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ABSTRACT 
 

   In the very popular genre of team sports games defeating 

the opposing AI is the main focus of the gameplay 

experience. However the overall quality of these games is 

significantly damaged because, in a lot of cases, the 

opposition is prone to mistakes or vulnerable to exploitation. 

This paper introduces an AI system which overcomes this 

failing through the addition of simple adaptive learning and 

prediction algorithms to a basic ice hockey defence. The 

paper shows that improvements can be made to the gameplay 

experience without overly increasing the implementation 

complexity of the system or negatively affecting its 

performance. The created defensive system detects patterns 

in the offensive tactics used against it and changes elements 

of its reaction accordingly; effectively adapting to attempted 

exploitation of repeated tactics. This is achieved using a 

fuzzy inference system that tracks player movement, which 

greatly improves variation of defender positioning, alongside 

an N-gram pattern recognition-based algorithm that predicts 

the next action of the attacking player. Analysis of 

implementation complexity and execution overhead shows 

that these techniques are not prohibitively expensive in either 

respect, and are therefore appropriate for use in games. 

 

INTRODUCTION 
 

   Artificial intelligence (AI) and video games have always 

been intrinsically linked. From providing very basic control 

of enemy characters in the early days of arcade games (the 

classic example being the ghosts in Pac-Man (Namco 1980), 

to the creation of complex systems that model the behaviour 

of realistic human characters in more recent titles. 

   As the games industry has grown over the years, so too 

have players’ expectations of the perceived level of 

intelligence and realism exhibited by the enemies they now 

face. Some in the industry have gone as far as saying that 

“high-quality game AI has become an important selling point 

of computer games in recent years” (Tan, Tan and Tay 

2011). Conversely, publishing a game that features obviously 

bad or broken AI is now a sure-fire way to draw harsh 

criticism from both consumers and the media. 

   Whereas some effort has been taken to address the 

imbalance between graphic fidelity and NPC ‘intelligence’ in 

RPG and the like, the same effort does not appear to have 

been taken when designing team sport games. It is still the 

case that once the player has established a specific strategy 

to defeat the opposition, this tactic will always work and the 

opposition are unable to learn or adapt to counter these 

moves. This significantly limits the replayability and shelf 

life of the game. 

   There are many existing AI algorithms capable of 

incorporating an element of learning/prediction that would 

be appropriate (Millington 2006). However, the method does 

not necessarily need to be complex. Decision trees and FSM-

based systems form effective frameworks that can be 

adapted and augmented in various ways to exhibit the 

desired characteristics. The key issue then is selecting the 

techniques that are most appropriate in terms of code and 

implementation complexity; while also achieving the desired 

adaptive effect in the given situation. 

 

ADAPTIVE AI 
 

   The goal of this project was to create a defensive system 

that would detect the use of repeated tactics, and react to this 

attempted exploitation in a behavioural way. For this 

purpose, adaptive AI can be defined as any algorithm which 

takes relevant data from the player’s actions and changes the 

behaviour of the AI system in an appropriate way. In this 

game-specific context there is no definite solution due to the 

constantly changing nature of the desired gameplay; the goal 

is to simply improve the AI system in a way that allows it to 

be less rigid. 

    

METHODOLOGY 
 

   The first step of developing the simple, adaptive AI was to 

build a basic ice hockey defence simulation. This system acts 

as a framework upon which the desired features are 

implemented separately to allow for comparison of results. It 

also enables access to necessary input data for the desired 

algorithms as well as application of their outputs to the 

defending agents. All adaptive functionality is built on top of 

this baseline application. Additionally, all data acquisition 

and processing will occur during execution (online adaption) 

so that the performance of each algorithm can be analysed. 

The ice hockey game was built using the Unity3D engine 

(Unity Technologies 2013). 

   A decision tree was implemented for the base framework 

as there is only really one state that the defenders can be in; 

defending. This ensures that the decision tree is kept fairly 

short and easy to visualise and maintain. A FSM would make 

more sense in a full hockey simulation where both teams can 

take possession of the puck, and where players can be on the 

ice or sitting on the bench. 

   A basic ice hockey defence was designed and 

implemented. It features two defending players whose 

movement and actions are controlled by a decision tree. Two 



attacking players have also been created, and can either be 

controlled directly by the player or via a choice of three 

scripted offensive plays that have been created to control 

them automatically. When the attacking player who 

possesses the puck enters the defensive zone (he must be the 

first attacking player to do so, otherwise it would be called 

offside), the decision tree was activated. 

   Trigger boxes are used to detect when the attacking players 

have entered the defensive end. A vector is drawn from the 

puck carrier to the goal and this vector is used to position 

one of the defending players between him and the net. If a 

second attacker (a passing target for the puck carrier) is also 

detected, a vector is drawn between the two attackers and 

used to position one of the defenders between them. These 

processes can be seen in Figure 1. 

 

 
 

Figure 1: Detection Zones and Position Vectors in Created 

Application. 

 

   The leaves of the decision tree are “block goal” and “take 

action”, which represent actions that the defending players 

can take. It is at these stages of the defensive process that the 

adaptive functionality is implemented. 

 

Defender Positioning 

 

   The first adaptive aspect of the AI is in the positioning of 

the defender who challenges the puck carrier. A crucial 

element of this positioning is how far away from the puck 

carrier the defender will stay. This “offset” is a scalar value 

that is applied to the position vector of the defending player 

to move them closer to or further away from the puck carrier. 

This value is determined by a Fuzzy Inference System (FIS). 

   There are two inputs to the FIS. The first is the magnitude 

of the vector drawn from the puck carrier to the goal (scaled 

to between 0 and 1) i.e. the current distance from the net. 

Logically the closer an attacker is to the goal, the more likely 

they are to shoot. The second input is the “event heat” of the 

current detection zone (the shaded square area in Figure 1). 

The event heat is measured separately for each zone, again as 

a value between 0 and 1. Every time a shot or pass occurs in 

a zone, a weighted value is added to that zone’s heat and 

another value subtracted from that of other zones (the exact 

values for which have been reached through an iterative 

process of trial and error). In this way, repeated actions in the 

same zone raise its heat very quickly, and the heat of other 

zones will reduce more slowly. This allows the system to 

adapt very quickly to repetition, while maintaining some 

memory of previous choices. 

Fuzzy Inference System 

 

   The initial rule-base for the FIS took the inputs detailed 

above and combined them as shown in Table 1, the outputs 

relating to the amount of offset. The rules were initially set 

up symmetrically, balanced equally between both inputs and 

the outputs. 

 

Table 1: Initial Rules of the FIS 

 

Event Heat 

Distance 

Low Medium High 

High Low Low Medium 

Medium Low Medium High 

Low Medium High High 

    

   Though this seemed like a sensible approach, when applied 

to the simulation the resulting behaviour appeared rather 

unresponsive. The puck carrier was allowed far too much 

space when near the goal and in high-scoring zones that were 

not very close the net. To balance the defence in a more 

aggressive way, the rules of the system were changed to 

those in Table 2. 

 

Table 2: Final Rules of the FIS. 

 

Event Heat 

Distance 

Low Medium High 

High Low Low Low 

Medium Low Medium Medium 

Low Low Medium High 

 

   As shown, when the distance to the goal is low and the 

event heat of the current zone is high, the offset output by the 

system is low. However, the offset should also be low 

whenever the event heat is high or the distance is low.  

   The fuzzy set for the input ‘Distance’ is shown in Figure 2. 

The fuzzy set for ‘Event Heat’ is the same. The domain of 

each membership function was reached through 

experimentation both in MATLAB (MathWorks 2014) and 

using the application. Triangular shapes were chosen for the 

sake of simplicity; ensuring that fuzzifying the input values 

was as efficient as possible. The output fuzzy set ‘Offset’ 

(Figure 3) also has triangular membership functions. In 

addition to this, they do not overlap to simplify the 

defuzzification process. 

   The FIS uses the centroid method of defuzzification to 

generate a crisp numerical value from the fuzzy output that is 

calculated. Though far from the simplest method of 

defuzzification, the centroid method is one that gives the 

most variation of output values (Nurcahyo, Shamsuddin and 

Alias 2003). Since lack of variation is generally the problem 

with crisp rule-based implementations, it made sense to 

select the centroid method for this reason 

    

 
 

Figure 2: Input Fuzzy Set ‘Distance’ 

 



 
 

Figure 3: Output Fuzzy Set ‘Offset’ 

 

Due to the shape of the membership functions, the 

implemented defuzzification gives an output offset value that 

is between 0.09 and 0.92. This value is then applied to the 

defender’s offset vector via scalar multiplication, allowing 

for the gap between the two players to adapt to the given 

inputs. 

 

Action Prediction 

 

   Defender positioning is only one component of an adaptive 

defence. The defender also has to decide whether the 

attacker is going to shoot or pass and act accordingly. The 

defensive end has been split in to 9 detection zones, shown 

in Figure 4. More than one detection zone can be active at 

any given time. During play each detection zone stores the 

number of shots and passes that have occurred and then 

stores the previous ten events as an ordered string of Char 

objects. 

 

 
 

Figure 4: Detection Zones in the Defensive End. 

 

N-gram Pattern Recognition 

 

   The action prediction implemented in the application is a 

3-gram string-matching algorithm (Muise. et al. 2009). A 

shot is stored as an ‘S’, and a pass as a ‘P’. An example 

event history from the completed application is shown in 

Figure 5. When an event is likely to occur (event heat > 0.5), 

the history of the current zone will be analysed. In this 3-

gram method, the algorithm takes the last 2 events (P and S, 

in this case) and searches the history for instances of this 

pattern. The event that follows this pattern most often 

(another pass, in the above case) is then chosen to be the next 

predicted action. However, if the previous two actions have 

not occurred in that order before, the algorithm will be 

unable to  

 
 

Figure 5: Event History of the Current Active Zone. 

 

predict what the next action will be. For this reason, a final 

piece of work was carried out in this area. 

 

Probability and N-gram Combination 

 

   A combined action prediction system was created. It 

simply carries out the previously described n-gram string-

matching, and if no event can be predicted by that method, 

reverts to a probabilistic approach. When the event heat of 

the current active area is above 0.5, the total number of 

passes and shots for that area is compared, and the one with 

the larger volume is predicted to be the next action chosen by 

the player. If they are equal, the defence will play safe and 

predict a shot. 

 

EVALUATION 

 

Defender Positioning 

 

   Presented below are the graphed results of the FIS 

controller compared to a simple Crisp Rule Based System 

using the same rule base. One run with no event heat present 

(Figure 6), one with medium event heat present in the first 

zone (Figure 7) and a final run with high event heat in zone 1 

(Figure 8) have been simulated. It should be noted that the 

sudden drops shown at the start of the second and third 

graphs are due to the puck carrier first entering the defensive 

zone.  

   As expected, the output from the crisp rule-based system is 

distinctly rigid and unvaried. The FIS offset values show a 

much greater degree of variance, resulting in a greater range 

of output values. Both systems seem to react to the 

combination of inputs in similar ways, suggesting that they 

both allow for a similar degree of adaption; though this is to 

be expected since they make use of the same rule set. 

 

Action Prediction 

 

   Each of the three methods of action prediction 

(probabilistic, pattern recognition and combination) have 

been presented with a set of defined historical data. Table 3, 

shows the action predicted by each when exposed to the 

given string of event history. ‘S’ denotes a shot, ‘P’ a pass 

and an ‘E’ signifies that no action could be predicted. 

Though the pattern recognition method could handle this in a 

number of ways (default to predicting a shot, carry out 

previous chosen action, choose one at random, etc.), this 



 Figure 6: Results with no Event Heat and Decreasing 

Distance 

 

 Figure 7: Results with Medium Event Heat in the First Zone 

 

 Figure 8: Results with High Event Heat in Zone 1 

 

Table 3: Predicted Actions When Exposed to Historical Data  

History Desc. Prob. Pattern Comb. 

SSSSSSSSSS  10 S S S S 

SSSSSSSPPP  7S, 3P S P P 

SPSPSPSPSP  5S, 5P S S S 

SSPSSPSSPS  7S, 3P S S S 

PSSSPSPSPS  6S, 4P S P P 

PPSPPSPPSS  6P, 4S P E P 

SSSSSSSSSP  9S, 1P S E S 

 

would not be a meaningful prediction and therefore has not 

been implemented for these results. 

 

Complexity 

 

   The complexity of each adaptive algorithm is displayed in 

Table 4. For comparison, the basic decision tree-based 

defence logic is included at the top. 

 

Table 4: Complexity of Implemented Techniques 

Technique Lines of code CPU time (ms) 

Decision tree 

defence 

281 between 0.02 and 

0.05 

NC - Crisp rule-

based 

99 0.01 

NC - FIS 438 0.01 

AP - Probability 4 0.01 

AP - Pattern 

Recog. 

85 0.03 

AP - Combination 89 0.03 

 

DISCUSSION 

 

   The main issue with evaluating gameplay systems such as 

those created is that there is often no real scientific way of 

measuring success in this context. While it is easy to test 

whether the defender is close to the puck carrier when they 

should be, it is much harder to say how effective a prediction 

algorithm is when the next action the player will take cannot 

be known. For this reason, there is bound to be an inherent 

level of subjectivity in any analysis of most created game AI 

systems. That said, much effort has been made to avoid bias 

both in the implementation of each algorithm and now in 

their discussion. 

   The overall results of the project (in terms of what has 

been created) are generally positive. Multiple methods of 

creating each desired feature have been researched, designed, 

implemented and tested. A robust application has been 

created, which showcases different adaptive AI algorithms in 

a relevant team sports context. 

   As shown in the graphs for Defender Positioning, there is a 

clear difference in the amount of output variation given by 

the FIS in comparison with a Crisp Rule-Based System. The 

FIS produces a greater array of different offset values than 

the crisp rule base does, and covers a wider range of the 

given domain. Though the range of values given by the rule-

based system is somewhat due to implementation choice, 

there is no way around the lack of variation that results from 

using such a system. For this reason, if variation in terms of 

resulting values is desired when implementing a numerical 

control system of this kind, the FIS is clearly the better 

choice. The increased variation given by the FIS will make it 

appear to react in a more natural, realistic way. 

   Another thing worth noting is that the created system is far 

too precise in nature, even with the stated increase in 

variation provided by the FIS. In a sport as fast-paced as ice 

hockey, it is entirely unnatural for defending players to 

always be exactly in the right position. For this reason, it 

would be a good idea to add some kind of constrained 

random adjustment to the blocking defender’s position 

vector. This would serve to ensure that some shots would 

actually make it past them. 

   As for the Action Prediction the purely probabilistic 

method has the distinct advantage of always being able to 

return a meaningful prediction, as long as at least one event 

has occurred in the current zone. This means that it is rapid 

to detect when an action is being repeated. It does not need 

to wait for sufficient history data to analyse properly. The n-

gram method relies on sufficient history data being present 



for it to find any form of pattern. When repetition cannot be 

found, the purely pattern-based prediction is unable to give a 

relevant output. While this can easily be fixed by having it 

default to predicting a shot, it is still a definite weakness of 

the approach. However, combining the two techniques so 

that probability is used when a pattern cannot be found 

results in a very robust system that has the strengths of both 

approaches, with no obvious drawbacks. 

 

Complexity 

 

   As Table 4 shows, the crisp rule-based system required 

only 99 lines of code to implement, whereas the FIS resulted 

in over 400. While neither system has been compressed 

aggressively in terms of code (readability and clarity to a 

new observer have been emphasised during development), 

this is a marked increase in implementation complexity and 

therefore time. The fact that the FIS is substantially longer 

than the entire baseline decision tree defence logic suggests 

that it may only be worth implementing if numerical 

variation is highly important in the game situation. If not, a 

simple rule-based approach may be entirely appropriate. 

   However, as evidenced in Table 4, there is no marked 

increase in performance overhead when a FIS is used instead 

of a crisp rule set. This is due to the fact that both systems 

essentially boil down to a set of logical AND operations; 

with the FIS requiring simple and efficient calculations on 

either side of these rules. There are no expensive memory 

operations, so performance overhead is minimal and not of 

concern for current generation hardware. 

   Unsurprisingly, the probabilistic action prediction is 

incredibly easy to implement. A simple comparison of two 

numbers has almost no implementation cost at all, as shown 

in Table 4. Though somewhat more complex in concept, the 

created n-gram prediction only seems costly to implement 

due to its comparison with the probability approach (85 lines 

of code vs 4). In context, even the combination of both to 

create a fairly robust and effective system is far less costly 

than the original decision tree-based defender control. 

   Performance-wise, there is a small but noticeable increase 

in the CPU time used by the pattern recognition. However, 

the resultant CPU usage is still incredibly small and most 

definitely not an issue on any form of modern processor.  

 

Future Work 

 

   While it is clear that an adaptive system has been created 

that functions correctly, there has been no evaluation of 

whether players would actually enjoy tackling it. The next 

step in developing such a system would therefore be to carry 

out some form of survey-based analysis of whether the 

average player feels the created system is fair, balanced and 

actually effective at what it aims to do. 

   In order to carry out the above evaluation, it would be a 

good idea to extend the created application into a fully-

fledged team-based ice hockey simulation. This would 

involve making minor changes to how the defence currently 

functions, as well as implementing some form of attacking 

AI as well. It is likely that this would be a significant 

undertaking, but one that is entirely necessary to fully 

evaluate the performance of the defensive system in a proper 

context.  

   A logical extension would be to try to port the created 

adaptive system to other, similar team sport games. Though 

the gameplay mechanics of other sports like football and 

basketball are very different, the core concepts of defending 

(effective positioning, shot blocking) are completely 

transferable. In this way the AI performance of not just ice 

hockey, but all similar team sports games could be improved 

to provide a better experience for the paying customer.  

 

CONCLUSIONS 

 

   In conclusion, the development of this project has shown 

that intelligent and believable behaviour can be modelled 

with a combination of fairly simplistic techniques. With 

graphical improvements in games becoming less and less 

noticeable with each new generation of hardware, it would 

seem then that creating better and more engaging game AI is 

of the utmost importance. There is clearly room for 

improvement in the games industry’s approach to AI 

development as a whole; this project alone demonstrates that 

existing rigid systems can be improved without massive 

costs in development or impacts to performance. 
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