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Université Côte d’Azur, Inria, France

Guillaume Urvoy-Keller
Université Côte d’Azur, CNRS/I3S, France

Abstract—With the increasing popularity of cloud networking
and the widespread usage of virtualization as a way to offer
flexible and virtual network and computing resources, it becomes
more and more complex to monitor this new virtual environment.
Yet, monitoring remains crucial for network troubleshooting and
analysis. Controlling the measurement footprint in the virtual
network is one of the main priorities in the process of monitoring
as resources are shared between the compute nodes of tenants
and the measurement process itself. In this paper, first, we assess
the capability of machine learning to predict measurement impact
on the ongoing traffic between virtual machines; second, we
propose a data-driven solution that is able to provide optimal
monitoring parameters for virtual network measurement with
minimum traffic interference.

Keywords—Cloud monitoring, Open vSwitch, sFlow, sampling
optimization, online machine learning.

I. INTRODUCTION

The ability to perform traffic monitoring in virtual networks
is a key instrument in the troubleshooting toolbox of both
cloud tenants and providers. sFlow [1] is the reference tool that
allows to perform such traffic monitoring in virtual networks
based on Open vSwitch (OvS) [2]. The tool has been initially
designed for physical switches and routers, then adapted to
virtual networks. With sFlow, network equipment samples the
packets at a rate indicated by the user before packing them
(after a controlled truncation) into an sFlow packet that is sent
to a dedicated machine called the collector. The key idea is to
minimize the amount of work done at the network equipment
and leave the analysis to the collector itself. The sampling
rate can range from a few percent to a full capture, with
the latter similar to port mirroring. As an example, Facebook
continuously monitors its data centers servers at a rate of 1
out of 30,000 packets with a tool akin to sFlow [3].

In a previous work [4], we have demonstrated that traffic
monitoring with sFlow costs not only in terms of the CPU
cycles of the physical system (where the virtual network is
deployed), but also causes reductions in the throughput of the
operational traffic of the embedded virtual network. Fig. 1
illustrates the case: we can observe that the traffic between
two Virtual Machines (VMs) inside the same physical node
decreases in terms of throughput immediately after sFlow is
turned on, with a penalty that is proportional to the configured
sampling rate. We refer to this throughput reduction as drop
of throughput or, alternatively, impact of sFlow sampling.

To determine the root cause of this interference, we were
questioning the system resource limitations for OvS and sFlow

(server CPU, context switching); however it appeared that such
limitations do not exist, and that the impact is coming from
other limitations related to the operating system and the way
it handles the data path of OvS and the forwarding of sampled
packets between OvS and sFlow. Even though the nature of
such interference is not clear, we believe that the footprint of
network monitoring needs to be reduced to the minimum, or at
least to be well modeled so that this footprint could be better
anticipated and controlled. The best option would likely be to
optimally tune sFlow monitoring parameters (sampling rate in
particular) so as to alleviate traffic disturbance while providing
a good monitoring service at the same time. However, the
exact correlation between different monitoring parameters and
their impact on the application traffic is non-obvious. Certain
Machine Learning techniques (e.g., decision trees) could assist
us in uncovering such a correlation, which would enable us to
tune the monitoring parameters optimally.

Considering these findings, in this work we aim to propose
a solution that is based on Machine Learning to (i) identify
potential drop in throughput due to traffic measurement and
(ii) automatically tune monitoring parameters so as to limit
the measurement and traffic interference in the virtual envi-
ronment. The objective is not to exceed a desired level of
throughput reduction in a context where throughput varies, so
the parameters of monitoring have to be adapted accordingly.

Next, we summarize the related work, then we describe our
methodology based on data analysis and machine learning
and provide an overview of our dataset. In Section IV we
present an offline study on our dataset where we model the
relationship between throughput and throughput loss given the
sampling rate. Section V builds upon the offline analysis to
propose an online variant; it iteratively learns from previous
experiences (with monitoring and its impact) to build a model,
which is able to pinpoint the optimal tuning of sampling rate in
sFlow, so that the impact of monitoring is limited to a certain
desired level. We validate the online variant with two synthetic
traces we built for the purpose of the study and compare its
performance to the offline variant. We conclude the paper in
Section VI with some perspectives on our future research.

II. RELATED WORK

Several cloud measurement frameworks offering virtual
network health monitoring have been proposed. A review of
the current challenges and solutions in SDN network moni-
toring is made in [5]. CloudHealth [6] offers a model-based
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Fig. 1: Traffic throughput at different sampling rates of sFlow:
no sampling (A), 100% sampling (B), 50% sampling (C). [4]

approach, translating specific monitoring goals into metrics to
be collected in the system. Sampling techniques adapted to
SDN are investigated in [7], [8].

Recently, various networking areas started to benefit from
the usage of machine learning. Authors of [9] introduce a new
paradigm called Knowledge-Defined Networking, which relies
on Software-Defined Networking (SDN), Network Analytics
and Artificial Intelligence. They study several use-cases and
show the applicability and benefits of adopting the machine
learning paradigm to the networking field. Following this
trend, anomaly detection in the cloud with machine learning is
studied in [10], VNF anomaly detection in [11], traffic control
with deep learning in [12], and identification of host roles with
supervised learning with sFlow in [13].

In a virtualized network, the trade-off between network
monitoring accuracy and resource usage needs to be taken
into account. PayLess [14] is an adaptive SDN monitoring
algorithm which adapts the frequency of collecting statistics to
control the monitoring overhead. More generally, the question
of such a trade-off is studied in [15], where the authors argue
that considering the amount of system resources of modern
servers, packet processing performance (e.g., throughput and
latency) becomes a key challenge in the process of software
networks measurement.

The problem of sFlow throughput degradation in virtual
networks built on top of OvS is mentioned in [16]. While
proposing a network wide monitoring service for clouds, the
authors do not investigate further the phenomenon of sFlow
impact on application traffic and only suggest to carefully
choose its configuration parameters. In our work we propose to
rely on machine learning to choose the best performing mea-
surement parameters so as to provide proper packet processing
performance with a controlled impact on user traffic.

III. DATASET CONSTRUCTION AND METHODOLOGY

A. Methodology

In this paper, we address two problems, namely a classifi-
cation and a regression problem, using machine learning. The
classification problem can be cast as follows: given a sampling
rate S (in percent), a traffic rate R (in bps) measured when
there is no sampling (the reference throughput), a drop in
throughput of I percent because of sampling at rate S (which
then becomes R × (1− I/100)), and a maximum authorized
impact level thrI (in percent), the question is to know whether

I is less or greater than thrI . This problem can be solved using
binary classification supervised machine learning techniques
such as Decision Trees and Bayesian Networks.

The regression problem however is about the modeling
of the impact I itself. This regression problem, which can
be solved by regression machine learning techniques such
as Random Forest, will open the door to our data-driven
optimization which consists in finding the optimal sampling
rate to use in sFlow such that the (estimated) impact I does
not exceed the maximum authorized level thrI .

These two problems are investigated throughout the paper in
an offline and online set-up. The offline set-up, where we train
a classifier on a representative traffic dataset, enables to assess
whether we can predict the impact of sampling in sFlow and to
select the appropriate machine learning algorithm among a set
of candidates. We consider several algorithms available in the
scikit-learn library [17]: Decision Tree, K Nearest Neighbors,
Naive Bayes, Random Forest, and SVM.

The online set-up targets more an operational scenario
where the model estimating the impact of sampling (i.e., I) is
built online with the objective to make it adaptive to physical
server characteristics. We focus on building iteratively this
model for the regression case, then show how such model can
be used to optimally set the sampling rate. This will allow us
to answer the question of which sampling rate to use so as to
limit the disturbance of the ongoing traffic.

Our evaluation is done using traffic traces captured in a
controlled virtual network environment that we describe in
the next section together with our dataset.

B. Dataset

The training and testing datasets (that we used to build
and estimate the performance of the learning algorithms) were
collected within a dedicated experimental set-up. Our set-up
consists of one physical server with 8 cores, 12 GB of RAM,
and N virtual machines (VMs) interconnected with an OvS
switch. Traffic between the VMs is generated with iPerf3 [18],
where half of the machines act as senders and the other half
as receivers. We generate UDP traffic for a set of predefined
throughput values and packet sizes, and we apply the same
configuration to the different iPerf3 senders. Therefore, the
total amount of traffic generated is directly proportional to
the number of VMs. We do not use TCP as we do not
want the transport layer to adapt to the changing network
conditions that result from the usage of sFlow. While our VMs
are exchanging traffic between each other, we turn on sFlow
on the OvS switch to collect network statistics for a set of
predefined sampling rates S. We then measure the achieved
throughput and compare it to the input traffic rate R to be
able to calculate the drop in throughput I , if any. Our resulting
datasets are thus composed of two sets of features: traffic-
related features (number of VMs, input traffic rate, packet size)
and measurement-related features (sampling rate, throughput
reduction). We use the following values:

• sampling rate S: either disabled or gradually increasing
from 0.1% to 100%;



• number of VMs N ∈ {2, 4, 6, 8};
• packet size: 128B, 256B, 512B, 1024B, 1448B;
• input traffic rate in bps per iPerf sender: from 100 Mbps

to 1000 Mbps with steps of 100 Mbps;
• input traffic rate in packets per second.

Each experiment, consisting of one combination of the
above parameters, is repeated 10 times to remove any bias
and smooth average values. We perform experiments for all the
above values of number of VMs, input traffic rate and sampling
rate. As for the packet size, and because of the impossibility
to accommodate small packet sizes at high rates in bps, we
limit the experimentation of packets smaller than 1448B to an
input traffic rate equal to 100 Mbps, and scan the entire range
of input traffic rate defined above for only large packets of
1448B. It follows that our dataset consists of approximately
13,000 experiments that we split between a training set and a
validation set as described next. Lastly, for the part on binary
classification, we consider threshold values (i.e., thrI ) of the
impact I ranging from 1% to 25%.

Fig. 2 gives a flavour of this dataset, where we show
the impact as a heatmap versus the number of VMs and
the sampling rate. Clearly, the more we go to the top right
corner, the darker the colour as the impact has tendency to
increase with the traffic load on the physical server and the
sampling rate. We use the same dataset to validate both the
offline and online models for impact I , though in a different
manner. In the offline case, and to avoid any bias during
the learning phase, we replace the 10 repeated experiments
of the same scenario by a single experiment, where the
impact is the average observed impact. This means that the
offline dataset consists of 1,300 experiments. In the online
case, we emulate the actual traffic variations observed in an
operational scenario by concatenating the 13,000 experiments
in a controlled manner so as to emulate either large or small
traffic variations over time (more details in Section V). For
each case, we split our dataset into two parts for training (80%
of dataset) and validation (the rest 20% of dataset). We train
our models on the training dataset and assess their prediction
accuracy on the validation dataset.

1) Handling the balance of our classes: Machine learning
is sensitive to the distribution of classes in the datasets. If one
class is prevalent over the other, the learner may make biased
decisions towards the majority class. As we are using different
values of impact threshold values, our dataset may show a
disproportion between the two classes (i.e., impacted scenarios
versus non-impacted ones). Fig. 3 depicts the distribution of
classes in our dataset with respect to threshold thrI . While
the dataset shows a good balance between the two classes for
large threshold values, there is a clear unbalance at low values
of threshold (below 10%). To counter this unbalance, we use a
well-known technique in the literature called Random Under-
sampling which consists in randomly extracting instances from
the majority class until the two classes are equal. Hereafter,
and for the offline study, we compare our classification models
on both balanced and unbalanced datasets.

(a)

Fig. 2: Sampling impact vs. sampling rate and number of VMs

Fig. 3: Unbalanced dataset: classes distribution vs threshold

IV. OFFLINE ANALYSIS

In this section, we investigate the ability of different ma-
chine learning algorithms to detect and estimate the impact of
turning on sampling in sFlow on the application traffic, given a
wide range of experimental scenarios (i.e., traffic rate, number
of VMs and sampling rate).

A. Detecting the impact of monitoring

The presence or absence of impact depends on the threshold
of acceptable throughput reduction thrI . For a given threshold,
we can split our dataset into two classes: the YES class when
there is impact (i.e., I > thrI ) and the NO class when there
is no impact (i.e., I ≤ thrI ). Our objective is to build a model
that can detect in what “case” the system is running.

We train and validate the different machine learning al-
gorithms listed in Section III-A using the classical 10-fold
cross-validation technique. We report each time the results for
both the balanced and the unbalanced datasets, the former
being threshold dependent. We first evaluate the algorithms
using the accuracy metric, which is defined as the fraction
of correctly classified YES and NO instances. Fig. 4 reports
the achieved accuracy of prediction for both unbalanced (Fig.
4a) and balanced (Fig. 4b) datasets. The two most accurate
classifiers appear to be the Decision Tree and the Random
Forest classifiers. They perform at a minimum of 90% and
92% of accuracy for certain thresholds with an unbalanced



dataset; and 81% and 78% for a balanced one. We can thus
conclude that these models are able to correctly capture the
impact of sFlow on application traffic.
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Fig. 4: Accuracy of different classifiers vs impact threshold
for unbalanced (4a) and balanced (4b) datasets
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Fig. 5: Precision/recall vs impact threshold, unbalanced dataset

We now focus on per-class classification results using the
precision and recall metrics. Precision reports the fraction of
correctly classified samples in a class, while recall reports
the overall fraction of correctly classified instances. An ideal
classifier should achieve a precision and recall equal to one.

Fig. 5 and Fig. 6 provide scatter plots of the precision
and recall scores for the YES and NO classes for the set
of considered impact thresholds. We conduct the study of
precision/recall scores for all mentioned classifiers and only
present the results for the best performing ones: Decision Tree
and Random Forest classifiers. We can observe that the two
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Fig. 6: Precision/recall vs impact threshold, balanced dataset

scores can be indeed close to one for both classes. We can
also observe that the distribution of observations per class has
little impact on the obtained scores for these two classifiers.

B. Quantifying the impact

It is important not only to identify the presence of impact,
but also to predict its numerical value. In this section, we
investigate this regression problem with the help of Decision
Tree and Random Forest algorithms, as they appear to provide
best predictions in the classification case. The validation
shows values of mean absolute error (MAE) of 1.96% for
Decision Trees and 1.81% for Random Forests, which stand
for the average absolute difference between the real impact (in
percent) and its predicted value (also in percent). We can thus
conclude that offline regression models are able to accurately
predict the impact value and can thus be used to tune the
sampling rate so as to reach a desired impact level.

V. ONLINE ANALYSIS

The previous section enabled us to assess the ability of
machine learning to detect the presence of impact of sFlow
on the application data plane and to estimate the amplitude of
this impact. While the models constructed offline are efficient,
there is no reason to believe they will be generic enough and
applicable to all virtualized environments. To avoid generating
a model per server offline, we study in this section whether
these models can be produced online in an adaptive way. We
explore this problem in this section and propose an approach
to optimally set the sampling rate using the built model.

As algorithms belonging to the tree and forest families
showed the best performance in the offline case, we rely on
a particular decision tree algorithm called Hoeffding [19] to
incrementally learn from instances coming one by one. Incre-
mental Regression Hoeffding Tree is known for its efficiency
in case of high-speed data streams. It is available in the multi-
output streaming framework scikit-multiflow [20].



Building the model online requires the definition of a
strategy for data acquisition to learn from. We will have to
periodically collect several metrics, such as the traffic state
when sampling is disabled, the throughput after sampling at
some rate, the impact of this sampling rate on the throughput,
and the number of VMs. Traffic state is available to measure at
the switch ports. Sampling rate to test can be chosen randomly
and configured on the switch interface by the administrator.
After this sampling rate is configured, one can measure again
the traffic at the ports of the switch and calculate the drop
in throughput in comparison with the no sampling case. The
number of VMs can be estimated from the traffic collected by
sFlow, at least for active VMs. All this procedure provides an
instance of features, that can be used to update the machine
learning algorithm. When done, we reset the sampling rate
to a value that is judged appropriate, then wait until the next
measurement epoch, where again we disable sFlow sampling,
measure traffic, sample at some random sampling rate, remea-
sure traffic and number of VMs, and update the learner. We
keep repeating this process until the model converges.

Traffic load in a virtual network is dynamic. Its variable
nature has to be taken into account while building and val-
idating our models and for optimally setting the sampling
rate. To evaluate the performance of the online machine
learning algorithm, we emulate the above procedure thanks
to our offline dataset. We first split our initial set of 13,000
experiments into two sets: one used for learning (containing
80% of the instances) and one used for testing (the remaining
20%). At each measurement period, we provide to the learner
a new measurement instance of the learning set and ask it to
emit a prediction for all the experiments in the testing set.

We define two strategies for deciding the order in which
experiments in the learning set are provided to the learner:

• A global strategy where the next experiment is chosen
at random from the learning set. This mimics the case
of a network with rapid traffic variations. Note that the
sampling rate is chosen at random here.

• A local strategy where the next experiment is chosen at
random in the neighborhood of the current experiment
with respect to the number of VMs and traffic rate. For a
given instance, the sampling rate to test is again chosen
randomly. Contrary to the first strategy, this local strategy
is supposed to mimic traffic with smooth fluctuations.

Following these strategies, we manage to transform our
dataset into a synthetic network workload to be used for build-
ing and validating our models online. Within this synthetic
workload, each instance corresponds to a scenario when virtual
network is being under monitoring: at a given time there is a
certain traffic condition on the server (some amount of VMs
sending traffic with some input rate) and certain measurement
condition (some sampling rate is turned on).

A. Predicting the drop in throughput

Fig. 7 presents mean absolute prediction errors for global
random, local random and offline strategies as instances are
being collected and learned from. The regression case is

Fig. 7: MAE of regression for online global & local & offline

considered here where the objective is to predict the real value
of the throughput reduction I (in percent). With the global
random strategy, the learner initially provides predictions with
high mean absolute errors and reaches 10% errors only after
1000 samples have been provided. The local random strategy
leads to almost the same result at long run: about 1000 samples
are needed to achieve less than 10% errors. However, the errors
for the local random strategy are initially higher than the global
one as, at the beginning, the model learns from a small set of
similar traffic instances while it is asked to predict over diverse
traffic samples, some of which it might have never seen before.

Comparison with the offline model suggests that the learn-
ing phase is going to be very long if one wants a error
in the order of a few percents between the online and the
offline approaches. An alternative, less complex but opera-
tionally meaningful approach is to ask the learner to provide
a sampling rate such that the impact value stays below a
predefined threshold. This is the question we investigate in
the next section and check whether it can provide a faster
convergence to the desired impact level.

B. Finding optimal monitoring parameters

We consider the same online learning algorithm as in the
previous section, using again the local and global synthetic
traces. The procedure is as follows: once a new instance is
selected to train the online algorithm, the learner is asked to
predict the optimal sampling rate corresponding to this new
instance. The optimal sampling rate is defined as the maximum
sampling rate allowing the impact on the traffic to be within
some desired threshold thrI . The prediction is then compared
to the exact value of the optimal sampling rate computed by
considering all the instances in the complete dataset with the
same traffic conditions while scanning all known sampling
rates. The procedure is repeated until exhaustion of all 13,000
instances (there is no training and validation sets here).

We present results using a threshold thrI of 7%, as results
are qualitatively similar for other thresholds. Fig. 8a and
Fig. 8b report the results for the global and local synthetic
workload respectively. The figures show the achieved impact
when the optimal sampling rate is set (which should be less
than, still close to, the desired impact thrI ). In comparison
to the previous section (see Fig. 7) where the mean absolute



error was improving at slow pace over time, we observe here
a faster convergence of the learner. Only a few tens of tests
are needed to train the online model for the task of setting
optimally the sampling rate and limiting its impact on traffic
to the desired value. This is because the prediction complexity
of the task is lower given the finite number of sampling rates
that can be implemented in sFlow (1 out of n packets). We can
further observe that the online learner performs better under
the local than the global workload. This is because under the
local workload the learner is asked a prediction for traffic
conditions close to the ones it got trained with.

(a)

(b)

Fig. 8: Throughput drop at estimated optimal sampling rate:
global workload (8a) and local workload (8b)

VI. CONCLUSION AND DISCUSSION

In this paper, we considered the application of machine
learning algorithms to predict the impact of capturing packets
with a tunable sampling rate, in virtual environments. We
further use these algorithms to determine the best performing
measurement parameters. As each network features its own
traffic profile, we considered the case where the training phase
has to be done online. We also considered the offline case
where the learner is fed at once with a large set of instances
that correspond to a wide range of traffic and sampling con-
ditions. The evaluations were performed with a large dataset
of traces obtained in a controlled environment. The results
obtained suggest that our machine learning-based solution is
able to predict the impact of virtual network monitoring, as
well as optimal monitoring parameters w.r.t the impact of
measuring the network.

Our model now requires tests in the wild, which will bring
up several issues; those can become further steps for future
work. During their lifetime, networks usually experience re-
peated traffic variations. If the training phase entails a complex
procedure, e.g., turning sampling on at different values in a

regular manner, it can be interesting to collect data for training
only when this is relevant. Further, the model we obtained
from the observation of the network would later suffer from
aging. We will investigate solutions based on periodical model
retraining to keep our model up to date.
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