
An investigation of two real time machine learning
techniques that could enhance the adaptability of
game AI agents

David King and Cassie Bennett

This paper presented at GameOn’2016 17th International
Conference on Intelligent Games and Simulation, Lisbon,
Portugal, 13-15 September 2016

The published paper © EUROSIS is published in the
Proceedings of the 17th International Conference on Intelligent
Games and Simulation.
ISBN 9789077381946

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228176525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN INVESTIGATION OF TWO REAL TIME MACHINE LEARNING

TECHNIQUES THAT COULD ENHANCE THE ADAPTABILITY OF GAME AI

AGENTS

David King
Cassie Bennett

Abertay University
40 Bell Street, Dundee, United Kingdom, DD1 1HG

Email: d.king@abertay.ac.uk

KEYWORDS

Artificial Intelligence (AI), Adaptive Game AI, Q-Learning,
N-Gram Prediction.

ABSTRACT

Developers strive to create innovative Artificial Intelligence
(AI) behaviour in their games as a key selling point. Machine
Learning is an area of AI that looks at how applications and
agents can be programmed to learn their own behaviour
without the need to manually design and implement each
aspect of it. Machine learning methods have been utilised
infrequently within games and are usually trained to learn
offline before the game is released to the players. In order to
investigate new ways AI could be applied innovatively to
games it is wise to explore how machine learning methods
could be utilised in real-time as the game is played, so as to
allow AI agents to learn directly from the player or their
environment. Two machine learning methods were
implemented into a simple 2D Fighter test game to allow the
agents to fully showcase their learned behaviour as the game
is played. The methods chosen were: Q-Learning and an N-
Gram based system. It was found that N-Grams and Q-
Learning could significantly benefit game developers as they
facilitate fast, realistic learning at run-time.

INTRODUCTION

There are a wide range of characteristics that can be used to
categorise how intelligence can be represented within
computer programs. Definitions of intelligence include the
ability to make a decision based on information that has been
obtained from the world or the ability to solve problems.
Others would argue that for something to be recognised as
intelligent, it must be able to exhibit evidence of learning and
adaptation (Bourg and Seemann 2004a), something which
has rarely been seen in games before. Agents that are able to
constantly adapt could completely change the landscape
when applying AI within games. Therefore, when
considering how games should evolve in the future, it is wise
to take into account AI that learns and directly reacts
specifically to each player.
The opportunity for increasingly complex AI techniques in
games is improving as computational power in consoles and
computers evolve (Bourg and Seemann 2004b; Vasquez II
2011). Recently, the games industry has been heavily
focused on improving the graphical quality of games,

however AI is now one of the main elements of a game that
allows it to stand out and make a real impact on the market.
Unique, interesting, and impressive AI is becoming the main
attraction of games (Schwab 2009). In particular, AI learning
methods and the use of machine learning techniques within
games during run-time is a largely unexplored territory in
game development, but a popular field of research for
academic uses (Dill 2011). There is a wealth of potential in
applying machine learning techniques to games, as this could
lead to having AI agents that adapt their behaviour to the
current player and give a unique, personalised experience.
Utilising learning techniques would allow AI agents to give
unique reactive behaviour in response to individual players,
which in turn could provide the distinctive breakthrough a
game needs to give it a competitive edge. In addition, this
would combat the problem of interactions with Non-Playable
Characters (NPCs) becoming boring and predictable as a
game goes on, which regularly leaves room for exploitation
of the NPC behaviour and actively diminishes the challenge
of the game (Bourg and Seemann 2004a).
It is extremely rare but not unheard of for games to utilise
machine learning methods at run-time. NERO
(NeuroEvolving Robotic Operatives) is a game that allows
players to use Artificial Neural Networks (ANN) to train
agents to fight other NPC agents (NERO Team [no date]).
However, it would be beneficial to investigate how
behaviour could be adapted when the AI is learning from the
players own behaviour during a game.
These learning techniques could provide agents with
completely tailored behaviour and reactions towards players.
There is a possibility that AI agents learning from player
behaviour could be detrimental to the gameplay, but on the
other hand it could open up so many opportunities for
different types of games and even the possibility of unique
games that will stand out in a competitive market. Not only
that, but using these techniques could increase the shelf-life
of a game due to the many different ways to play it that this
would provide (Stanley et al. 2005).
The focus of this paper is the utilisation of different AI
learning methods that will allow AI agents to adapt to
individual players’ playing styles as the game runs in real-
time. The paper aims to record the process and evaluation of
developing, designing and comparing two different machine
learning techniques in order to present methods that are well
suited, and can be realistically implemented, within games.
The overall aim is to investigate if, and how, implementation
of agents that learn can give each player a unique, tailored
experience when interacting with them.

Machine Learning

There are several methods that facilitate learning, and the
choice of which to use is largely application dependent.
Supervised learning is a technique often used for
backpropagation in Neural Networks and Decision Trees
(Mathworks [No date]). Supervised learning uses training
data provided to it in order to adjust internal parameters
(such as weights) to provide the desired output. This
technique is useful only if the desired output for the training
data is known.
Unsupervised learning is a technique commonly used in
methods such as Self Organising Map Neural Networks
(SOM), Adaptive Resonance Theory Neural Networks
(ART), clustering algorithms such as K-Means and
predictive techniques like N-grams. AI systems use this
technique to categorise data by independently observing, and
finding patterns or similarities in the inputs (AI Horizon [no
date]).
Reinforcement learning allows the AI agent to autonomously
learn through experiencing the world, obtaining rewards or
punishments given in response to their actions, which then
influences their future decisions. Examples of Reinforcement
Learning include Q-Learning, SARSA, and Temporal
Difference Learning. The goal of the AI agent is to try
different actions in order to make decisions based on which
one gives them the largest reward (Whiteson 2007).
Supervised learning is less suited to games than
reinforcement learning as it requires a human expert to
determine the desired outputs for the agent, and this limits
the ability to learn during the course of a game (Whiteson
2007). Reinforcement agents learn as they independently
gain more experience from the world and do not require a
human to guide their behaviour, allowing real-time learning
without the need for human intervention.

METHODOLOGY

With a wide selection of learning models to choose from,
this paper looks at two in detail that each have distinctive
approaches to learning, are relatively easy to apply and are
therefore appropriate for real-time applications;
Reinforcement Learning as utilised in Q-Learning, and
Unsupervised Learning as seen in N-Gram prediction.

Reinforcement Learning

Q-Learning was developed by Christopher Watkins in 1989
(Watkins and Dayan 1992), and relies on experience based
knowledge to focus on making optimal decisions based upon
the outcome of interactions in the world (Poole and
Mackworth [no date]). It is a type of reinforcement learning
for AI agents that uses trial and error to learn more about the
world, actions, and consequences. AI agents carry out
actions, and based on the outcome they are given a value as a
‘reward’ or ‘punishment’ so that the agent can record this
and try to make a more optimal decision next time (Watkins
and Dayan 1992).The agents check and update the Q-Value,
which is a function of the current state and the chosen action,
based on the experience they gain as they continually attempt
to solve specific problems. The Q-Value is increased if the
agent is rewarded in order to improve the probability of the
agent choosing that action again when in the same state,
whereas for punishment the Q-Value is reduced to make it
less likely that it will be chosen (DeWolf 2012). The agent
eventually learns the optimal policy by recurrently

attempting actions in each state and finding the best Q-Value
for that particular action-state pair (Poole and Mackworth.
[No date].
Q-Learning has four parts for every decision: The initial
state, the action taken, the reward, and the new state to which
the agent has moved. Each action can be represented by this
sequence and the agent’s knowledge of the game space only
changes when it carries out an action and lands in a new
state. This means the agent learns from its interactions and
the consequences it experiences in order to improve and
make better decisions. An example of this method being
used are AI programs that can learn how to play video
games, such as Google’s Deep Q-Network program (Lewis
2015), however this could be integrated into agents within
games in order to learn from the player.
The Q-Value that represents how effective an action is in a
given state is calculated using an iterative process in order to
refine the Q-Value estimate (Poole 2010) as shown in
Equation (1) below:

() ()1(,) 1n nQ S A L Q LR+ = − + (1)

where S is the current state, A is the action chosen, L the
learning rate and R the reward value. The above rule uses the
reward given along with the learning rate in order to
determine the new Q-Value. The learning rate is a value
between 0 and 1 that determines how much affect the current
Q-Value has on the newly calculated Q-Value. The larger the
learning rate, the more influence the reward has on the new
Q-Value, and the less effect the current Q-Value has. For the
test game, tuning the learning rate to produce the best
outcome resulted in a value of 0.5. This learning rate was
suitable as the Q-Value relied equally on both the current Q-
Value and the reward, which allowed the agent to learn
quickly as well as reliably. Reward values are dependent on
the result of the action, so as to determine the appropriate
value that will encourage or deter an action from happening
again. For this application the reward values given for the
various actions are reliant on the health changes of the player
and agent, and are shown in Table 1.
Reward values were designed to appropriately encourage the
agent to learn from its mistakes, and to aim towards higher
rewarded actions throughout the game. The Q-Value is
calculated each time the player performs an action, so that
the Agent counters this with the action given by the Q-
Learning algorithm. The action with the highest quality value
in that state is chosen when the action is being determined,
which ensures that the agent is performing the most desired
action in retaliation.

Unsupervised Learning

N-Grams are a type of unsupervised learning technique used
in order to learn patterns in sequences. Through the use of
string matching, the current actions of the player are
compared to a record of the previous sequences of actions to
find identical sequences for prediction (Tucci 2014).
Sequences are stored in a window of size N to be checked.
For example a 4-Gram records the frequency of a sequence
of four actions, and when the player next performs the first
three actions the fourth is predicted (Millington and Funge
2009). When predicting, the most frequent action that
follows a sequence of the player’s current actions up to a
window of size N – 1 is chosen. It is important however that
the size of the window is suitable for the range of actions
available to the player. If the window size is too small
predictions will be less accurate as there is not enough

history to check, whereas if the window size is too big
predictions will be less accurate due to randomness in the
history and sequences are less likely to be matched to an N-
Gram (Tucci 2014).

Table 1: Reward Table

Result Reward
Value

Reason

Both Player and
Agent were not
hit

0 No reward given for no
effect on Player or Agent

Player and Agent
damaged each
other

0.3 Small reward given because
damaging the Player is a
positive action, however not
given full positive reward
because Agent was
damaged also.

Player damaged,
Agent safe

1.0 Largest reward given
because damage caused to
player, but Agent took no
damage

Agent damaged,
Player safe

-1.0 Largest negative reward
given, because Agent took
damage while Player did not

Agent hit, but
health did not
change

0.7 Large positive reward, as
this means the Agent
blocked the attack correctly

Player hit, but
health did not
change

-0.5 Negative reward, as this
indicates the player blocked
the attack successfully

This technique is sometimes used in combat/fighting games,
as it finds patterns in the input or sequence of events by
looking at their history as they happen, and can therefore
react specifically to the player’s current action (Millington
and Funge 2009). This means a co-operative AI agent could
imitate the player’s style to benefit the player in game play,
or an enemy AI agent can adapt its style uniquely against
each player. It is a type of learning algorithm that would lend
itself well to games where the player has a specific style they
use for game play, because the N-Grams could then use the
player’s input history to learn their patterns and hence adapt
to the player (Vasquez II 2011).

Developing the Test Game

The design and creation of the test game was heavily focused
on what kind of game would provide instant, realistic, and
clear learning abilities in AI agents if machine learning was
used to control their behaviour. When reflecting on the
criteria needed for the game, a 2D Fighter game with an AI
controlled opponent, similar to Street Fighter (Capcom 1987)
or Mortal Kombat (Midway Games 1992), was chosen.
The player interacts with the game by pressing controls that
correspond to moves the player can make. Both the player
and the AI agents can move around the screen in order to get
close enough to attack the other, or to move out of their
range. A screenshot of the game while it is running is shown
in Figure 1. The moves that the AI agent and player can
perform are: jump, crouch, move, punch, low kick, high
kick, low block, and high block. The advantage of
demonstrating the agent’s learning capabilities in this type of
game is that it is clear to see how the agent’s knowledge
improves over time. For example, the player might punch the
agent, and the agent will take damage. All the agent will

know is that its upper body was hit, and it lost health. As its
knowledge improves and it tries different moves in response
to this, the agent should learn strategies such as blocking its
upper body when the player punches, or punching the player
back. This type of reaction shows the player how the agent
has been learning from its experience during the fight. Based
on the effect of the players move on the AI agent, the agent
can learn to predict or counter those moves more effectively
as the fight progresses.

Figure 1: Screenshot from the Game

EVALUATION

Qualitative Evaluation

In order to evaluate the machine learning methods
implemented in the test game a questionnaire was developed
with the aim of gathering information on their effectiveness.
The questionnaire was created using Google Forms that
testers could fill in online, and the game’s test build was
distributed via a download link on Google Drive.

Quantitative Evaluation

The quantitative testing focused on the technical side of
implementing the machine learning techniques. Technical
qualities to be tested were inspired by the prominent
computer scientist Pieter Spronck’s list of requirements for
successful online learning algorithms. In the paper ‘Online
Adaptation of Game Opponent AI in Simulation and In
Practice,’ Spronck et al. state that online learning methods
must be “Fast, effective, robust, and efficient” in order to be
successful in a real time environment (Spronck et al. 2003).
Therefore, the following aspects of each method were
evaluated:

• Processing speed during run-time

(Evaluation of speed and efficiency)

• Accuracy and error
(Evaluation of effectiveness and robustness)

RESULTS

Qualitative Results

Twelve testers participated in playing the game and
completed the questionnaire, which was split up into three
sections:

• Section 1: Q-Learning (6 questions)

• Section 2: N-Grams (6 questions)

• Section 3: Comparison (12 questions)

Testers were asked to indicate their thoughts on the
behaviour of the AI Agent using a Likert scale from 1 to 5;
where 1 meant did not agree at all and 5 meant they agreed
extremely. In addition, several other questions were posed to
gain more insight into the testers’ decisions, the results of
which are included below. The following aspects were
examined:
Realistic: It was important to ask for the testers’ opinions on
how realistically the agent behaved, as AI in games needs to
be highly believable in order to be immersive, whereas
unrealistic AI agents can discourage players by frustrating
them.
Intelligent: The AI agent needed to act or give the illusion
of intelligence to the player, so that the agent’s decision
making seemed logical and understandable and thus
prevented the player from losing immersion in the game.
Reactive: All players take their own approach when playing
games, therefore in order to be truly adaptive the agent had
to feel as though it reacted to the player’s own method of
playing.
Interesting: The AI agent needed to be interesting to the
player. If it exhibited boring behaviour, this would lose the
players attention quickly and would not entice them to play
the game.
Enjoyable: Lastly, the agent’s behaviour needed to provide
enjoyable behaviour to the player as enjoyment is the
primary focus of video games. If the enjoyment of a game is
increased by using learning algorithms for agents, this would
be a clear sign that adaptable AI in games would be
beneficial for future games.
Figure 2 shows the results of the question evaluating the Q-
Learning agent, whilst Figure 3 shows the results for the N-
Gram agent.

Realism
In answer to the question “Which method did you find to be
the least realistic?” the results were 50-50. So there was no
overall preference for either method

Figure 2: Results for Q-Learning Agent Attributes

Figure 3: Results for N-Gram Agent Attributes

Intelligence
Each tester was asked to state to what extent they felt that the
agent displayed evidence of learning while playing the game.
The results are compared in Figure 4.

Figure 4: Pie Charts Displaying How Testers Felt About the
Intelligence of the AI Agents

The polls found that on average, Q-Learning’s intelligence
value was 3.58 out of 5, whereas N-Grams value was 4.16.
Furthermore, looking at the charts in Figure 4 it is evident
that testers felt the robot utilising N-Gram based learning
was significantly more intelligent than the Q-Learning robot;
97% stated that the N-Gram robot displayed evidence of
learning and only 58.3% stated the same for the Q-Learning
robot. Expanding on their choices, testers explained that N-
Grams exhibited learning more clearly because it learned
how they played the game, and testers had to change their
own tactics in order to defeat the robot. For Q-Learning,
some felt that the robot did exhibit intelligence clearly as it
learned from its mistakes and began to block, attack and
counter appropriately against the tester’s actions. However,
some felt that Q-Learning would have been able to show
better intelligence if the agent had a longer time to learn
because it did not learn as fast as the N-Gram agent. On the
other hand, when fighting the N-Gram agent testers found
that it learned so quickly that they had to try and outsmart
the agent during the fight as it soon became difficult.
What is interesting is that two players noted behaviours that
they believed displayed the N-Gram agent’s intelligence
which were not actually true. These testers noted that the N-
Gram robot would ‘change its tactics,’ and ‘employ tactics,’
to sabotage the players fighting style. This is fascinating
because artificial intelligence in games is largely just an
illusion, as players make connections in their head as to how
the AI agents are thinking based on what they observe. The
N-Gram agent does not change its tactics throughout the
game, and merely gains more information about the player to
make more precise predictions, however the behaviour

exhibited by the agent gave players a stronger illusion of
intelligence.

Reactivity
Testing the reactivity of the agents was important as one of
the main aims of the project is to explore how machine
learning methods can enhance this aspect of game agents. In
the poll, the N-Gram agent again held a higher average value
for its reactivity, with its value being 4.5 and Q-Learning’s
value being 4.25. To explore this further, the testers were
asked to select which agent they felt was the most reactive,
the result of which is shown in Figure 5.

Figure 5: Pie Chart Displaying How Testers Felt About the
Reactivity of the AI Agents

As shown in the pie chart, a substantial amount of testers
chose the N-Gram method to be more reactive than Q-
Learning. This highly suggests that N-Grams is well suited
for quick learning in games during real time, as testers easily
identified this as the most reactive method to play against.
Testers who chose Q-Learning for this question noted that
they believed the Q-Learning robot was more prepared for
their actions than the N-Gram. In addition, they felt that it
learned to react quickly and was reactive to their individual
play style. However once they identified a technique they
could use, the robot became too easy to defeat. Testers who
selected N-Grams as most reactive collectively stated that the
N-Gram robot seemed to learn a lot faster, as well as
providing a much more difficult challenge. One tester stated
that the N-Gram robot behaved like it knew what they were
going to do next, as well as delivering the feeling of playing
against an experienced human player. This is a great
prospect for games with NPC opponents or allies, as human-
like AI characters can help to increase immersion and the
player’s enjoyment of the game.

Interesting
In terms of how interesting testers found each method, N-
Grams again won out but only slightly, with a value of 4.16
on average out of 5 compared to Q-Learning’s 3.75 average
value. A high value for how interesting testers found both
methods is beneficial, because it is important for players to
take interest in AI agents in games as they are generally what
help the player engage with game play and story elements of
a game. One tester stated that Q-Learning still acted
unpredictably and exciting even after it had learned, which
helped to keep the fight interesting. Another explained that
the N-Gram agent was a lot more interesting because of the
greater challenge it provided as well as how fast and
efficiently it learned.

Enjoyable
The testers’ opinion on how enjoyable a learning method
was is of course a personal preference when it comes to
playing games, however it is important to look at a wide
range of players with different tastes to understand how the

implementation of learning could affect them. On average,
Q-Learning had an average value of 3.75 out of 5 for how
enjoyable they found fighting the robot, whereas there was a
small increase in the average value for N-Grams which had a
value of 3.83 out of 5. The testers were additionally asked to
identify which method they found most enjoyable and why,
and there was no particular preference shown.

Learning in Games
In the final section of the questionnaire, testers were asked
general questions on their opinion of learning AI agents in
games to determine if this type of AI would appeal to them
in the future.
Firstly, testers were asked whether they believed that the
ability to learn made the AI agents in the test game more
realistic and reactive in comparison to agents in other games
they had experienced. Every tester responded positively to
this question, with most citing games wherein the AI agent’s
behaviour can be quite illogical and easy to trick or exploit.
Players mentioned these games and how agents that learn
from the player would avoid the problem of repetitive,
boring or exploitable AI by instead being unpredictable and
surprising the more it learns about the player. Testers noted
that in multiplayer games, humans do learn from their
enemies or their allies and base their own play style on what
they have learned for their own benefit. Therefore, AI agents
that too can learn would be able to exhibit this realistic,
human like behaviour. One player additionally stated that a
learning AI could help to improve the difficulty level of a
game substantially by tailoring it to individual players to
improve their game play experience. This illustrates the
many ways that games could improve player’s interactions
with AI agents or systems.
In order to get an impression of what players are looking for
in future games testers were asked if having learning AI
agents in these games would appeal to them and the
overwhelming response was 100% yes.

Quantitative Results

Processing Speed
In order to test and compare the processing time of the
learning methods implemented, the evaluation and
optimisation tool within Unity, the Unity Profiler, was used.
To gain an overall idea on how the processing time for each
learning method compared, a sample of ten processing times
for each method were recorded and then averaged in order to
find the mean processing time required to carry out learning.
Figure 6 shows the results.

Figure 6: Bar Chart Showing the Comparison Between

Processing Times

As evident in the above chart, Q-Learning was faster than N-
Gram by about 45 milliseconds, and while this is a small
difference this could have a much larger knock on effect in
other games if the methods were used to control more agents,
or to learn a wider range of knowledge. In comparison to N-
Grams, Q-Learning has a relatively smaller amount of
variables to search through in order to make decisions which
could contribute to the reason why Q-Learning is faster. This
is because during the N-gram based learning, the script has to
check through every listed sequence that has happened and
every action in that sequence in order to find matches for
predictions. This list grows as the game goes on. However,
for Q-Learning the script is only required to search through a
list of 8 potential actions based on the state which is given to
them by the AI robot script. This would reduce the
processing time as there are less values or variables to search
through to find the optimal action.
Of course, in future implementations each method’s effect on
the performance of a game could be improved further by
using optimisation techniques such as threading.
Nevertheless, it is always important and preferred that the
efficiency of AI methods implemented in games are as fast
as they can be so that they do not have a negative effect on
the game’s performance.

Accuracy and Error
To investigate the effectiveness of the methods, the amount
of errors that were made were recorded over time in order to
show if learning was taking place. Ideally, the error should
decrease as the AI agent experiences more events during the
game as this would display how the method stores more
accurate knowledge as time goes on.
The errors of the N-Gram based system and the Q-Learning
method were compared with each other in order to determine
which has the higher rate of success when choosing its
actions to counter the player. To determine the error for each
method the percentage of incorrect decisions the AI agent
made during the fight was calculated. For the Q-Learning
method an error was when the agent made a ‘wrong,’
decision by selecting an action that would lead to a negative
reward. For the N-Gram method, the error was based on
whether the predicted action matched the actual action used
by the player. To compare the error percentages, the error
was recorded over 25 player moves (game events) to indicate
how well the agent learned. Figure 7 displays the results for
this test.

Figure 7: Comparison of Percentage Error

As shown clearly above, both methods have a similar
learning rate at the start despite the Q-Learning method
beginning at a higher error percentage. However as time
goes on and the learning rate slows, the Q-Learning rate
levels out at a higher error percentage than the N-Gram
based system by becoming flatter at around 20%, whereas N-
grams achieves this at 10%. In addition, throughout the
graph the N-Gram method always has a smaller error

percentage which demonstrates that the method is slightly
more efficient at learning than the Q-Learning method as it
tends to make less mistakes as time goes on. This supports
the comments of the testers of which a majority stated that
the N-Gram agent felt more intelligent and reactive
compared to the Q-Learning agent. However, because the
game is a fighting game that requires clear input and reactive
output constantly this result could simply be indicative of N-
Gram prediction being more suited for this style of input and
learning. Q-Learning takes slightly longer, however this
could be beneficial for different games that require a more
subtle or natural sense of learning. Moreover, both methods
show a decrease in the error percentage as they experience
more events which shows that they both successfully learn
and improve the AI agent’s behaviour throughout the game.
This in turn illustrates how both methods would be beneficial
when implemented in games to clearly display the
intelligence of the agents and increase their reactivity.

DISCUSSION

Real-time Concerns

One of the main problems that the project looked to explore
was how agents could learn directly from the player whilst
the game is played in real time without having a negative
effect on the performance of the game. The project found
that players did notice the AI agent learning from their
actions during run time and they found this to be interesting
and enjoyable, illustrating that the N-Gram and Q-Learning
methods were both effective in facilitating fast learning. By
exhibiting behaviour based on the knowledge that the AI
agent had learnt from the player in the short, 45 second
game, it is clear that machine learning methods are suitable
for adapting agents as the game is being played. However, it
is incredibly important to carefully plan what the AI agent is
able to learn, as well as how the agent will change its
behaviour based upon this information. It is much safer to
utilise machine learning in games to select the decisions that
the agent should be capable of making rather than giving the
learning methods free control over all behaviour of the AI
agent. In this way, the game play is still unpredictable and
exciting without causing unstable or illogical behaviour.
It was found that Q-Learning was the most efficient out of
the two tested methods as shown above, however it was also
the method that took longest to learn in comparison with the
N-Gram system. The N-Gram system required a longer
processing time than Q-Learning, however the majority of
player testers preferred this method as it felt the most
realistic and seemed to learn faster. This is also reflected in
Figure 7 wherein the N-Gram agent had a lower error
percentage throughout, illustrating that it was more
successful in predicting the players moves than Q-Learning
was in choosing the most rewarding move to make.

The Player Experience

In order for the application of machine learning methods to
be beneficial and a worthwhile innovation in games, the AI
had to enhance the realism and reactivity of the agent
towards players, as well as exhibit human-like intelligence.
AI within games should satisfy one goal, which is to help to
‘create a compelling experience for the player (Dill 2011).’
The qualitative testing found that 100% of testers would
welcome real time learning agents in games in the future,
citing reasons such as how the ability to learn improved the

realism and challenge of the test game as well as the
reactivity of agents. Many testers explained that they
believed innovation in AI is the future for games, and
learning is just one of many aspects that could change and
enhance the player’s engagement with games. This illustrates
the relevance of this project and the research undertaken,
because in the current games industry environment
developers are constantly looking for new ways to entice and
provide fun for gamers. The qualitative information gathered
in the project is strong evidence in support of the statement
that machine learning can be applied to games to improve
the realism and reactivity of AI agents.
An area of the results that was unexpected was how some
testers felt that when the AI agents behaved too intelligently,
this actually negatively affected their game play experience.
These testers signified how the speed of the AI agents
learning actually changed how much fun or frustration they
got from the game, in addition to how much chance they felt
they had to beat the AI robot. N-Grams was found to be the
most reactive method as well as the fastest learning, however
many players stated they disliked this behaviour as they felt
their efforts were futile in fighting it and this removed the
element of fun. On reflection, it is important that the AI
agent’s intelligence is balanced so as to still provide
unpredictable behaviour, but should not be too intelligent or
reactive that they can anticipate every move of the player.
This frustrates players as they feel there is no point in
playing the game if there is no chance of winning. Testers
suggested that a larger element of randomness could improve
the learning methods as it would make their behaviour seem
slightly more natural. This is because players often make
mistakes or switch up their tactics while playing games, and
this not only would benefit the player in terms of showing
them there is a higher chance for them to win but it would
also benefit the agent by giving them human-like
intelligence, along with human-like fallibility.

Future Work

While the learning methods implemented in this project
focused on learning reactions to the player through game
play, machine learning could similarly enhance many other
areas of games. For example, area or terrain generation could
be autonomously created by utilising machine learning and
could give randomised locations for the player in each play
through. In addition, areas such as narrative, graphics and
networking may benefit from machine learning (Graepel and
Herbrich 2008). Experimentation into using machine
learning in different ways could lead to more optimal
methods of creating content for games.
As discussed above players noted that the difficulty of the
game seemed to depend on how fast the AI agent could learn
to counter the player. In this sense, a game that utilised
learning agents as enemies could adjust their learning rate
depending on the difficulty the player prefers or simply to
ensure that the game remains a challenge even as the player
improves. This would be a useful and interesting way to
adjust the difficulty of a game instead of simply changing
health values and damage values to make games harder. As
the game becomes more difficult, the AI agent could learn
different types of information about the player that were not
previously available to them, and this would keep the game
play challenging as well as unique.

CONCLUSION

The findings of the project have shown that integrating AI
learning in a game is a worthwhile task for developers, as it
greatly enhances the behaviour of AI agents as well as the
player’s engagement with the game. Players found that the
learning ability of agents led to exciting, unpredictable and
realistic behaviour that enhanced their immersion and
enjoyment of the game. Yet, documentation and tools on the
subject of machine learning in relation to games are lacking
or often focused on offline learning rather than online
learning. It is likely that machine learning in games would be
a more common occurrence if game engines created tools to
allow developers to easily utilise learning in games. In
addition, documentation on how machine learning methods
could be applied to games that focuses on the type of
learning the method utilises and to which game genres each
is best suited would be useful. The benefit being that it
would help to increase developers understanding of online
learning and encourage them to investigate using it, as right
now many developers deem it too great a risk. Nevertheless,
taking such a risk could result in a ground-breaking game
with revolutionary game play.
For more details on this investigation, including
experimenting with ANN, please refer to Bennett 2016.

REFERENCES

AI Horizon [no date] Machine Learning, Part 1: Supervised and

Unsupervised Learning [on line]. Available from:
http://www.aihorizon.com/essays/generalai/supervised_unsuper
vised_machine_learning.htm.

Bennett, C. 2016. A comparison of Real Time Machine Learning
Techniques to Indentify Those That Enhance the Adaptibility of
Game AI Agents. Dissertation, Abertay University.

Bourg, D.M. and G. Seemann. 2004a. “Introduction to Game AI”.
In AI for Game Developers 2004. O’Reilly Media Inc.,
Sebastopol, CA, 1-2.

Bourg, D.M. and G. Seemann. 2004b. “Preface”. In AI for Game
Developers 2004. O’Reilly Media Inc., Sebastopol, CA, 1-2.

Capcom 1987. Street Fighter. Capcom, Japan [Arcade Game].
DeWolf, T. 2012. Reinforcement Learning Part 1: Q-Learning and

Exploration [online]. Available from:
https://studywolf.wordpress.com/2012/11/25/reinforcement-
learning-q-learning-and-exploration/.

Dill, K. 2011. “What is Game AI?”. In Game AI pro: Collected
Wisdom of Game AI Professionals2011, S. Rabin (Ed.). CRC
Press, Boca Raton, FL, 3-8.

Graepel, T. and R. Herbrich. 2008. Video Games and Artificial
Intelligence [online]. Available from:
http://research.microsoft.com/en-us/projects/ijcaiigames/.

Lewis, T. 2015. Google’s Artificial Imntelligence Can Probably
Beat You At Video Games [online]. Available from:
http://www.livescience.com/49947-google-ai-plays-
videogames.html.

Mathworks [no date]. Machine Learning Technique for Building
Predictive Models from Known Input and Response Data
[online]. Available from:
http://www.mathworks.com/discovery/supervised-
learning.html?s_tid=gen_loc_drop.

Midway Games 1992. Mortal Kombat. Midway Games [Arcade
Game].

Millington, I. and J. Funge. 2009. “Learning”. In Artificial
Intelligence for Games. Morgan Kaufmann, Burlington, MA,
597-598.

NERO Team [no date]. NERO: NeuroEvolving Robot Operatives
[online]. Available from: http://nerogame.org/.

Poole, D. 2010. 9.5.3.Value Iteration [online]. Available from:
http://artint.info/html/ArtInt_227.html.

Poole, D. and A. Mackworth. [no date] 11.3.3. Q-Learning [online].
Available from: http://artint.info/html/Artint.265.html.

Schwab, B. 2009. “Neural Networks”. In AI Game Engine
Programming 2009, Course Technology, Boston, MA, 558-
570.

Spronck, P. I. Sprinkhuizen and E. Postma. 2003. Online
Adaptation of Game Opponent AI in Simulation and in
Practice. Maastricht University, Maastricht.

Stanley, K.O., B.D. Bryant and R. Miikkulainen. 2005. “Real-Time
Neuroevolution in the NERO Video Game”. IEEE Transactions
on Evolutionary Computation 9, No.6 (Dec), 1-2.

Tucci, A. 2014. AI for Games Seminar: N-Grams Prediction +
Intro to Bayes Inference [online]. Available from:
http://www.slideshare.net/andreatucci91/ai-for-games-seminar-
ngrams-prediction-intro-to-bayes.

Vasquez II, J. 2011. “Implementing N-Grams for Player Prediction,
Procedural Generation, and Stylized AI”. In Game AI pro:
Collected Wisdom of Game AI Professionals2011, S. Rabin
(Ed.). CRC Press, Boca Raton, FL, 567-580.

Watkins, C.J.C.H. and P. Dayan. 1992. Technical Note: Q-
Learning. Kluwer Academic Publishers, Boston, MA.

Whiteson, S.A. 2007. Adaptive Representations of Reinforcement
Learning. The University of Texas at Austin.

AUTHOR BIOGRAPHIES

DAVID KING is a lecturer in Mathematics and Artificial
Intelligence at Abertay University teaching on the Computer
Games Technology and Computer Games Application
Development Programmes. Email: d.king@abertay.ac.uk.

CASSIE BENNETT graduated from Abertay University in
July 2016 with a BSc (Hons) First Class in Computer Games
Technology..
Email: CassBennettDev@gmail.com.

	Blank Page

