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We describe how a modi¯cation of a common technique for developing asymptotic
expansions of solutions of linear di® erential equations can be used to derive
Hadamard expansions of solutions of di® erential equations. Hadamard expansions are
convergent series that share some of the features of hyperasymptotic expansions,
particularly that of having exponentially small remainders when truncated, and, as a
consequence, provide a useful computational tool for evaluating special functions.
The methods we discuss can be applied to linear di® erential equations of
hypergeometric type and may have wider applicability.

1. Introduction

A Hadamard expansion is one of the special form

f(z) =

1X

n = 0

e¡ ¶ nzSn(z); (1.1)

where Sn, in turn, is a series of the form

Sn(z) =

1X

k = 0

ank

( » nz) · n + k
P ( · n + k; » nz): (1.2)

The function P appearing in the sum de­ ning Sn(z) is the normalized incomplete
gamma function given by

P (a; z) =
1

¡ (a)

Z z

0

e¡tta¡1 dt; j arg zj < º ; Re(a) > 0; (1.3)

and all other terms in the sum (1.2), · n, » n and ank, are constants. We will refer
to the index n as the level of the expansion, and the parameter ¶ n appearing in the
exponential factor e¡ ¶ nz will be assumed to have argument restricted in such a way
that Re(¶ nz) > 0. We also assume that Re( ¶ nz) 6 Re(¶ n + 1z) for n = 0; 1; 2; : : : .
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Figure 1. Magnitudes of the terms (plotted on a log10 scale) in the modi¯ed Hadamard
expansion of I ¸ (x) against ordinal number k when x = 10, ¸ = 1

4 and the truncation index
M = 22.

We mention here, for later reference, that the incomplete gamma function has the
asymptotic behaviour

P (a; z) =
zae¡z

¡ (1 + a)
1F1(1; 1 + a; z) ¹

8
>>><

>>>:

1 ¡ za¡1e¡z

¡ (a)
; z ! +1;

zae¡z

¡ (1 + a)
; a ! +1:

(1.4)

Hadamard expansions have been the subject of prior work by one of the authors
(see [5{7]), and the interested reader will ­ nd many features of these expansions
described at length. For the bene­ t of the reader new to Hadamard expansions, we
point out a few salient features of these types of representations.

First, unlike most expansions encountered in asymptotics, Hadamard expansions
are usually absolutely convergent, and the asymptotic scale for the expansions at
level n, fP ( · n + k; » nz)=( » nz) · n + kg, is exponentially negligible in the scale at the
previous level n ¡ 1, due to the exponentially small factors e¡ ¶ nz associated with
each level. Secondly, because of the asymptotic behaviour of the incomplete gamma
function in (1.4 a), the Hadamard expansion at level zero, for large z, can be seen
to contain (to leading order) the usual Poincaŕe asymptotic expansion. This is
easily understood in the example of the modi­ ed Bessel function I ¸ (x) (see [5]
and [8, p. 204]), which has a particularly simple Hadamard expansion, valid when
Re(̧ ) > ¡ 1

2 , consisting of a single level given by

I̧ (x) =
ex

p
2º x

1X

k = 0

ak( ¸ )

(2x)k
P ( 1

2 + ¸ + k; 2x); (1.5)

where ak( ¸ ) = ( 1
2

+ ¸ )k( 1
2

¡ ¸ )k=k! and (a)k ² ¡ (a + k)=¡ (a) is Pochhammer’s
symbol. We point out that a more general form of the Hadamard expansion for
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I ¸ (x) has been discussed in [3]. If the factor P ( 1
2

+ ¸ + k; 2x) in this expansion is
formally replaced by unity, the usual Poincaŕe expansion for I̧ (x) is obtained valid
for x ! +1. It follows then that Hadamard expansions have terms that initially
undergo a decay in magnitude comparable to ordinary asymptotic expansions, but,
in marked contrast to most asymptotic expansions that eventually diverge to in­ n-
ity, the terms ultimately go over into a gradual decay of algebraic order.

Owing to this gradual decay, Hadamard expansions in their untransformed state
are ill suited as an e¬ective computational tool. However, if we truncate each Hada-
mard series Sn(z) in (1.1) at an appropriate point, thereby producing a ­ nite main
sum and a tail at each level, the tail resulting from this truncation can be trans-
formed into one that exhibits rapid decay|often comparable with that of the ini-
tial asymptotic-like phase|thereby permitting the truncated Hadamard series and
associated tails to be used as an e¯ cient computational tool. This truncation pro-
cess results in what we shall call a modi¯ed Hadamard expansion. It is important
to stress that the modi­ ed tails are still absolutely convergent and that no approx-
imation has been introduced in the process.

We explain this procedure in the comparatively simple setting of the expansion
for I̧ (x) in (1.5), which we write as

I̧ (x) =
ex

p
2 º x

½M¡1X

k = 0

ak( ¸ )

(2x)k
P ( 1

2
+ ¸ + k; 2x) + T (M ; 2x)

¾
;

where M is the truncation index and the tail T (M ; 2x) is the series

T (M ; 2x) =

1X

k = M

ak( ¸ )

(2x)k
P ( 1

2
+ ¸ + k; 2x):

It is shown in [5] that T (M ; 2x), after representing the incomplete gamma function
in terms of 1F1 (see (1.4)), followed by expansion of 1F1 in terms of its Maclaurin
series and a reversal in the order of summation, can be rendered in the form

T (M ; 2x) = e¡2x
1X

r = 0

¼ r(M )

µ
2x

M

¶̧ + r + 1=2

;

where the coe¯ cients ¼ r have an explicit representation in terms of a 2F1 function.
Provided M is chosen to satisfy M > b2xc+1, the terms in the tail re-expressed this
way are found to undergo a rapid decay as the index r increases, as is illustrated
in ­ gure 1. We also remark that the rapidly convergent series has been displayed
with an exponentially small factor e¡2x, which gives an indication of the level at
which the tail contributes to the Hadamard expansion. It is for these reasons that
the modi­ ed Hadamard expansion provides a powerful mechanism for computing
I ¸ (x) to high precision.

This rendering of tails in Hadamard expansions into rapidly convergent forms is
a crucial di¬erence in the usual treatment accorded to remainders in asymptotic
expansions. The reader interested in a systematic account of the theory of Hada-
mard expansions is directed to the previously mentioned works, which include the
development and analysis of the tails resulting from the truncation of an expansion.
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The paper is arranged as follows. The technique of developing Hadamard expan-
sions from di¬erential equations is broadly described in the next section and subse-
quently re­ ned and applied to Kummer’s equation for the con®uent hypergeometric
functions. A detailed account of the tails resulting from truncation is given, without
any appeal to the results for integrals found in [5,6]. A numerical illustration of the
results for Kummer’s equation is included to demonstrate the accuracy that can be
achieved with this procedure. The paper concludes with some further discussion of
the problem of determining Hadamard expansions from other types of di¬erential
equations.

2. Expansions from di®erential equations

We follow the well-known technique used in forming Poincaŕe-type expansions for
large z of solutions to linear second-order di¬erential equations, as detailed in [4,
x 7.1], and consider the equation

w00(z) + f (z)w0(z) + g(z)w(z) = 0; (2.1)

with expansions for the coe¯ cient functions

f (z) ¹
1X

s = 0

fs

zs
and g(z) ¹

1X

s= 0

gs

zs
;

where not all of the coe¯ cients f0, g0 and g1 vanish. Then the method proceeds by
formally substituting a trial expansion

w(z) ¹ e ¶ zz ·
1X

s = 0

as

zs
(2.2)

into the di¬erential equation with the series expansions for f (z) and g(z), and deter-
mining the parameters ¶ , · and the coe¯ cients as from recurrence relations that
result.1 The success of this technique owes much to several properties of asymptotic
power series. First, any reciprocal power series, when subjected to a di¬erentiation,
remains a reciprocal power series. Furthermore, the product and sum of recipro-
cal power series are, again, reciprocal power series. In replacing a reciprocal power
series by a Hadamard expansion, however, we lose most of these attractive proper-
ties, which complicates the process of forming a Hadamard expansion counterpart
to (2.2). Nevertheless, in a restricted category of linear second-order di¬erential
equations, we can resolve these complications.

The idea is relatively straightforward. For a di¬erential equation (2.1), formally
substitute

w(z) =
1X

n = 0

e¡ ¶ nzSn(z); (2.3)

where each quantity Sn(z) is given by

Sn(z) =

1X

k = 0

ankYnk(z); Ynk(z) =
P ( · n + k; » nz)

( » nz) · n + k
; (2.4)

1We have been deliberately brief with the account of the method. There are some subtleties,
which are discussed in detail in [4, ch. 7], which we elect not to provide in our treatment.
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with P given in (1.3). Upon substitution of (2.3) into (2.1), a sum involving the
functions Ynk and their derivatives results. By applying some simple properties of
the Ynk and their derivatives given in the following lemma, with judicious assign-
ment of the parameters » n, · n and ¶ n, we can transform the resulting sum into
two series, one involving only the functions Ynk, and one free of the Ynk. The series
involving Ynk will be made to vanish through the determination of the coe¯ cients
ank, and the remaining series will comprise two types of contributions: one algebraic
and one exponentially small.

It will emerge in the course of the computations that the algebraic and expo-
nentially small terms will behave in similar manners regardless of the level. The
exponentially small contribution at level n will, through adjustment of parameters,
be made to cancel the algebraic terms left at level n + 1. In this way, the sum of all
the contributions over all levels will satisfy (2.1).

Before illustrating this process, let us gather together some generally useful prop-
erties of the Ynk.

Lemma 2.1. Let Ynk(z) be as de¯ned in (2.4). Then

Y 0
nk(z) = ¡ » n( · n + k)Yn;k + 1(z); (2.5)

0 = zY 00
nk(z) + f( · n + k + 1) + » nzgY 0

nk(z) + » n( · n + k)Ynk(z); (2.6)

zY 0
nk(z) = ¡ ( · n + k)Ynk(z) +

e¡ » nz

¡ ( · n + k)
; (2.7)

zYnk(z) =
1

» n
Yn;k¡1(z) ¡ e¡ » nz

» n ¡ ( · n + k)
: (2.8)

Proofs of these results follow easily from the Euler integral representation of
the incomplete gamma function in (1.3). In all cases, k is a non-negative integer.
When k = 0 in (2.8), we see that Yn;¡1 can be assigned a meaning (provided
· n 6= 0; ¡ 1; ¡ 2; : : : ), since, from (1.4) and (2.4),

Yn;¡1(z) =
e¡ » nz

¡ ( · n)
1F1(1; · n; » nz): (2.9)

We remark that the second property listed in the lemma is of particular signi­ -
cance, as it clearly illustrates that the functions used in the Hadamard expansions
we will develop are themselves of hypergeometric type.

3. The con°uent hypergeometric equation

Kummer’s di¬erential equation for the con®uent hypergeometric functions is (cf. [1,
x 13.1.1], [4, x 7.9])

zw00 + (b ¡ z)w0 ¡ aw = 0; (3.1)

and the development of Hadamard expansions of solutions to this equation will
serve as a template to follow when dealing with other di¬erential equations. It is
well known that solutions of this equation possess the leading behaviour z¡a and
za¡bez for large jzj. We look for solutions of (3.1) of the form

w(z) =

1X

n = 0

e¡ ¶ nzSn(z); (3.2)
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where Sn(z) is the Hadamard expansion de­ ned in (2.4). Substitution of this rep-
resentation into the left-hand side of (3.1) yields

Dw ² zw00 + (b ¡ z)w0 ¡ aw =

1X

n = 0

e¡ ¶ nzLn; (3.3)

where

Ln =
1X

k = 0

ankff ¶ n( ¶ n + 1)z ¡ b¶ n ¡ agYnk + fb ¡ (1 + 2¶ n)zgY 0
nk + zY 00

nkg:

We now proceed to reduce our expression for Ln by applying, in turn, equa-
tion (2.6) to eliminate zY 00

nk terms and (2.7) to eliminate zY 0
nk terms, to ­ nd

Ln =

1X

k = 0

ankff ¶ n( ¶ n + 1)z ¡ b¶ n ¡ a + (1 + 2 ¶ n)( · n + k)gYnk

+ (b ¡ · n ¡ k ¡ 1)Y 0
nkg

¡ (1 + 2 ¶ n + » n)e¡ » nz
1X

k = 0

ank

¡ ( · n + k)
;

where the coe¯ cients ank are those appearing in (2.4). Notice that the use of (2.7)
has resulted in an additional series of terms involving exponentials. The remaining
Y 0

nk terms can be eliminated by using (2.5) to produce Y terms with shifted index.
We ­ nally apply (2.8), which produces additional exponential terms and Y terms
with shifted index, to arrive at

Ln = ¡ ( » n + ¶ n)( » n + ¶ n + 1)
e¡ » nz

» n

1X

k = 0

ank

¡ ( · n + k)

+

1X

k = 0

ank

½
¶ n( ¶ n + 1)

» n
Yn;k¡1 + f( · n + k)(1 + 2¶ n) ¡ b¶ n ¡ agYnk

¡ » n( · n + k)(b ¡ · n ¡ k ¡ 1)Yn;k + 1

¾

and, after shifting indices in the sum involving the Ynk, this becomes

Ln = ¡ ( » n + ¶ n)( » n + ¶ n + 1)
e¡ » nz

» n

1X

k = 0

ank

¡ ( · n + k)
+ an0

¶ n( ¶ n + 1)

» n
Yn;¡1

+

1X

k = 0

½
an;k + 1

¶ n( ¶ n + 1)

» n
+ ankf( · n + k)(1 + 2 ¶ n) ¡ b¶ n ¡ ag

¡ an;k¡1 » n( · n + k ¡ 1)(b ¡ · n ¡ k)

¾
Ynk;

(3.4)

where we have de­ ned, for notational convenience, an;¡1 = 0. Note, too, the appear-
ance of Yn;¡1 (recall (2.9)).

We can simplify our expression for Ln by requiring that the last series in (3.4)
should vanish. This is achieved by demanding that the coe¯ cients ank satisfy the
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three-term recurrence relation

an;k + 1 ¶ n( ¶ n + 1) + ank » nf( · n + k)(1 + 2 ¶ n) ¡ b¶ n ¡ ag
¡ an;k¡1 » 2

n( · n + k ¡ 1)(b ¡ · n ¡ k) = 0 (3.5)

for k = 0; 1; 2; : : : .

3.1. The solution w1(z) corresponding to ¸0 = 0

The two linearly independent solutions of (3.1), which we denote by w1(z) and
w2(z), have the leading behaviour z¡a and za¡bez for large jzj (see [1, p. 508]).
This corresponds to the choices ¶ 0 = 0 and ¶ 0 = ¡ 1 in (3.2). We now turn to the
consideration of the special cases of Ln corresponding to these two choices of ¶ 0.

3.1.1. The evaluation of Ln, n > 0

Let us ­ rst consider the solution w1(z) with algebraic growth corresponding to
¶ 0 = 0. For the initial level in our Hadamard expansion of solutions of (3.1), we
have n = 0 and the expression (3.4) then reduces to

L0 = ¡ (1 + » 0)e¡ » 0z
1X

k = 0

a0k

¡ ( · 0 + k)
;

the other terms in the last series of (3.4) vanishing by virtue of (3.5). From the
recurrence (3.5) with ¶ 0 = 0, we require · 0 = a for a00 6= 0 and obtain the two-
term recurrence relation

a0k =
» 0

k
(a + k ¡ 1)(b ¡ a ¡ k)a0;k¡1:

This recurrence has the solution

a0k = a00( ¡ » 0)k (a)k(a ¡ b + 1)k

k!
; k > 0; (3.6)

where (a)k = ¡ (a + k)=¡ (a) is the usual Pochhammer symbol.
In order to have incomplete gamma functions in (2.4) with positive real argu-

ment, we set » 0 = e¡i ³ , where ³ = arg z. The absolute convergence of the seriesP
a0k=¡ ( · 0 + k) appearing in L0 is assured when j» 0j < 1 by the ratio test. Pro-

vided2 j³ j < º , convergence of the above series is still assured when j» 0j = 1 if, in
addition, we impose the restriction Re(b) > Re(a) > 0. This results from the late
behaviour of the terms in the series which, by application of the result

¡ (k + a)

¡ (k + b)
¹ ka¡b as k ! +1;

2We shall see in x 5 that the rays arg z = §º are Stokes lines for the solution w1(z).
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is controlled by ( ¡ e¡i ³ )kka¡b. Then we have

1X

k = 0

a0k

¡ ( · 0 + k)
=

1X

k = 0

a0k

¡ (a + k)

=
a00

¡ (a)

1X

k = 0

(a ¡ b + 1)k
( ¡ » 0)k

k!

=
a00

¡ (a)
1F0(a ¡ b + 1; ; ¡ » 0)

=
a00

¡ (a)
(1 + » 0)b¡a¡1; (3.7)

from which, with » 0 = e¡i ³ , follows the ­ nal form for the zeroth level,

L0 = ¡ a00

¡ (a)
e¡jzj(1 + e¡i³ )b¡a: (3.8)

It is this remaining contribution from the zeroth level|which we term the residual
exponential|that must be annihilated from the next level n = 1. Since level n = 1
is associated with the exponential factor e¡ ¶ 1z, it follows that, in order to produce
terms in that level that can cancel the residual exponential from the zeroth level,
we must set ¶ 1 = » 0 = e¡i³ when ¶ 0 = 0.

For the levels with n > 1, (3.4) reduces to

Ln = ¡ ( » n + ¶ n)( » n + ¶ n + 1)
e¡ » nz

» n

1X

k = 0

ank

¡ ( · n + k)
+ an0

¶ n( ¶ n + 1)

» n
Yn;¡1; (3.9)

where, to proceed further with our analysis, we must reduce the Yn;¡1 term to a
constant so that it can be used to cancel the residual exponential arising from level
n ¡ 1. This can only be achieved by selecting · n = 1 (n > 1), since, in this case,
the 1F1 function in (2.9) reduces to e » nz, yielding

Yn;¡1(z) ² 1; · n = 1:

Then the expression for Ln becomes

Ln = ¡ ( » n + ¶ n)( » n + ¶ n + 1)
e¡ » nz

» n

1X

k = 0

ank

k!
+ an0

¶ n( ¶ n + 1)

» n
; n > 1; (3.10)

and the cancellation process can easily be achieved by a suitable choice of an0 when
the exponential factors in e¡ ¶ nzLn multiplying the term proportional to an0 at
level n and the in­ nite sum at level n ¡ 1 match, that is, when

¶ n + 1 = ¶ n + » n: (3.11)

We remark that the series remaining in equation (3.10) after this cancellation pro-
cess becomes the residual exponential corresponding to this level that is to be
annihilated at level n + 1.

To determine » n, we examine the growth of the coe¯ cients ank de­ ned by the
recurrence (3.5) by applying dominant balance arguments outlined in [2, ch. 5].
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From the form of the recurrence relation, it follows that the ank possess the large-k
behaviour

ank ¹ Anrk
1 ¡ (k ¡ a + 1) + Bnrk

2 ¡ (k + a ¡ b + 1); (3.12)

where An and Bn are constants independent of k. The quantities r1 and r2 are the
roots of the characteristic equation

¶ n( ¶ n + 1)r2 + (1 + 2¶ n) » nr + » 2
n = 0;

from which r1 = ¡ » n=¶ n and r2 = ¡ » n=( ¶ n + 1). The absolute convergence of the
series in (3.10) is assured if jr1j, jr2j < 1. Accordingly, we de­ ne

» n = !ne¡i³ ; !n = minfj ¶ nj; j¶ n + 1jg; (3.13)

with ³ = arg z. Then, if !n is determined by the ­ rst (resp. second) choice, we have
jr2j < jr1j = 1 (resp. jr1j < jr2j = 1). In view of the assignment » 0 = e¡i ³ at the
zeroth level (where ¶ 0 = 0), we have !0 = 1 and, from (3.11),

¶ n = « ne¡i³ ; « n =

n¡1X

r = 0

!r; n > 1: (3.14)

It follows from (3.13) and (3.14) that !n and « n are ³ dependent and that the
quantities !n (n > 1) for the solution w1(z) are bounded away from zero, provided
j ³ j < º (see x 5 for further discussion of this point).

The consideration of the convergence of the sum in (3.10) at level n can be dealt
with in a similar manner to that employed in the associated series at the zeroth level.
The dominant late terms in the series behave like eik¿ n k¡ ¬ , where the phase ¿ n of
the larger (in modulus) of the roots r1 and r2 and the exponent ¬ satisfy ¿ n = § º ,
¬ = a when jr1j = 1 or 1

2 º < j ¿ nj 6 º , ¬ = b ¡ a when jr2j = 1. Then convergence of
this sum at each level again requires the conditions Re(b) > Re(a) > 0 and j ³ j < º .
It follows from (2.4) and (1.4 b) that the Hadamard sums Sn(z) (n > 0) converge
absolutely under the same restrictions.

To evaluate the sum
P

ank=k!, needed to completely determine Ln for n > 1, we
return to the three-term recurrence (3.5) (with · n = 1) and formally multiply by
uk=k! and sum over k from 0 to 1. With

G(u) =

1X

k = 0

ank
uk

k!
;

we ­ nd the result expressible in the form

¶ n( ¶ n + 1)G0(u) + » n(1 + 2 ¶ n)(uG(u))0

¡ » n(b¶ n + a)G(u) + » 2
n(u2G(u))0 ¡ » 2

nbuG(u) = 0;

or
G0(u)

G(u)
=

» n(a ¡ 1)

» nu + ¶ n
+

» n(b ¡ a ¡ 1)

» nu + ¶ n + 1
;

which has the solution, using the initial value G(0) = an0,

G(u) = an0 ¶ 1¡a
n ( ¶ n + 1)1+ a¡b( » nu + ¶ n)a¡1( » nu + ¶ n + 1)b¡a¡1: (3.15)
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Therefore, the required sum is

G(1) =

1X

k = 0

ank

k!
= an0 ¶ 1¡a

n ( ¶ n + 1)1+ a¡b( » n + ¶ n)a¡1( » n + ¶ n + 1)b¡a¡1;

giving Ln (n > 1) the ­ nal form

Ln = an0
¶ n( ¶ n + 1)

» n
¡ an0

e¡ » nz

» n
¶ 1¡a

n ( ¶ n + 1)1+ a¡b( » n + ¶ n)a( » n + ¶ n + 1)b¡a;

(3.16)
valid provided Re(b) > Re(a) > 0 when j ³ j < º .

3.1.2. The cancellation of residual exponential terms

The process of cancelling the residual exponential at level n ¡ 1 with the term
an0 ¶ n( ¶ n + 1)=» n at level n can be carried out in a straightforward manner. For
example, for the ­ rst level n = 1, the term a10 ¶ 1( ¶ 1 + 1)=» 1 (where we recall that
¶ 1 = e¡i³ ) in (3.16) must annihilate the residual exponential term from the zeroth
level in (3.8), so

a10
¶ 1( ¶ 1 + 1)

» 1
= ¡ L0

e¡jzj = a00
(1 + e¡i ³ )b¡a

¡ (a)
;

from which it follows that

a10 =
a00 » 1

¶ 1 ¡ (a)
(1 + ¶ 1)b¡a¡1:

This yields the residual exponential at level n = 1 as

¡ a00
e¡ » 1z

¡ (a)
¶ ¡a

1 ( ¶ 1 + » 1)a( ¶ 1 + » 1 + 1)b¡a: (3.17)

The ­ rst level residual term must now be cancelled with the term a20 ¶ 2( ¶ 2+1)=» 2

in L2, so, from (3.17), we ­ nd

a20 = a00
» 2 ¶ ¡a

1

¡ (a)
¶ a¡1

2 ( ¶ 2 + 1)b¡a¡1

upon setting ¶ 2 = ¶ 1+ » 1 by reason of (3.11). This produces the residual exponential
term at level n = 2 given by

¡ a00
e¡ » 2z

¡ (a)
¶ ¡a

1 ( ¶ 2 + » 2)a( ¶ 2 + » 2 + 1)b¡a;

and so on. Continuing this process, we ­ nd that, at level n > 1,

an0 = a00
» n ¶ ¡a

1

¡ (a)
¶ a¡1

n ( ¶ n + 1)b¡a¡1 =
a00!n

¡ (a)
« a¡1

n (1 + « ne¡i ³ )b¡a¡1; (3.18)

with the residual exponential term given by

¡ a00

¡ (a)
e¡!njzj « a

n+ 1(1 + « n + 1e¡i ³ )b¡a: (3.19)
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The other coe¯ cients ank with n > 1, k > 1 follow from (3.5) (where · n = 1 and
an;¡1 = 0) using the values of an0 obtained above as starting values once a suitable
choice for a00 has been made (see below).

Thus the cancellation process can be carried out level by level to achieve the result
Dw = 0 in (3.3). This generates the solution w1(z) of (3.1), which, from (2.4), (3.2),
(3.6) and (3.14), can be expressed in the ­ nal form, valid when Re(b) > Re(a) > 0
and, for j arg zj < º , z 6= 0,

w1(z) = z¡a
1X

k = 0

( ¡ )k

k!zk
(a)k(a ¡ b + 1)kP (a + k; jzj) +

1X

n= 1

e¡ « njzjS(1)
n (z); (3.20)

where

S(1)
n (z) =

1X

k = 0

a
(1)
nk

(!njzj)k + 1
P (1 + k; !njzj): (3.21)

For convenience, we have set the coe¯ cient a00 = e¡ia³ and we have introduced
the superscript 1 on Sn(z) and the coe¯ cients ank to distinguish them from the
analogous quantities that will appear in the second solution w2(z). We note that
the exponential levels e¡ ¶ nz = e¡ « njzj appearing in the subdominant contributions
of the Hadamard expansion are all real. We remark that the quantities !n, « n and
the coe¯ cients a

(1)
nk depend on arg z.

3.2. The solution w2(z) corresponding to ¸0 = ¡1

We now consider the second solution w2(z) of (3.1) corresponding to the choice
¶ 0 = ¡ 1 in (2.4) and follow the same procedure as that described for the solution
w1(z). In this case, equation (3.4) reduces to

L0 = (1 ¡ » 0)e¡ » 0z
1X

k = 0

a0k

¡ ( · 0 + k)
; (3.22)

while the recurrence relation (3.5) shows that now we must select · 0 = b ¡ a for
a00 6= 0 and

a0k = a00 » k
0

(1 ¡ a)k(b ¡ a)k

k!
; k > 0:

We again select » 0 = e¡i³ to ensure that the incomplete gamma functions in (2.4)
at the zeroth level all have positive real argument. The late terms in the series in
L0 possess the controlling behaviour e¡ik³ k¡a, so that convergence of this series is
assured if Re(b) > Re(a) > 0 as before, but now in the sectors 0 < j³ j 6 º (recall
that ³ ² arg z). Furthermore, we have the evaluation

1X

k = 0

a0k

¡ (b ¡ a + k)
=

a00

¡ (b ¡ a)
1F0(1 ¡ a; ; e¡i³ ) =

a00

¡ (b ¡ a)
(1 ¡ e¡i³ )a¡1;

so that
L0 =

a00

¡ (b ¡ a)
e¡jzj(1 ¡ e¡i³ )a (3.23)

(cf. (3.7) and (3.8)). Since L0 is multiplied by e¡ ¶ 0z = ez, and since this product
is to be annihilated from terms arising from the next level associated with an
exponential factor e¡ ¶ 1z, we must have e¡ ¶ 0ze¡jzj = e¡ ¶ 1z or ¶ 1 = ¡ 1 + e¡i³ .
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For levels n > 1, we must again choose · n = 1 to ensure the term Yn;¡1(z) ² 1
in (3.9), with the result that (3.10) applies as before. The coe¯ cients ank are given
by (3.5), but with the ¶ n now determined by the starting value ¶ 0 = ¡ 1. The
quantities !n, « n are given by (3.13) and (3.14) with » n = !ne¡i³ , except that now
¶ n = ¡ 1 + « ne¡i ³ . The growth of the coe¯ cients ank is given by (3.12), with the
roots r1 and r2 of the characteristic equation de­ ned as in x 3.1, so that similar
arguments show that the convergence of the sums

P
ank=¡ ( · n + k) appearing in

Ln in (3.16) requires the conditions Re(b) > Re(a) > 0 and 0 < j ³ j 6 º .
The cancellation of residual exponential terms across neighbouring levels follows

in a manner analogous to that described in x 3.1.2, and so we omit the details
of these calculations. The residual exponential L0 in (3.23) must annihilate the
constant term in L1 to yield

a10 =
a00!1

¡ (b ¡ a)
(1 ¡ e¡i³ )a¡1:

Continuation of this process produces the values an0 and the residual exponential
in Ln (for n > 1) given by

an0 =
a00!n

¡ (b ¡ a)
« b¡a¡1

n (1 ¡ « ne¡i³ )a¡1;
a00

¡ (b ¡ a)
e¡!n jzj « b¡a

n+ 1(1 ¡ « n+ 1e¡i³ )a;

respectively, upon use of (3.11) (cf. (3.18) and (3.19)).
We see, therefore, that the level-by-level cancellation process in x 3.1.2 can also

be carried out for the expansion corresponding to ¶ 0 = ¡ 1, producing a second
solution w2(z) satisfying (3.3). Assembling the results of this section, we see that
w2(z) can be expressed as

w2(z) = ezza¡b
1X

k = 0

(1 ¡ a)k(b ¡ a)k

k!zk
P (b ¡ a+ k; jzj)+ez

1X

n= 1

e¡ « n jzjS(2)
n (z); (3.24)

where (cf. (3.21))

S(2)
n (z) =

1X

k = 0

a
(2)
nk

(!njzj)k + 1
P (1 + k; !njzj); (3.25)

valid when Re(b) > Re(a) > 0 and j arg(¡ z)j < º , z 6= 0. In a fashion akin to
what we did for w1(z) in (3.20), we have set the coe¯ cient a00 = ei(a¡b) ³ and we
have introduced the superscript 2 on Sn(z) and the coe¯ cients ank to distinguish
them from the analogous quantities that appear in the ­ rst solution w1(z). We
note that each of the series in (3.24) carries a factor ez, arising from the ¡ 1 term
in ¶ n = ¡ 1 + « ne¡i³ , n > 1, and that the remaining exponential factors e¡ « njzj

associated with the level-n expansions S
(2)
n (z) are all real exponentially decaying

terms. The quantities !n and « n appearing in both (3.20) and (3.24) are the same.
To conclude this section, we remark that if, instead of the choice » 0 = e¡i³

in (3.22), we put » 0 = 1, then L0 ² 0 and the expansion procedure terminates
at the zeroth level. We then obtain the solution consisting of a single Hadamard
expansion that involves incomplete gamma functions with complex argument when
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³ 6= 0 given by

a00za¡bez
1X

k = 0

(1 ¡ a)k(b ¡ a)k

k!zk
P (b ¡ a + k; z): (3.26)

However, this representation lacks the separation into levels with exponentially
decaying factors and incomplete gamma functions of real argument. In [5], this
solution is shown (when a00 = 1) to be a representation of the con®uent hypergeo-
metric function M (a; b; z).

3.3. Matching

Before moving to a numerical illustration, we address the matter of identifying
our Hadamard expansion solutions w1(z) and w2(z), de­ ned in (3.20) and (3.24),
in terms of the familiar con®uent hypergeometric functions M(a; b; z) = 1F1(a; b; z)
and U (a; b; z). It is clear that w1(z) and w2(z) must be expressible as linear com-
binations of these two solutions in the form

U (a; b; z) = C1w1(z) + D1w2(z);

M (a; b; z) = C2w1(z) + D2w2(z);

where the Cj, Dj (j = 1; 2) are constants and z lies in the principal sheet.
The con®uent hypergeometric functions have the leading asymptotic behaviour

for large jzj given by

M (a; b; z)

¡ (b)
=

e º iaz¡a

¡ (b ¡ a)
(1 + O(z¡1)) +

ezza¡b

¡ (a)
(1 + O(z¡1)); ¡ 1

2
º < arg z < 3

2
º ;

U (a; b; z) = z¡a(1 + O(z¡1)); ¡ 3
2 º < arg z < 3

2 º

(see [1, eqns (13.5.1) and (13.5.2)]). The Poincaré asymptotic expansions of w1(z)
and w2(z) follow from (3.20) and (3.24) by formal replacement of the incomplete
gamma functions with unity in the Hadamard expansions at the zeroth level (see [7]
for a justi­ cation of this process), to ­ nd

w1(z) ¹ z¡a
1X

k = 0

( ¡ )k(a)k(a ¡ b + 1)k

k!zk
; j arg zj < º ;

w2(z) ¹ za¡bez
1X

k = 0

(1 ¡ a)k(b ¡ a)k

k!zk
; j arg(¡ z)j < º :

Comparison with the above leading behaviours shows that C1 = 1, D1 = 0, to yield

U (a; b; z) = w1(z); j arg zj < º : (3.27)

Similarly for the function M (a; b; z), the solution3 w2(z) is exponentially large
along a ray in the right-hand plane, while along a ray in 1

2
º < j arg zj < º the

3We remark that the solution w2(z) is a constant multiple of the solution V (a; b; z) de¯ned
in [4, p. 256].
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solution w1(z) is dominant. Hence C2 = ¡ (b)=¡ (a) and D2 = eº ia ¡ (b)=¡ (b ¡ a),
to yield

M (a; b; z) =
¡ (b)

¡ (a)
w1(z) + e º ia ¡ (b)

¡ (b ¡ a)
w2(z); j arg( ¡ z)j < º : (3.28)

These expansions were obtained in [6] by a process derived from the Laplace integral
representations for the con®uent hypergeometric functions.

4. Modi¯ed Hadamard expansions

In using our expansions to generate numerical approximations of U (a; b; z) and
M (a; b; z), we must deal with the slow convergence of the tails of the Hadamard
expansions mentioned in x 1 (also see [5]). Thus, at each level n, we consider a
typical Hadamard expansion Sn(z) in (2.4) and write

Sn(z) =

Mn¡1X

k = 0

ankYnk(z) + Tn(Mn; z); (4.1)

where Mn is (for the moment) an arbitrary truncation index and the tail is

Tn(Mn; z) =

1X

k = Mn

ankYnk(z): (4.2)

As has been done throughout in [5,6], we employ the strategy of expressing the Ynk

in (4.2) in terms of the function 1F1 by means of

P (a; x) =
xae¡x

¡ (a + 1)
1F1(1; 1 + a; x)

(recall (1.4)), followed by use of the Maclaurin series for 1F1 and an interchange
in the order of summation. Proceeding in this manner for the zeroth-level tail for
w1(z) (with ¶ 0 = 0 and a00 = e¡ia³ ), we ­ nd

T0(M0; z) = e¡jzj
1X

r = 0

jzjr
1X

k = M0

( ¡ )k(a)k(a ¡ b + 1)k

k! ¡ (a + k + r + 1)
e¡i(a + k) ³

= e¡jzj¡ia³
1X

r = 0

¼ r0(M0) À r
0; (4.3)

where À 0 = jzj=M0 and the coe¯ cients ¼ r0 are de­ ned by

¼ r0(M0) = M r
0

1X

k = M0

(a)k(a ¡ b + 1)k( ¡ e¡i³ )k

k! ¡ (a + k + r + 1)

=
M r

0

¡ (a + r + 1)
2F1(a; a ¡ b + 1; a + r + 1; ¡ e¡i ³ ) c M0 :

Here, 2F1(¢) c M0
denotes a truncated 2F1 function; that is, the function 2F1 with the

­ rst M0 terms of its Maclaurin series deleted.
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A similar process applies to the tails produced by truncating the series at other
levels. For n > 1, equation (4.2) becomes

Tn(Mn; z) =

1X

k = Mn

ank

(!njzj)k + 1
P (1 + k; !njzj);

which, after using (1.4) and the subsequent representation of 1F1 as a Maclaurin
series and a change in the order of summation, becomes

Tn(Mn; z) = e¡!n jzj
1X

r = 0

(!njzj)r
1X

k = Mn

ank

(k + 1)!

1

(k + 2)r

= e¡!n jzj
1X

r = 0

¼ rn(Mn) À r
n; (4.4)

with À n = !njzj=Mn and

¼ rn(Mn) = M r
n

1X

k = Mn

ank

(k + r + 1)!
; (4.5)

in view of the identity (k + 1)!(k + 2)r = (k + r + 1)!.
An integral representation of ¼ rn for n > 1 can be determined from the generating

function for the coe¯ cients ank. With Gn ² G in (3.15), we obtain (see [5, x 5])

1

r!

Z 1

0

(1 ¡ u)rGn(u) du =

1X

k = 0

ank

(r + k + 1)!
;

whence, in view of (4.5), we deduce that

¼ rn(Mn) = M r
n

½
1

r!

Z 1

0

(1 ¡ u)rGn(u) du ¡
Mn¡1X

k = 0

ank

(r + k + 1)!

¾
:

This expression is suitable for e¯ cient machine-assisted computation, and avoids
resorting to in­ nite series to e¬ect the computation of the ¼ rn.

5. A numerical example

The results of the preceding sections can be assembled to compute an e¬ective
high-precision approximation scheme for the con®uent hypergeometric functions
U (a; b; z) and M (a; b; z). We illustrate the procedure with one example concern-
ing the computation of U (a; b; z); other examples, including the Bessel functions,
the incomplete Airy function and the gamma function, can be found in [5{7].
From (3.27) and (3.20), we have

U (a; b; z) = z¡a
1X

k = 0

( ¡ )k

k!zk
(a)k(a ¡ b + 1)kP (a + k; jzj) +

1X

n= 1

e¡ « njzjS(1)
n (z); (5.1)

where S
(1)
n (z) is de­ ned in (3.21). The coe¯ cients a

(1)
nk appearing in S

(1)
n (z) are

de­ ned by means of the recurrence relation (3.5) with · n = 1, » n = !ne¡i³ , ¶ n =
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Figure 2. Magnitudes of terms (plotted on a log10 scale) against ordinal number k in
levels 0, 1 and 2 of the Hadamard expansion of U ( 3

5 ; 1; x), and of terms in the rearranged
tails resulting from the choices M0 = 30 and M1 = 20. The ¯rst term in the third level
(not shown) is of order 10¡ 20 .

« ne¡i ³ and the choice a00 = e¡ia³ . From this, it is evident that these coe¯ cients
are ³ dependent. The quantities !n and « n are de­ ned in (3.13) and (3.14) and
are also seen to be ³ dependent. For the solution w1(z) at level n = 1, we have
!1 = minf1; j1 + e¡i³ jg (since ¶ 1 = e¡i ³ ), that is,

!1 =

(
1; j ³ j 6 2

3 º ;

(2(1 + cos ³ ))1=2; 2
3 º 6 j ³ j < º :

(5.2)

In the sector j arg zj 6 1
2 º , the !n for the solution w1(z) are consequently indepen-

dent of ³ and we have !n = « n = 2n¡1 (n > 1). In the sector 1
2
º < j arg zj < º ,

however, an increasingly ­ nely structured piecewise ³ dependence holds for the !n

at the higher levels n > 1, of which (5.2) represents this dependence at level n = 1
(for a further discussion of this point, see [6]).

The Hadamard series in (5.1) are written in the modi­ ed form (4.1) and (4.2),
where the truncation indices Mn of the main sums and Nn of the rearranged abso-
lutely convergent tails Tn(Mn; z) are chosen according to the level of precision
sought. For example, if we wished to know the value of U ( 3

5 ; 1; z) for z = 10 to an
accuracy of at least 10¡20, say, then we must examine the magnitudes of the terms
present in the series for the truncated Hadamard series and their associated tails.
This can be done once initial truncation indices for the various levels have been
determined.

In order to ensure a rapid decay of the terms in the rearranged tails Tn(Mn; z),
we will want to insist on the variable À n in (4.3) and (4.4) satisfying À n < 1, which
in turn requires, for the zeroth level, that M0 > bjzjc + 1, and for levels n > 1,
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Table 1. Absolute values of the error in U (a; b; z) when a = 3
5
, b = 1

and z = 10 at di® erent levels n
(The truncation indices employed are indicated in the text.)

n approximation to U (a; b; 10) jerrorj

0 0.243 10 145 842 889 957 27 1:888 £ 10¡ 6

1 0.243 103 033 91 945 025 62 5:225 £ 10¡ 11

2 0.243 103 033 544 192 235 5 6:954 £ 10¡ 20

exact 0.243 103 033 544 192 235 82 0

Table 2. Absolute values of the error committed in approximating
U ( 3

5 ; 1; 10ei ³ ) for di® erent ³

³ jerrorj

0 6:954 £ 10¡ 20

1
6 º 6:695 £ 10¡ 20

1
3 º 6:883 £ 10¡ 20

1
2 º 7:212 £ 10¡ 20

that Mn > bj!nzjc + 1. Once the Mn have been selected, the terms in the tails can
be computed by truncating them after Nn terms commensurate with the level of
precision required. We show in ­ gure 2 the magnitude of the terms (on a logarithmic
scale) in the di¬erent levels of the expansion (5.1) against ordinal number for z = 10
and a given choice of truncation indices. We observe that the terms in the tails of
the modi­ ed expansions decay at a rate that is roughly speaking the same as that
in the initial asymptotic-like phase of the corresponding ­ nite main sums.

With these considerations in mind, we make the choices (M0; N0) = (30; 22),
(M1; N1) = (20; 18) and (M2; N2) = (40; 0) (that is, no terms from the tail at
level 2 are used) to compute our estimated value of U ( 3

5 ; 1; 10) from (5.1) to an
accuracy of order 10¡20. The results of these computations using Mathematica
are presented in table 1.

The Hadamard expansion (5.1) is quite robust in the sense that it will produce
high-quality estimates for U (a; b; z) over a wide range of values of the phase of z
using truncation indices selected for a ­ xed phase of z. To illustrate this, with our
truncation indices chosen for z = 10 (that is, arg z = 0), we obtain estimates for
U ( 3

5 ; 1; 10ei ³ ) of a calibre comparable to that obtained for the case with ³ = 0 in
the whole right half-plane. A summary of the accuracy is supplied in table 2.

As the phase varies so that z swings round towards the negative real axis, the
expansion (5.1) retains its validity although the exponential separation between the
di¬erent levels n > 1 progressively decreases on account of the fact that !n ! 0
(and « n ! 1) as j³ j ! º (cf. (5.2)). This is how the Stokes phenomenon manifests
itself in a Hadamard expansion: the rays arg z = § º are Stokes lines for the function
U (a; b; z). As a Stokes line is approached, the di¬erent Hadamard expansions in (5.1)
begin to `sense’ this approach at a maximum angular distance of 1

2 º on either
side of a Stokes line (see [6]) by progressively losing their exponential separation.
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Consequently, a given desired level of precision in an estimate produced by (5.1)
will require the use of more levels, and more terms in the tails as ³ ! § º . A better
approach is to use connection formulae to render evaluation in the left half-plane
in terms of other functions, better suited for computation there.

An analogous situation occurs for M (a; b; z) in the neighbourhood of the ray
arg z = 0, which is a Stokes line for this function. For the solution w2(z), the
sectorial structure of the quantities !n and « n is reversed, that is, these quantities
are independent of ³ in the sectors 1

2 º 6 j ³ j 6 º and possess a similar ³ dependence
to that for the solution w1(z) in the sector j³ j < 1

2 º , with the result that !n ! 0
(and « n ! 1) as ³ ! 0 for n > 1. We remark that the matter of handling the
Stokes phenomenon has not been dealt with within the con­ nes of the di¬erential
equations theory described in the present paper. The reader interested in the Stokes
phenomenon can ­ nd a detailed account in [7], developed in the setting of Hadamard
expansions derived from Laplace integral representations.

6. Closing remarks

On the strength of the technique outlined in the development of Hadamard expan-
sions of solutions of the con®uent hypergeometric equation, it is fair to say that
the elements of a manageable theory of developing such expansions directly from
di¬erential equations are now in place. The special properties of the Ynk listed in
lemma 2.1 are, however, tightly coupled to di¬erential equations of hypergeometric
type (especially in view of (2.6)). We mention here that preliminary investigations
suggest additional classes of hypergeometric di¬erential equations may be within
the scope of the methods presented in this paper.

To give the reader an idea of how the method changes if the di¬erential equation
under analysis is perturbed from the form discussed here, let us suppose we alter
Kummer’s equation (3.1) to

zw00 +

µ
b ¡ z +

c

z

¶
w0 ¡

µ
a +

d

z

¶
w = 0: (6.1)

This perturbs each of the derived and underived terms in (3.1) at a singularity of
the di¬erential equation.

The reduction process can be carried out as in x 3, with some minor modi­ ca-
tion. Properties supplied in lemma 2.1 apply as before, but now need extension to
handle additional forms appearing in the reduction process for each Ln leading to
the formulation of the recurrence relation for the coe¯ cients ank and the ensuing
residual exponential terms. Additionally, it may be necessary to modify the scale
fYnkg used in fashioning the Hadamard expansion.

For example, for (6.1), terms such as z¡1Ynk, z¡2Ynk and z¡3Ynk arise early on
in the reduction process for the levels Ln. To cope with these, it is convenient to
extend the list of relations in lemma 2.1 to include

1

z
Ynk = » nYn;k + 1 +

e¡ » nz

z¡ ( · n + k + 1)
;

1

z2
Ynk = » 2

nYn;k + 2 +

µ
1 +

» nz

· n + k + 1

¶
e¡ » nz

z2 ¡ ( · n + k + 1)
;
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1

z3
Ynk = » 3

nYn;k + 3 +

µ
1 +

» nz

· n + k + 1
+

( » nz)2

( · n + k + 2)(· n + k + 1)

¶

£ e¡ » nz

z3 ¡ ( · n + k + 1)
;

these extensions all arise upon repeated application of (2.8). It is an immediate
consequence of these properties that the residual exponential terms will also include
factors of 1=z, 1=z2 and 1=z3, making the cancellation process from one level to the
next a more delicate a¬air as all coe¯ cients of these reciprocal powers of z must
be matched simultaneously.

In allowing the perturbations we consider here, it is natural to consider modi-
­ cations of the Ynk, so that, instead of seeking an expansion of the form in (2.3)
and (2.4), we can consider other possibilities such as

w(z) =

1X

n= 0

e¡ ¶ nz ~Sn(z); with ~Sn(z) =

1X

k = 0

ankYnk(z)

µ
1 +

Ank

» nz

¶
:

The additional factor 1 + Ank( » nz)¡1 appended to Ynk may facilitate the cancella-
tion process.

These variations lead to more complex recurrences and residual exponentials.
For (6.1), the ank counterpart to (3.5) includes at least one additional term if
c 6= 0 in (6.1), with d making its presence felt in the third term of the perturbed
counterpart to (3.5). Use of a modi­ ed scale fYnk(z) ¢ (1 + Ank( » nz)¡1)g results
in a similarly laden recurrence in ank, which is simultaneously a recurrence in Ank

and includes yet another term,

an;k + 1 ¶ n( ¶ n + 1)

+ ank » n

½
( · n + k)(1 + 2¶ n) ¡ b¶ n ¡ a +

¶ n( ¶ n + 1)

» n
Ank

¾

+ an;k¡1 » 2
n

½
[1 + (2 ¡ b) ¶ n ¡ a + ( · n + k ¡ 1)(1 + 2 ¶ n)]

An;k¡1

» n

¡ [ ¶ nc + d + ( · n + k ¡ 1)(b ¡ · n ¡ k)]

¾

+ an;k¡2 » 3
n

½
(2 ¡ b ¡ d ¡ ¶ nc)

An;k¡2

» n

¡ ( · n + k ¡ 2)

·
c + (b ¡ · n ¡ k ¡ 1)

An;k¡2

» n

¸¾

¡ an;k¡3 » 4
nc( · n + k ¡ 2)

An;k¡3

» n
= 0:

We observe that, with c = d = 0 and Ank = 0 for all n and k, this ­ ve-term
recurrence relation reduces to (3.5). The solution of such a double recurrence is
problematical, at best.

Other types of di¬erential equations may prove more amenable to the techniques
described in this paper.
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