; z) given in [19, p. 200]. A similar
remark applies to the expansion (4.6) when β1 = β2 = β3 = 1 (κ = 4), which agrees with
the expansion for 0F3(b1, b2, b3; z) in [19, p. 201].

Finally, we mention that it is possible to modify the procedure in §5 to deal with the case
when the parameters of pΨq(z) are such that an infinite sequence of poles exists on the right
of the integration path C and the algebraic expansion H(z) then becomes an asymptotic
sum. The method closely follows that given in [10, pp. 186–189] in the treatment of the
asymptotics of the Mittag-Leffler function and is given in [12]. The result is an expansion
of the form (5.6), with Hf (ze∓πi) replaced by H(ze∓πi) in (2.6), but valid as |z| → ∞
in a sector containing the negative real axis. The expansion in the rest of the plane (when
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κ < 2) is given by Theorem 1. However, when κ ≤ 2, the algebraic expansion is the dominant
expansion in the sector | arg(−z)| < 1

2πκ and the presence of sub-subdominant expansions
of type E∗(ξ) is then, in general, of less numerical importance.

Appendix A: An algorithm for the computation of the coefficients cj = Aj/A0

We describe an algorithm for the computation of the normalised coefficients Aj/A0 appearing
in the exponential expansions E(z) in (2.1) and E∗(ξ) in (3.7). Methods of computing these
coefficients by recursion in the case when αr = βr = 1 have been given by Riney [20] and
Wright [21]; see [10, §2.2.2] for details. Here we describe an algebraic method valid for
arbitrary αr > 0 and βr > 0.

By application of Stirling’s formula for the gamma function we have the two important
inverse-factorial expansions [6, §3; 10, p. 39; 19, p. 36]

1
Γ(s+ 1)

∏p
r=1 Γ(αrs+ ar)∏q
r=1 Γ(βrs+ br)

= κ(hκκ)s

{M −1∑

j=0

Aj

Γ(κs+ ϑ′ + j)
+

σM (s)
Γ(κs+ ϑ′ +M)

}
(A.1)

and

Γ(s)
∏q

r=1 Γ(1 − br + βrs)∏p
r=1 Γ(1 − ar + αrs)

=

κ(hκκ)−s

(2π)p−q

{M −1∑

j=0

(−)jAjΓ(κs+ ϑ − j) + ρM (s)Γ(κs+ ϑ − M)
}

(A.2)

for |s| → ∞ uniformly in | arg s| ≤ π − ǫ (ǫ > 0), where M denotes a positive integer,

A0 = (2π)
1
2 (p−q)κ− 1

2 −ϑ

p∏

r=1

α
ar − 1

2
r

q∏

r=1

β
1
2 −br
r (A.3)

and the parameters κ, h, ϑ and ϑ′ are defined in (1.3). The remainder functions σM (s) and
ρM (s) are analytic in s except at the poles of the corresponding gamma function ratios and
are such that σM (s) = O(1) and ρM (s) = O(1) as |s| → ∞ uniformly in | arg s| ≤ π − ǫ.
These expansions play an important role in the determination of the exponential expansions
associated with pΨq(z). The coefficients Aj appearing in these two expansions are the same;
hence, it is sufficient to present our algorithm for the gamma function ratio in (A.1).

We rewrite the expansion (A.1) in the form

g(s)Γ(κs+ ϑ′)
Γ(s+ 1)

= κA0(hκκ)s

{M −1∑

j=0

cj
(κs+ ϑ′)j

+
O(1)

(κs+ ϑ′)M

}
, (A.4)

for |s| → ∞ uniformly in | arg s| ≤ π − ǫ, where g(s) is the ratio of gamma functions defined
in (1.1), (a)j = Γ(a+ j)/Γ(a) and cj = Aj/A0. Introduction of the scaled gamma function
Γ∗(z) defined by

Γ∗(z) = Γ(z)(2π)− 1
2 ezz

1
2 −z

leads to the representation

Γ(αs+ a) = Γ∗(αs+ a)(2π)
1
2 e−αs(αs)αs+a− 1

2 e(αs; a),

where

e(αs; a) = exp
{

(αs+ a − 1
2 ) log

(
1 +

a

αs

)
− a

}
.
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After some straightforward algebra we then find that

g(s)Γ(κs+ ϑ′)
Γ(s+ 1)

= κA0(hκκ)sR(s)Υ(s), (A.5)

where

Υ(s) =
∏p

r=1 Γ∗(αrs+ ar)∏q
r=1 Γ∗(βrs+ br)

Γ∗(κs+ ϑ′)
Γ∗(s+ 1)

and

R(s) =
∏p

r=1 e(αrs; ar)∏q
r=1 e(βrs; br)

e(κs;ϑ′)
e(s; 1)

.

Substitution of (A.5) into (A.4) then yields

R(s)Υ(s) =
M −1∑

j=0

cj
(κs+ ϑ′)j

+
O(1)

(κs+ ϑ′)M
(A.6)

as |s| → ∞ in | arg s| ≤ π − ǫ.
Now let χ = (κs)−1 and expand R(s) and Υ(s) for χ → 0 making use of the well-known

expansion [22, p. 71; 10, p. 32]

Γ∗(z) ∼
∞∑

k=0

(−)kγkz
−k (|z| → ∞; | arg z| ≤ π − ǫ),

where γk are the Stirling coefficients. The first few coefficients are given by γ0 = 1, γ1 = − 1
12 ,

γ2 = 1
288 , γ3 = 139

51840 , . . . . Some routine algebra then yields the expansions

Γ∗(αs+ a) = 1 − γ1κχ

α
+O(χ2), e(αs; a) = 1 +

κχ

2α
a(a − 1) +O(χ2),

whence

R(s) = 1 +
κχ

2

{
p∑

r=1

ar(ar − 1)
αr

−
q∑

r=1

br(br − 1)
βr

− ϑ

κ
(1 − ϑ)

}
+O(χ2),

Υ(s) = 1 +
κχ

12

{
p∑

r=1

1
αr

−
q∑

r=1

1
βr

+
1
κ

− 1

}
+O(χ2).

Upon equating coefficients of χ in (A.6) we obtain

c1 = 1
2κ(A + 1

6 B), (A.7)

where

A =
p∑

r=1

ar(ar − 1)
αr

−
q∑

r=1

br(br − 1)
βr

− ϑ

κ
(1 − ϑ),

B =
p∑

r=1

1
αr

−
q∑

r=1

1
βr

+
1
κ

− 1.

The higher coefficients are the obtained by continuation of this process with the help
of Mathematica. In specific cases (i.e., with numerical values for the various parameters) it
is possible to generate the coefficients in this manner quite easily. In our computations we
have used up to a maximum of 50 coefficients.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPTExponentially small expansions 21

Appendix B: A specific example of (4.1) by the saddle-point method

If we take β1 = β2 = 1
3 and b1 = 1

2 , b2 = 5
6 in (4.1) then, upon use of the multiplication

formula for the gamma function in (3.10), we find

F (z) =
∞∑

n=0

zn

n! Γ(1
3n+ 1

2 )Γ(1
3n+ 5

6 )
= 1

2π
−3/2

∞∑

n=0

(12z)n

(2n)!
Γ(1

3n+ 1
6 )

= 3
2π

−3/2

∫ ∞

− ∞
exp{ −t6 + (12z)

1
2 t} dt. (B.1)

This integral representation may be readily verified by expansion of the factor exp(12z)1/2t
followed by term-by-term integration.

The integrand in (B.1) has 5 saddle points at

tsr = (z/3)1/10e2πir/5 (0 ≤ r ≤ 4).

When 0 ≤ arg z ≤ π, the integration path (− ∞, ∞) in (B.1) can be deformed into paths
of steepest descent passing through the saddles ts0, ts1 and ts2 in the upper half-plane as
shown in Fig. 2. If we let ψ(t) = (12z)1/2t − t6, then
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Figure 2: The paths of steepest descent connecting − ∞ to +∞ for the integral in (B.1) for different
values of θ = arg z: (a) θ = π, (b) θ = π/2, (c) θ = π/6 and (d) θ = π/12. Only the relevant paths
are shown and the heavy dots denote the saddle points.

ψ(tsr) = 5(z/3)3/5e2πir/5 = Ze2πir/5,

where Z is defined in (2.1) with κ = 5
3 and h = 32/3. The contributions from the saddles

tsr, r = 0, 1, 2 are then easily shown to correspond to the expansions E(z), E∗(ze−πi)
and E(ze−2πi), respectively. It is clear from Fig. 2 that there is a Stokes phenomenon on
arg z = 1

2π, where (in the sense of decreasing arg z) the saddle ts1 disconnects, and also
on arg z = 1

6π, where the saddle ts2 disconnects. Consequently, we have either one, two
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or three saddles contributing to the integral as |z| → ∞ in the sectors 0 ≤ arg z < 1
6π,

1
6π ≤ arg z < 1

2π and 1
2π ≤ arg z ≤ π, respectively. Thus, we have the more precise

asymptotic description of F (z) given by

F (z) ∼





E(z) + E(ze−2πi) +BE∗(ze−πi) (1
2π < arg z ≤ π)

E(z) + E(ze−2πi) (1
6π < arg z < 1

2π)

E(z) (0 ≤ arg z < 1
6π)

(B.2)

as |z| → ∞, where B is defined in (4.4). A similar structure holds in the lower half-plane.
Observe that the expansion E∗(ze−πi), which becomes exponentially large near arg z = 0
(but subdominant with respect to E(z)), switches off as | arg z| decreases across the Stokes
lines arg z = ± 1

2π and so is not present in the expansion of F (z) near the positive real
axis. This example confirms the discussion in §4 of the Stokes phenomenon related to the
expansion of (4.1).
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