
Simulation of Complex Environments: The Fuzzy Cognitive Agent

D Borrie, S. Isnandar, C.S. Özveren

School of Computing and Creative Technologies
University of Abertay Dundee

Dundee, Scotland, DD1 1HG, UK
c.s.ozveren@abertay.ac.uk

Abstract

The world is becoming increasingly competitive by the action
of liberalised national and global markets. In parallel these
markets have become increasingly complex making it difficult
for participants to optimise their trading actions. In response,
many differing computer simulation techniques have been
investigated to develop either a deeper understanding of these
evolving markets or to create effective system support tools. In
this paper we report our efforts to develop a novel simulation
platform using Fuzzy Cognitive Agents (FCA). Our approach
encapsulates Fuzzy Cognitive Maps (FCM) generated on the
Matlab Simulink platform within commercially available agent
software. We will firstly present our implementation of Matlab
Simulink FCMs and then show how such FCMs can be
integrated within a conceptual FCA architecture. Finally we
report on our efforts to realise an FCA by the integration of a
Matlab Simulink based FCM with the Jack Intelligent Agent
Toolkit.

1. Introduction

The growth of liberalised trading markets and the expectation
of the potential benefits that they will bring continues to grow
worldwide. Consequently to better understand the market
domain and to gain competitive advantage, considerable
interest has developed in the application of computer based
simulation techniques, and in particular in advanced modelling
tools such as neural, fuzzy, and hybrid systems. However, the
application of these techniques has proven to be difficult as a
direct construct of the unpredictability of the market variables
and the complexity of their interaction.

The domain of political science exhibits similar complexity
and in this field FCMs have emerged as a powerful simulation
technique due to their inherent abstraction, and structural and
relational flexibility [1]. Such characteristics are ideally placed
to deal with large, imprecise, complex, multivariate systems
and environments.

In previous papers we have demonstrated the potential of
FCM to represent aspects of competitive electricity markets
[2]. These FCMs were generated on within the Matlab
Simulink platform, which offers considerable advantages over
previously described FCMs. The foremost of these advantages
is the combination of mathematical robustness and graphical
capability provided by the Matlab Simulink platform. This
permits the encapsulation of a wide range of complex concept
interdependencies greatly increasing the overall
representational accuracy. However we suggested that despite
these advances the application of FCMs to complex and
dynamic real world systems would remain limited as
consequence of their visual nature. Essentially, increasing
domain complexity degrades the comprehensibility of the
visual FCM representation whilst management and updating
become increasingly unmanageable.

To overcome this we have previously proposed a conceptual
architecture for a FCA. The basic premise of the approach is
the disintegration of the domain FCM into smaller manageable
task specific FCMs and their further encapsulation into the
shell of a commercial AI-Agent. Multiple encapsulated FCMs
can then freely interact in agent space retaining the overall
domain inference. This paper develops the conceptual
architecture already proposed by the integration of Matlab
Simulink supported FCM within the commercial Jack AI
Development framework. We consider this to be a significant
step in the development of realisable FCAs that in turn will
ultimately allow the application of FCMs in environments
previously considered too complex or expansive.

2. FCMs in The MatLab Simulink Framework

FCMs have remained largely underdeveloped in real world
applications despite the obvious potential they offer. Their
principal limitation is the simplistic representation of concept
relationships by a single crisp variable, erroneously
presupposing that all cause effect relationships are linearly
independent. Many researchers have identified this deficiency
citing the need to encode temporal effects, conditional
relationships and accumulativity, for proper reasoning and
inference to occur. [3] [4] [5] [6]. Paradoxically the proposed

Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
0-7695-2528-8/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228176426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Agent
Seller 1

FCM
Seller 2

Agent
Seller 2

Agent
Buyer 1

Agent
Buyer 2

FCM
Seller 2

FCM
Buyer 2

FCM
Buyer 2

M
arket

methodologies tend to be overtly mathematical and negate the
simple visual ethos of the original approach. Our approach
resolves this paradox by recognising the obvious
commonalities between FCMs and the diagrammatic
structures used within control systems [7].

By recognition of this fact, control system analysis software
can logically be applied to the FCM domain. Matlab Simulink
is such a tool. Indeed, the functionality and mathematical
support of Simulink allows the encapsulation of complex
relationships at a high level of mathematical abstraction. The
FCM designer is then able to work with simple pictorial
representations such as those in figure 1, in this case
representing a simple FCM on a design screen representing the
operation of the green energy market within the UK.

Figure 1. Green Energy Market FCM and Design

Palate

3. The Fuzzy Cognitive Agent

FCMs have generally been proposed to describe behaviour
within structurally invariant and open systems. Unfortunately
competitive markets do not exhibit such a stable characteristic.
Indeed, they are typically characterised by permanent
structural flux and asynchronous, incomplete data flow.

These characteristics are difficult to accommodate within a
traditional highly interconnected FCMs that rely on free
interaction between concepts to allow equilibrium or a limit
cycle to be reached. To address this, the disintegration of the
domain FCM into smaller task specific FCMs within a loosely
connected hierarchal structure has been proposed [8].
However within this approach the interconnections between
task specific FCMs remain both ‘hard wired’ and

multidirectional rendering it inflexible to ongoing structural
and relational change in the domain space.

Our approach is that of the FCA harnesses the structural and
relational flexibility that AI-Agents can offer [9] [10]. The
basic premise of the FCA considers AI-Agents as comprising
of two essential parts; a communication shell facilitating
interaction between agents and their environment, and an
inference engine that determines their actions. Conceptually
the FCA is the substitution the ‘IF’ ‘THEN’ rule base that
currently defines AI-Agent inference engines by a task
specific FCM, effectively encapsulating the task specific FCM
within the AI-Agent communication shell. Multiple FCAs
each with a task specific FCM than freely interact within the
agent space with the degree of flexibility required to simulate
real world applications. We term this type of AI-Agent a
Fuzzy Cognitive Agent and groups of such agents a Fuzzy
Cognitive Agency. The elegance of the approach is evident
from the generic market FCA agency presented in Figure 2,
which illustrates the structural simplicity that is possible.

Figure 2. The FCA Agency

4. Designing Fuzzy Cognitive Agent : Choosing
The Appropriate Methodology

In previous chapter, the underlying concept of fuzzy cognitive
agent, which basically an agent which exploit capabilities of
its internal and external fuzzy cognitive maps to solve an
inherently complex system, has been presented. However, the
methodology to practically build a software system based on
fuzzy cognitive agent needs to be addressed and investigated.
Details steps are needed to specify, design and build FCA-
oriented systems.

Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
0-7695-2528-8/06 $20.00 © 2006

A practical and usable methodology in addition to high-levels
steps such as ‘specify the system’ or even ‘identify the
system’s goals’ is needed to provide detailed guidelines
explaining how these steps are carried out. As it is sometime
difficult to give hard-rules in a general-purpose methodology,
these guidelines could be expressed as a collection of heuristic
and examples. As the process is followed, design artefacts are
produced which often specified in some formal notation, such
object-oriented notation UML (Unified Modelling Language)
[11].

There are many existing methodologies for designing
software. In particular, object-oriented analysis and design
have extensively studied and developed. Unfortunately, it is
not quite appropriate to use object-oriented technique to build
FCA system. Although agents and objects share similarities,
the differences are significant. It is possible to use object-
oriented analysis and design techniques to design agent
systems. However, the fit is not natural and the resulting
design is less likely to make good use of agents.

For instance, one important aspect of agents is that they are
proactive, that they pursue their own agenda over time, as
realised in terms of goals, which is not generally a part of
object-oriented methodologies.
A large number of agent-oriented methodologies have been
proposed in recent years [12, 13, 14, 15, 16]. From these
proposals, some are described in details, offer tool support and
do appear to be ready for use. In particular, the MaSE [17] and
TROPOS [13] methodologies are both complete, have been
developed over a period of time, and both provide detailed
descriptions.

The GAIA methodology [14] has been developed over a
number of years. For a generality purpose, however, this
method does not provide a detailed agent design process. For
some application which is tightly connected to a certain and
specific problem design, this method does not offer sufficient
support. The TROPOS methodology [13] covers early
requirements to detailed design. Its detailed design is oriented
very specifically towards JACK as implementation platform.

The MaSE methodology [17] is one of the few methodologies
that appears to have significant tool support. However, MaSE
limits itself with its view of agents as merely a convenient
abstraction, which may or may not possess intelligence.
Therefore MaSE intentionally does not support the
construction of plan-based agents that are able to provide a
flexible mix of reactive and proactive behaviour. Rather,
MaSE aims to be general and treats agents as a simple
software processes that interact with each other to meet an
overall system goal.

In this paper, the agent design methodology called Promotheus
[18] is used rather than other methods based on consideration
above. The Promotheus methodology defines a detailed

process for specifying, designing, implementing and
testing/debugging agent-oriented software systems. In addition
to detailed processes, it defines a range of artefacts that are
produced along the way. Some of these artefacts are kept, and
some are only used as stepping stones, in form of graphical or
structured texts (form).

The Promotheus methodology consists of three phases :
1. The system specification phase, focuses on the following :

a. Identifying the system goals.
b. Developing use case scenarios illustrating the

system’s operation.
c. Identifying the basic functionalities of the

system.
d. Specifying the interface between the system and

its environment in terms of actions and
percepts.

2. The architectural design phase, focuses on :

e. Deciding what agent types will be implemented and
developing the agent descriptors.

f. Capturing the system’s overall (static) structure using
the system overview diagram.

g. Describing the dynamic behaviour of the system
using interaction diagrams and interaction
protocols.

3. The detailed design, focuses on :
h. The refinement of agents in term of capabilities,

giving the agent overview diagram and capability
descriptors.

i. The development of process specifications.

Some other areas where Promotheus differs significantly from
object-oriented methodologies include :

• The provision of a process for determining the types
of agents in the system.

• Treating messages as components in their own right,
not just as labels. This allows a message (or an event)
to be handled by multiple plans, which is crucial to
achieving flexibility and robustness.

• Distinguishing percepts and actions from messages,
and looking at explicitly at percept processing.
Agents are situated in an environment, and it is
important to define the interface between agents and
their environment.

• Distinguishing passive components (data, beliefs)
from active components (agents, capabilities, plans).
With object-oriented modelling, everything is
modelled as (passive) objects.

• One view of agents (the intentional stance) ascribes
mental attitudes, such as beliefs, and desires to
agents. Existing non-agent methodologies do not
ascribe mental attitudes to software components. Also
some agent-oriented methodologies (such as MaSE)
do not subscribe to this view, and consequently, do
not address mental attitudes. Others, including

Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
0-7695-2528-8/06 $20.00 © 2006

Promotheus, do capture mental attitudes during the
analysis and design processes.

Although there are clear differences between Promotheus and
object-oriented methodologies, there are also commonalities.
As current object-oriented methodologies are not sufficient for
engineering agent-oriented software, they are all relevant.
Agents are software, and many aspects of Promotheus
methodology have been based on object-oriented methods and
notations. For example, use case scenarios are adapted from
standard practice (Jacobson et al 1992), interaction diagrams
are UML sequence diagrams, AUML is used directly, and the
Rational Unified Process (Krutchen 1998) and Promotheus
share a similar approach to applying an iterative process over
clearly delineated phase.

One aspect important to consider is what parts of a system
should be treated as agents and designed using an agent-
oriented methodology (such as Promotheus), and also how the
link between an agent-oriented sub-system and non-agent
software can be designed and implemented.

Not all software components are best viewed, modelled and
designed as agents. Sometimes, a certain system is best to
model entirely as a multi agent system. However, this is not
always a case, as some sub-systems may not benefit from
being viewed as a collection of agents.

How parts of a system can be viewed as agents (and which
parts should not?) is agents should only be used where they
are more natural and offer a benefit. The following questions
can be used to help identify components that should be treated
as agents (if the answers are yes) :
a. Is it autonomous ?
b. Does it have goals ?
c. Viewed as an object, is it active (in the sense of having

internal threads that run concurrently with the rest of the
system) ?

d. Does it do multiple things at once ? If so, does it need to
reason about interaction between the different activities ?

e. Does it need to change the way it is doing things on the
basis of changes in its environment ?

If the answers to these questions are mostly yes, then the
components can be think as agents and needs to be designed
accordingly using appropriate tool such as Promotheus.

5. Implementation of Fuzzy Cognitive Agent

As discussed earlier, a fuzzy cognitive agent (FCA) basically
is a software agent which has a knowledge model and
inference capabilities based mainly on the FCM theory and its
extension.

To implement a fuzzy cognitive agent system into a real
working software prototype, a tool is needed to help to do such

process. One of the most leading commercial software
available is JACK version 5 Intelligent Agent Development
Toolkit, produced by Agent Oriented Software Pty Ltd (AOS),
Melbourne, Australia. JACK can be seen as extended naturally
from object-oriented programming paradigm, it is support
fully an agent-oriented programming paradigm, with an ease
of object oriented methods which has been around for decades
and is a mature and stable technology in software engineering.

The mainstream thought of agent oriented programming is a
concept of Belief-Desire-Intention (BDI) architecture, which
is fully complied and supported by JACK 5, make it possible
to implement Fuzzy Cognitive Agent design using this toolkit.
JACK 5 is entirely developed using Java programming
language, make it a complete Java-enabled framework for
fuzzy cognitive agent development. According to AOS, this
framework supplies a high performance, light-weight
implementation of the-Belief-Desire-Intention (BDI)
architecture, and can be easily extended to support different
agent models or specific application requirements.

As the final product of JACK 5 software package are
collection of Java classes, the other non-agent software will
simply see these classes as ordinary Java objects, enables them
to be used as software components as part of a larger
environment. JACK agents are not bound to any specific agent
communications language, and therefore any high level
protocols such as KQML [3] may be used. However, JACK
has been geared towards industrial object-oriented middleware
(such as CORBA) and message passing infrastructures (e.g
Parallel Virtual Machines in simulated environments).
Furthermore JACK also provides a native lightweight
communication infrastructure.

Figure 3. Screenshot of JACK Integrated
Development Environment (IDE)

Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
0-7695-2528-8/06 $20.00 © 2006

Figure 4. Generic Structure of FCM Calling Out
Procedure Using JMatLink

As AOS puts it, JACK’s relationship to Java is analogous to
the relationship between the C++ and C languages. C was
developed as a procedural language and subsequently C++
was developed to provide programmers with object-oriented
extension to the existing language. Similarly, JACK has been
developed to provide agent-oriented extensions to the Java
programming language. JACK source code is first compiled
into regular Java code before being executed.

Further as AOS describes, from an engineering perspective,
JACK consists of architecture-independent facilities, plus a set
of plug-in components that address requirements of specific
agent architectures. An example of such a plug-in is the
default BDI reasoning model supplied with JACK. From a
programming perspective, JACK Intelligent Agent is an agent-
oriented development environment built on top of and
integrated with the Java programming language. It includes all
components of the Java development environment as well as
offering specific extensions to implement agent behaviour.

As discussed in the earlier chapter, FCM is implemented using
Simulink from MatLab, which acts as a specialised adaptive
sub-routine to perform the FCM algorithm. Figure 9 and 11
depicts this relation. The intelligent agent, on the other hand,
is designed and developed using JACK with the end product
of a collection of Java Code. Therefore a way to link this Java
code to Simulink/MatLab needs to be discovered. There are
numerous methods available to link Java to MatLab, one of
the latest is using JMatLink statements.

JMatLink is an open source plug-ins to current Java
technology, enables developer to link Java smoothly with
MatLab. JMatLink provides an effective way to pass any
variables from Java to MatLab, initiate a MatLab instance, and
get the result back to Java. Using this way an effective coding

can be achieved without losing focus from agent-oriented
programming.

Figures 11 and 12 describes this basic architecture of
relationship between those set of technologies : Java (JACK
5), JMatLink and Simulink/MatLab.

The Java codes in the main program basically triggered the
MatLab engine to be fired, sending a test command and get the
random number generated by MatLab and pass it back to Java
code. Using similar principles Simulink can be activated
trough Java by accessing the m script file which automate
Simulink process.

This m script file will automate the execution of any FCM
module which has been drawn using Simulink. By using this
decoupling and modular approach then it is easier to update
FCM module without having involved to scrutinise and
modify the main codes line.

The output of FCM module then passed back to main Java
code which contains the agent decision procedure to provide
meaningful decision to the user. As the main role of agent to
communicate and negotiate the most optimum interest then
this technique will provide a modular approach to implement a
fuzzy cognitive agent system.

Figure 5. Implementation of FCA

Task-Specific Agent
(built using JACK)

FCM (built
in Matlab)

...Java
Code….
……..
……..
JMatLink
JMatLink
……..
……..

JMatLink Open ()
JMatLink Close ()

Agent User Interface

MATLAB

SIMULINK (trough m file)

Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
0-7695-2528-8/06 $20.00 © 2006

6. Conclusion

The simulation of complex environments remains one of the
most challenging issues within the field of artificial
intelligence today. FCMs have previously been proposed as a
alternative methodology but their application has remained
limited due to a combination of their representational
simplicity and their inability to manage the dynamics and
scale of real world environments. In this paper we have
proposed the FCA whose basis is the encapsulation task
specific FCMs within the communication shell of an AI-
Agent. Such an approach to have value must be realisable
within the currently available commercially available software
platforms. We have demonstrated that FCMs can be generated
on Matlab Simulink platform, and indeed such an
implementation can capture complex relationships at high
levels of abstraction greatly improving inference performance.
Further we have shown that the encapsulation of these FCMs
is achievable within the JACK version 5 Intelligent Agent
Development Toolkit. We therefore consider FCAs to be a
realisable technology and in further papers we will present a
fully developed FCA and investigate the interaction and
performance of such agents within an agency.

References

[1] Jennings N.R. Sycara K. Wooldridge M. A Roadmap of
Agent Research and Development. Autonomous Agents and
Multi-Agent Systems Journal, Volume 1, Issue 1, 7-38, 1998.

[2] Borrie D. Őzveren C.S. Behavioural Simulation using
Augmented Fuzzy Cognitive Maps For Decision and Policy
Making in Competitive Electricity Markets, 40th International
Universities Power Engineering Conference, Cork, Ireland,
603-607, 2005.

[3] Koulouriotis D.E. Diakoulakis I.E Emeris D.M.
Anamorphosis of Fuzzy Cognitive Maps for Operation in
Ambiguous and Multi-Stimulus Real World Environments,
Proceedings of the 10th Annual IEEE International Fuzzy
Systems Conference, Melbourne, Australia, 1156-1159, 2001.

[4] Miao Y. Liu Z.Q. Siew C.K. Miao C.Y. Dynamical
Cognitive Network – An Extension of Fuzzy Cognitive Map.
IEEE Transactions on Fuzzy Systems, Volume 9, No. 5, 760-
770, 2001.

[5] Haigwara M. Extended fuzzy cognitive Maps. The
proceedings of the IEEE International Conference on Fuzzy
Systems FUZZ-IEEE, San Diego, USA, 795-801, 1992.

[6] Zhuge H. Luo X. Knowledge Map Model, Grid and
Cooperative Computing GCC-2004, Third International
Conference Proceedings Lecture Notes in Computer Science,
Wuhan, China, 381-388, 2004.

[7] Styblinski M.A. Meyer B.D. Signal Flow Graphs vs.
Cognitive Maps in Application to Qualitative Circuit Analysis.
International Journal of Man Machine Studies, Vol. 35, 175-
186, 1991.

[8] Lee K.C. Lee W.J. Kwon O. Han J.H. Yu P.I. Strategic
Planning Simulation based on Fuzzy Cognitive Map
Knowledge and Differential Game, Simulation Vol. 71-5,
316-327, 1998.

[9] Kurbel K.Loutchko I. Towards multi-agent electronic
marketplaces: what is there and what is missing? Knowledge-
Engineering-Review 18(1), 33-46, 2003

[10] Klaue S. Kurbel K. Loutchko I. Automated Negotiation
on Agent Based E-Marketplaces: An Overview. 14th Bled
electronic Commerce Conference, Bled, Slovenia, 2001.

[11] Booch G, Rumbaugh J and Jacobson I, The Unified
Modelling Language User Guide, Object Technologies Series.
Addison-Wesley, 1999.

 [12] Brazier FMT, et al. DESIRE : Modelling multi-agent
systems in a compositional formal framework. International
Journal of Cooperative Information System 6(1), pp 67-94,
1997.

[13] Bresciani P, et al. TROPOS : An agent-oriented software
development methodology. Technical Report DIT-02-0015,
University of Trento, Department of Information and
Communication Technology, Trento, Italy, 2002.

[14] Wooldridge M, et al. The GAIA methodology for agent-
oriented analysis and design. Journal of Autonomous Agents
and Multi-Agent Systems 3(3), pp 285-312, 2000.

[15] Dam KH and Winikoff M. Comparing agent-oriented
methodologies. In Proceeding of the Fifth International Bi-
Conference Workshop on Agent-Oriented Information Systems
(ed. Giorgini P, Henderson-Sellers B and Winikoff M), pp 52-
59, Melbourne, Australia.

[16] Sherory O and Sturm A. Evaluation of modelling
techniques for agent-based systems. Proceedings of the Fifth
International Conference on Autonomous Agents, Montreal,
Canada, pp 624-631, ACM Press, 2001.

[17] DeLoach SA, Wood MF, and Sparkman CH. Multiagent
System Engineering [MaSE]. International Journal of
Software Engineering and Knowledge Engineering. 11(3), pp
231-258, 2001.

[18] Winikoff M, Padgham L and Harland J. Simplying the
development of Intelligent Agents. In AI 2001:Advances in
Artificial Intelligence, 14th Australian Joint Conference on
Artificial Intelligence, pp 557-568 Adelaide, December 2001.

Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
0-7695-2528-8/06 $20.00 © 2006

