
X-Secure: protecting users from big bad wolves

Binnie, Robbie
McLean, Colin
Seeam, Amar
Bellekens, Xavier

This is the accepted version of a paper, © 2016 IEEE, published on
IEEE Xplore Digital Library, Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Article available at:
https://dx.doi.org/10.1109/EmergiTech.2016.7737330

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228176529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

X-Secure: Protecting Users from Big Bad Wolves
Robbie Binnie †, Colin McLean † Amar Seeam ∗, Xavier Bellekens †

∗Middlesex University {initial.surname}@mdx.ac.uk
†Abertay University {name.surname}@abertay.ac.uk

Abstract—In 2014 over 70% of people in Great Britain
accessed the Internet every day. This resource is an optimal
vector for malicious attackers to penetrate home computers
and as such compromised pages have been increasing in both
number and complexity. This paper presents X-Secure, a novel
browser plug-in designed to present and raise the awareness
of inexperienced users by analysing web-pages before malicious
scripts are executed by the host computer. X-Secure was able to
detect over 90% of the tested attacks and provides a danger level
based on cumulative analysis of the source code, the URL, and
the remote server, by using a set of heuristics, hence increasing
the situational awareness of users browsing the internet.

I. INTRODUCTION

With web application based attacks being so prevalent,
studies suggest that there are problems with the manner in
which web pages are being created and although this is
the programmers responsibility to solve, users must remain
vigilant. With the vast number of non-technical people
accessing web resources, along with technical users becoming
overly complacent, a large number of attacks do eventually
succeed [1].

Current research focuses on providing security by modifying
the server side of the web application [2] [3] [4]. These
applications provide good security but are often difficult to set
in place and require numerous modifications to non-standard
frameworks. X-Secure on the other hand, is provided to the
user as a Google Chrome browser-plugin and does not require
any modification from the server side, whilst providing acute
security.

II. CROSS SITE SCRIPTING

Cross site scripting (XSS) is one of the most common
vulnerabilities exploited with 73% of all attacks carried
out being of this type [5]. This is also apparent, due to
vast amount of available literature identifying the different
intrusion types [6] [5] [7].

There are three main types of XSS;
• Reflective
• Persistant
• Document Object Model (DOM)
Reflective attacks are the most common and persistent tend

to be the most dangerous. Reflective attacks store malicious
JavaScript code within a URL, which can be detected by
URL searches. On the other hand, persistent attacks retrieve

the malicious code from a database, which incorporates
malicious code within the legitimate HTML and JavaScript;
as such a set of heuristics have to be created to thwart these
attacks efficiently. DOM based attacks focus on modifying
the DOM environment in the browser, in order for the code
to be run in a malicious manner and infect the user.

In order for an attack to take place, a malicious user
must artifice the server/browser into thinking the information
being sent to it is legitimate code. For this to occur, the
HTML tag <script > is used.

Under normal execution when the browser obtains this
tag, everything after it is executed until the tag is closed.
Once the server incorporates the string either from the
database or the URL the browser has no way of deciphering
if the script tag is legitimate or contains dangerous code.
Hence if this tag is injected, the browser will believe it to be
legitimate code.

However, not all XSS require a script tag to be present. It
is also possible to include scripts within tags;
however, it will have to be clicked in order for the code to
be executed. If the text javascript: is present and the code is
entered within the href attribute of the <a ... > tag it will be
rendered as regular code when clicked. An example is shown
in Figure 2.

<A HREF="javascript:document.location=
’http://www.google.com/’">XSS

Fig. 2. Redirection Attack Using Persistant Cross-Site-Scripting

The code shown in Figure 2 aims at redirecting the
user to Google when the link is clicked. This type of
attacks often evades filter detection, as they are signature
based attacks, such as in intrusion detection systems [8]. A
possible solution against this is proposed by Hodo et al. by
using neural networks to detect anomalies in networks [9],
a similar solution is presented for SQL injections by
Sheykhkanloo et al. in [10].

The onerror attribute of HTML image tags are also
able to contain scripts, in order for these to execute, the script

Fig. 1. X-Secure Protecting Users from Malicious Persistent and Reflective XSS Attacks

does not require any tags or the text script to be present. It
also does not require the user to click any link. When an
image is requested but not obtained the browser will check
for the onerror attribute of the tag, if a malicious attacker
has injected XSS to this attribute, the malicious code will
automatically be executed by the browser.

A. Heuristics

Regular expressions have become more common within
computing and as such many developers have invested signifi-
cant time improving their usability, bordering on allowing nat-
ural language processing. Although many of the improvements
with regular expressions have focused on text processing,
it is also be possible to use these improvements to help
detect malicious code within web pages, as demonstrated
in [11] and [12].

III. METHODOLOGY

X-Secure consists of four main components. These are
designed with efficacy and usability in mind in order to
provide the user with a simple interface while drastically
increasing its safety. Figure 1 (Red) Demonstrates how X-
Secure is able to deflect persistent XSS attacks and reflective
attacks (Blue) by making use of its four main components.

a) Application Controller:: The first is the controller,
which is used to run all of the individual threat detecting
techniques and correlate the results. The controller is also
used to communicate with the user interface. The controller
also provides a danger rating to the user, based on the
number and types of attacks found in a single web page.
This functionality allows tailored danger ratings. Moreover
a blocking box is also provided to the user, allowing a
notification to be displayed to the user before any suspicious
code is executed within the page, inherently preventing the
user to get harmed.

b) URL Scanning:: Another key component of X-Secure
is the function that will determine if an attack is present
within the URL. This component takes a URL string and
searches it for different signatures. Originally a centralised
JavaScript Object Notation (JSON) string was used to store
the list characteristics; however, loading the data from another
file was detrimental to performance and as such a pre-defined
array within the script is now used. The array is based on the
OWASP cheat sheet [13] which contains a list of all possible
strings that contain the following character <. Scanning the
URLs for this character allows reflective cross site scripting
attacks to be prevented [14].

Using the Chrome extension manifest it is possible to
run a section of code on a webpage before the rest of
the webpage is executed. Running this component at
document start guarantees that the URL can be scanned
before any code is executed as shown in Figure 3.

c) Local Analysis:: In order to detect persistent attacks
a search component was developed. To avoid synchronicity
issues the component was created to operate locally on
the host computer; increasing the throughput of the search
engine. The search component makes use of numerous regular
expressions in order to detect persistent cross site scripting

Fig. 3. Pop-up executing before the Malicious Javascript is Executed

TABLE I
ATTACK TYPES, AND DANGER RATING LEVEL PROVIDED TO THE USER.

Web Page ID Attack Type Attack Code Detected Defeated Danger Level
1 URL scan data=alert(”hello world”) Yes Yes 65
1 URL scan data= <script >alert(”hello world”) </script > Yes Yes 65
1 URL scan data=%3Cscript >alert(”hello world”)%3C/script > Yes Yes 65
2 Local search window.open(”hello” + document.cookie) Yes Yes 65
3 Local search Yes Yes 75
2 Local search $.ajax(type: ”post”, url:,192.168.123.2, data:data); Yes Yes 37
2 Remote,Search Yes Yes 2
3 Remote,Search Yes No 20
4 Remote,Search window.open(”test.php?cookie=”,+ document.cookie) No No 0
4 Remote,Search Yes No 22

attacks present within the source code.

In order to stop the attack before it has executed, the
full DOM requires a thorough scan; however; the full DOM
is only available after all of the code within it has run. To
circumvent this behavior, our application makes use of a
JQuery function, allowing a synchronous request of a web
page, hence our application is able to scan the webpage
before being displayed, and the attack being executed.

X-Secure currently focuses on three main type of
attacks: AJAX post cross domain; Opening window with
document.cookie passed as an argument and loading an
image with document.cookie. These were selected due to
their severity, and their potential to allow a malicious user
to gain authentication cookies. Moreover X-Secure is able to
detect IP addresses with the code increasing the danger level
provided by our application as malicious attacks URL often

Fig. 4. Raising the Situational Awareness of the User through Graphic Design

contain a server IP address rather than a domain name [15].

d) Remote Update:: X-Secure is provided with a server
analysis component allowing the extension to stay up to date
at all times. The remote analysis automatically includes new
attacks detected to the database engine by providing the new
signatures directly to X-Secure. This can be enabled by the
user in the options. This feature allows improvement of the
services provided and will increase the number of signatures
on the server side without having to modify the application
source code. This technique is used by numerous application
such as Adblock, through their filter lists [16].

IV. PRELIMINARY RESULTS

In order to demonstrate the resilience of X-Secure four web
pages exploiting different vulnerabilities have been created.
These allow X-Secure to be analysed against different test
cases and provide the authors with feedback.

• The first webpage contained a non-persistent attack, in
which data passed to the URL is insecurely echoed onto
the page.

• The second page is used to simulate potential persistent
attacks, making use of a hard coded section that has the
characteristic of an attack.

• The third page is a dynamic web page using a database
with no input sanitisation allowing the tester to create
custom attacks and check the effectiveness of the exten-
sion.

• The fourth page is used to test the server side analysis
by posting the DOM of a custom web page.

Table I provides preliminary results for different types of
attack. As shown, a danger value is returned along with the
result (blocked/ not blocked). Moreover the attack code is
also provided along with the type of analysis provided by our
application.

Table I demonstrates that the application is able to detect over
90% of the attacks including unknown attacks and provides a
danger accuracy for most of the attacks. It also demonstrates
that our application is able to avoid 70% of the attacks before
execution.

The remote search was unable to detect attack 9 due to
not having any regular expression associated with this attack
being present in the database; however, once the database
was updated this attack was detected and reported to the
user. This attack was only run and included within the results
to demonstrate that no code has to be changed in order to
improve the capabilities of the searching function.

When used on a larger website the application demonstrated
a drop in performances, this lead to the decision modifying
the core of the search engine and provide the application with
asynchronous results.

This core modification leads to a performances increase,
however it also increases the risk of successful attacks. The
trade-of however provided the user with seamless browsing,
whilst keeping them informed on the health status of the
webpage with only a slight delay.

In order to increase the longevity of the application,
an external database is used to provide X-secure with
new heuristics, and increase its awareness and detection
capabilities.

Moreover X-secure improves the threat analysis and
increases the danger level based on previous attacks detected.
As previous attacks provide similar heuristics X-secure is
able to raise the danger level of a page based on its current
knowledge and assessment of the page, hence providing the
user with a semi-intelligent application whilst protecting
him from external threats. The application also provides a
visual level of danger allowing to raise the users situational
awareness as shown in Figure 4

V. CONCLUSION

This paper presented X-Secure, a novel cross site scripting
extension for the Chrome browser, providing the user with a
higher level of security when accessing the internet and can
evade reflective, persistent and DOM based attacks.

In this work X-Secure was evaluated against numerous
different attacks and was provided with local and remote
scanning capabilities. The extension is also able to provide
the user with a danger level, ultimately raising the user
awareness. X-Secure demonstrated a high level of accuracy
as well as learning capabilities. In future work, it is planned
to increase the remote database with user feedback as well
as implementing a Bayesian classifier in order to detect new
attacks and increase the accuracy. The extension will also be
released in the Google Chrome Web Store.

REFERENCES

[1] D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws. John Wiley & Sons, 2011.

[2] P. Bisht and V. N. Venkatakrishnan, Detection of Intrusions and
Malware, and Vulnerability Assessment: 5th International Conference,
DIMVA 2008, Paris, France, July 10-11, 2008. Proceedings, ch. XSS-
GUARD: Precise Dynamic Prevention of Cross-Site Scripting Attacks,
pp. 23–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[3] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “Swap:
Mitigating xss attacks using a reverse proxy,” in Proceedings of the 2009
ICSE Workshop on Software Engineering for Secure Systems, pp. 33–39,
IEEE Computer Society, 2009.

[4] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song,
“A systematic analysis of xss sanitization in web application frame-
works,” in Computer Security–ESORICS 2011, pp. 150–171, Springer,
2011.

[5] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. Petkov, XSS Attacks:
Cross Site Scripting Exploits and Defense. Elsevier Science, 2011.

[6] S. McClure, J. Scambray, and G. Kurtz, Hacking Exposed 7: Network
Security Secrets and Solutions. Hacking Exposed, McGraw-Hill Educa-
tion, 2012.

[7] A. Y, The Art of Hacking. Lambert Academic Publishing, 2012.
[8] X. J. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and

T. Kirkham, “A highly-efficient memory-compression scheme for gpu-
accelerated intrusion detection systems,” in Proceedings of the 7th
International Conference on Security of Information and Networks,
p. 302, ACM, 2014.

[9] E. Hodo, X. Bellekens, A. Hamilton, P.-l. Dubouilh, E. Iorkyase,
C. Tachtatzis, and R. Atkinson, “Threat analysis of iot networks us-
ing artificial neural network intrusion detection system,” in Networks,
Computers and Communications, The 2016 International Symposium
on, May 2016.

[10] N. M. Sheykhkanloo, “Employing neural networks for the detection of
sql injection attack,” in Proceedings of the 7th International Conference
on Security of Information and Networks, SIN ’14, (New York, NY,
USA), pp. 318:318–318:323, ACM, 2014.

[11] X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and
T. Kirkham, “Glop: Enabling massively parallel incident response
through gpu log processing,” in Proceedings of the 7th International
Conference on Security of Information and Networks, SIN ’14, (New
York, NY, USA), pp. 295:295–295:301, ACM, 2014.

[12] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on, pp. 171–180, IEEE, 2008.

[13] “XSS filter evasion cheat sheet.” https://www.owasp.org/index.php/XSS
Filter Evasion Cheat Sheet. Accessed: 2016-03-30.

[14] X.-h. Zhang and Z.-j. Wang, “Notice of retraction a static analysis tool
for detecting web application injection vulnerabilities for asp program,”
in e-Business and Information System Security (EBISS), 2010 2nd
International Conference on, pp. 1–5, IEEE, 2010.

[15] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious urls,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1245–1254, ACM, 2009.

[16] A. K. Singh and V. Potdar, “Blocking online advertising-a state of the
art,” in Industrial Technology, 2009. ICIT 2009. IEEE International
Conference on, pp. 1–10, IEEE, 2009.

	Blank Page

