
Matrix Operations for the Simulation and Immediate Reverse-Engineering of Time Series
Data

Michael A. Idowu
SIMBIOS Centre

School of Contemporary Sciences
University of Abertay
Dundee, Scotland, UK
m.idowu@abertay.ac.uk

James L. Bown
SIMBIOS Centre

Institute of Arts, Media and Computer Games
University of Abertay
Dundee, Scotland, UK
j.bown@abertay.ac.uk

Abstract—We present a new method for constructing and de-
composing square matrices. This method, based on the computed
parameterisation of their implied determinants and minors,
operates on the product of factors of a new form of matrix
decomposition. This method may be employed to build new
matrices with fixed determinant(s). We demonstrate that this
new approach is fundamentally well-connected to the Cholesky
decomposition if applied on symmetric matrices. We also demon-
strate that it is related to the LU decomposition method via a
diagonal matrix multiplier. Also through this new method a direct
relation between Cholesky decomposition and LU factorisation
is shown. This method, presented for the first time, is useful
for (re)constructing matrices with a predefined determinant and
simulating inverse problems. The inference method introduced
here also is based on new matrix manipulation techniques that we
have developed for the identification of systems from reproducible
time series data.

Keywords—mathematical modelling; simulation; optimisation
algorithms; network inference; inverse problems; matrix algebra
and calculus; time series analysis; system identification and
parameter estimation methods

I. INTRODUCTION

In systems biology, where theoretical models are impor-
tant aids in interpreting complex systems dynamics, a robust
framework that is inexpensive and able to simplify the cre-
ation and evaluation of system identification and parameter
estimation problems and solutions is valuable. The frame-
work we have developed is matrix-based and sophisticated
enough for the identification of ODE models from time series
data. We demonstrate that through simple matrix manipula-
tion techniques, powerful and effective computational tools,
complementary to existing reverse engineering and modelling
packages, may be developed. These techniques are useful
for understanding complex network structures and dynam-
ics.We present a new method for constructing and decom-
posing square matrices. This method, based on the computed
parameterisation of their implied determinants and minors,
operates on the product of factors of a new form of matrix
decomposition and may be employed to build new matrices
with fixed determinant(s).
Suppose the square matrix A is to be partitioned into LDU
decomposition factors, i.e., A is to be transformed into equiv-
alent lower, diagonal, and upper matrix factors, then one may
employ the Gaussian elimination method [1]. Importantly, here

we show that A may be decomposed and recomposed in
terms of its implied determinant and minors. Given A may be
factorised in terms of its minor and determinants, we examine
the determinant of A we suggest that if the entries of the LDU
factors of A are modified such that the determinant value re-
mains fixed, then any matrix that is reconstructed as a product
of those modified LDU factors will have its determinant equal
to that fixed value. Thus we propose that by this new method
multiple nonsingular matrices with a predefined determinant
may be created. This algorithm, presented here for the first
time, provides a robust method for constructing nonsingular or
singular matrix with a predefined determinant and is applicable
to matrices of different sizes. This method provides us with a
new tool for decomposing square matrices. We demonstrate
that for symmetric matrices our new LDU decomposition
method is related to the Cholesky decomposition method [1]
and to the LU decomposition method [1].

A. A new matrix decomposition and composition method

It was Householder [2] who first hinted that when an LDU
factorization exists and is unique there might be a closed
(explicit) formula for the elements of the L, D, and U factors in
terms of the ratios of the determinants of certain submatrices of
the original matrix A. However, Householder did not explain
how to determine this.

Matrix decomposition is used in matrix algebra to solve
systems of linear equations. An LDU factorisation of a matrix,
A, is basically a decomposition of the matrix to the form
A = L.D.U where L and U are lower- and upper-unit
triangular matrices, respectively, and D is a diagonal matrix. To
develop a method for constructing matrices with a predefined
determinant, we discovered that an optimised variant of the
LDU technique is necessary. This decomposition technique,
initially viewed as an optimised reverse engineering method of
matrix composition, may be viewed from the perspective that
the product of Ld.Dd.Ud factors is also useful for generating
reproducible time series data. Expressed in terms of the pa-
rameterisation of its implied minors and determinant, it can be
used to create nonsingular jacobian matrices. As demonstrated
later, the Ld and Ud factors are triangular matrices but not nec-
essarily unit-trianglular. From the definition A = Ld.Dd.Ud,
reading from LHS to RHS, we may view the decomposition



process as transforming the matrix A to Ld.Dd.Ud, while on
the other hand, interpreting from RHS to LHS, a composition
method of creating a matrix with known properties is effected.

1) Definitions: If A is an n x n matrix, and i and j are
positive integers less than or equal to n, then an i x j minor
(often denoted Mi,j) of A is the determinant of the (n-i) x
(n-i) matrix obtained from A by deleting from A its ith row
and jth column. This means that the minor M3,2 of a 3 x 3
matrix A may be alternatively represented as det

r1,2 c1,3
, that

is, M
3,2

= det
r1,2 c1,3

.
Let Ld be the lower triangular matrix component of the
Ld.Dd.Ud factorisation of A. Ld has only zero-values above
its diagonal; all the entries in the first column of Ld are the
same as entries in the first column of A and all other non-
zero entries are either determinants of submatrices formed with
A1,1 or minors of A. Each diagonal entry of Ld at position
(i) is the determinant of the upper left i-by-i submatrix of A
represented as deti 1, where i = 1, 2, ... , length(A);

Ld =

 a
1,1

0 0
a

2,1
det2 0

a3,1 detr1,3 c1,2 det3

 , (1)

Let Dd be a diagonal matrix that is the reciprocal of the
product of the determinant of the submatrix formed with A1,1

at the ith-position and that of submatrix formed with A1,1

from the (i − 1)th point above the diagonal if it exists such
that

Dd =


1
a
1,1

0 0

0 1
(a

1,1
∗det2) 0

0 0 1
(det2∗det3)

 (2)

Let Ud be an upper triangular matrix with all entries below
the diagonal set to zero, all entries in the first row of Ud are
equivalent to entries in first row of A; all other entries in Ud
are minors of the sub-blocks formed with A1,1, such that Ud
is of the form:

Ud =

 a
1,1

a
1,2

a
1,3

0 det2 det
r1,2 c1,3

0 0 det3

 (3)

We wish to show that

A3 =

 a
1,1

a
1,2

a
1,3

a
2,1

a
2,2

a
2,3

a3,1 a3,2 a3,3

 = Ld ∗Dd ∗ Ud (4)

, and that a generalised method for constructing matrices with
fixed determinant exists.

2) Representation of matrix entries by minors: We claim
that entries of matrices may be representated by algebraic sums
of products of their minors. For example, let A3 be a 3 x 3

1det*label* parameter is a determinant or minor of A.

square matrix (with 3x3=9 parameters) such that

A3 =


a

1,1
a

1,2
a

1,3

a2,1

(det2+a1,2∗a2,1 )
a
1,1

(detr1,2 c1,3
+a

1,3
∗a

2,1
)

a
1,1

a
3,1

(detr1,3 c1,2
+a

1,2
∗a

3,1
)

a
1,1

r
3,3

(a
1,1
∗det2)


(5)

where
r
3,3

= (a
1,1
∗det3+detr1,2 c1,3 ∗detr1,3 c1,2 +a1,3

∗a
3,1
∗det2).

In the same way, A4, a 4 x 4 square matrix (with 16
parameters), may be derived. In generalising the algorithm to
create square matrices of sizes ≥ 4, only a slight modification
is required. We illustrate how to obtain this generalisation by
creating A4 as an example.

3) Construction of 4x4 matrices: It is important to show
how the Ld.Dd.Ud method may be applied also to the com-
position or decomposition of a 4x4 matrix. A4 is derived as a
product of Ld ∗Dd ∗ Ud factors:

A4 =


a1,1 a1,2 a1,3 a1,4

a
2,1

a
2,2

a
2,3

a
2,4

a
3,1

a
3,2

a
3,3

a
3,4

a
4,1

a
4,2

a
4,3

a
4,4

 = Ld ∗Dd ∗ Ud

where Ld =


a

1,1
0 0 0

a
2,1

det2 0 0
a

3,1
det

r1,3 c1,2
det3 0

a4,1 detr1,4 c1,2 detr1,2,4 c1,2,3 det4

,

Dd =


1
a1,1

0 0 0

0 1
(a

1,1
∗det2) 0 0

0 0 1
(det2∗det2) 0

0 0 0 1
(det3∗det4)

 and

Ud =


a1,1 a2,1 a3,1 a4,1

0 det2 det
r1,2 c1,3

det
r1,2 c1,4

0 0 det3 det
r1,2,3 c1,2,4

0 0 0 det4

.

It is not surprising seeing that exactly 4x4 = 16 distinct
parameters are required to construct a 4x4 matrix with a
predefined determinant we choose.

II. MATRIX CONSTRUCTION WITH FIXED DETERMINANT(S)

In the simulation (artificial creation) of inverse problems
for the development and optimisation of inference methods,
it is important to ensure that the target jacobian matrix to be
inferred is well-conditioned, i.e. it is nonsingular. Nonsingu-
larity may be eliminated by ensuring that the determinant of
the matrix is not zero (and not close to it). One of the primary
reasons for using nonsingular matrix models in simulating time
series data is to ensure that the orginal jacobian matrix being
used is reproducible and can be inferred. Only nonsingular
matrices may guarantee that the uniqueness of a potential
solution during the inference process is not lost.

A. Example #1: matrix composition

To construct a matrix with determinant equal to -8, first
establish the product of Ld, Dd and Ud:



Ld =


1 0 0 0
5 −4 0 0
9 −8 −4 0
13 −12 0 −8

,

Dd =


1 0 0 0
0 − 1

4 0 0
0 0 1

16 0
0 0 0 1

32

,

Ud =


1 2 3 4
0 −4 −8 −12
0 0 −4 0
0 0 0 −8


The matrix composition method A4a = Ld.Dd.Ud gives the
result:

A4a =


1 2 3 4
5 6 7 8
9 10 12 12
13 14 15 18


B. Example #2: matrix composition with fewer parameters

To create a matrix with determinant of -8 from fewer
nonzero parameters, the requirement is that the parameter det4
must be set to -8 and that none of the diagonal entries of Dd

is zero.

A4b =


1 0 0 0
5 −1 0 0
6 0 1

2 0
7 0 0 −8

 ∗


1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 − 1

4


∗


1 2 3 4
0 −1 0 0
0 0 1

2 0
0 0 0 −8

 =


1 2 3 4
5 9 15 20
6 12 35

2 24
7 14 21 12


C. Example #3: symmetric matrix composition

A nonsingular symmetric 4x4 matrix may be constructed
by replacing Ud with the transpose of Ld.

A4s1 = Ld ∗Dd ∗ LTd (6)

=


1 0 0 0
5 −4 0 0
9 −8 −4 0
13 −12 0 −8

 ∗


1 0 0 0
0 − 1

4 0 0
0 0 1

16 0
0 0 0 1

32


∗


1 5 9 13
0 −4 −8 −12
0 0 −4 0
0 0 0 −8

 =


1 5 9 13
5 21 37 53
9 37 66 93
13 53 93 135


D. Example #4: variant symmetric matrix composition

Alternatively, a nonsingular symmetric 4x4 matrix may be
constructed by replacing Ld with the transpose of Ud.

A4s2 = UTd ∗Dd ∗ Ud (7)

A4s2 =


1 0 0 0
2 −4 0 0
3 −8 −4 0
4 −12 0 −8

 ∗


1 0 0 0
0 − 1

4 0 0
0 0 1

16 0
0 0 0 1

32


∗


1 2 3 4
0 −4 −8 −12
0 0 −4 0
0 0 0 −8

 =


1 2 3 4
2 0 −2 −4
3 −2 −6 −12
4 −4 −12 −18


III. MULTIPLE MATRICES WITH A PREDEFINED (FIXED)

DETERMINANT

We have demonstrated (using 4 examples) how multiple 4x4
matrices with a fixed determinant of -8 may be constructed
using our Ld.Dd.Ud method and showed in the previous sec-
tion how the following matrices all with the same determinant
could be easily created. Specifically A4a , A4b , A4s1 , and A4s2

all have equal determinants, i.e. det(A4a) = det(A4b) =
det(A4s1) = det(A4s2) = −8. The method, shown here for
4x4 matrices, operates independent of matrix size.

IV. DECOMPOSITION OF MATRICES

A. Ld.Dd.Ud Decomposition of a Symmetric Matrix

If a square matrix is equal to its transpose then such matrix
is said to be symmetric. If Ms is symmetric, then Ms =MT

s

and is regarded to be of the form

Ms =

 m
1,1

m
1,2

m
1,3

m
1,2

m
2,2

m
2,3

m
1,3

m
2,3

m
3,3

 (8)

As shown earlier, the Ld.Dd.Ud decomposition of symmetric
matrices, e.g. Ms, has the following properties: LTd = Ud and
Ld = UTd . This means that the Ld.Dd.Ud decomposition of

Ms = Ld.Dd.Ud = UTd .Dd.Ud = Ld.Dd.L
T
d (9)

B. Relation between Cholesky decomposition and our
Ld.Dd.Ud decomposition

The Cholesky decomposition of a symmetric, positive-
definite matrix Ms is a factorisation of Ms into Lc.L∗c where
Lc is a lower triangular matrix with positive diagonal entries,
and L∗c is the conjugate transpose of Lc.

From the last definition Ms = Ld.Dd.Ud = UTd .Dd.Ud =
Ld.Dd.L

T
d we can derive the Cholesky decomposition factors

as follows:
Ms = Ld ∗D1/2

d ∗D1/2
d ∗ LTd

Since Dd is a diagonal matrix, therefore

Ms = Ld ∗D1/2
d ∗ (D1/2

d )T ∗ LTd

Ms = (Ld ∗D1/2
d ) ∗ (Ld ∗D1/2

d )T = Lc.L
∗
c

Ms = (Ud ∗D1/2
d )T ∗ (Ud ∗D1/2

d ) = Lc.L
∗
c

where Lc = (Ld∗D1/2
d ) = (Ud∗D1/2

d )T for any square matrix
Ms. This establishes the relation between our Ld.Dd.Ud
decomposition and the Cholesky’s.



C. Relation between LU factorisation and our Ld.Dd.Ud
decomposition

Our analysis shows that by solving the system Ax=b with
Gaussian elimination, a lower triangular matrix of the form

L =


1 0 0
a1,2
m

1,1
1 0

a
1,3

m
1,1

detr1,3 c1,2
det2

1


results, which has the same outcome as

L =

 a
1,1

0 0
a

1,2
det2 0

a1,3 detr1,3 c1,2 det3




1
a1,1

0 0

0 1
det2

0

0 0 1
det3



= Ld ∗


1

m1,1
0 0

0 1
det2

0

0 0 1
det3


using our convention. Since

Ld =

 a
1,1

0 0
a

1,2
det2 0

a
1,3

det
r1,3 c1,2

det3



=


1 0 0
a1,2
a1,1

1 0

a
1,3

a
1,1

detr1,3 c1,2
det2

1


 a1,1 0 0

0 det2 0
0 0 det3

 = L∗Dm

(10)

where Dm =

 a1,1 0 0
0 det2 0
0 0 det3

 is the diagonal matrix

containing only the principal minors of the target matrix.
Therefore we establish the relation between LU factorisation
and our Ld.Dd.Ud decomposition method through the follow-
ing derivation:

Let L ∗Dm = Ld where Dm is the right matrix multiplier
that transforms the L factor of the well-known LU decompo-
sition to our Ld factor.
Because both the Ld and L factors are derived from the
same Gaussian elimination process, it turns out that Dm is
a diagonal matrix. Therefore, L = Ld.D

−1
m .

Since D−1m .Dm = I where Dm is any square matrix, D−1m
its implied inverse and I is the identity.

Ld.Dd.Ud = Ld.I.Dd.Ud

Ld.Dd.Ud = Ld.(D
−1
m .Dm).Dd.Ud

Ld.Dd.Ud = (Ld.D
−1
m ).(Dm.Dd.Ud)

Since L = (Ld.D
−1
m ), therefore

Ld.Dd.Ud = (L).(Dm.Dd.Ud)

And since we want to preserve the integrity of the matrix A in
both our decomposition and the LU decomposition processes,
the following property holds:

A = Ld ∗Dd ∗ Ud = LU

Therefore, LU factorisation itself may be seen to have a new
interpretation in terms of our decomposition method, i.e.

LU = (Ld.D
−1
m ) ∗ (Dm.Dd.Ud)

L = (Ld.D
−1
m )

U = (Dm.Dd.Ud)

where the matrix Dm is derived to be

Dm =

 a
1,1

0 0
0 det2 0
0 0 det3



L∗U =


1 0 0
a
1,2

m
1,1

1 0

a1,3
m

1,1

detr1,3 c1,2
det2

1

∗
 a1,1 a1,2 a1,3

0 det2
a1,1

detr1,2 c1,3
a1,1

0 0 det3
det2


(11)

where L is lower triangular and U is upper triangular as
expected.

D. Other variants of our Ld.Dd.Ud decomposition method

Other variants of Ld.Dd.Ud decomposition factors may
exist in terms of

A = Lv.Dv.Uv =

 a1,1 0 0
a2,1 1 0

a3,1
detr1,3 c1,2

det2
1


∗


1
a1,1

0 0

0 det2
a1,1

0

0 0 det3
det2

 ∗

 a1,1 a,1,2 a1,3

0 1
detr1,2 c1,3

det2
0 0 1


which has a symmetric matrix equivalent as

As = Uvs
T .Dvs.Uvs =

 a1,1 0 0
a1,2 1 0

a1,3
detr1,2 c1,3

det2
1


∗


1
a1,1

0 0

0 det2
a1,1

0

0 0 det3
det2

 ∗
 a1,1 a1,2 a1,3

0 1
detr1,2 c1,3

det2
0 0 1

 or

As = Lvs.Dvs.Lvs
T =

 a1,1 0 0
a2,1 1 0

a3,1
detr1,3 c1,2

det2
1


∗


1
a1,1

0 0

0 det2
a1,1

0

0 0 det3
det2

 ∗
 a1,1 a2,1 a3,1

0 1
detr1,3 c1,2

det2
0 0 1

 Note,

these may not be the most reduced forms of factorisation and
may require further optimisation of entries.

V. APPLICATIONS OF Ld.Dd.Ud METHOD TO SYSTEMS OF
LINEAR EQUATIONS

A. Solving systems of linear systems

The Ld.Dd.Ud decomposition can be applied to solve a
system of linear equations such as A.x = b by first computing
the Ld.Dd.Ud decomposition of A as A = (Ld ∗D1/2

d )∗ (Ld ∗
D

1/2
d )T if A is symmetric and positive definite. For example,

finding xu (below) the decomposition can be applied to solving



the equation (Ld∗D1/2
d )∗xu = b where xu = (Ld∗D1/2

d )T ∗x.
This means that the Ld.Dd.Ud decomposition method may be
applied in solving

A.x = b

problems without having to compute the actual inverse of A.

B. Application to time series inverse problem analysis

In a system of linear differential equations an inverse
problem may be defined in the form

Ẋ = A ∗X

where Ẋ and X are known vectors of same length, and A is
the unknown matrix that must be identified. Note that there
is difference between a general system of n linear differential
equations with unknown (jacobian) matrix parameters and a
general system of n linear equations with unknown vector
parameters. The latter is much simpler to solve as explained
above. However, the formulation of the inverse problem re-
mains the same in structure. Its algebraic representation is as
follows:

Ẋ1

Ẋ2

:̇

Ẋn

 =


∂X1

∂X1
X1+

∂X1

∂X2
X2 . . .+

∂X1

∂Xm
Xm

∂X2

∂X1
X1+

∂X2

∂X2
X2 . . .+

∂X2

∂Xm
Xm

:̇ :̇ :̇
∂Xm
∂X1

X1+
∂Xm
∂X2

X2 . . .+
∂Xm
∂Xm

Xm


(12)

where the partial derivative parameters are the entries of the
jacobian matrix A; A contains the relative rates of change
with respect to the dependent variables [1]. In light of this
definition, a time series inverse problem may be defined
(in a mathematical sense) as a general system of m linear
differential equations with an unknown m x m jacobian matrix
A may be rewritten in the form Ẋ = A.X , which has the
matrix equation form

Ẋ1

Ẋ2

:̇

Ẋm

 =


∂X1

∂X1

∂X1

∂X2
. . . ∂X1

∂Xm
∂X2

∂X1

∂X2

∂X2
. . . ∂X2

∂Xm
:̇ :̇ :̇

∂Xm
∂X1

∂Xm
∂X2

. . . ∂Xm
∂Xm

 .


X1

X2

:̇
Xm

 (13)

where


X1

X2

:̇
Xm

 = X(t) is a known state vector, i. e. the tth

vector of the given time series X. Rewritten in a multi-state
definition, if m number of (state) measurements are taken after

the initial condition, it becomes


Ẋ10Ẋ11 . . . Ẋ1n−1

Ẋ20Ẋ21 . . . Ẋ2n−1

:̇

Ẋm0
Ẋm1

. . . Ẋmn−1

 =


∂X1

∂X1

∂X1

∂X2
. . . ∂X1

∂Xm
∂X2

∂X1

∂X2

∂X2
. . . ∂X2

∂Xm
:̇ :̇ :̇

∂Xm
∂X1

∂Xm
∂X2

. . . ∂Xm
∂Xm

 ∗


X10X11 . . . X1n−1

X20X21 . . . X2n−1

:̇
Xm0

Xm1
. . . Xmn−1


which is equivalent to


X11
−X10

tc

X12
−X11

tc
. . .

X1n−X1n−1

tc
X21
−X20

tc

X22
−X21

tc
. . .

X2n−X2n−1

tc
:

Xm1
−Xm0

tc

Xm2
−Xm1

tc
. . .

Xmn−Xmn−1

tc

 =


∂X1

∂X1

∂X1

∂X2
. . . ∂X1

∂Xm
∂X2

∂X1

∂X2

∂X2
. . . ∂X2

∂Xm
:̇ :̇ :̇

∂Xm
∂X1

∂Xm
∂X2

. . . ∂Xm
∂Xm

 .


X10X11 . . . X1n−1

X20X21 . . . X2n−1

:̇
Xm0

Xm1
. . . Xmn−1


assuming that the state vector measurements are captured
at regular time intervals of tc. Note that etc ≈ 1 + tc, of
etc = 1 + tc +

tc
2

2! + tc
3

3! + ... improves as tc gets closer
to 0 [1]. The solution to this system of linear differential
equations is 

X11X12 . . . X1n

X21X22 . . . X2n

:̇
Xm1

Xm2
. . . Xmn

 =

exp


∂X1

∂X1

∂X1

∂X2
. . . ∂X1

∂Xm
∂X2

∂X1

∂X2

∂X2
. . . ∂X2

∂Xm
:̇ :̇ :̇

∂Xm
∂X1

∂Xm
∂X2

. . . ∂Xm
∂Xm

.tc
∗


X10X11 . . . X1n−1

X20X21 . . . X2n−1

:̇
Xm0

Xm1
. . . Xmn−1


Further analysis of such inverse problems might require matrix
decomposition, e.g., the system above may be redefined as

X(after) = exp[A∗tc] ∗X(before)

C. Solving time series inverse problem using matrix manipu-
lation

In solving time series inverse problems of the form

X(after) = exp[A∗tc] ∗X(before)

where the jacobian matrix A must be identified and tc is the
time interval of very small magnitude, Idowu and Bown [3]
developed the transposive regression method for finding E =
exp[A∗tc].

1) Using the transposive regression method:
Steps

1) E ∗X(before) = X(after)
2) X(before)

T ∗ ET
1 = X(after)

T

3) X(before) ∗X(before)
T ∗E1

T = X(before) ∗X(after)
T

4) ET = [X(before) ∗X(before)
T ]−1 ∗X(before) ∗X(after)

T

5) E = ([X(before) ∗X(before)
T ]−1 ∗X(before) ∗X(after)

T )T

6) E =
X(after) ∗X(before)

T ∗ ([X(before) ∗X(before)
T ]−1)T

In steps 1-2 recasting the problem by matrix transposition
is essential, because each state is represented by a column-
vector either in X(before) or X(after), where X(before) is
an array of states before the transformation X(before) =
[X(0) X(1) . . . X(t−1)], and X(after) is an array of states
after the transformation X(after) = [X(1) X(2) . . . X(t)].
Steps 3-4 illustrate an application of the Moore-Penrose
pseudoinverse, a widely known type of matrix pseudoinverse,



independently introduced by Moore [4], Bjerhammar [5], and
Penrose [6]. Finally, in steps 5-6, retranspositions put E in
proper order.

D. Finding matrix logarithmic inverse approximation

The difficulty in finding A is in calculating the principal
matrix logarithm of E; that is, the exact inverse of exp(A∗tc).
In [3] we developed a technique for finding the jacobian matrix
A from the resultant matrix exp(A∗tc) without using the well-
known eigenvector and eigenvalue method.

exp(J∗tc) = E1 ≈ E2

J =
logm(E1)

tc
≈ logm(E2)

tc

where logm(. . . ) represents the matrix logarithm function. We
introduce a scaling factor µ to tc in order to approximate ∇p
such that ∇p ≈ tc ∗ µ to satisfy Eµ = exp(A∗∇p) ≈ I +
(A ∗ ∇p). Therefore, A can be approximated (Em

µ−I)
(tc∗µ) .

VI. CONCLUSION

We have demonstrated that through simple matrix manipu-
lation techniques, it is possible to derive methods for creating
and deconstructing matrices with known determinants. A ro-
bust matrix-based framework to enable simplified creation and
evaluation of system identification and parameter estimation
problems and solutions is being developed, and the method
presented here is an essential part of that framework. This
framework, an important tool for developing and managing
optimisation methods, is required in systems biology and
applicable to other areas such as artificial intelligence, network
science, etc. The inference method is sophisticated enough for
the identification of ODE models from time series data. In
future work, we will demonstrate how these matrix decompo-
sition and composition methods presented here may be applied
to the development of new techniques for understanding com-
plex network structures.

ACKNOWLEDGMENT

We gratefully acknowledge the support from the Northwood
Trust.

REFERENCES

[1] G. Strang, Linear Algebra and its Applications, 3rd ed., ISBN
0155510053, 1988.

[2] A. S. Householder, The Theory of Matrices in Numerical Analysis, New
York Dover Publications, ISBN 0486617815, 1975.

[3] M. A. Idowu, J. L. Bown, “Towards an Exact Reconstruction of a Time-
Invariant Model from Time Series Data”, Journal of Comp. Sci. and Syst.
Biol. vol. 4, pp. 055-070, doi:10.4172/jcsb.1000077, 2011.

[4] E. H. Moore, “On the Reciprocal of the General Algebraic Matrix”,
Bulletin of the American Mathematical Society vol. 26, pp. 394395,
projecteuclid.org/euclid.bams/1183425340, 1920.

[5] A. Bjerhammar, “Application of Calculus of Matrices to Method of Least
Squares; with Special References to Geodetic Calculations”, Trans. Roy.
Inst. Tech., Stockholm 49, 1951.

[6] R. Penrose, “A Generalized Inverse for Matrices”, Proceedings
of the Cambridge Philosophical Society, vol. 51, pp. 406413,
doi:10.1017/S0305004100030401, 1955.


