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Abstract

For evolutionary studies, but also for protein engineering, ancestral sequence reconstruction
(ASR) has become an indispensable tool. The first step of every ASR protocol is the preparation
of a representative sequence set containing at most a few hundred recent homologs whose
composition determines decisively the outcome of a reconstruction. A common approach for
sequence selection consists of several rounds of manual recompilation that is driven by
embedded phylogenetic analyses of the varied sequence sets. For ASR of a
geranylgeranylglyceryl phosphate synthase, we additionally utilized FitSS4ASR, which
replaces this time-consuming protocol with an efficient and more rational approach.
FitSS4ASR applies orthogonal filters to a set of homologs to eliminate outlier sequences and
those bearing only a weak phylogenetic signal. To demonstrate the usefulness of F1tSS4ASR,
we determined experimentally the oligomerization state of eight predecessors, which is a
delicate and taxon-specific property. Corresponding ancestors deduced in a manual approach
and by means of FitSS4ASR had the same dimeric or hexameric conformation; this
concordance testifies to the efficiency of F1tSS4ASR for sequence selection. F1tSS4ASR
based results of two other ASR experiments were added to the Supporting Information. Program

and documentation are available at https://gitlab.bioinf.ur.de/hek61586/FitSS4ASR.
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Introduction

During the last forty years, ancestral sequence reconstruction (ASR) has become a very
successful means of computational biology. Its usage has elucidated completely different
aspects of protein evolution, which are intractable with other methods; for recent reviews see
(Joy et al., 2016; Merkl and Sterner, 2016; Wheeler et al., 2016; Gumulya and Gillam, 2017,
Hochberg and Thornton, 2017). ASR algorithms compute for a given set of extant homologs a
phylogenetic tree and deduce for all internal nodes the most likely sequences (Liberles, 2007).
Their composition results from the chosen phylogenetic model (Ashkenazy et al., 2012) and the
extant homologous sequences that specify the leaves of the tree. Driven to extremes, the most
ancient sequences that can be reconstructed are related to the last universal common ancestor
(LUCA) that existed in the Paleoarchean era, i.e., at least 3.5 billion years ago (Nisbet and
Sleep, 2001). The in silico and biochemical characterization of “resurrected” proteins from
these early phases of evolution were key to characterize primordial proteins (Thornton et al.,
2003; Hobbs et al., 2012) and the corresponding habitats (Perez-Jimenez et al., 2011). Due to
the lack of macromolecular fossils, ASR is the only informative means to gain insight into the
intricacy of ancient proteins (Reisinger et al., 2014) and to reproduce adaptations of extinct
species to climatic, ecological and physiological changes (Boussau et al., 2008; Akanuma et
al., 2013).

A second reason for the great success is that ASR adds a further dimension to sequence
analysis: From an evolutionary point of view, extant homologs represent variants observed for
one point in time, thus the comparison of these proteins was termed “horizontal” approach.
Many protein families contain functionally diverse members and it is, e. g., difficult to identify
residues that are sufficient to switch function by comparing recent sequences, because many of
these variations are irrelevant for functional differences (Harms and Thornton, 2010). In
contrast, ASR is a “vertical approach”, as it takes into account the evolutionary history of the
proteins under study. Focusing on the specific substitutions that occurred along the branches
leading to different functions is more straightforward. Thus, vertical approaches can drastically
reduce experimental efforts to identify key residues as demonstrated for the specificity of
hormone receptors (Ortlund et al., 2007), the fluorescence properties of GFP variants (Field and
Matz, 2010), or hotspots of protein-protein interfaces (Holinski et al., 2017).

The insight that ancestral proteins are generally more robust and often more versatile
(promiscuous) than their modern successors (Wouters et al., 2003; Wheeler et al., 2016) has

opened new fields for the usage of reconstructed predecessors in protein design; for a review



see (Gumulya and Gillam, 2017). For example, predecessors of serum paraoxonases and
cytosolic sulfotransferases are highly active and functionally diverse and few mutations have
been sufficient to introduce a new specificity (Alcolombri et al., 2011). The replacement of
residues that change along the branches leading to a functional switch of DNA polymerases has
led to a broadened substrate spectrum (Chen et al., 2010). Generally, a stable and robust
template is beneficial for directed evolution studies, as mutations that lead to a new function
are often destabilizing (Tokuriki et al., 2008). Using ASR, a 30 - 40 °C increase in denaturation
temperature has been obtained, which is much larger than that typically gained with alternative
protein engineering protocols; for a review see (Wijma et al., 2013).

A crucial element of ASR is the computation of a phylogenetic tree, whose topology is
determined by the set of recent sequences and the phylogenetic model, which are both chosen
by the user. Once a tree is available, the composition of ancestral sequences that correspond to
internal nodes of the tree can be deduced from the leaves, i. e., the recent sequences (Ashkenazy
et al., 2012). If the topology of this tree is wrong, some internal nodes correspond to ancestors
that never existed and the relative order of mutations can be biased as well. Generally, the
quality of the phylogenetic tree can be affected by systematic errors related to the evolutionary
model and by stochastic errors, caused by sequences that do not contain enough phylogenetic
signal to support a robust tree. One source of systematic errors could be the second step of each
ASR (Merkl and Sterner, 2016), which is the creation of an MSA. Often, MSA algorithm rely
on a simplistic evolutionary model, whose assumptions specify the data for the subsequent
reconstruction steps. Thus, for highly divergent data sets with less than 30% sequence identity
(Seqld), the generation of MSAs is a crucial step of each phylogenetic analysis (Essoussi et al.,
2008). Recent comparisons of several state-of-the-art methods indicated that all performed
equally well for more homogeneous sequence sets (Essoussi et al., 2008; Le et al., 2017) and
MAFFT (Katoh and Standley, 2013) and PRANK (Loytynoja and Goldman, 2008) exhibited best
performance for ASR (Vialle et al., 2018).

The protocols implemented for ASR are based on well-proven algorithms and
evolutionary models and for each step of the reconstruction process, probability measures allow
for the assessment of their outcome; see e. g. (Straub and Merkl, 2019). For the convenience of
the user, specialized servers have been implemented that execute an ASR protocol in a fully
automated manner for a given set of sequences (Dereeper et al., 2008; Kumar et al., 2012;
Hanson-Smith and Johnson, 2016). Thus, by carefully examining the quality of all phases of
ASR, one can avoid systematic errors e.g. those caused by fast-evolving sites, rate-variation

among sites, or compositional heterogeneity. Removing columns from the MSA and choosing



an adequate phylogenetic models are effective means to avoid such errors (Rodriguez-Ezpeleta
et al., 2007).To minimize stochastic errors, the set of recent sequences selected as input has to
be chosen diligently. ASR can be carried out for DNA, codon, and amino acid sequences. In
the following, we exclusively focus on the compilation of a set of amino acid sequences
belonging to one protein isoform, which is a key issue of ASR.

Due to their chronological order, mutations of early evolutionary phases have been
manifested in many recent members of a family; therefore, it is not necessary to consider all of
them for ASR. Indeed, huge numbers of homologs do not necessarily improve the
reconstruction of ancestral states (Li et al., 2008); thus not more than 150 to 200 input sequences
are commonly picked by the user. However, the current databases offer for many functionally
important proteins several thousand homologous sequences, which urges the user to choose a
drastically reduced subset. This selection process is an important and difficult phase, because
sequence selection greatly affects the quality of the phylogenetic tree. Quality must meet high
standards for ASR (Pagel et al., 2004) and trees showing the strongest phylogenetic signal give
more accurate reconstructions (Litsios and Salamin, 2012). To allow for the reconstruction of
a long evolutionary time-span and early predecessors, the sequences must represent
phylogenetically diverse species. On the other hand, closely related sequences that diverge by
few mutations introduce redundancy only and do not support a deep reconstruction. Thus, the
user has to identify a set of homologs that support a sufficiently deep but also highly robust
tree.

Often, users initially create for ASR a large set of homologs by means of a BLAST
search, which needs further processing. To reduce the number of sequences and redundancy,
one can start by picking representatives from the sequence clusters created with the help of
tools like cd-hit (Li and Godzik, 2006) or use more specialized approaches (Frickey and
Lupas, 2004; Fuellen et al., 2005; Dereeper et al., 2008; Tamura et al., 2011). In order to
combine several orthogonal methods for sequence selection, we designed F1itSS4ASR, which
filters sequence sets for ASR. This tool draws upon well-proven concepts applied to iteratively
refine sets and can be used in a semi-automatic manner with minimal user interaction. Our tool
selects sequences that i) agree best with current evolutionary models in order to avoid
systematic errors and ii) have retained a strong phylogenetic signal in order to avoid stochastic
errors.

We confirmed the validity of this kind of sequence selection by means of a biochemical
characterization of ancestral geranylgeranylglyceryl phosphate synthases (GGGPSs). This

enzyme is involved in the biosynthesis of ether membrane lipids that are prototypical for



Archaea and catalyzes the formation of an ether bond between glycerol 1-phosphate and
geranylgeranyl diphosphate (Chen et al., 1993; Peterhoff et al., 2014). A characteristic, taxon-
specific property of GGGPS is the oligomerization state, which can be dimeric or hexameric
(Peterhoff et al., 2014; Linde et al., 2018). We used the same ASR protocol, but two different
sets of recent GGGPS homologs to compute ancestors. The first set of sequences was compiled
in a time-consuming manner requiring extensive manual curation. The second set was created
by applying Fi t SS4ASR that reduced user-intervention drastically. For both sets, phylogenetic
trees and ancestral sequences were computed; the corresponding proteins were heterologously
expressed and characterized. The accordance of the experimentally determined oligomerization
states confirmed the equivalence of the resurrected enzymes with respect to this delicate

property and testified to the applicability of FitSS4ASR.

Results

General criteria guiding sequence selection for ASR

Commonly, the first step of sequence selection is the generation of a set by means of BLAST
(Altschul et al., 1997) or the choice of a precompiled dataset as offered by InterPro (Mitchell
et al., 2015) or similar databases. Owing to the success of sequencing projects, these initial sets
contain much more homologous sequences than practically useful. Thus, the aim in developing
FitSS4ASR was not to support the user in constructing a tree for a given set of sequences, but
to find a set of representatives that allow for the reliable reconstruction of predecessors.

One major constraint of sequence selection is the phylogenetic origin of the candidates
that must represent a sufficiently wide phylogenetic diversity. For example, the distribution of
species in the comprehensive tree of life (Hug et al., 2016) suggests for the reconstruction of
LUCA proteins a sequence set representing species from the six dominating bacterial and two
archaeal clades. Usually, it is easy to provide a broad phylogenetic representation for a given
protein due to the wide coverage of extant sequences deposited in databases. Thus, the crucial
task of sequence selection is a rigorous but specific filtering, and the appropriate combination
of filters might advantageously be exploited to increase the robustness of the ASR process. As
a first step, a single representative can be chosen for each subset of highly similar sequences to
reduce redundancy. In order to eliminate splice variants and flawed sequences caused by
misassembly or gene-prediction errors, non-canonical outliers whose length differs
significantly, i.e., by more than /en_dev = 2 standard deviations from the mean can be

eliminated as well (Figure 1A). Note that we use the term “param = value” to specify



parameters of Fit SS4ASR and their default values that can be altered by the user. Sequences
without indels have more likely retained their ancestral length (Akiva et al., 2017) and the
evolutionary correct modeling of indels is still difficult. Thus, it is appropriate to ignore also
sequences with internal insertions (Dereeper et al., 2008) as indicated by a multiple sequence
alignment (MSA) (Figure 1B).

Other filter criteria (Merkl and Sterner, 2016) are only applicable after a phylogenetic
tree has been computed for the input. Horizontal gene transfer (HGT) (Figure 1C) is a frequent
phenomenon in bacterial genomes (Ochman et al., 2000), which complicates ASR due to non-
constant mutation rates. To exclude the results of apparent HGT events, sequences that cause
an aberrant phylogeny incompatible with a monophyletic origin have to be removed, which
requires to compare the taxonomy of nodes and subtrees. Moreover, to support a reliable
reconstruction of subsequent ancestral states, the length of each branch has to indicate a
sufficiently low rate subs r = 1.0 of substitutions per site (Figure 1D). The reconstruction of
subsequent states can be unreliable, if more than one substitution occurred during the time span
represented by the length of a given branch. FitSS4ASR considers substitution rates
exceeding subs_r as critical. Note that low substitution rates reduce also the risk of long-branch
attraction, which is a systematic error that may occur if a tree contains long and short branches.
As a consequence, two or more long branches can be grouped as sisters (nodes that share the
same parent node) and distantly related species seem to be closely related (Bergsten, 2005). A
further criterion for the robustness of subtree topology are the local bootstrap values/posterior
probabilities that are compared to loc_qual = 0.75. In agreement with the literature (Soltis and
Soltis, 2003), F1itSS4ASR considers loc_qual values > 0.75 as an indicator of sufficient
support to reconstruct the corresponding sequences.

By removing sequences constituting an isolated subtree or by adding additional
sequences, the user can modulate the topology and subdivide long branches (Wiens, 2005).
However, the effects caused by an altered input are often unpredictable, which compels the
testing of many alternative combinations. Thus, a manual sequence selection may turn into a

tedious and time-consuming task.
FitSS4ASR: Filtering sequence sets for ASR

In order to support sequence selection in a comprehensive manner, Fit SS4ASR consists of a
series of methods that iteratively filter sequence sets and perform phylogenetic analyses to
eliminate non-canonical sequences as described above (Figure 2A). To begin with,

representatives are chosen based on the outcome of cd-hit (Liand Godzik, 2006) that clusters



sequences on their similarity. Subsequently, sequences that significantly deviate in length from

the mean or introduce internal gaps are eliminated. The remaining sequences constitute the
initial set SEQ,_,, which is subjected to an analysis of tree topology. FitSS4ASR offers two
alternatives for phylogenetic analysis, namely the maximum likelihood approach RAxML
(Stamatakis, 2006) and the Bayesian approach MrBayes (Ronquist and Huelsenbeck, 2003).

We parametrized both programs for the computation of a series of trees #/ and a consensus
tree #7, . For subsequent analysis of tree robustness, Fit SS4ASR saves during each iteration k
the dataset Iter, = {tr,,SEQ,} consisting of the tree #;, and the sequences SEQ, under study.

During the sequence elimination phase of FitSS4ASR, the series of trees #] is used

to identify sequences with an ambiguous or insufficient phylogenetic signal (Sanderson and
Shaffer, 2002), causing in the trees an unstable phylogenetic position based on two different
criteria: RogueNaRok (Aberer et al., 2013) detects “rogue” sequences that possess different
sister sequences in trees generated during a phylogenetic analysis. The program eliminates
sequences based on the relative bipartition information criterion (RBIC) that increases support
of a tree and stops, if RBIC cannot be further improved by pruning more sequences. However,
this optimality criterion does not identify all unstable taxa (Wilkinson and Crotti, 2017), thus

we implemented a more rigorous alternative that identifies “solitary” sequences. Solitary are

the sequences seq, of a given set SEQ, , for which each of the sisters s occurs in a fraction

below min_sis = 0.75 of the k-specific treesr; ; see Methods. FitSS4ASR allows the user to

choose one of three alternatives rules that eliminate i) rogue, ii) solitary, iii) rogue and solitary
sequences that may cause the computation of incorrect ancestors. The removal of these
sequences can create branches of undesired length. Thus, all other sequences inducing branches
longer than subs r substitution/site are eliminated as well and the remaining sequences are

subjected to further rounds of refinement, until one of two stopping criteria is reached:
FitSS4ASR stops, if SEQ, contains not more than min_seq = 60 sequences or if no sequences
are eliminated during the last 10 iteration steps. Thus, FitSS4ASR generates a series of

iteratively reduced sets and the output of the last iteration Iter,, = {tr,,,SEQ,,} contains

u= ‘SE O..:| sequences.

Upon completion of sequence elimination, F1itSS4ASR assesses the robustness of the
generated datasets to offer alternatives from which the user can choose (Figure 2B). Initially,

up to 15 datasets ltrer,” are chosen from the last rounds of sequence selection so that the sets



Iter, contain approximately evenly distributed between u and maximally 500 sequences. Due
to the nested hierarchy of the sequence sets SEQ,” , we expect a consistent core topology of the
trees 77" and deviations in individual trees are indicative of less suitable sequence sets. To filter
out such sets, F1tSS4ASR deduces a supertree and discards trees ;" that are not compatible
with the core topology; see Methods. A supertree is a single phylogenetic tree resulting from a
combination of trees; here it is expected that the trees 77;” overlap largely. The m remaining sets

Alt, ., =1tr, ,SEQ, } are further subjected to a perturbation test, which we devised as a final

assessment of tree robustness: We consider a sequence set SEQ, “phylogenetically robust”, if
the addition of randomly chosen sequences has only a minor effect on tree topology. For a broad
sampling, FitSS4ASR generates 100 sequence sets SEQ, , each of which consist of SEQ,

plus 10 randomly picked sequences chosen from the initial set SEQ, and computes the
corresponding trees. For the subsequent tree comparison, our algorithm prunes the 100 trees to
the sequences SEQ, and uses the trees for the computation of a consensus treetr, . If the

comparison of tree topologies # and tr, indicates only minor differences, we consider #r,

robust to perturbations and SEQ, suitable for ASR. As noted, FitSS4ASR utilizes two

different methods for phylogenetic analysis and three for sequence elimination; thus, the final

sets Alt, may originate from any of these six combinations and a further characterization of the
sets is needed to facilitate a selection.

Choosing a dataset for ASR

After program termination, the user has to select one of the m alternative datasets
Alt, ={tr,,SEQ,} according to his needs. FitSS4ASR calculates five scores to support the

user with his decision: Based on the score tax num(Alt;) (Formula 1), the user can survey the
phylogenetic coverage of the sequence set SEQ,. Two scores assess the quality of #r :
branch_distr(Alts) (Formula 2) is a measure for the existence of exceedingly long branches
longer than subs_r substitution per site and pp_distr(Alts) (Formula 3) indicates the “reliability”
of branches near the root of the tree. t rob(Alts) (Formula 4), summarizes the phylogenetic
robustness of #r, with respect to perturbations and # mf{Alts) (Formula 5) penalizes the

existence of multifurcations. We consider a dataset SEQ, a good choice for ASR, if the

phylogenetic coverage is sufficient and if all other scores are close to 1.0. For a first orientation,



the user can compare the ASR score(Alts) values, which are for each dataset the product of the

latter four scores (Formula 6).
Validation of FitSS4ASR by means of an ASR of GGGPS

In order to confirm the efficacy of our approach, we performed in parallel a conventional and a
FitSS4ASR-assisted ASR of the enzyme GGGPS. GGGPS is a key enzyme in the evolution
of Archaea (Payandeh and Pai, 2007), but also occurs in bacterial species, albeit with unknown
physiological function. In a previous analysis, all enzymes have been assigned to one of two
groups (Peterhoff et al., 2014): Group I enzymes occur in Euryarchaeota and Firmicutes,
however, most Archaea possess a group Il GGGPS, which also occurs in some bacterial species
like Bacteroidetes. The reconstruction of a common ancestor of both groups is not feasible due
to the length of the edge (> 4 substitutions per site) that interconnects the nodes representing
the ancestors of group I (AncGGGPS1) and group II (AncGGGPS2) enzymes. Whereas all
group I enzymes oligomerize to dimers, group Il enzymes form dimers or hexamers that can be
clustered based on sequence similarity (Peterhoff et al., 2014). Thus, we expected differing
oligomerization states for predecessors of group Il enzymes and a dimeric last common ancestor
due to the principle of parsimony. The deliberately chosen single point mutation W141A in
GGGPS2 from the archacon Methanothermobacter thermautotrophicus turns the hexameric
wild-type into a dimeric complex (Peterhoff et al., 2014). This finding indicates that minor
sequence alterations can affect the oligomerization state of GGGPS2, which makes its analysis

to an ideal testbed for the performance and robustness of ASR protocols.
Conventional sequence selection for ASR of GGGPS2

We started sequence selection with the analysis of a comprehensive and precompiled set
GGGPS2initiar, which consisted of 217 entries from InterPro family IPR008205 (version 67.0).
To generate this set, the above-mentioned sequence length filters were applied; additionally, all
clades represented by just one sequence were eliminated by comparing key2ann (Piirzer et
al., 2011) annotations. This program replaces each sequence identifier with an easy to
understand string representing the phylogenetic lineage of the contributing species, which is
deduced from the NCBI taxonomy database (Ashkenazy et al., 2009). We used these
annotations to determine the phylogenetic diversity of this and all other sequence sets.

An MSA was computed by means of MAFFT (Katoh and Standley, 2013) and
exclusively for the computation of a phylogenetic tree, 75 of the 287 columns containing more

than 50% gaps were eliminated by utilizing Gblocks (Castresana, 2000). For the resulting
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MSA, a first phylogenetic tree was deduced with PhyloBayes (Lartillot et al., 2009).
Applying the above-mentioned criteria, we assessed the robustness and suitability of this and
subsequently generated trees for ASR. It seems a simple task to pick a robust subset from not
more than 217 sequences. However, nine rounds of optimization requiring the manual
adaptation of the sequence set were needed. The resulting MSA GGGPS2 _man consisted of 87
sequences and gave rise to a phylogenetic tree that fulfilled all our robustness criteria. This tree
was deduced from two MCMC chains and their maximum difference of posterior probabilities
of tree bipartitions was 0.00024, which indicates high MCMC convergence. The MSA
consisting of the full-length sequences that were used to deduce ancestral sequences is listed in
Table S1 (Supporting Information), the resulting phylogenetic tree is given in Table S3

(Supporting Information) and shown in Figure 3.
Sequence selection for an ASR of GGGPS2 by means of FitSS4ASR

The sequences GGGPS2iniriai used above for a conventional sequence selection were also
subjected to FitSS4ASR. The program converged after two rounds of iteration and the

ASR score(Alts) of the alternatives suggested to consider a specific set Alt, ={tr,,SEQ. }.

However, it contained not more than 58 sequences and just 1 crenarchaeal sequence, as
FitSS4ASR does not preserve the phylogenetic diversity of the input. Thus, the crenarchaeal

subset taken from GGGPS2iniiat was added to SEQ, and a further F1tSS4ASR run was

performed, which resulted in a final set GGGPS2_auto consisting of 61 sequences. The MSA
consisting of the full-length sequences used to deduce ancestral sequences is listed in Table S2
(Supporting Information), the resulting phylogenetic tree is given in Table S4 (Supporting
Information) and shown in Figure 4. This final dataset had an ASR_score (Formula 6) of 0.17
due to two multifurcations within Thermococcales and Methanosarcinales (compare Figure 4);
tr_mf (Formula 5) was 0.33. An assessment of the other scores confirmed that it fulfills all
criteria for ASR: branch_distr (Formula 2) was 0.99, pp_distr (Formula 3) was 0.85, and ¢ _rob
(Formula 4) was 0.61. Moreover, a comparison of Figures 3 and 4 made clear that both trees
possess a highly similar topology. This finding testifies to the strong phylogenetic signal within
the two sequence sets GGGPS2 _man and GGGPS2 _auto; interestingly, the two sets overlap by
not more than 34 sequences.

Reconstruction and characterization of AncGGGPS2 predecessors

Extant GGGPS group II enzymes form dimers or hexamers and it is unknown when these

oligomerization states arose. All euryarchaeal and thaumarchaeal proteins shown in Figures 3
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and 4 form hexamers and for these, we wanted to elucidate oligomerization for the evolutionary
interval dating back to the last common ancestor AncGGGPS2. Thus, sequences representing
this LCA sequence and intermediates AncGGGPS2 N* were reconstructed by means of
FastML (Ashkenazy et al., 2012). To assess the robustness of our protocol, we utilized in
parallel the sets GGGPS2 man and GGGPS2 auto for ASR (see Methods) and identified
corresponding predecessors by comparing the topology of the trees; see Figures 3 and 4.

We first analyzed the oligomerization states of the last common ancestors
AncGGGPS2 N1 man and AncGGGPS2 NI auto. Using synthetic genes, proteins were
heterologously expressed in Escherichia coli and purified by means of metal chelate affinity
chromatography. Their oligomerization states were determined by using analytical size
exclusion chromatography (SEC) and well-characterized hexameric (mtGGGPS_wt) or dimeric
variants (mtGGGPS_W141A) (Peterhoff et al., 2014; Linde et al., 2018) served as references.

The finding that both common ancestors form dimers (Figure 5A) suggests that
hexamerization arose at later evolutionary phases. For euryarchaeal group II GGGPS, this
transition must occur at one of the internal nodes of the trees used for ASR. Almost all recent
euryarchaeal and thaumarchaeal GGGPS are hexamers (Peterhoff et al., 2014; Linde et al.,
2018), thus we assumed that this transition occurs at the furcation AncGGGPS2 N4 man —
(AncGGGPS2 N5 man, AncGGGPS2 NI12 man); see Figure 3. The corresponding furcation
in the FitSS4ASR-based tree is AncGGGPS2 N17 auto — (AncGGGPS2 NI18 auto,
AncGGGPS2 N22 auto); see Figure 4.

Synthetic genes encoding those six proteins were expressed heterologously in E. coli,
and the purified proteins were analyzed by SEC; the chromatograms are shown in Figure
5B —D. While both AncGGGPS2 N4 man and AncGGGPS2 N17 auto eluted as dimers
(Figure 5B), all four successor-proteins eluted as hexamers (Figure 5C, D). This result confirms
that we have successfully predicted the evolutionary phase related to the alteration of the
oligomerization state. More importantly, the concordant transition of oligomerization states
strongly supports the validity of the F1itSS4ASR approach, although the input and the output
of the two ASR protocols varied: The sequence sets GGGPS2 man and GGGPS2_auto
overlapped by not more than 34 sequences. The ancestor AncGGGPS2 N1 man consists of
246 amino acids and a BLAST search made clear that it shares 65% Seqld with the most similar
extant GGGPS2 sequence from the Thermoproteales Thermoproteus uzoniensis abbreviated as
ACtThThTh_Tuz in Figure 3. The ancestor AncGGGPS2 N1 _auto possesses 242 amino acids

and a BLAST search indicated that it shares 72% Seqld with the most similar extant sequence
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from the Desulfurococcaceae Staphylothermus hellenicus abbreviated as ACrThDeDe She in
Figure 4. AncGGGPS2 N1 _man and AncGGGPS2 N1 auto share 75% Seqld and 36 of the
45 differences are similar residues that possess a positive pairwise BLOSUM (Henikoff and
Henikoff, 1992) score. Similarity increases for less ancestral predecessors: The corresponding
intermediates AncGGGPS2 N5 man and AncGGGPS2 N18 auto share 93%, and
AncGGGPS2 N12 man and AncGGGPS2 N22 auto 91% Seqld. All sequences are listed in
Table S1 — Table S5 (Supporting Information). Despite these differences, the phenotypes, i. e.,
the oligomerization state of the ancestors, as well as the location of the transition from a dimer
to a hexamer within the trees derived from the GGGPS2 man and GGGPS2 _auto sequence sets
are identical. Thus, our experiments provide a further example for the robustness of ASR
against uncertainty (Hanson-Smith et al., 2010) and point to a strategy to strengthen the support
for conclusions of ASR experiments: In addition to ensemble methods used to sample and
characterize less likely ancestors (Bar-Rogovsky et al., 2015), the support for a specific
phenotype can also be increased by a co-validation of experimental findings based on two or
more distinct sequence samplings.

Selecting sequences for ASR of another two enzymes

We reconstructed ancestral GGGPS2 enzymes because we wanted to retrace the advent of their
different oligomerization states. In this case, sequence selection was initiated with a
precompiled set of bona fide group 11 enzymes, which was comprehensive (Peterhoff et al.,
2014) but contained only 217 sequences. In order to demonstrate the usefulness of F1t SS4ASR
for the filtering of larger sequence sets, we applied it to a dataset of TrpD2 sequences (16820
sequences) and a dataset of concatenated HisH/HisF sequences (1309 sequences, (Richter et
al., 2010)), which are or have been in the focus of other ASR experiments. In both cases,
FitSS4ASR was run with default parameters. For each test set, we could create with minimal
additional effort at least one tree that strongly supports the reconstruction of early predecessors.

These trees are plotted in Figures S2, S3 and detailed in Tables S6, S7 (Supporting Information).

Discussion

ASR requires a strong phylogenetic signal necessitating a rigorous preselection

of sequences

Often, the analysis of large datasets is regarded valuable for the recovery of statistically well-
supported and “true” phylogenies. However, it is known that the analysis of large datasets under

optimal models of sequence evolution does not guarantee robust phylogenetic inference (Ho
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and Jermiin, 2004; Rodriguez-Ezpeleta et al., 2007; Salichos and Rokas, 2013). Moreover, the
misleading effects of certain biases are correlated with the size of a dataset (Lartillot and
Philippe, 2004). One notoriously observed bias is long-branch attraction (LBA), which leads to
a clustering of taxa with high evolutionary rates regardless of the phylogenetic relatedness.
LBA is caused by strong violations of phylogenetic model assumptions due to highly
heterogeneous evolutionary rates within some lineages. To overcome this problem, it has been
proposed to eliminate fast-evolving taxa (Stefanovic et al., 2004; Rivera-Rivera and Montoya-
Burgos, 2016) or fast-evolving genes from multi-gene datasets (Brinkmann et al., 2005) and
algorithms like Phy10-MCOA can detect outlier genes and species by comparing the topologies
produced by individual genes (de Vienne et al., 2012). However, these methods often
necessitate the parallel analysis of several datasets. To reach highest flexibility, we focused on
elimination methods that need for outlier detection not more than the dataset and the trees
required for the intended ASR. The inspection of suboptimal trees provides insight into the
interplay among conflicting noise versus phylogenetic signal (Swofford et al., 1996) and to
reduce noise, we integrated the elimination of rogue and solitary sequences. The scores
determined by FitSS4ASR for the assessment of carefully compiled datasets support the user
in his decision, which should be more than the blind reliance on optimality criteria and should
also consider contradictory factors adequately (Ho and Jermiin, 2004).

A limitation of F1tSS4ASR is its blindness against the phylogenetic diversity of the
chosen sequences. As demonstrated for the GGGPS2 and the HisF/HisH reconstruction, it
might be necessary to add sequences manually to broaden the phylogenetic basis. Additionally,
some HGT events have to be resolved manually by comparing key2ann annotations.
Moreover, FitSS4ASR is less suitable for proteins, which encountered frequently length
variations causing many indels or possess high evolutionary rates. For these cases, the filter

routines might eliminate too many sequences of the input.
Future directions

We restricted the function of F1tSS4ASR to sequence selection and implemented two filters
for the e