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ABSTRACT 
 
Developers strive to create innovative Artificial Intelligence 
(AI) behaviour in their games as a key selling point. Machine 
Learning is an area of AI that looks at how applications and 
agents can be programmed to learn their own behaviour 
without the need to manually design and implement each 
aspect of it. Machine learning methods have been utilised 
infrequently within games and are usually trained to learn 
offline before the game is released to the players. In order to 
investigate new ways AI could be applied innovatively to 
games it is wise to explore how machine learning methods 
could be utilised in real-time as the game is played, so as to 
allow AI agents to learn directly from the player or their 
environment. Two machine learning methods were 
implemented into a simple 2D Fighter test game to allow the 
agents to fully showcase their learned behaviour as the game 
is played. The methods chosen were: Q-Learning and an N-
Gram based system. It was found that N-Grams and Q-
Learning could significantly benefit game developers as they 
facilitate fast, realistic learning at run-time. 
 
INTRODUCTION 
 
There are a wide range of characteristics that can be used to 
categorise how intelligence can be represented within 
computer programs. Definitions of intelligence include the 
ability to make a decision based on information that has been 
obtained from the world or the ability to solve problems. 
Others would argue that for something to be recognised as 
intelligent, it must be able to exhibit evidence of learning and 
adaptation (Bourg and Seemann 2004a), something which 
has rarely been seen in games before. Agents that are able to 
constantly adapt could completely change the landscape 
when applying AI within games. Therefore, when 
considering how games should evolve in the future, it is wise 
to take into account AI that learns and directly reacts 
specifically to each player. 
The opportunity for increasingly complex AI techniques in 
games is improving as computational power in consoles and 
computers evolve (Bourg and Seemann 2004b; Vasquez II 
2011). Recently, the games industry has been heavily 
focused on improving the graphical quality of games, 

however AI is now one of the main elements of a game that 
allows it to stand out and make a real impact on the market. 
Unique, interesting, and impressive AI is becoming the main 
attraction of games (Schwab 2009). In particular, AI learning 
methods and the use of machine learning techniques within 
games during run-time is a largely unexplored territory in 
game development, but a popular field of research for 
academic uses (Dill 2011). There is a wealth of potential in 
applying machine learning techniques to games, as this could 
lead to having AI agents that adapt their behaviour to the 
current player and give a unique, personalised experience. 
Utilising learning techniques would allow AI agents to give 
unique reactive behaviour in response to individual players, 
which in turn could provide the distinctive breakthrough a 
game needs to give it a competitive edge. In addition, this 
would combat the problem of interactions with Non-Playable 
Characters (NPCs) becoming boring and predictable as a 
game goes on, which regularly leaves room for exploitation 
of the NPC behaviour and actively diminishes the challenge 
of the game (Bourg and Seemann 2004a). 
It is extremely rare but not unheard of for games to utilise 
machine learning methods at run-time. NERO 
(NeuroEvolving Robotic Operatives) is a game that allows 
players to use Artificial Neural Networks (ANN) to train 
agents to fight other NPC agents (NERO Team [no date]). 
However, it would be beneficial to investigate how 
behaviour could be adapted when the AI is learning from the 
players own behaviour during a game. 
These learning techniques could provide agents with 
completely tailored behaviour and reactions towards players. 
There is a possibility that AI agents learning from player 
behaviour could be detrimental to the gameplay, but on the 
other hand it could open up so many opportunities for 
different types of games and even the possibility of unique 
games that will stand out in a competitive market. Not only 
that, but using these techniques could increase the shelf-life 
of a game due to the many different ways to play it that this 
would provide (Stanley et al. 2005).  
The focus of this paper is the utilisation of different AI 
learning methods that will allow AI agents to adapt to 
individual players’ playing styles as the game runs in real-
time. The paper aims to record the process and evaluation of 
developing, designing and comparing two different machine 
learning techniques in order to present methods that are well 
suited, and can be realistically implemented, within games. 
The overall aim is to investigate if, and how, implementation 
of agents that learn can give each player a unique, tailored 
experience when interacting with them. 



Machine Learning 
 
There are several methods that facilitate learning, and the 
choice of which to use is largely application dependent.  
Supervised learning is a technique often used for 
backpropagation in Neural Networks and Decision Trees 
(Mathworks [No date]). Supervised learning uses training 
data provided to it in order to adjust internal parameters 
(such as weights) to provide the desired output. This 
technique is useful only if the desired output for the training 
data is known.   
Unsupervised learning is a technique commonly used in 
methods such as Self Organising Map Neural Networks 
(SOM), Adaptive Resonance Theory Neural Networks 
(ART), clustering algorithms such as K-Means and 
predictive techniques like N-grams. AI systems use this 
technique to categorise data by independently observing, and 
finding patterns or similarities in the inputs (AI Horizon [no 
date]).  
Reinforcement learning allows the AI agent to autonomously 
learn through experiencing the world, obtaining rewards or 
punishments given in response to their actions, which then 
influences their future decisions. Examples of Reinforcement 
Learning include Q-Learning, SARSA, and Temporal 
Difference Learning. The goal of the AI agent is to try 
different actions in order to make decisions based on which 
one gives them the largest reward (Whiteson 2007).  
Supervised learning is less suited to games than 
reinforcement learning as it requires a human expert to 
determine the desired outputs for the agent, and this limits 
the ability to learn during the course of a game (Whiteson 
2007). Reinforcement agents learn as they independently 
gain more experience from the world and do not require a 
human to guide their behaviour, allowing real-time learning 
without the need for human intervention. 
    
METHODOLOGY 
 
With a wide selection of learning models to choose from, 
this paper looks at two in detail that each have distinctive 
approaches to learning, are relatively easy to apply and are 
therefore appropriate for real-time applications; 
Reinforcement Learning as utilised in Q-Learning, and 
Unsupervised Learning as seen in N-Gram prediction.  

Reinforcement Learning 
 
Q-Learning was developed by Christopher Watkins in 1989 
(Watkins and Dayan 1992), and relies on experience based 
knowledge to focus on making optimal decisions based upon 
the outcome of interactions in the world (Poole and 
Mackworth [no date]). It is a type of reinforcement learning 
for AI agents that uses trial and error to learn more about the 
world, actions, and consequences. AI agents carry out 
actions, and based on the outcome they are given a value as a 
‘reward’ or ‘punishment’ so that the agent can record this 
and try to make a more optimal decision next time (Watkins 
and Dayan 1992).The agents check and update the Q-Value, 
which is a function of the current state and the chosen action, 
based on the experience they gain as they continually attempt 
to solve specific problems. The Q-Value is increased if the 
agent is rewarded in order to improve the probability of the 
agent choosing that action again when in the same state, 
whereas for punishment the Q-Value is reduced to make it 
less likely that it will be chosen (DeWolf 2012). The agent 
eventually learns the optimal policy by recurrently 

attempting actions in each state and finding the best Q-Value 
for that particular action-state pair (Poole and  Mackworth. 
[No date].  
Q-Learning has four parts for every decision: The initial 
state, the action taken, the reward, and the new state to which 
the agent has moved. Each action can be represented by this 
sequence and the agent’s knowledge of the game space only 
changes when it carries out an action and lands in a new 
state. This means the agent learns from its interactions and 
the consequences it experiences in order to improve and 
make better decisions. An example of this method being 
used are AI programs that can learn how to play video 
games, such as Google’s Deep Q-Network program (Lewis 
2015), however this could be integrated into agents within 
games in order to learn from the player. 
The Q-Value that represents how effective an action is in a 
given state is calculated using an iterative process in order to 
refine the Q-Value estimate (Poole 2010) as shown in 
Equation (1) below: 
 

( ) ( )1( , ) 1n nQ S A L Q LR+ = − +                   (1) 

where S is the current state, A is the action chosen, L the 
learning rate and R the reward value. The above rule uses the 
reward given along with the learning rate in order to 
determine the new Q-Value. The learning rate is a value 
between 0 and 1 that determines how much affect the current 
Q-Value has on the newly calculated Q-Value. The larger the 
learning rate, the more influence the reward has on the new 
Q-Value, and the less effect the current Q-Value has. For the 
test game, tuning the learning rate to produce the best 
outcome resulted in a value of 0.5. This learning rate was 
suitable as the Q-Value relied equally on both the current Q-
Value and the reward, which allowed the agent to learn 
quickly as well as reliably. Reward values are dependent on 
the result of the action, so as to determine the appropriate 
value that will encourage or deter an action from happening 
again. For this application the reward values given for the 
various actions are reliant on the health changes of the player 
and agent, and are shown in Table 1. 
Reward values were designed to appropriately encourage the 
agent to learn from its mistakes, and to aim towards higher 
rewarded actions throughout the game. The Q-Value is 
calculated each time the player performs an action, so that 
the Agent counters this with the action given by the Q-
Learning algorithm. The action with the highest quality value 
in that state is chosen when the action is being determined, 
which ensures that the agent is performing the most desired 
action in retaliation. 
 
Unsupervised Learning 
 
N-Grams are a type of unsupervised learning technique used 
in order to learn patterns in sequences. Through the use of 
string matching, the current actions of the player are 
compared to a record of the previous sequences of actions to 
find identical sequences for prediction (Tucci 2014). 
Sequences are stored in a window of size N to be checked. 
For example a 4-Gram records the frequency of a sequence 
of four actions, and when the player next performs the first 
three actions the fourth is predicted (Millington and Funge 
2009). When predicting, the most frequent action that 
follows a sequence of the player’s current actions up to a 
window of size N – 1 is chosen. It is important however that 
the size of the window is suitable for the range of actions 
available to the player. If the window size is too small 
predictions will be less accurate as there is not enough 



history to check, whereas if the window size is too big 
predictions will be less accurate due to randomness in the 
history and sequences are less likely to be matched to an N-
Gram (Tucci 2014). 
 

Table 1: Reward Table 
 

Result Reward 
Value 

Reason 

Both Player and 
Agent were not 
hit 

0 No reward given for no 
effect on Player or Agent 

Player and Agent 
damaged each 
other  

0.3 Small reward given because 
damaging the Player is a 
positive action, however not 
given full positive reward 
because Agent was 
damaged also. 

Player damaged, 
Agent safe 

1.0 Largest reward given 
because damage caused to 
player, but Agent took no 
damage 

Agent damaged, 
Player safe 

-1.0 Largest negative reward 
given, because Agent took 
damage while Player did not 

Agent hit, but 
health did not 
change 

0.7 Large positive reward, as 
this means the Agent 
blocked the attack correctly 

Player hit, but 
health did not 
change 

-0.5 Negative reward, as this 
indicates the player blocked 
the attack successfully 

  
This technique is sometimes used in combat/fighting games, 
as it finds patterns in the input or sequence of events by 
looking at their history as they happen, and can therefore 
react specifically to the player’s current action (Millington 
and Funge 2009). This means a co-operative AI agent could 
imitate the player’s style to benefit the player in game play, 
or an enemy AI agent can adapt its style uniquely against 
each player. It is a type of learning algorithm that would lend 
itself well to games where the player has a specific style they 
use for game play, because the N-Grams could then use the 
player’s input history to learn their patterns and hence adapt 
to the player (Vasquez II 2011). 

Developing the Test Game 
 
The design and creation of the test game was heavily focused 
on what kind of game would provide instant, realistic, and 
clear learning abilities in AI agents if machine learning was 
used to control their behaviour. When reflecting on the 
criteria needed for the game, a 2D Fighter game with an AI 
controlled opponent, similar to Street Fighter (Capcom 1987) 
or Mortal Kombat (Midway Games 1992), was chosen.  
The player interacts with the game by pressing controls that 
correspond to moves the player can make. Both the player 
and the AI agents can move around the screen in order to get 
close enough to attack the other, or to move out of their 
range. A screenshot of the game while it is running is shown 
in Figure 1.  The moves that the AI agent and player can 
perform are: jump, crouch, move, punch, low kick, high 
kick, low block, and high block. The advantage of 
demonstrating the agent’s learning capabilities in this type of 
game is that it is clear to see how the agent’s knowledge 
improves over time. For example, the player might punch the 
agent, and the agent will take damage. All the agent will 

know is that its upper body was hit, and it lost health. As its 
knowledge improves and it tries different moves in response 
to this, the agent should learn strategies such as blocking its 
upper body when the player punches, or punching the player 
back. This type of reaction shows the player how the agent 
has been learning from its experience during the fight. Based 
on the effect of the players move on the AI agent, the agent 
can learn to predict or counter those moves more effectively 
as the fight progresses. 
 

 
 

Figure 1: Screenshot from the Game 
 
 
EVALUATION 
 
Qualitative Evaluation 
 
In order to evaluate the machine learning methods 
implemented in the test game a questionnaire was developed 
with the aim of gathering information on their effectiveness. 
The questionnaire was created using Google Forms that 
testers could fill in online, and the game’s test build was 
distributed via a download link on Google Drive. 
 
Quantitative Evaluation 
 
The quantitative testing focused on the technical side of 
implementing the machine learning techniques. Technical 
qualities to be tested were inspired by the prominent 
computer scientist Pieter Spronck’s list of requirements for 
successful online learning algorithms. In the paper ‘Online 
Adaptation of Game Opponent AI in Simulation and In 
Practice,’ Spronck et al. state that online learning methods 
must be “Fast, effective, robust, and efficient” in order to be 
successful in a real time environment (Spronck et al. 2003). 
Therefore, the following aspects of each method were 
evaluated: 
 
 
• Processing speed during run-time  

(Evaluation of speed and efficiency) 
 
 

• Accuracy and error  
(Evaluation of effectiveness and robustness) 

 
 
 



RESULTS 
 
Qualitative Results 
 
Twelve testers participated in playing the game and 
completed the questionnaire, which was split up into three 
sections: 
 
• Section 1: Q-Learning (6 questions) 

• Section 2: N-Grams (6 questions) 

• Section 3: Comparison (12 questions) 

Testers were asked to indicate their thoughts on the 
behaviour of the AI Agent using a Likert scale from 1 to 5; 
where 1 meant did not agree at all and 5 meant they agreed 
extremely. In addition, several other questions were posed to 
gain more insight into the testers’ decisions, the results of 
which are included below. The following aspects were 
examined: 
Realistic: It was important to ask for the testers’ opinions on 
how realistically the agent behaved, as AI in games needs to 
be highly believable in order to be immersive, whereas 
unrealistic AI agents can discourage players by frustrating 
them.  
Intelligent: The AI agent needed to act or give the illusion 
of intelligence to the player, so that the agent’s decision 
making seemed logical and understandable and thus 
prevented the player from losing immersion in the game.  
Reactive: All players take their own approach when playing 
games, therefore in order to be truly adaptive the agent had 
to feel as though it reacted to the player’s own method of 
playing. 
Interesting: The AI agent needed to be interesting to the 
player. If it exhibited boring behaviour, this would lose the 
players attention quickly and would not entice them to play 
the game. 
Enjoyable: Lastly, the agent’s behaviour needed to provide 
enjoyable behaviour to the player as enjoyment is the 
primary focus of video games. If the enjoyment of a game is 
increased by using learning algorithms for agents, this would 
be a clear sign that adaptable AI in games would be 
beneficial for future games. 
Figure 2 shows the results of the question evaluating the Q-
Learning agent, whilst Figure 3 shows the results for the N-
Gram agent. 
 
Realism 
In answer to the question “Which method did you find to be 
the least realistic?” the results were 50-50. So there was no 
overall preference for either method 
 

 
Figure 2: Results for Q-Learning Agent Attributes 

 
Figure 3: Results for N-Gram Agent Attributes 

 
Intelligence 
Each tester was asked to state to what extent they felt that the 
agent displayed evidence of learning while playing the game. 
The results are compared in Figure  4. 
 

 

Figure 4: Pie Charts Displaying How Testers Felt About the 
Intelligence of the AI Agents 

The polls found that on average, Q-Learning’s intelligence 
value was 3.58 out of 5, whereas N-Grams value was 4.16. 
Furthermore, looking at the charts in Figure 4 it is evident 
that testers felt the robot utilising N-Gram based learning 
was significantly more intelligent than the Q-Learning robot; 
97% stated that the N-Gram robot displayed evidence of 
learning and only 58.3% stated the same for the Q-Learning 
robot. Expanding on their choices, testers explained that N-
Grams exhibited learning more clearly because it learned 
how they played the game, and testers had to change their 
own tactics in order to defeat the robot. For Q-Learning, 
some felt that the robot did exhibit intelligence clearly as it 
learned from its mistakes and began to block, attack and 
counter appropriately against the tester’s actions. However, 
some felt that Q-Learning would have been able to show 
better intelligence if the agent had a longer time to learn 
because it did not learn as fast as the N-Gram agent. On the 
other hand, when fighting the N-Gram agent testers found 
that it learned so quickly that they had to try and outsmart 
the agent during the fight as it soon became difficult. 
What is interesting is that two players noted behaviours that 
they believed displayed the N-Gram agent’s intelligence 
which were not actually true. These testers noted that the N-
Gram robot would ‘change its tactics,’ and ‘employ tactics,’ 
to sabotage the players fighting style. This is fascinating 
because artificial intelligence in games is largely just an 
illusion, as players make connections in their head as to how 
the AI agents are thinking based on what they observe. The 
N-Gram agent does not change its tactics throughout the 
game, and merely gains more information about the player to 
make more precise predictions, however the behaviour 



exhibited by the agent gave players a stronger illusion of 
intelligence.  
 
Reactivity 
Testing the reactivity of the agents was important as one of 
the main aims of the project is to explore how machine 
learning methods can enhance this aspect of game agents. In 
the poll, the N-Gram agent again held a higher average value 
for its reactivity, with its value being 4.5 and Q-Learning’s 
value being 4.25. To explore this further, the testers were 
asked to select which agent they felt was the most reactive, 
the result of which is shown in Figure 5. 
 

 

Figure 5: Pie Chart Displaying How Testers Felt About the 
Reactivity of the AI Agents 

As shown in the pie chart, a substantial amount of testers 
chose the N-Gram method to be more reactive than Q-
Learning. This highly suggests that N-Grams is well suited 
for quick learning in games during real time, as testers easily 
identified this as the most reactive method to play against. 
Testers who chose Q-Learning for this question noted that 
they believed the Q-Learning robot was more prepared for 
their actions than the N-Gram. In addition, they felt that it 
learned to react quickly and was reactive to their individual 
play style. However once they identified a technique they 
could use, the robot became too easy to defeat. Testers who 
selected N-Grams as most reactive collectively stated that the 
N-Gram robot seemed to learn a lot faster, as well as 
providing a much more difficult challenge. One tester stated 
that the N-Gram robot behaved like it knew what they were 
going to do next, as well as delivering the feeling of playing 
against an experienced human player. This is a great 
prospect for games with NPC opponents or allies, as human-
like AI characters can help to increase immersion and the 
player’s enjoyment of the game. 
 
Interesting 
In terms of how interesting testers found each method, N-
Grams again won out but only slightly, with a value of 4.16 
on average out of 5 compared to Q-Learning’s 3.75 average 
value. A high value for how interesting testers found both 
methods is beneficial, because it is important for players to 
take interest in AI agents in games as they are generally what 
help the player engage with game play and story elements of 
a game. One tester stated that Q-Learning still acted 
unpredictably and exciting even after it had learned, which 
helped to keep the fight interesting. Another explained that 
the N-Gram agent was a lot more interesting because of the 
greater challenge it provided as well as how fast and 
efficiently it learned. 
 
Enjoyable 
The testers’ opinion on how enjoyable a learning method 
was is of course a personal preference when it comes to 
playing games, however it is important to look at a wide 
range of players with different tastes to understand how the 

implementation of learning could affect them. On average, 
Q-Learning had an average value of 3.75 out of 5 for how 
enjoyable they found fighting the robot, whereas there was a 
small increase in the average value for N-Grams which had a 
value of 3.83 out of 5. The testers were additionally asked to 
identify which method they found most enjoyable and why, 
and there was no particular preference shown. 
 
Learning in Games 
In the final section of the questionnaire, testers were asked 
general questions on their opinion of learning AI agents in 
games to determine if this type of AI would appeal to them 
in the future. 
Firstly, testers were asked whether they believed that the 
ability to learn made the AI agents in the test game more 
realistic and reactive in comparison to agents in other games 
they had experienced. Every tester responded positively to 
this question, with most citing games wherein the AI agent’s 
behaviour can be quite illogical and easy to trick or exploit. 
Players mentioned these games and how agents that learn 
from the player would avoid the problem of repetitive, 
boring or exploitable AI by instead being unpredictable and 
surprising the more it learns about the player. Testers noted 
that in multiplayer games, humans do learn from their 
enemies or their allies and base their own play style on what 
they have learned for their own benefit. Therefore, AI agents 
that too can learn would be able to exhibit this realistic, 
human like behaviour. One player additionally stated that a 
learning AI could help to improve the difficulty level of a 
game substantially by tailoring it to individual players to 
improve their game play experience. This illustrates the 
many ways that games could improve player’s interactions 
with AI agents or systems. 
In order to get an impression of what players are looking for 
in future games testers were asked if having learning AI 
agents in these games would appeal to them and the 
overwhelming response was 100% yes. 
 
Quantitative Results 
 
Processing Speed  
In order to test and compare the processing time of the 
learning methods implemented, the evaluation and 
optimisation tool within Unity, the Unity Profiler, was used. 
To gain an overall idea on how the processing time for each 
learning method compared, a sample of ten processing times 
for each method were recorded and then averaged in order to 
find the mean processing time required to carry out learning. 
Figure 6 shows the results.  
 

 
Figure 6: Bar Chart Showing the Comparison Between 

Processing Times 



As evident in the above chart, Q-Learning was faster than N-
Gram by about 45 milliseconds, and while this is a small 
difference this could have a much larger knock on effect in 
other games if the methods were used to control more agents, 
or to learn a wider range of knowledge. In comparison to N-
Grams, Q-Learning has a relatively smaller amount of 
variables to search through in order to make decisions which 
could contribute to the reason why Q-Learning is faster. This 
is because during the N-gram based learning, the script has to 
check through every listed sequence that has happened and 
every action in that sequence in order to find matches for 
predictions. This list grows as the game goes on. However, 
for Q-Learning the script is only required to search through a 
list of 8 potential actions based on the state which is given to 
them by the AI robot script. This would reduce the 
processing time as there are less values or variables to search 
through to find the optimal action.  
Of course, in future implementations each method’s effect on 
the performance of a game could be improved further by 
using optimisation techniques such as threading. 
Nevertheless, it is always important and preferred that the 
efficiency of AI methods implemented in games are as fast 
as they can be so that they do not have a negative effect on 
the game’s performance.  
 
Accuracy and Error    
To investigate the effectiveness of the methods, the amount 
of errors that were made were recorded over time in order to 
show if learning was taking place. Ideally, the error should 
decrease as the AI agent experiences more events during the 
game as this would display how the method stores more 
accurate knowledge as time goes on.  
The errors of the N-Gram based system and the Q-Learning 
method were compared with each other in order to determine 
which has the higher rate of success when choosing its 
actions to counter the player. To determine the error for each 
method the percentage of incorrect decisions the AI agent 
made during the fight was calculated. For the Q-Learning 
method an error was when the agent made a ‘wrong,’ 
decision by selecting an action that would lead to a negative 
reward. For the N-Gram method, the error was based on 
whether the predicted action matched the actual action used 
by the player. To compare the error percentages, the error 
was recorded over 25 player moves (game events) to indicate 
how well the agent learned. Figure 7 displays the results for 
this test. 
 

 
Figure 7: Comparison of Percentage Error 

 
As shown clearly above, both methods have a similar 
learning rate at the start despite the Q-Learning method 
beginning at a higher error percentage. However as time 
goes on and the learning rate slows, the Q-Learning rate 
levels out at a higher error percentage than the N-Gram 
based system by becoming flatter at around 20%, whereas N-
grams achieves this at 10%. In addition, throughout the 
graph the N-Gram method always has a smaller error 

percentage which demonstrates that the method is slightly 
more efficient at learning than the Q-Learning method as it 
tends to make less mistakes as time goes on. This supports 
the comments of the testers of which a majority stated that 
the N-Gram agent felt more intelligent and reactive 
compared to the Q-Learning agent. However, because the 
game is a fighting game that requires clear input and reactive 
output constantly this result could simply be indicative of N-
Gram prediction being more suited for this style of input and 
learning. Q-Learning takes slightly longer, however this 
could be beneficial for different games that require a more 
subtle or natural sense of learning. Moreover, both methods 
show a decrease in the error percentage as they experience 
more events which shows that they both successfully learn 
and improve the AI agent’s behaviour throughout the game. 
This in turn illustrates how both methods would be beneficial 
when implemented in games to clearly display the 
intelligence of the agents and increase their reactivity. 
 
DISCUSSION 
 
Real-time Concerns 
 
One of the main problems that the project looked to explore 
was how agents could learn directly from the player whilst 
the game is played in real time without having a negative 
effect on the performance of the game. The project found 
that players did notice the AI agent learning from their 
actions during run time and they found this to be interesting 
and enjoyable, illustrating that the N-Gram and Q-Learning 
methods were both effective in facilitating fast learning. By 
exhibiting behaviour based on the knowledge that the AI 
agent had learnt from the player in the short, 45 second 
game, it is clear that machine learning methods are suitable 
for  adapting agents as the game is being played. However, it 
is incredibly important to carefully plan what the AI agent is 
able to learn, as well as how the agent will change its 
behaviour based upon this information. It is much safer to 
utilise machine learning in games to select the decisions that 
the agent should be capable of making rather than giving the 
learning methods free control over all behaviour of the AI 
agent. In this way, the game play is still unpredictable and 
exciting without causing unstable or illogical behaviour.  
It was found that Q-Learning was the most efficient out of 
the two tested methods as shown above, however it was also 
the method that took longest to learn in comparison with the 
N-Gram system. The N-Gram system required a longer 
processing time than Q-Learning, however the majority of 
player testers preferred this method as it felt the most 
realistic and seemed to learn faster. This is also reflected in 
Figure 7 wherein the N-Gram agent had a lower error 
percentage throughout, illustrating that it was more 
successful in predicting the players moves than Q-Learning 
was in choosing the most rewarding move to make.  
 
The Player Experience 
 
In order for the application of machine learning methods to 
be beneficial and a worthwhile innovation in games, the AI 
had to enhance the realism and reactivity of the agent 
towards players, as well as exhibit human-like intelligence. 
AI within games should satisfy one goal, which is to help to 
‘create a compelling experience for the player (Dill 2011).’ 
The qualitative testing found that 100% of testers would 
welcome real time learning agents in games in the future, 
citing reasons such as how the ability to learn improved the 



realism and challenge of the test game as well as the 
reactivity of agents. Many testers explained that they 
believed innovation in AI is the future for games, and 
learning is just one of many aspects that could change and 
enhance the player’s engagement with games. This illustrates 
the relevance of this project and the research undertaken, 
because in the current games industry environment 
developers are constantly looking for new ways to entice and 
provide fun for gamers. The qualitative information gathered 
in the project is strong evidence in support of the statement 
that machine learning can be applied to games to improve 
the realism and reactivity of AI agents.  
An area of the results that was unexpected was how some 
testers felt that when the AI agents behaved too intelligently, 
this actually negatively affected their game play experience. 
These testers signified how the speed of the AI agents 
learning actually changed how much fun or frustration they 
got from the game, in addition to how much chance they felt 
they had to beat the AI robot. N-Grams was found to be the 
most reactive method as well as the fastest learning, however 
many players stated they disliked this behaviour as they felt 
their efforts were futile in fighting it and this removed the 
element of fun. On reflection, it is important that the AI 
agent’s intelligence is balanced so as to still provide 
unpredictable behaviour, but should not be too intelligent or 
reactive that they can anticipate every move of the player. 
This frustrates players as they feel there is no point in 
playing the game if there is no chance of winning. Testers 
suggested that a larger element of randomness could improve 
the learning methods as it would make their behaviour seem 
slightly more natural. This is because players often make 
mistakes or switch up their tactics while playing games, and 
this not only would benefit the player in terms of showing 
them there is a higher chance for them to win but it would 
also benefit the agent by giving them human-like 
intelligence, along with human-like fallibility.  
 
Future Work 
 
While the learning methods implemented in this project 
focused on learning reactions to the player through game 
play, machine learning could similarly enhance many other 
areas of games. For example, area or terrain generation could 
be autonomously created by utilising machine learning and 
could give randomised locations for the player in each play 
through. In addition, areas such as narrative, graphics and 
networking may benefit from machine learning (Graepel and 
Herbrich 2008). Experimentation into using machine 
learning in different ways could lead to more optimal 
methods of creating content for games. 
As discussed above players noted that the difficulty of the 
game seemed to depend on how fast the AI agent could learn 
to counter the player. In this sense, a game that utilised 
learning agents as enemies could adjust their learning rate 
depending on the difficulty the player prefers or simply to 
ensure that the game remains a challenge even as the player 
improves. This would be a useful and interesting way to 
adjust the difficulty of a game instead of simply changing 
health values and damage values to make games harder. As 
the game becomes more difficult, the AI agent could learn 
different types of information about the player that were not 
previously available to them, and this would keep the game 
play challenging as well as unique. 
 
 
 

CONCLUSION 
 
The findings of the project have shown that integrating AI 
learning in a game is a worthwhile task for developers, as it 
greatly enhances the behaviour of AI agents as well as the 
player’s engagement with the game. Players found that the 
learning ability of agents led to exciting, unpredictable and 
realistic behaviour that enhanced their immersion and 
enjoyment of the game.  Yet, documentation and tools on the 
subject of machine learning in relation to games are lacking 
or often focused on offline learning rather than online 
learning. It is likely that machine learning in games would be 
a more common occurrence if game engines created tools to 
allow developers to easily utilise learning in games. In 
addition, documentation on how machine learning methods 
could be applied to games that focuses on the type of 
learning the method utilises and to which game genres each 
is best suited would be useful. The benefit being that it 
would help to increase developers understanding of online 
learning and encourage them to investigate using it, as right 
now many developers deem it too great a risk. Nevertheless, 
taking such a risk could result in a ground-breaking game 
with revolutionary game play. 
For more details on this investigation, including 
experimenting with ANN, please refer to Bennett 2016. 
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