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Abstract

The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space
point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs),
without Galerkin projection. Second, conditions of boundedness of the interval observer solutions with non-zero boundary
conditions and measurement noise are proposed. Third, the obtained interval estimates are used to design a dynamic output-
feedback stabilizing controller. The advantages of the PDE-based interval observer over the approximation-based one are
clearly shown in the numerical example.

1 Introduction

Due to various technical (complexity of implementation)
or economic (price of solution) issues, an explicit mea-
surement of state vector of a dynamical system may
be impossible. This is especially the case, for exam-
ple, in distributed parameter systems, where the sys-
tem state is a function of the space and time, and only
pointwise and discrete measurements are realizable by
conventional sensors. Consequently, the system state in
these cases has to be reconstructed using estimation al-
gorithms [1, 2, 3]. The most popular approaches in this
domain include Luenberger observer and Kalman filter
for deterministic and stochastic settings, respectively,
which are developed for linear time-invariant models,
that is the case where the existing theory disposes plenty
of solutions. For nonlinear dynamical systems, the state
estimation algorithms are often based on a partial sim-
ilarity of the plant models to linear ones, or represen-
tations in various canonical forms are widely used. The
same observations are also valid for control synthesis.

Many physical phenomena can be formalized in terms
of PDEs (e.g. sound, heat, electrostatics, electrodynam-
ics, fluid flow, elasticity, or quantum mechanics), whose
distributed nature introduces additional level of com-
plexity in design. That is why control and estimation of
PDEs are very popular directions of research nowadays
[4, 5]. Frequently, for design of a state estimator or con-

trol, the finite-dimensional approximation approach is
used [6, 7, 8, 9], then the control or estimation problems
are addressed in the framework of finite-dimensional
systems using well-known tools. Analysis and design in
the original distributed coordinates are more compli-
cated, but also attract attention of many researchers
[5, 10, 11, 12, 13, 14, 15, 16]. In [17] a stabilizing con-
trol design with a proportional-discontinuous feedback is
proposed for a parabolic PDE with pointwise collocated
sensing and actuation, and with in-domain distributed
disturbances. The work [18] presents a Luenberger-type
observer-based distributed control with non-collocated
sensors and actuators.

Inline with the model complexity, the system uncer-
tainty represents another difficulty for synthesis of an
estimator or a controller. The uncertainty may consist
in unknown parameters or/and external disturbances.
Appearance of uncertainty may block a design of a con-
ventional estimator, converging to the ideal value of the
state. In this case an interval estimation becomes more
attainable: an observer can be constructed such that us-
ing input-output information it evaluates the set of ad-
missible values (interval) for the state at each instant
of time. The interval width is proportional to the size
of the model uncertainty (it has to be minimized by
tuning the observer parameters). There are several ap-
proaches to design interval/set-membership estimators
[19, 20, 21]. This work is devoted to interval observers,
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which form a subclass of set-membership estimators and
whose design is based on the theory of monotone systems
[21, 22, 23, 24, 25]. The idea of interval observer construc-
tion has been proposed rather recently in [26], but it has
already received numerous extensions for various classes
of dynamical models. Interval observers for systems de-
scribed by PDEs have been proposed in [27, 28, 29, 31].
The finite-dimensional approximation approach was ap-
plied in [29] using the discretization error estimates from
[30], and in [31] for temperature estimation in fuel cells.
In [27] the sensitivity function interval estimates are used
in order to design an interval observer.

The main contributions of the present paper are as fol-
lows. First, an interval observer described by PDEs with-
out applying finite-element approximations is proposed
for uncertain distributed parameter systems. Second, an
additional design of an output stabilizing control is per-
formed based on interval observations. The estimation
error dynamics (also distributed) of the proposed inter-
val observer is guaranteed to be positive following the
conditions of positivity of solutions of parabolic PDEs
presented in [32]. The stability analysis from [12] is also
extended to the considered scenario with non-zero mea-
surement noise and boundary conditions, and further
applied for a stabilizing control synthesis for an unstable
PDE. An advantage of using interval observers, over Lu-
enberger type observers of [12] and approximation-based
interval observer of [29], consists in calculation on-line of
accurate bounds explicitly on the given distributed tra-
jectories. It is assumed that the control is spatially dis-
tributed influencing the system dynamics through shape
functions. Such a hypothesis is introduced to respect the
implementation feasibility of the designed control law,
since infinitesimal in space variations of the actuator sig-
nal cannot be realized in practice. It is worth to high-
light that here such a restriction on shape functions is
not related with any early lumping procedure. Some pre-
liminary results on an interval PDE observer have been
proposed in [33].

The outline of this paper is as follows. After preliminar-
ies in Section 2, and introduction of distributed parame-
ter system properties in Section 3, the interval observer
design is given in Section 4. The design of an output
control method based on proposed interval observer is
considered in Section 5. The results of numerical exper-
iments and a comparison with [12, 29] for an unstable
parabolic equation are presented in Section 6.

2 Preliminaries

The real numbers are denoted by R, R+ = {τ ∈ R : τ ≥
0}. Euclidean norm for a vector x ∈ Rn will be denoted
as |x|.

If X is a normed space with the norm || · ||X , Ω ⊂ Rn

for some n ≥ 1 and φ : Ω→ X, define

||φ||2L2(Ω,X) =

∫
Ω

||φ(s)||2Xds,

||φ||L∞(Ω,X) = ess sup
s∈Ω
||φ(s)||X .

By L∞(Ω, X) and L2(Ω, X) denote the spaces of func-
tions Ω→ X with the properties ||·||L∞(Ω,X) < +∞ and
|| · ||L2(Ω,X) < +∞, respectively. Denote I = [0, `] for

some ` > 0, let Ck(I,X) be the set of functions having
continuous derivatives at least up to order k ≥ 0 on I.
For any q > 0 and an interval I ′ ⊆ I define W q,∞(I ′,R)
as a subset of functions y ∈ Cq−1(I ′,R) with an abso-
lutely continuous y(q−1) and essentially bounded y(q) on
I ′, ||y||W q,∞ =

∑q
i=0 ||y(i)||L∞(I′,R). Denote by Hq(I,R)

with q ≥ 0 the Sobolev space of functions with deriva-
tives through order q in L2(I,R).

For two functions φ1, φ2 : I → R their relation φ1 ≤ φ2

has to be understood as φ1(x) ≤ φ2(x) for almost all
x ∈ I, the inner product is defined in a standard way:

(φ1, φ2) =

∫ `

0

φ1(x)φ2(x)dx.

For φ ∈ R define two operators φ+ and φ− as follows:

φ+ = max{0, φ}, φ− = φ+ − φ.

Lemma 1 [29] Let s, s, s : I → R admit the relations
s ≤ s ≤ s, then for any φ : I → R we have

(s, φ+)− (s, φ−) ≤ (s, φ) ≤ (s, φ+)− (s, φ−).

For later use, we need the following inequalities:

Lemma 2 [34] Wirtinger’s Inequality. Let z ∈ H1(I,R),
then ∫ `

0

z2(ξ)dξ ≤ b`2

π2

∫ `

0

[
dz(ξ)

dξ

]2

dξ, (1)

and if z(0) = z(`) = 0, then b = 1; if only z(0) = 0 or
z(`) = 0, then b = 4.

Lemma 3 [35] Poincare’s Inequality. Let z ∈ H1(I,R)

with
∫ `

0
z(ξ)dξ = 0, then∫ `

0

z2(ξ)dξ ≤ `2

π2

∫ `

0

[
dz(ξ)

dξ

]2

dξ. (2)

3 Input-to-state stability and positivity of non-
homogeneous heat equation

In this section the basic facts on heat equation and pos-
itivity of its solutions are given.
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3.1 Heat equation

Consider the following PDE with associated boundary
conditions:

∂z(x, t)

∂t
= L[x, z(x, t)] + r(x, t) +

p∑
j=0

bj(x)uj(t)

∀(x, t) ∈ I × T ,
z(x, t0) = z0(x) ∀x ∈ I, (3)

z(0, t) = α(t), z(`, t) = β(t) ∀t ∈ T ,

where I = [0, `] with 0 < ` < +∞, T = [t0, t0 + T ) for
t0 ∈ R and T > 0,

L(x, z) =
∂

∂x

(
a(x)

∂z

∂x

)
+q(x)z,

a ∈ C1(I,R), q ∈ C(I,R) and there exist amin, amax ∈
R+ such that

0 < amin ≤ a(x) ≤ amax ∀x ∈ I;

the boundary conditions α, β ∈ C2(T ,R) and the exter-
nal input r ∈ C1(I × T ,R); the initial conditions z0 ∈
Z0 = {z0 ∈ H2(I,R) : z0(0) = α(0), z0(`) = β(0)}; the
controls uj : T → R are Lipschitz continuous functions.
The space domain I is divided into p+ 1 subdomains Ij
for j = 0, 1, . . . , p, where the control signals uj(t) are ap-
plied through the shape functions bj ∈ L2(I, [0, 1]) such
that {

bj(x) = 0 x /∈ Ij ,
bj(x) = 1 x ∈ Ij .

(4)

The controls uj are designed in Section 5, in Sections 3
and 4 they are assumed to be given and uj ∈ L∞(T ,R)
for all j = 0, 1, . . . , p.

Proposition 4 Assume

amin
π2

`2
> qmax, (5)

where qmax = supx∈I q(x), then for the solutions of (3)
the following estimate is satisfied for all t ∈ T :

1

2

∫ `

0

z2(x, t)dx ≤ e−χ(t−t0)

∫ `

0

w2
0(x)dx (6)

+χ−2

∫ `

0

r̃2(x, t)dx+
`

2
[α2(t) + β2(t)],

where χ = amin
π2

`2 − qmax, w0(x) = z0(x) − δ(x, t0),

δ(x, t) = α(t) + x
` (β(t)− α(t)), and

r̃(x, t) = r(x, t) +
1

`

∂a(x)

∂x
(β(t)− α(t))

+q(x)δ(x, t)− δt(x, t) +

p∑
j=0

bj(x)uj(t). (7)

PROOF. Denote w(x, t) = z(x, t)− δ(x, t), then

∂w(x, t)

∂t
= L[x,w(x, t)] + r̃(x, t) ∀(x, t) ∈ I × T ,

w(x, t0) = w0(x) ∀x ∈ I, (8)

w(0, t) = w(`, t) = 0 ∀t ∈ T . (9)

We start with the well-posedness analysis of the sys-
tem (8) under Dirichlet boundary conditions (9). The
boundary-value problem (8) can be represented as an
abstract differential equation

ζ̇(t) = Aζ(t) + F (t, ζ(t)), t ≥ t0, ζ(t0) = ζ0 (10)

in the Hilbert space L2(I,R), where the operator
A = ∂

∂x

(
a(x) ∂

∂x

)
has the dense domain D(A) = {ζ ∈

H2(I,R) : ζ(0) = ζ(`) = 0}. The nonlinear term
F : T × L2(I,R) → L2(I,R) is defined on functions
ζ(·, t) according to

F (t, ζ(x, t)) = q(x)ζ(x, t) + r̃(x, t),

where r̃(x, t) is given in the equation (7). It is a well-
known fact that A generates a strongly continuous ex-
ponentially stable semigroup Φ, which satisfies the in-
equality ‖Φ(t)‖ ≤ κe−ρt for all t ≥ 0 with some constant
κ ≥ 1 and decay rate ρ > 0.

By introduced restrictions on the initial and boundary
conditions α(t), β(t) and δ(x, t) in the PDE (8) and if
uj(t) is Lipschitz continuous in t, thenF (t, ζ) is Lipschitz
continuous in both variables:

‖F (t1, ζ1)− F (t2, ζ2)‖L2(I,R) ≤ L1 |t1 − t2|+L2 ‖ζ1 − ζ2‖L2(I,R)

for all t1, t2 ∈ T and ζ1, ζ2 ∈ L2(I,R), with some L1 > 0
and L2 > 0. Therefore, for all ζ0 ∈ D(A) there exists
a strong solution of the initial value problem (10) in
C(T , L2(I,R)) by [36, Theorem 6.1.6].

Now consider for (8) the following Lyapunov function

V (t) =

∫ `

0

w2(x, t)dx.

We have

V̇ (t) = 2

∫ `

0

w(x, t)[
∂

∂x
(a(x)wx(x, t))

+q(x)w(x, t) + r̃(x, t)]dx.
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Integrating by parts and substituting the boundary con-
ditions of w(x, t) lead to

V̇ (t) = 2a(x)w(x, t)wx(x, t)|`0 − 2

∫ `

0

a(x)w2
x(x, t)dx

+2

∫ `

0

q(x)w2(x, t) + w(x, t)r̃(x, t)dx

= 2

∫ `

0

q(x)w2(x, t)− a(x)w2
x(x, t) + w(x, t)r̃(x, t)dx.

Using Wirtinger’s inequality (1) and Young’s inequality
[34],

2w(x, t)r̃(x, t) ≤ χw2(x, t) + χ−1r̃2(x, t),

we obtain (recall that χ = amin
π2

`2 − qmax, see the for-
mulation of the proposition):

V̇ (t)≤−2(amin
π2

`2
− qmax)

∫ `

0

w2(x, t)dx

+2

∫ `

0

w(x, t)r̃(x, t)dx

≤−χV (t) + χ−1

∫ `

0

r̃2(x, t)dx.

Therefore, if χ > 0 then the system (8) has bounded
solutions:∫ `

0

z2(x, t)dx≤ 2V (t) + 2

∫ `

0

δ2(x, t)dx

≤ 2(e−χ(t−t0)V (t0) + χ−2

∫ `

0

r̃2(x, t)dx

+
`

2
[α2(t) + β2(t)])

for all t ∈ T , that completes the proof.

Consequently, Proposition 4 fixes the conditions under
which the distributed parameter system (3) possesses
the input-to-state stability (ISS) property [37, 38] with
respect to the boundary conditions α, β, the external
disturbance r and the control signals uj . The main re-
striction of that proposition is (5) and can be easily val-
idated for a sufficiently small `.

Note that after a straightforward calculus the estimate
from Proposition 4 can be rewritten as follows for all
t ∈ T :

||z(·, t)||2L2(I,R) ≤ 4e−χ(t−t0)[||z0||2L2(I,R) + %(t0)]

+8χ−2||r(·, t)||2L2(I,R) + γ(t),

where %(t) = `
2 [α2(t) + β2(t)] (weighted norm of the

boundary conditions), γ(t) = 8χ−2%′(t) + 2(1 + 4
q2max

χ2 +

16
∂a2max

χ2`2 )%(t) and %′(t) = `
2 [α̇2(t)+β̇2(t)] (weighted norm

of derivative of the boundary conditions) are all bounded

functions of time t ∈ T , ∂amax = supx∈I
∂a(x)
∂x .

3.2 Positivity of solutions

In general, the solution z(·, t) of (3) takes its values in R
and it can change sign with (x, t) ∈ I × T . For brevity
of presentation of the results of this subsection we will
always assume that uj(t) = 0 for all t ∈ T and j =
0, 1, . . . , p.

Definition 5 The system (3) with uj(t) = 0 for all j =
0, 1, . . . , p is called nonnegative (positive) on the interval
T if for

α(t) ≥ 0, , β(t) ≥ 0, r(x, t) ≥ 0 ∀(x, t) ∈ I × T

the implication z0(x) ≥ 0 ⇒ z(x, t) ≥ 0 (z0(x) > 0 ⇒
z(x, t) > 0) holds for all (x, t) ∈ I×T and for all z0 ∈ Z0.

A well-known example of a nonnegative system is
non-homogeneous heat equation defined over x ∈
(−∞,+∞):

∂ζ(x, t)

∂t
= a

∂2ζ(x, t)

∂2x
+ r(x, t) ∀(x, t) ∈ R× T , (11)

ζ(x, 0) = ζ0(x) ∀x ∈ R,

where a > 0 is a constant, q = 0 and ζ0 : R→ R+, whose
solution can be calculated analytically using Green’s
function (fundamental solution or the heat kernel) [39]:

ζ(x, t) =
1

2
√
πat

∫ +∞

−∞
e−

(x−y)2
4at ζ0(y)dy

+

∫ t

0

∫ +∞

−∞

e−
(x−y)2
4a(t−s)

2
√
πa(t− s)

r(y, s)dy ds.

It is straightforward to verify that for nonnegative ζ0 and
r the expression in the right-hand side stays nonnegative
for all (x, t) ∈ R× (0,+∞). This conclusion is valid for
the case x ∈ R. However, if x ∈ I, even the homogenous
heat equation (11) with r(x, t) = 0 for all (x, t) ∈ I ×T ,
and with the boundary condition

0 = ζ(0, t) = ζ(`, t) ∀t ∈ T (12)

admits the solution in the form [39]:

ζ(x, t) =

+∞∑
n=1

Dn sin(
nπx

`
)e−a

n2π2

`2
t,

Dn =
2

`

∫ `

0

ζ0(x) sin(
nπx

`
)dx,
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whose positivity is less trivial to establish.

For this reason, using Maximum principle [40] the fol-
lowing general result has been proven in [32]:

Proposition 6 Let α, β ∈ L2(T ,R+), r ∈ L2(I ×
T ,R+) and z0 ∈ H1(I,R+), then

z(x, t) ≥ 0 ∀(x, t) ∈ I × T ,

i.e. (3) with uj(t) = 0 for all j = 0, 1, . . . , p is nonnega-
tive on the interval T .

Therefore, if boundary and initial conditions, and exter-
nal inputs, take only nonnegative values, then the solu-
tions of (3) possess the same property.

4 Interval observer design for the heat equation

Consider (3) with some uncertain boundary conditions
α, β ∈ C2(T ,R), an uncertain external input r ∈ C(I ×
T ,R) and initial conditions z0 ∈ Z0, and assume that
the state z(x, t) is available for measurements in certain
points 0 < xm1 < xm2 < · · · < xmp < `:

yj(t) = z(xmj , t) + νj(t), j = 1, . . . , p, (13)

where y(t) = [y1(t), . . . , yp(t)]
T ∈ Rp is the measured

output signal, ν(t) = [ν1(t), . . . , νp(t)] ∈ Rp is the out-
put disturbance (measurement noise). Design of a con-
ventional observer under similar conditions has been
studied in [12, 13]. Further, to simplify the technical pre-
sentation (to simplify the proof of well-posedness of the
estimation error dynamics) we assume differentiability
of the output disturbance:

Assumption 1 Let ν ∈ C2(T ,Rp).

A goal of the work consists in design of interval observers
for the distributed parameter system (3), (13). For this
purpose we need the following hypothesis.

Assumption 2 Let z0 ≤ z0 ≤ z0 for some known
z0, z0 ∈ Z0, let also functions α, α, β, β ∈ C2(T ,R),

r, r ∈ C1(I × T ,R) and a constant ν0 > 0 be given such
that for all (x, t) ∈ I × T :

α(t) ≤ α(t) ≤ α(t), β(t) ≤ β(t) ≤ β(t),

r(x, t) ≤ r(x, t) ≤ r(x, t), |ν(t)| ≤ ν0.

Thus, by Assumption 2 five intervals, [α(t), α(t)],
[β(t), β(t)], [z0, z0], [r(x, t), r(x, t)] and [−ν0, ν0], deter-
mine for all (x, t) ∈ I ×T in (3), (13) the uncertainty of
the values for α(t), β(t), z0, r(x, t) and ν(t), respectively.

Remark 7 These imperfections can be related with
various reasons, e.g. unknown parameters, external sig-
nals, nonlinearities, etc., but they have to be included in
the corresponding intervals. For example, consider even
more complicated case, let

r(z, x, t) = θ1r̃(x, t) + θ2(z, x, t),

where
θ1 ∈ [θ1, θ1]

is an unknown parameter taking values in the given in-
terval [θ1, θ1], r̃ : I × T → R+ is a known function and
θ2 : L2(I,R)× I × T → [θ2, θ2] is an unknown function
taking values in the given set [θ2, θ2]. Then

r(z, x, t) ∈ [θ1r̃(x, t)+θ2, θ1r̃(x, t)+θ2] = [r(x, t), r(x, t)],

and this case also can be studied in the same way as (3).

The simplest interval observer for (3) under the intro-
duced assumptions is as follows for j = 0, 1, . . . , p:

∂z(x, t)

∂t
= L[x, z(x, t)] + r(x, t) + bj(x)uj(t)

∀(x, t) ∈ Ij × T ,
z(x, t0) = z0(x) ∀x ∈ Ij ,

z(xmj , t) = Zj(t), z(x
m
j+1, t) = Zj+1(t) ∀t ∈ T ; (14)

∂z(x, t)

∂t
= L[x, z(x, t)] + r(x, t) + bj(x)uj(t)

∀(x, t) ∈ Ij × T ,
z(x, t0) = z0(x) ∀x ∈ Ij ,

z(xmj , t) = Zj(t), z(x
m
j+1, t) = Zj+1(t) ∀t ∈ T ,

where z ∈ C(T , L2(I,R)) and z ∈ C(T , L2(I,R)) are
upper and lower estimates of the solution z(x, t); Ij =
[xmj , x

m
j+1] with xm0 = 0 and xmp+1 = `; the upper and

lower estimates for the boundary conditions are

Z(t) = [Z0(t), ..., Zp(t)]
T

= [α(t), y1(t) + ν0, . . . , yp(t) + ν0, β(t)]T ,

Z(t) = [Z0(t), ..., Zp(t)]
T

= [α(t), y1(t)− ν0, . . . , yp(t)− ν0, β(t)]T .

Therefore, the domain I of the solution of (3) is divided
on p+ 1 subdomains with appropriate boundary condi-
tions. It is related with the manner the output injection
is applied. In (14) the use of the output injection directly
in the observer right-hand side is avoided since the anal-
ysis of positivity of the estimation error dynamics, which
is obligatory for an interval observer and given below, is
straightforward if the output injection is present at the
boundaries, but it is more evolved in other cases.
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The upper and the lower interval estimation errors for
(3) and (14) can be introduced as follows:

e(x, t) = z(x, t)−z(x, t), e(x, t) = z(x, t)−z(x, t), (15)

whose dynamics take the form for j = 0, 1, . . . , p:
∂e(x, t)

∂t
=L[x, e(x, t)] + r(x, t)

−r(x, t) ∀(x, t) ∈ Ij × T ,
e(x, t0) = z0(x)− z0(x) ∀x ∈ Ij ,
e(xmj , t) =Zj(t)− z(xmj , t) ∀t ∈ T ,

e(xmj+1, t) =Zj+1(t)− z(xmj+1, t) ∀t ∈ T ;

∂e(x, t)

∂t
=L[x, e(x, t)] + r(x, t) (16)

−r(x, t) ∀(x, t) ∈ Ij × T ,
e(x, t0) = z0(x)− z0(x) ∀x ∈ Ij ,
e(xmj , t) = z(xmj , t)− Zj(t) ∀t ∈ T ,

e(xmj+1, t) = z(xmj+1, t)− Zj+1(t) ∀t ∈ T .

Theorem 8 Let assumptions 1 and 2 be satisfied, then
in (3), (14):

z(x, t) ≤ z(x, t) ≤ z(x, t) ∀(x, t) ∈ I × T . (17)

In addition, if

∆xm < π

√
amin

qmax
, (18)

where ∆xm = maxj∈{0,1,...,p}(x
m
j+1 − xmj ), then for all

t ∈ T :

||z(·, t)− z(·, t)||2L2(I,R) ≤ 4e−χ(t−t0)[||z0 − z0||2L2(I,R) + %(t0)]

+8χ−2||r(·, t)− r(·, t)||2L2(I,R) + γ(t),

||z(·, t)− z(·, t)||2L2(I,R) ≤ 4e−χ(t−t0)[||z0 − z0||
2
L2(I,R) + %(t0)]

+8χ−2||r(·, t)− r(·, t)||2L2(I,R) + γ(t),

where %(t) = `||Z(t)− Z(t)||2, %′(t) = `||Ż(t)− Ż(t)||2,

γ(t) = 8χ−2%′(t) + 2(1 + 4
q2max

χ2 + 16
∂a2max

χ2`2 )%(t),

%(t) = `||Z(t) − Z(t)||2, %′(t) = `||Ż(t) − Ż(t)||2,

γ(t) = 8χ−2%′(t) + 2(1 + 4
q2max

χ2 + 16
∂a2max

χ2`2 )%(t) and

Z(t) = [α(t), yT (t)− νT (t), β(t)]T .

PROOF. Under Assumption 2, for all (x, t) ∈ I × T ,
in (16) the external inputs

r(x, t)− r(x, t) ≥ 0, r(x, t)− r(x, t) ≥ 0,

the initial conditions

z0(x)− z0(x) ≥ 0, z0(x)− z0(x) ≥ 0,

the boundary conditions

e(xm0 , t) = α(t)− α(t) ≥ 0,

e(xmi , t) = yi(t) + ν0 − z(xmi , t)
= ν(t) + ν0 ≥ 0, i = 1, . . . , p,

e(xmp+1, t) = β(t)− β(t) ≥ 0; (19)

e(xm0 , t) = α(t)− α(t) ≥ 0,

e(xmi , t) = z(xmi , t)− yi(t) + ν0

= ν0 − ν(t) ≥ 0, i = 1, . . . , p,

e(xmp+1, t) = β(t)− β(t) ≥ 0,

are all nonnegative. Therefore, according to Proposition
6 the PDE (16) is nonnegative on the interval T , which
implies the required interval estimates by the definition
of e and e.

Boundedness of z, z for all t ≥ t0 follows from Proposi-
tion 4 and the condition (18) under Assumption 1.

Remark 9 Following the idea from [14], the well-
posedness of (14) can be established by showing the
well-posedness of the estimation errors (15), which sat-
isfy the equations (16). By the introduced constraints
on the system parameters, r(x, t), r(x, t) and r(x, t);
initial conditions z0(x), z0(x) and z0(x), and boundary
conditions for the error dynamics (16) (recall (19) for
α, β, α, α, β, β ∈ C2(T ,R) and ν ∈ C2(R+,Rp) by as-
sumptions 1 and 2), and for z0 − z0, z0 − z0 ∈ D(A)
there exists a strong solution e, e ∈ C(T , L2(I,R)) of
initial value problem (16) with e(t, ·), e(t, ·) ∈ D(A) by
[36, Corollary 4.2.5]. Therefore, if e(t, ·), e(t, ·) ∈ D(A)
and z(t, ·) ∈ D(A), then there exists a unique solution
z, z ∈ C(T , L2(I,R)) to the interval observer system
(14) with z(t, ·), z(t, ·) ∈ D(A) for all t ∈ T .

It is a well-known fact that the system (16) can be un-
stable if the function q takes sufficiently big values [41].
In [12] it has been proven, for α(t) = β(t) = 0 and
ν(t) = 0, that the observer (14) is asymptotically stable
if the difference ∆xm is sufficiently small (i.e. there are
sufficient quantity of sensors uniformly distributed in I).
The presented Theorem 8 ensures positiveness of the in-
terval estimation errors and boundedness of the interval
estimates z and z in the presence of non-zero boundary
conditions α(t), β(t) and measurement noise ν(t).

5 Stabilizing control

In this section the interval observer (14) is used for design
of a control law ensuring stabilization of (3).

The main restriction on stability for the system (3) is

qmax < amin
π2

`2 . The inequality (18) imposes the same
property for the interval observer (14): if the difference
∆xm is sufficiently small, which means that the quan-
tity of measurement points is sufficiently high, then the
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observer estimation error is bounded, but it does not im-
ply stability of the original system. To overcome this re-
striction, let us consider together the system (3) and the
interval observer (14), designed in the Section 4, both
endowed with control input uj(t) ∈ H1(T ,R) through
the shape functions bj(x) ∈ L2(I,R) on each space sub-
domain Ij , where the control is chosen as an interval
observer state feedback:

uj(t) = − Kj

∆xmj

∫ xmj+1

xm
j

(z(ξ, t) + z(ξ, t)) dξ, j = 0, ..., p,

(20)
where Kj are the sequential feedback gains to be de-
signed on each Ij , Kj > 0 and

∆xmj = (xmj+1 − xmj ) ∀j ∈ {0, 1, ..., p}.

Remark 10 For brevity we consider the same number of
sensors and actuators with collocated subintervals Ij . It
is not difficult to extend our results to the non-collocated
case by modifying arguments of [15]. This is because our
design is based on separation of the controller and the
observer designs. While the observer part of this paper is
completely new, the controller part is based on a modi-
fication of the existing controller method from [16]. Our
modification of the existing controller design is as fol-
lows: we use transformation to move boundary distur-
bances into the right-hand side of PDE and employ a spe-
cial structure of the controller based on the interval ob-
server. Then the ISS analysis of the closed-loop system
follows the existing method for controller design. Thus,
by modifying arguments of Section 2 of [15], it is possible
to achieve ISS by using a boundary controller at x = `
via the backstepping.

Thus, the control is applied in order to ensure bounded-
ness of the observer estimates z(x, t), z(x, t), that in its
turn (since z(x, t) ≤ z(x, t) ≤ z(x, t) for all (x, t) ∈ I×T ,
see Theorem 8) will provide boundedness of z(x, t) as in
[42]. Recall the shape functions (4) bj(x) = 1 on Ij and
bj(x) = 0 if x /∈ Ij and substitute the control (20) in (3)
on interval Ij for all j = 0, ...p:

∂z(x, t)

∂t
=

∂

∂x
(a(x)zx(x, t)) +q(x)z(x, t) + r(x, t)

(21)

−Kj

∆
xmj

∫ xmj+1

xm
j

(z(ξ, t) + z(ξ, t)) dξ, ∀(x, t) ∈ Ij × T .

We consider the same shift for the system as be-
fore δ(x, t) = α(t) + x

` (β(t) − α(t)), then the new
state variable (as in the proof of Proposition 4) is
w(x, t) = z(x, t) − δ(x, t), and it satisfies the following
PDE with zero boundary conditions:

∂w(x, t)

∂t
=

∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) + r̃(x, t)

−
p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

(z(ξ, t) + z(ξ, t)) dξ ∀(x, t) ∈ I × T ,

w(x, t0) = w0(x) ∀x ∈ I,
w(0, t) = w(`, t) = 0 ∀t ∈ T .

where r̃(x, t) = r(x, t) + 1
`
∂a(x)
∂x (β(t) − α(t)) +

q(x)δ(x, t) − δt(x, t) (before this auxiliary perturbation
also included the control part

∑p
j=0 bj(x)uj(t)).

Consider the interval observer error dynamics (16),
which is nonnegative by Theorem 8 and bounded if
the condition (18) is satisfied. Recall the relations
z(x, t) = z(x, t) − e(x, t) and z(x, t) = z(x, t) + e(x, t)
and substitute them into the dynamics of w(x, t):

∂w(x, t)

∂t
=

∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) + r̃∗(x, t)

+

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xm
j

(e(ξ, t)− e(ξ, t)) dξ

−2

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xm
j

w(ξ, t)dξ ∀(x, t) ∈ I × T ,

where r̃∗(x, t) = r̃(x, t)−2
∑p
j=0 bj(x)

Kj
∆ xmj

∫ xmj+1

xm
j

δ(ξ, t)dξ.

Since e(x, t) ≥ 0, e(x, t) ≥ 0 and bounded under the

condition (18), the terms
∫ xmj+1

xm
j

(e(ξ, t)− e(ξ, t)) dξ can

be made a part of a new disturbance

R(x, t) = r̃∗(x, t)+

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

(e(ξ, t)− e(ξ, t)) dξ,

then

∂w(x, t)

∂t
=

∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) +R(x, t)

−2

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xm
j

w(ξ, t)dξ ∀(x, t) ∈ I × T .

In order to analyze the influence of the integral feedback,
let us use the relation

1

∆
xmj

∫ xmj+1

xm
j

w(ξ, t)dξ = w(x, t)− f(x, t), x ∈ Ij ,

proposed in [16], where

f(x, t) ,
1

∆
xmj

∫ xmj+1

xm
j

[w(x, t)− w(ξ, t)]dξ
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is a piecewise continuous function and ∂f
∂x = ∂w

∂x . Finally,
the following closed-loop system has been obtained:

∂w(x, t)

∂t
=

∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) +R(x, t) (22)

−2

p∑
j=0

Kjbj(x)w(x, t) + 2

p∑
j=0

Kjbj(x)f(x, t).

Validity of the interval inclusion (17) can be proven
repeating the same arguments as in Theorem 8 since the
observer design is independent on the form of control.
To analyze stability of the closed-loop system (22) let us
consider a Lyapunov function:

V (t) =

∫ `

0

w2(x, t)dx,

whose derivative takes the form for any γ > 0 and κ > 0:

V̇ (t) + 2κV (t)− γ2

∫ `

0

R(x, t)2dx =

= 2

∫ `

0

w(x, t)[
∂

∂x
(a(x)wx(x, t))

+q(x)w(x, t) +R(x, t)]dx+ 2κ

∫ `

0

w2(x, t)dx

−γ2

∫ `

0

R2(x, t)dx− 4

∫ `

0

[
p∑
j=0

Kjbj(x)w(x, t)

]
w(x, t)dx

(23)

+4

∫ `

0

[
p∑
j=0

Kjbj(x)f(x, t)

]
w(x, t)dx.

Integration by parts and substitution of the boundary
conditions for w(x, t) lead to

2

∫ `

0

w(x, t)
∂

∂x
(a(x)wx(x, t)) dx ≤ −2amin

∫ `

0

w2
x(x, t)dx.

The function f(x, t) has the zero average
∫ xmj+1

xm
j

f(x, t)dx =

0 and fx = wx, and by applying the Poincare’s inequal-
ity (2) on subdomains Ij the following upper estimate
is obtained:

−2amin

∫ xmj+1

xmj

w2
x(x, t)dx ≤ −2amin

π2(
∆xmj

)2 ∫ xmj+1

xmj

f2(x, t)dx,

then

−2amin

∫ `

0

w2
x(x, t)dx = −2amin

p∑
j=0

∫ xmj+1

xm
j

w2
x(x, t)dx

≤ −2amin
π2(

∆xmj
)2 p∑

j=0

∫ xmj+1

xm
j

f2(x, t)dx.

The next term of (23) can be rewritten using the fact
that bj(x) = 1 on Ij in (4) and under a mild simplifying
restriction that Kj = K for all j = 0, ...p:

−4

∫ `

0

[
p∑
j=0

Kjbj(x)w2(x, t)

]
dx = −4K

p∑
j=0

∫ xmj+1

xmj

w2(x, t)dx.

And the cross term of (23) can be treated in the same
way:

4

∫ `

0

 p∑
j=0

Kjbj(x)f(x, t)w(x, t)

 dx
= 4K

p∑
j=0

∫ xmj+1

xm
j

w(x, t)f(x, t)dx.

Therefore, using an upper bound
∫ `

0
q(x)w2(x, t) ≤

qmax

∫ `
0
w2(x, t) and denoting η> = [w(x, t) f(x, t) R(x, t)],

we get

V̇ (t)+2κV (t)−γ2

∫ `

0

R(x, t)2dx ≤
p∑
j=0

∫ xmj+1

xm
j

η>Φηdx ≤ 0

provided that

Φ ,


2(κ+ qmax − 2K) 2K 1

2K −2aminπ
2

(∆xm)2
0

1 0 −γ2

 ≤ 0

for ∆xm = maxj∈{0,1,...,p}∆xmj . Using the Schur com-
plement the above inequality is satisfied if 2aminπ

2

∆xm
0

0 γ2

 > 0, 2K− (∆xm)2

aminπ2
K2−κ−qmax−

1

2
γ−2 ≥ 0,

where the first property is valid by proposed construc-
tion and the last one is a quadratic inequality with re-
spect to K. Using the imposed restriction (18) there ex-
ists % > 0 such that

(∆xm)
2

aminπ2
=

1

qmax + %
,

then the needed inequality holds if

2K − 1

qmax + %
K2 − κ− qmax −

1

2
γ−2 ≥ 0,

that always has a solution for

κ+
1

2
γ−2 ≤ %.
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In particular, for κ+ 1
2γ
−2 = % we obtain:

K = qmax + % =
aminπ

2

(∆xm)
2 .

The inequality

V̇ (t) + 2κV (t)− γ2

∫ `

0

R(x, t)2dx ≤ 0

implies boundedness of the solutions w(x, t) as in the
proof of Proposition 4. We have proved the following
theorem.

Theorem 11 Let assumptions 1 and 2 be satisfied. Let

there exist κ > 0, K > 0, γ > 0 and ∆xm < π
√

amin

qmax

that satisfy the LMI

Φ ≤ 0.

Then for the solutions of the closed-loop system (21), the
interval inclusion (17) and the estimates on ||z(·, t) −
z(·, t)||L2(I,R), ||z(·, t) − z(·, t)||L2(I,R) from Theorem 8
are valid and

1

2

∫ `

0

z2(x, t)dx ≤ e−2κ(t−t0)

∫ `

0

w2
0(x)dx+

γ2

2κ

∫ `

0

R(x, t)2dx

+
`

2
(α2(t) + β2(t)) ∀(x, t) ∈ I × T .

Remark 12 Note that qualitatively the above L2 bound-
edness estimate for z can also be obtained using static
output feedback, however it can be rather conservative,
and using the on-line calculated upper and lower observer
bounds z and z we can deduce a tighter interval estimate
on the state. This can be an important advantage for ap-
plications dedicated to state constrained problems ( e.g.
in reactors).

6 Example

In this section we will consider two applications of the
proposed interval observer in order to compare the ob-
tained results with the interval observer from [29] and
the control from [12].

6.1 Controller based on the interval observer

Consider an academic example of (3) for

a(x) =
1

4
(1 +

3

4
sin(2πx)), q(x) = 5 +

1

2
cos(πx),

r(x, t) = sin(πx)[cos(2t) + ε(t)], |ε(t)| ≤ 1,

with T = 2 and ` = 1, then ε is an uncertain part of the
input r (for simulation ε(t) = cos(10t)), and

r(x, t) = sin(πx)[cos(2t)−1], r(x, t) = sin(πx)[cos(2t)+1].

The uncertainty of initial conditions is given by the in-
terval

z0(x) = z0(x)− 1, z0(x) = z0(x) + 1,

where z0(x) = 5 sin(πx), and for boundary initial con-
ditions

α(t) = sin(2t)− 1, α(t) = sin(2t) + 1,

β(t) = sin(5t)− 1, β(t) = sin(5t) + 1,

where α(t) = sin(2t) and β(t) = sin(5t). Let p = 3 with
xm1 = 0.3, xm2 = 0.6, xm3 = 0.8, and

ν(t) = 0.1[sin(20t) sin(15t) cos(25t)]>,

then ν0 = 0.173. In this case amin = 1
16 , qmax = 5 1

2 .

With these parameters, qmax is larger than amin
π2

`2 ,
which means that the system is unstable (the conditions
of Proposition 4 fail to satisfy). The maximum distance
between sensors is ∆xm = 0.3, and the restriction (18)
for the interval observer is still verified. Therefore, The-
orem 8 can be used to construct an observer for the
unstable system (3). Then, to stabilize it, following the
conditions of Theorem 11, the control gain K = 3.2865
was calculated, and the controls uj(t) on each interval
Ii = [xmi , x

m
i+1], i = 0, p with xm0 = 0 and xmp+1 = ` were

computed by (20).

For calculation of scalar product in space and for simu-
lation of the discretized PDE in time, the implicit Euler
method has been used with the step size dt = 0.01. The
results of a simultaneous interval estimation and control
are shown in Fig. 1, where the red surface corresponds to
z(x, t), while green and blue ones represent z(x, t) and
z(x, t), respectively (20 and 100 points are used for plot-
ting in space and in time).

In order to compare the proposed interval observer based
control (20) with a static output feedback control

uj(t) = −K∗yj(t), (24)

the feedback gain K∗ = 4.8832 is calculated following
the result of the work [12]. Since the system (3) contains
uncertainties in disturbances r(x, t), ν(t) and bound-
ary conditions α(t), β(t), the static output feedback can
guarantee only input-to-state stability in the sense of
Proposition 4 with respect to the input r̃(x, t), which
contains all this incertitude. To compare the precision
ensured by both controllers in our example, first, the L2

9



Fig. 1. The results of the interval observer based control of
the heat equation for N = 20: the lower bound z(x, t), the
state z(x, t) and the upper bound z(x, t).

upper estimate of z(x, t) for this feedback control is cal-
culated as follows. Note that

V (t) = ||z||L2(I,R) ≤ `z2(t),

where
z(t) = max

x∈I
|z(x, t)|

Clearly,

z(t, x) ∈ [−z(t), z(t)] ∀(x, t) ∈ I × T .

From another side, the obtained L2 estimates can be
presented as

V (t) ≤ e−2δ(t−t0)V (t0) + γ

∫ `

0

|r̃(x, t)|2 dx = V (t),

where V (t) can be calculated on-line for the given
gain K∗ (it determines the values of parameters
δ > 0 and γ > 0) and the imposed upper bounds
on r̃(x, t). Second, for illustration we assume that
V (t) = `z2(t), then the obtained bounds [−z(t), z(t)] =

[−
√
`−1V (t),

√
`−1V (t)] are shown in the Fig. 2 (black

solid lines) together with the interval estimates of the
proposed observer (14) (green and blue ones) for differ-
ent instances of time. Red curves in the Fig. 2 represent
the simulation of the stabilized heat equation (3) state
using the interval observer, while the black dashed
curves represent the state of (3) stabilized by output
feedback (24). As we can conclude from this evaluation,
the guaranteed bounds given by the interval observer
based control are almost always more accurate than
provided by the static feedback from L2 estimates.

Remark 13 Note that since for calculation of solutions
the finite-element discretization/approximation methods

Fig. 2. The results of the interval observer based control and
the L2 estimate of the static output feedback control for the
heat equation for different instants of time: t = 0, 0.5, 1, 2
for N = 20. Here z(x, ·) and z(x, ·) represent the interval ob-
server bounds, z(x, ·) is the stabilized state using observer,
black dashed lines represent a state of (3) stabilized by out-
put feedback (24), black solid lines are [−z(t), z(t)].

are used, then their error of approximation has to be taken
into account in the final estimates in order to ensure
the desired interval inclusion property for all x ∈ I and
t ∈ T , see [29] where the result from [30] was applied for
an evaluation of this error.

Remark 14 As mentioned in [12], there are no advan-
tages of the Luenberger observer-based controller in the
case of collocated sensors and actuators over the corre-
sponding static output-feedback. However, as it is shown
in this example, interval observer allows to achieve es-
sentially lower state bounds than the corresponding static
output-feedback.

6.2 The interval observer comparison

Consider a heat equation (3) with:

a(x) = 2 + 0.7 sin(πx), q(x) = 0.5sin(0.5x),

r(x, t) = r1(x)r2(t), r1(x) = 2cos(3πx), |r2(t)| ≤ 1,

T = 10 and ` = 1. Here r2 is an uncertain part of the
input r (for simulation r2(t) = cos(15t)), and

r(x, t) = −|r1(x)|, r(x, t) = |r1(x)|.

10



The uncertainty of initial conditions is given by the in-
terval

z0(x) = z0(x)− 1, z0(x) = z0(x) + 1,

where z0(x) = cos(5πx), and the boundary conditions
α(t) and β(t) are assumed to be 0, since the approach
from [29] does not employ nonzero conditions. Let p = 3
with xm1 = 0.3, xm2 = 0.5, xm3 = 0.8, and

ν(t) = 0.2[sin(20t) sin(15t) cos(25t)]>,

then ν0 = 0.2. In this case ∆xm = 0.3, amin = 1.3
qmax = 0.5 and the restriction (18) is satisfied. Take ∆ =
{0, h, 2h, . . . , 1 − h, 1} with h = 1/N ′, and a pyramidal
basis

Φi(x) =


0 x ≤ xi−1,
x−xi−1

xi−xi−1
xi−1 < x ≤ xi,

xi+1−x
xi+1−xi xi < x ≤ xi+1,

0 x ≥ xi+1

for i = 0, . . . , N = N ′ (it is assumed x−1 = −h and
xN+1 = 1 + h). For simulation we took N = 20, then
the approximated dynamics from [29] is an observable
system, and assume that the error of approximation for
both approaches %hs+1(l1 + l2) = 0.1. For the Galerkin
approximation approach [29] the matrix L has been cho-
sen to ensure distinct eigenvalues of the matrix A−LC
in the interval [−30.9,−0.67], then S−1 has been com-
posed by eigenvectors of the matrix A−LC and the ma-
trix D has been selected diagonal (all these matrices are
defined in [29]).

As before, for the calculation of scalar product in space
and for simulation of the discretized PDE in time, the
implicit Euler method has been used with the step size
dt = 0.01 for the PDE interval observer, and the explicit
one with the same step for the approximation approach.
The results of comparison of the two approaches, the
present and the approximation one from [29], are shown
in Fig. 3, where the red lines corresponds to z(x, ·), while
green and blue ones represent z(x, ·) and z(x, ·), respec-
tively, at the instances t = 0, 1, 5, 10. From this figure
one can clearly notice that the obtained interval for the
state is more precise with the PDE interval observer ap-
proach (14).

7 Conclusion

Taking a heat equation with Dirichlet boundary condi-
tions, a method of design of interval observers is pro-
posed, which is not based on a finite-element approxi-
mation. The design employs the positivity of solutions
of the heat equation proposed in [32]. The proposed in-
terval observer is used for stabilization of an uncertain
PDE system. The efficiency of the approach is demon-
strated through numerical experiments.

Fig. 3. The results of 1) the PDE interval observer (14) and
2) the approximation approach interval observer from [28],
N = 20. Here the lower bound is z(x, ·), the state is z(x, ·)
and the upper bound is z(x, ·).

For future developments, more complex uncertainty of
PDE equation can also be incorporated in the design pro-
cedure and the approach can be extended to PDEs with
Neumann, Robin, or mixed boundary conditions. Possi-
bility of averaged measurements and the corresponding
positivity conditions can also be considered as a direc-
tion of future research.
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