
A simple hybrid algorithm for improving team sport
AI

David King and David Edwards

This is a paper presented at GameOn 2015, the 16th International
Conference on Intelligent Games and Simulation, Amsterdam,
Netherlands, 2-4 December 2015

The published paper © EUROSIS is part of the Proceedings of the
16th International Conference on Intelligent Games and Simulation,
Amsterdam, Netherlands, 2-4 December 2015. ISBN 9789077381915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228176521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A SIMPLE HYBRID ALGORITHM FOR IMPROVING TEAM SPORT AI

David King

David Edwards
University of Abertay, Dundee

40 Bell Street, Dundee, United Kingdom, DD1 1HG
Email: d.king@abertay.ac.uk

KEYWORDS

Adaptive AI, Fuzzy Logic, N-gram prediction, Team Sports

Games.

ABSTRACT

 In the very popular genre of team sports games defeating

the opposing AI is the main focus of the gameplay

experience. However the overall quality of these games is

significantly damaged because, in a lot of cases, the

opposition is prone to mistakes or vulnerable to exploitation.

This paper introduces an AI system which overcomes this

failing through the addition of simple adaptive learning and

prediction algorithms to a basic ice hockey defence. The

paper shows that improvements can be made to the gameplay

experience without overly increasing the implementation

complexity of the system or negatively affecting its

performance. The created defensive system detects patterns

in the offensive tactics used against it and changes elements

of its reaction accordingly; effectively adapting to attempted

exploitation of repeated tactics. This is achieved using a

fuzzy inference system that tracks player movement, which

greatly improves variation of defender positioning, alongside

an N-gram pattern recognition-based algorithm that predicts

the next action of the attacking player. Analysis of

implementation complexity and execution overhead shows

that these techniques are not prohibitively expensive in either

respect, and are therefore appropriate for use in games.

INTRODUCTION

 Artificial intelligence (AI) and video games have always

been intrinsically linked. From providing very basic control

of enemy characters in the early days of arcade games (the

classic example being the ghosts in Pac-Man (Namco 1980),

to the creation of complex systems that model the behaviour

of realistic human characters in more recent titles.

 As the games industry has grown over the years, so too

have players’ expectations of the perceived level of

intelligence and realism exhibited by the enemies they now

face. Some in the industry have gone as far as saying that

“high-quality game AI has become an important selling point

of computer games in recent years” (Tan, Tan and Tay

2011). Conversely, publishing a game that features obviously

bad or broken AI is now a sure-fire way to draw harsh

criticism from both consumers and the media.

 Whereas some effort has been taken to address the

imbalance between graphic fidelity and NPC ‘intelligence’ in

RPG and the like, the same effort does not appear to have

been taken when designing team sport games. It is still the

case that once the player has established a specific strategy

to defeat the opposition, this tactic will always work and the

opposition are unable to learn or adapt to counter these

moves. This significantly limits the replayability and shelf

life of the game.

 There are many existing AI algorithms capable of

incorporating an element of learning/prediction that would

be appropriate (Millington 2006). However, the method does

not necessarily need to be complex. Decision trees and FSM-

based systems form effective frameworks that can be

adapted and augmented in various ways to exhibit the

desired characteristics. The key issue then is selecting the

techniques that are most appropriate in terms of code and

implementation complexity; while also achieving the desired

adaptive effect in the given situation.

ADAPTIVE AI

 The goal of this project was to create a defensive system

that would detect the use of repeated tactics, and react to this

attempted exploitation in a behavioural way. For this

purpose, adaptive AI can be defined as any algorithm which

takes relevant data from the player’s actions and changes the

behaviour of the AI system in an appropriate way. In this

game-specific context there is no definite solution due to the

constantly changing nature of the desired gameplay; the goal

is to simply improve the AI system in a way that allows it to

be less rigid.

METHODOLOGY

 The first step of developing the simple, adaptive AI was to

build a basic ice hockey defence simulation. This system acts

as a framework upon which the desired features are

implemented separately to allow for comparison of results. It

also enables access to necessary input data for the desired

algorithms as well as application of their outputs to the

defending agents. All adaptive functionality is built on top of

this baseline application. Additionally, all data acquisition

and processing will occur during execution (online adaption)

so that the performance of each algorithm can be analysed.

The ice hockey game was built using the Unity3D engine

(Unity Technologies 2013).

 A decision tree was implemented for the base framework

as there is only really one state that the defenders can be in;

defending. This ensures that the decision tree is kept fairly

short and easy to visualise and maintain. A FSM would make

more sense in a full hockey simulation where both teams can

take possession of the puck, and where players can be on the

ice or sitting on the bench.

 A basic ice hockey defence was designed and

implemented. It features two defending players whose

movement and actions are controlled by a decision tree. Two

attacking players have also been created, and can either be

controlled directly by the player or via a choice of three

scripted offensive plays that have been created to control

them automatically. When the attacking player who

possesses the puck enters the defensive zone (he must be the

first attacking player to do so, otherwise it would be called

offside), the decision tree was activated.

 Trigger boxes are used to detect when the attacking players

have entered the defensive end. A vector is drawn from the

puck carrier to the goal and this vector is used to position

one of the defending players between him and the net. If a

second attacker (a passing target for the puck carrier) is also

detected, a vector is drawn between the two attackers and

used to position one of the defenders between them. These

processes can be seen in Figure 1.

Figure 1: Detection Zones and Position Vectors in Created

Application.

 The leaves of the decision tree are “block goal” and “take

action”, which represent actions that the defending players

can take. It is at these stages of the defensive process that the

adaptive functionality is implemented.

Defender Positioning

 The first adaptive aspect of the AI is in the positioning of

the defender who challenges the puck carrier. A crucial

element of this positioning is how far away from the puck

carrier the defender will stay. This “offset” is a scalar value

that is applied to the position vector of the defending player

to move them closer to or further away from the puck carrier.

This value is determined by a Fuzzy Inference System (FIS).

 There are two inputs to the FIS. The first is the magnitude

of the vector drawn from the puck carrier to the goal (scaled

to between 0 and 1) i.e. the current distance from the net.

Logically the closer an attacker is to the goal, the more likely

they are to shoot. The second input is the “event heat” of the

current detection zone (the shaded square area in Figure 1).

The event heat is measured separately for each zone, again as

a value between 0 and 1. Every time a shot or pass occurs in

a zone, a weighted value is added to that zone’s heat and

another value subtracted from that of other zones (the exact

values for which have been reached through an iterative

process of trial and error). In this way, repeated actions in the

same zone raise its heat very quickly, and the heat of other

zones will reduce more slowly. This allows the system to

adapt very quickly to repetition, while maintaining some

memory of previous choices.

Fuzzy Inference System

 The initial rule-base for the FIS took the inputs detailed

above and combined them as shown in Table 1, the outputs

relating to the amount of offset. The rules were initially set

up symmetrically, balanced equally between both inputs and

the outputs.

Table 1: Initial Rules of the FIS

Event Heat

Distance

Low Medium High

High Low Low Medium

Medium Low Medium High

Low Medium High High

 Though this seemed like a sensible approach, when applied

to the simulation the resulting behaviour appeared rather

unresponsive. The puck carrier was allowed far too much

space when near the goal and in high-scoring zones that were

not very close the net. To balance the defence in a more

aggressive way, the rules of the system were changed to

those in Table 2.

Table 2: Final Rules of the FIS.

Event Heat

Distance

Low Medium High

High Low Low Low

Medium Low Medium Medium

Low Low Medium High

 As shown, when the distance to the goal is low and the

event heat of the current zone is high, the offset output by the

system is low. However, the offset should also be low

whenever the event heat is high or the distance is low.

 The fuzzy set for the input ‘Distance’ is shown in Figure 2.

The fuzzy set for ‘Event Heat’ is the same. The domain of

each membership function was reached through

experimentation both in MATLAB (MathWorks 2014) and

using the application. Triangular shapes were chosen for the

sake of simplicity; ensuring that fuzzifying the input values

was as efficient as possible. The output fuzzy set ‘Offset’

(Figure 3) also has triangular membership functions. In

addition to this, they do not overlap to simplify the

defuzzification process.

 The FIS uses the centroid method of defuzzification to

generate a crisp numerical value from the fuzzy output that is

calculated. Though far from the simplest method of

defuzzification, the centroid method is one that gives the

most variation of output values (Nurcahyo, Shamsuddin and

Alias 2003). Since lack of variation is generally the problem

with crisp rule-based implementations, it made sense to

select the centroid method for this reason

Figure 2: Input Fuzzy Set ‘Distance’

Figure 3: Output Fuzzy Set ‘Offset’

Due to the shape of the membership functions, the

implemented defuzzification gives an output offset value that

is between 0.09 and 0.92. This value is then applied to the

defender’s offset vector via scalar multiplication, allowing

for the gap between the two players to adapt to the given

inputs.

Action Prediction

 Defender positioning is only one component of an adaptive

defence. The defender also has to decide whether the

attacker is going to shoot or pass and act accordingly. The

defensive end has been split in to 9 detection zones, shown

in Figure 4. More than one detection zone can be active at

any given time. During play each detection zone stores the

number of shots and passes that have occurred and then

stores the previous ten events as an ordered string of Char

objects.

Figure 4: Detection Zones in the Defensive End.

N-gram Pattern Recognition

 The action prediction implemented in the application is a

3-gram string-matching algorithm (Muise. et al. 2009). A

shot is stored as an ‘S’, and a pass as a ‘P’. An example

event history from the completed application is shown in

Figure 5. When an event is likely to occur (event heat > 0.5),

the history of the current zone will be analysed. In this 3-

gram method, the algorithm takes the last 2 events (P and S,

in this case) and searches the history for instances of this

pattern. The event that follows this pattern most often

(another pass, in the above case) is then chosen to be the next

predicted action. However, if the previous two actions have

not occurred in that order before, the algorithm will be

unable to

Figure 5: Event History of the Current Active Zone.

predict what the next action will be. For this reason, a final

piece of work was carried out in this area.

Probability and N-gram Combination

 A combined action prediction system was created. It

simply carries out the previously described n-gram string-

matching, and if no event can be predicted by that method,

reverts to a probabilistic approach. When the event heat of

the current active area is above 0.5, the total number of

passes and shots for that area is compared, and the one with

the larger volume is predicted to be the next action chosen by

the player. If they are equal, the defence will play safe and

predict a shot.

EVALUATION

Defender Positioning

 Presented below are the graphed results of the FIS

controller compared to a simple Crisp Rule Based System

using the same rule base. One run with no event heat present

(Figure 6), one with medium event heat present in the first

zone (Figure 7) and a final run with high event heat in zone 1

(Figure 8) have been simulated. It should be noted that the

sudden drops shown at the start of the second and third

graphs are due to the puck carrier first entering the defensive

zone.

 As expected, the output from the crisp rule-based system is

distinctly rigid and unvaried. The FIS offset values show a

much greater degree of variance, resulting in a greater range

of output values. Both systems seem to react to the

combination of inputs in similar ways, suggesting that they

both allow for a similar degree of adaption; though this is to

be expected since they make use of the same rule set.

Action Prediction

 Each of the three methods of action prediction

(probabilistic, pattern recognition and combination) have

been presented with a set of defined historical data. Table 3,

shows the action predicted by each when exposed to the

given string of event history. ‘S’ denotes a shot, ‘P’ a pass

and an ‘E’ signifies that no action could be predicted.

Though the pattern recognition method could handle this in a

number of ways (default to predicting a shot, carry out

previous chosen action, choose one at random, etc.), this

 Figure 6: Results with no Event Heat and Decreasing

Distance

 Figure 7: Results with Medium Event Heat in the First Zone

 Figure 8: Results with High Event Heat in Zone 1

Table 3: Predicted Actions When Exposed to Historical Data

History Desc. Prob. Pattern Comb.

SSSSSSSSSS 10 S S S S

SSSSSSSPPP 7S, 3P S P P

SPSPSPSPSP 5S, 5P S S S

SSPSSPSSPS 7S, 3P S S S

PSSSPSPSPS 6S, 4P S P P

PPSPPSPPSS 6P, 4S P E P

SSSSSSSSSP 9S, 1P S E S

would not be a meaningful prediction and therefore has not

been implemented for these results.

Complexity

 The complexity of each adaptive algorithm is displayed in

Table 4. For comparison, the basic decision tree-based

defence logic is included at the top.

Table 4: Complexity of Implemented Techniques

Technique Lines of code CPU time (ms)

Decision tree

defence

281 between 0.02 and

0.05

NC - Crisp rule-

based

99 0.01

NC - FIS 438 0.01

AP - Probability 4 0.01

AP - Pattern

Recog.

85 0.03

AP - Combination 89 0.03

DISCUSSION

 The main issue with evaluating gameplay systems such as

those created is that there is often no real scientific way of

measuring success in this context. While it is easy to test

whether the defender is close to the puck carrier when they

should be, it is much harder to say how effective a prediction

algorithm is when the next action the player will take cannot

be known. For this reason, there is bound to be an inherent

level of subjectivity in any analysis of most created game AI

systems. That said, much effort has been made to avoid bias

both in the implementation of each algorithm and now in

their discussion.

 The overall results of the project (in terms of what has

been created) are generally positive. Multiple methods of

creating each desired feature have been researched, designed,

implemented and tested. A robust application has been

created, which showcases different adaptive AI algorithms in

a relevant team sports context.

 As shown in the graphs for Defender Positioning, there is a

clear difference in the amount of output variation given by

the FIS in comparison with a Crisp Rule-Based System. The

FIS produces a greater array of different offset values than

the crisp rule base does, and covers a wider range of the

given domain. Though the range of values given by the rule-

based system is somewhat due to implementation choice,

there is no way around the lack of variation that results from

using such a system. For this reason, if variation in terms of

resulting values is desired when implementing a numerical

control system of this kind, the FIS is clearly the better

choice. The increased variation given by the FIS will make it

appear to react in a more natural, realistic way.

 Another thing worth noting is that the created system is far

too precise in nature, even with the stated increase in

variation provided by the FIS. In a sport as fast-paced as ice

hockey, it is entirely unnatural for defending players to

always be exactly in the right position. For this reason, it

would be a good idea to add some kind of constrained

random adjustment to the blocking defender’s position

vector. This would serve to ensure that some shots would

actually make it past them.

 As for the Action Prediction the purely probabilistic

method has the distinct advantage of always being able to

return a meaningful prediction, as long as at least one event

has occurred in the current zone. This means that it is rapid

to detect when an action is being repeated. It does not need

to wait for sufficient history data to analyse properly. The n-

gram method relies on sufficient history data being present

for it to find any form of pattern. When repetition cannot be

found, the purely pattern-based prediction is unable to give a

relevant output. While this can easily be fixed by having it

default to predicting a shot, it is still a definite weakness of

the approach. However, combining the two techniques so

that probability is used when a pattern cannot be found

results in a very robust system that has the strengths of both

approaches, with no obvious drawbacks.

Complexity

 As Table 4 shows, the crisp rule-based system required

only 99 lines of code to implement, whereas the FIS resulted

in over 400. While neither system has been compressed

aggressively in terms of code (readability and clarity to a

new observer have been emphasised during development),

this is a marked increase in implementation complexity and

therefore time. The fact that the FIS is substantially longer

than the entire baseline decision tree defence logic suggests

that it may only be worth implementing if numerical

variation is highly important in the game situation. If not, a

simple rule-based approach may be entirely appropriate.

 However, as evidenced in Table 4, there is no marked

increase in performance overhead when a FIS is used instead

of a crisp rule set. This is due to the fact that both systems

essentially boil down to a set of logical AND operations;

with the FIS requiring simple and efficient calculations on

either side of these rules. There are no expensive memory

operations, so performance overhead is minimal and not of

concern for current generation hardware.

 Unsurprisingly, the probabilistic action prediction is

incredibly easy to implement. A simple comparison of two

numbers has almost no implementation cost at all, as shown

in Table 4. Though somewhat more complex in concept, the

created n-gram prediction only seems costly to implement

due to its comparison with the probability approach (85 lines

of code vs 4). In context, even the combination of both to

create a fairly robust and effective system is far less costly

than the original decision tree-based defender control.

 Performance-wise, there is a small but noticeable increase

in the CPU time used by the pattern recognition. However,

the resultant CPU usage is still incredibly small and most

definitely not an issue on any form of modern processor.

Future Work

 While it is clear that an adaptive system has been created

that functions correctly, there has been no evaluation of

whether players would actually enjoy tackling it. The next

step in developing such a system would therefore be to carry

out some form of survey-based analysis of whether the

average player feels the created system is fair, balanced and

actually effective at what it aims to do.

 In order to carry out the above evaluation, it would be a

good idea to extend the created application into a fully-

fledged team-based ice hockey simulation. This would

involve making minor changes to how the defence currently

functions, as well as implementing some form of attacking

AI as well. It is likely that this would be a significant

undertaking, but one that is entirely necessary to fully

evaluate the performance of the defensive system in a proper

context.

 A logical extension would be to try to port the created

adaptive system to other, similar team sport games. Though

the gameplay mechanics of other sports like football and

basketball are very different, the core concepts of defending

(effective positioning, shot blocking) are completely

transferable. In this way the AI performance of not just ice

hockey, but all similar team sports games could be improved

to provide a better experience for the paying customer.

CONCLUSIONS

 In conclusion, the development of this project has shown

that intelligent and believable behaviour can be modelled

with a combination of fairly simplistic techniques. With

graphical improvements in games becoming less and less

noticeable with each new generation of hardware, it would

seem then that creating better and more engaging game AI is

of the utmost importance. There is clearly room for

improvement in the games industry’s approach to AI

development as a whole; this project alone demonstrates that

existing rigid systems can be improved without massive

costs in development or impacts to performance.

REFERENCES

Millington, I. 2006. Artificial Intelligence for Games. Morgan

Kaufmann, San Francisco, C.A.

Muise, C. et al. 2009. “Exploiting N-gram analysis to predict

operator sequences.” In: Proceedings of the Nineteenth

International Conference on Automated Planning and

Scheduling.

Namco Pac-Man. 1980. [arcade]. Arcade. Namco.

Nurcahyo, G. Shamsuddin, S. and Alias, R. 2003. “Selection of

Defuzzification Method to Obtain Crisp Value for rRpresenting

Uncertain Data in a Modified Sweep Algorithm.” Journal of

Computer Science & Technology. 3(2). 22-28.

Tan, C., Tan, K. and Tay, A. 2011. “Dynamic Game Difficulty

Scaling Using Adaptive Behavior-based AI.” IEEE

Transactions on Computational Intelligence and AI in Games.

3(4), 289-301.

WEB REFERENCES

MathWorks. 2014. What is Sugeno-type fuzzy inference? [online].

Available from: http://www.mathworks.co.uk/help/fuzzy/what-

is-sugeno-type-fuzzy-inference.html [Accessed 30 April 2014].

Unity Technologies. 2013. Unity. [software]. Version 4.3.2.

Available online, from:

https://unity3d.com/unity/download/archive

BIOGRAPHY

DAVID KING is a lecturer in Maths and Artificial

Intelligence at Abertay University teaching on the Computer

Games Technology and Computer Games Application

Development Programmes.

DAVID EDWARDS Graduated with First Class Honours in

Computer Games Technology from Abertay University in

2014 and is now a programmer for Gameplay, AI & User

Experience.

http://www.mathworks.co.uk/help/fuzzy/what-is-sugeno-type-fuzzy-inference.html
http://www.mathworks.co.uk/help/fuzzy/what-is-sugeno-type-fuzzy-inference.html
https://unity3d.com/unity/download/archive

	A simple hybrid algorithm for improving team sport AI
	King_ASimpleHybridAlogorithm_Author_2015
	A simple hybrid algorithm for improving team sport AICS
	King_ASimpleHybridAlogorithm_Author_2015

