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THE RELATIVE MONOIDAL CENTER AND TENSOR PRODUCTS OF
MONOIDAL CATEGORIES

ROBERT LAUGWITZ

ABSTRACT. This paper develops a theory of monoidal categories relative to a braided monoidal
category, called augmented monoidal categories. For such categories, balanced bimodules are defined
using the formalism of balanced functors. It is shown that there exists a monoidal structure on the
relative tensor product of two augmented monoidal categories which is Morita dual to a relative
version of the monoidal center.

In examples, a category of locally finite weight modules over a quantized enveloping algebra is
equivalent to the relative monoidal center of modules over its Borel part. A similar result holds
for small quantum groups, without restricting to locally finite weight modules. More generally,
for modules over bialgebras inside a braided monoidal category, the relative center is shown to be
equivalent to the category of Yetter—Drinfeld modules inside the braided category. If the braided
category is given by modules over a quasitriangular Hopf algebra, then the relative center corresponds
to modules over a braided version of the Drinfeld double (i.e., the double bosonization in the sense
of Majid) which are locally finite for the action of the dual.

1. INTRODUCTION

The subject of this paper is a categorical construction that gives modules over quantum groups
(both small and generic) in specific examples — the relative monoidal center Zz(C). Here C is
what is called a B-augmented monoidal category in this paper, for B a braided monoidal category.
Further, categorical modules over the relative center are studied. The categorical Morita dual of
Z5(C) is shown to be the relative tensor product C Xz C°P.

1.1. Background. The Drinfeld double (or quantum double, [Dri86]) Drin(H) of a Hopf algebra
H is a fundamental construction in the field of quantum algebra. An important application is the
algebraic construction of classes of three-dimensional topological field theories (TFTs): For example,
Dijkgraaf-~Witten and Reshetikhin—Turaev TFTs. In the former, the Drinfeld double of a finite
group appears [DPR90] and the latter is obtained by studying a quotient of a category of modules
over the quantum groups U, (g) [RT91]. This quantum group can either be constructed as a quotient
of the Drinfeld double of its Borel Hopf subalgebra [Dri86], or using a version of the Drinfeld double
construction [Maj00,Majo99], called double bosonization or the braided Drinfeld double.

The center Z(C) of a monoidal category C [Maj91,JS91] provides a interpretation of the Drinfeld
double construction. It is a braided monoidal category equivalent to the endomorphism category of
the regular bimodule over C, i.e.

Z(C) ~ Hom¢ ¢(C,C),

cf. [EGNO15, Section 7.13]. A natural source of monoidal categories are module categories over
Hopf algebras H, C = H-Mod. For such categories, an equivalent description of the monoidal
center is given by the category EYD of Yetter—Drinfeld modules (also called crossed modules) over
H, see e.g. [Mon93, Section 10.6].
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In the vision of Crane-Frenkel [CF94], it is suggested that algebras (and their representation
theory) should ultimately be replaced by categories (and their categorical modules) in order to
algebraically construct four-dimensional invariants of manifolds. Studying categorical modules over
monoidal categories can be seen as a step into this direction.

It was shown in [Ost03a, EGNO15] that categorical modules over the monoidal center Z(C) can
be constructed using categorical bimodules over C. In the case where C is a finite k-multitensor
category, this construction gives all categorical modules over Z(C). This finiteness condition holds,
for example, for the category H-Mod™ of finite-dimensional modules over a finite-dimensional
Hopf algebra H [EGNO15, Section 5.3]. Hence, all categorical modules over Drin(H)-Mod™ are
described through this construction.

1.2. Quantum Groups and the Relative Center. The main motivation for this paper stems
from the representation theory of the quantum group U,(g) [Dri86, Lus10] and its relation to the
monoidal center. The category of Yetter—Drinfeld modules, describing the center of the monoidal
category B—Mod of modules over a bialgebra B, can — more generally — be defined for a bialgebra
object B in a braided monoidal category B, giving the braided monoidal category gYD(B), see
[BD98]. The negative nilpotent part B = Ug(n_) of U,(g) is naturally such a bialgebra object (in
fact, a Hopf algebra object) in the braided monoidal category B = U,(t)-Mod, where U, (t) is the
group algebra kZ" as a Hopf algebra, see e.g. [AS02,Lus10]. Via the duality between U,(n_) and
Uy(n.) and a result of Majid in [Maj99], we can view 2YD(B) in this example as the category
of Uy(g)-modules which have a locally finite ug4(ny)-action. This tensor category contains the
non-monoidal category O, associated to the quantum group [AM15], which is an analogue of an
important construction in Lie theory [BGGT71].

Motivated by the quantum group example, it is natural to expect the center of the monoidal
category C = B-Mod(B) to be equivalent to the above category BYD(B). However, in this example,
Z(C) is a larger category, consisting of certain modules over Drin(U,(b_)), which is a Hopf algebra
defined on the vector space Uj(ny) ® Uy (H)* ® Uy(t) ® Uy(n—). This algebra contains an additional
copy of the dual of the Cartan part U,(t). Drinfeld takes the quotient by the Hopf ideal identifying
U, (t) and Uy(t)* in [Dri86]. In general, for a finite-dimensional braided bialgebra B in a braided
monoidal category B = H-Mod, for H a quasi-triangular Hopf algebra, one can use the Radford
biproduct (or bosonization) B x H [Rad85] and find that

Z(C) ~ B*HYD ~ Drin(B x H)-Mod.

One main construction featuring in the present paper is a version Zg(C) of the monoidal center
relative to a braided monoidal category B. In the case where C = B-Mod(B) studied above, we
find that

Z5(C) ~ BYD(B) ~ Dring(B*, B)-Mod,

where Dring(B*, B) is the double bosonization (or braided Drinfeld double) of Majid. Hence the
relative monoidal center gives the category of U,(n)-locally finite weight modules in the example
of Uy(g), and thus a refinement of the center construction. For an odd root of unity e, the relative
monoidal center of u.(b_)-Mod is equivalent to the category of modules over the small quantum
group uc(g). Note that in the case B = Vecty we recover the monoidal center Z(C).

1.3. Summary of Results. In the spirit of moving from the representation theory of algebras
to modules of categories (in this case, monoidal categories), this paper studies the representation
theory of the relative monoidal center in the framework of [EGNO15]. The treatment allows for
infinite tensor categories and Hopf algebras. After establishing the categorical setup and recalling
generalities on categorical modules (Sections 2.1 & 3.1), the relative tensor product of categorical
bimodules is reviewed in the generality of finitely cocomplete k-linear categories (Section 3.2 &
Appendix A).
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The concept of the relative monoidal center from [Laul5] is refined using the language of B-
balanced functors to allow a better study of its categorical modules. For this, B-augmented monoidal
categories are introduced in Section 3.3. These can be thought of as categorical analogues of C-
augmented C-algebras R over a commutative k-algebra C. Over a B-augmented monoidal category,
we can study B-balanced bimodules (Section 3.4). This construction is a categorical analogue of
R ®c R°P-modules, over a C-algebra R. In other words, R-bimodules for which the left and right
C-action coincide. Based on this concept, we present two constructions for a B-augmented monoidal
category C:

(1) the relative monoidal center Z5(C), which is defined as Z5(C) = Hom5 ,(C, C), the category
of endofunctors of B-balanced bimodule functors of the regular C-bimodule (Section 3.5);
(2) we equip the relative tensor product C K C°P with a monoidal structure (Theorem 3.21).
The relative center can be seen as a centralizer of Miiger [Miig03, Definition 2.6], see also [DNO13,
Section 4]. The relative tensor product of modules was defined in [ENO10] and generalizes the
tensor product of categories of Kelly [Kel05], cf. Deligne [Del90] for a construction as an abelian
category. The monoidal category C X C°P has the universal property that its categorical modules
give all B-balanced bimodules over C (Theorem 3.27). We show that there is a natural construction
to turn a C-bimodule into a B-balanced C-bimodule.

Theorem 3.42. Restriction along the monoidal functor C X C®? — C X C? has a left 2-adjoint
(—)5: CRCP Mod —> C K C® Mod, V> Vg.

This construction is a categorical analogue of restricting a R-R-bimodule to the subspace on
which the left and right C-action coincide. Moreover, for any B-augmented monoidal categories C
we prove that there is a bifunctor (see Section 3.6)

C R C°P~Mod —> Z5(C)-Mod.

This gives a way to produce categorical modules over the relative monoidal center from B-balanced
C-bimodules. In the finite case, we generalize the result of [EGNO15,0st03a] that Z(C) and C K C°P
are categorically Morita equivalent to the relative case.

Theorem 3.46. In the case where C and B are finite multitensor categories, the monoidal categories
Z5(C) and C K C° are categorically Morita equivalent.

We can specialize these categorical constructions to categories of modules over bialgebras (or
Hopf algebras) in a braided monoidal category.

Proposition 3.36 (See also Example 3.23). If C = B-Mod(B) is the monoidal category of B-
modules over a Hopf algebra object B in a braided monoidal category B, then

Z5(C) ~ BYD(B), C Xp C? ~ B-Mod-B(B).

The former category is that of Yetter—Drinfeld modules (or crossed modules) in B of [BD98|,
while the latter category consists of objects in B that have commuting left and right B-module
structures. We further show that for algebra (or coalgebra) objects A in C, the categories A-Mod(C)
(respectively, A-CoMod(C)) give a large supply of categorical modules over the relative monoidal
center in Section 4.1.

In Section 4.2, we specialize the setup further, assuming B = H—Mod, for H a quasi-triangular
Hopf algebra over a field k.

Corollary 4.4. For Hopf algebras B,C in B = H-Mod with a non-degenerate duality pairing
CNpC% ~ (BR“PB) x H-Mod, Z5(C) ~ Dring (C, B)-Mod® !,

where C—If denotes the full subcategory where the C'-action is locally finite. For B finite-dimensional,
ZB(C) jasd DrinH(C’, B)*Mod.



4 ROBERT LAUGWITZ

The Hopf algebra Dring (C, B) is the double bosonization of [Majil,Majo0] and referred to as
the braided Drinfeld double here. For the Hopf algebra (B ® “°?B) x H see Definition 4.5.

Some results of Section 4 relate to results that were obtained in [Laul9] by direct computations. In
particular, the Radford-Majid biproduct A x B* is naturally a comodule algebra over the (braided)
Drinfeld double of B. Further, these constructions give a natural map inducing 2-cocycles over a
(braided) Hopf algebra B to 2-cocycles over its (braided) Drinfeld double.

Applications to the representation theory of quantum groups are included in Sections 4.3 and
4.4. Fix a Cartan datum (I,-), denote by g = n_ @t@® n, the associated Lie algebra, and let € be a
primitive odd root of unity. Then we derived the following results for the small quantum group.

Theorem 4.9. There is an isomorphism of Hopf algebras between Drin,, () (ue(n+), uc(n-)) and
ue(g) (cf [Shil6, Section 6.5]). Thus, there is an equivalence of monoidal categories

Zy.(t)-Mod (ue(b-)-Mod) =~ u.(g)-Mod.

Corollary 4.11. Let C = u.(b_) -Mod™ and B = u.(t) Mod™. Then C is B-augmented, and the
monoidal categories ue(g)fModfd and C Xg C°P are categorically Morita equivalent. The latter is
equivalent to finite-dimensional modules over a Hopf algebra t.(g) (see Definition 4.12).

In [EG09] another approach displays the small quantum group as a Drinfeld double of a quasi-Hopf
algebra. In the case were ¢ is a generic parameter, it was shown in [Maj99] and [Som96] that Ug(g)
is isomorphic as a Hopf algebra to the braided Drinfeld double (or double bosonization) of Uy(n_).

Theorem 4.7. Let B = L-CoMod,, for L the root lattice, and C = Uy(n_)-Mod(B). Then
the category Zp(C) is equivalent the category Ugy(g) ~ModValm+)-thw o p Uqy(ny)-locally finite weight
modules over Ugy(g).

The categorical results of this paper show that there exists a bifunctor from C Xz C°P-Mod =~
T,(g)-Mod" to categorical modules over Uq(g)fMoqu(mf)_lfW. See Definition 4.8 for the Hopf
algebra T;,(g). This result provides a way to construct categorical modules over the latter category.
The representation-theoretic applications of these results will be explored further elsewhere.

1.4. Applications to TFT. Monoidal categories are closely connected to the construction of
three-dimensional TFTs (see e.g. [TV17]). This paper provides a categorical interpretation of the
braided Drinfeld double of Nichols algebras (see e.g. [AS02]), which can be see as a generalization
of quantum groups, in terms of the relative center construction. For applications to TFTs it would
be important to understand when such relative centers are modular tensor categories. For finite
non-semisimple tensor categories, modularity has been studied in [Shil6, Theorem 1.1], see also
[GLO18, Section 6] for constructions of such categories related to small quantum groups.

Working with finite tensor categories and their exact modules, relative tensor products of bimodules
appear in the construction of three-dimensional TFTs with defects [FSS17]. In this context, the
relative tensor product of bimodule categories, and (twisted versions of) the monoidal center are
studied. This paper generalizes some of the categorical constructions used in loc.cit., motivated by
the representation theory of quantum groups, by allowing for more general tensor categories, and
using the idea of viewing a monoidal category relative to a braided monoidal category.

1.5. Acknowledgments. The author thanks Arkady Berenstein, Alexei Davydov, Kobi Kremnizer,
Shahn Majid, Ehud Meir, Vanessa Miemietz, and Chelsea Walton for interesting and helpful
discussions related to the subject of this paper. Helpful comments from anonymous referees are
gratefully acknowledged. Early parts of this research were supported by an EPSRC Doctoral Prize
at the University of East Anglia, and the author was partially supported by the Simons Foundation.
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2. CATEGORICAL SETUP

2.1. The 2-Category of Finitely Cocomplete Categories. Let k be a field. We say that a
category C is k-linear if it is pre-additive and k-enriched [EGNO15, Definition 1.2.2]. We shall
work with k-linear categories that are equivalent to small categories and in addition have all finite
colimits. This assumption implies that finite biproducts exist and hence C is additive. The existence
of finite colimits can, for example, be ensured if C, in addition to finite coproducts, has coequalizers.
As primary examples, we may consider the category A—-Mod of A-modules, where A is a k-algebra.

The collection of all such k-linear categories with finite colimits forms a 2-category together with
k-linear functors, which will automatically preserve all finite biproducts and are required to preserve
all finite colimits, together with natural transformations of such functors. The resulting structure is
that of a k-linear 2-category, which is denoted by Catj. Between two categories C, D of Caty, we
denote the category of k-linear finite colimit preserving functors by Fung (C, D), which again lies in
Catj (finite colimits are computed pointwise, and commute with other colimits). In contrast, we
will denote the category of all k-linear functors between such categories (not necessarily preserving
finite biproducts or colimits) by Funy(C, D) and the corresponding larger 2-category by Caty.

There is a naive tensor product for C, D denoted by & (cf. [Kel05, Section 1.4]), giving a k-linear
category C ® D. Its objects are denoted by X ® Y, were X is an object of C, and Y is an object of
D. The spaces of morphisms are defined as

Homegp (X ®Y, X' ®Y') = Home(X, X') @ Home (Y, Y).
®

Note that in C ® D biproducts are not ensured to exist. A proper cartesian closed structure on
Caty is given by the tensor product C X D, see [Kel05, Section 6.5]. Moreover, if finite colimits
exist in C and D, then they exist in C X D, giving a cartesian closed structure on Caty. It satisfies
the universal property of being a finitely cocomplete k-linear category such that there is a k-linear
functor CQD — CXD which is colimit preserving in both components, inducing natural equivalences

Funi(CX D, ) ~ Funj(C,Funi (D, ¢)),

in Caty, for £ in Caty. The tensor product C XD is the closure of C ® D under finite colimits
[Kel05, (6.27)]. Hence, it follows that finite colimit preserving k-linear functors C XD — &£ also
correspond to k-linear functors C ® D — £ which are finite colimit preserving in both components.
Note that if C and D are abelian categories, C K D is not necessarily abelian. For a clarification of
the relationship to Deligne’s tensor product of abelian categories, see [LF13]. In the abelian case,
the finite colimit preserving functors are precisely the right exact functors.

Unless otherwise stated, all categories and functors considered live in the 2-category Caty.
We shall use properties of the 2-category Catj such as its closure under colimits and pseudo-
colimits [BKP89, Kel89] in order to obtain existence results for a relative version of the tensor
products mentioned in this section (see Appendix A). The cocompleteness of Caty is obtained
by the construction of a 2-comonad T on Caty such that its coalgebras are finitely cocomplete
k-linear categories, with coalgebra morphisms preserving the finite colimits [BKP89]. Dually to
[BKP89, Theorem 2.6], it follows that Cat{ admits pseudo-colimits, taking the 2-category ¢
appearing therein to be the complete and cocomplete 2-category of small k-linear categories Caty
[Kel89], and T is a 2-comonad such that T-coalgebras are finite cocomplete k-linear categories.

2.2. Notations and Conventions. Throughout this paper, C denotes a monoidal category in Caty,
with tensor product ® = ®°: CKC — C, associativity isomorphism a: ® (@K Id¢) = ®(Id¢ K ®),
and unit 1 together with an isomorphism ¢: 1 ® 1 — 1 such that left and right tensoring by 1 are
auto-equivalences of C, see [EGNO15, Definition 2.1.1].

Assumption 2.1. For simplification of the exposition, we will assume that C is strictly associative
and unital. That is, (X ®Y)®Z = X® (Y ® Z) and axyz = Id for all objects X,Y,Z of C.
Further 1® M = M = M ® 1, and left and right unitary isomorphisms are given by identities.
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The choice to work with a strict monoidal category is justified by Mac Lane’s coherence theorem.
That is, whenever two objects constructed by applying the tensor product and tensor unit can be
identified via two isomorphisms which are combinations of the natural isomorphisms present in the
structure of the monoidal category, then these isomorphisms are equal [Mac71, Section VII.2]. If
needed, one can insert the associativity (or unitary) isomorphisms in the diagrams in the appropriate
places and the statements will remain valid. Note further that by Mac Lane’s strictness theorem for
monoidal categories [Mac71, Section XI.3], any monoidal category is equivalent (via strong monoidal
functors) to a strict monoidal category.

The symbol B will denote a braided monoidal category in Catj with braiding . We also omit the
associativity and unitary isomorphisms of B from the notation, treating B as strict. The category B
is the same as B but declaring the inverse braiding ¥~! to be the braiding.

All functors of monoidal categories are assumed to be strong monoidal. A strong monoidal functor
G: C — D comes with a natural isomorphism x%: ® (G K G) = C® satisfying a commutative
diagram as in [EGNO15, (2.23)] relating the associativity isomorphisms of C and D. In addition, we
assume that G is strictly unital. That is, G(1) = 1, and ulﬁ Mo “%;ML are both given by identities.

We summarize here some notational conventions adapted in this paper for monoidal categories.
The symbol ®°P is used to denote the opposite tensor product given by X P Y =Y ® X. With
relation to Kelly’s tensor product of categories X, we denote pure tensors of pairs of objects X,Y
by X ® Y. When brackets are missing, we adapt the convention ®° before K. For a morphism
f and an object X in C we write f ® X to denote f ® Idx. Similarly, when considering natural
transformations, we may denote by ¢ ® G the natural transformation ¢ ® Idg.

A main source of examples of monoidal categories will be obtained from a braided bialgebra
or Hopf algebra B (see e.g. [Maj00, Definition 9.4.5]). That is, B is a bialgebra or Hopf algebra
object in a braided monoidal category B. More explicitly, B comes equipped with the following
morphisms in B: a product map m = mp: B® B — B, with unit 1: ] — B, and a coproduct map
A =Ap: B— B® B, with counit e: B — I, satisfying the axioms (2.1)—(2.7).

(2.1) m(m ®ldg) = m(Idgp ®m),

(2.2) m(1®Idg) = m(Idp®1) = Idp,
(2.3) (A®Idp)A = (Idp ®A)A,

(2.4) (e®Idp)A = (Id®e)A = 1d,

(2.5) Am=m@m(Ildp@¥pr®Idp)(A®A),
(2.6) Al=1®1,

(2.7) em=cQe.

The first two axioms state that B is algebra algebra object in B, and the next two axioms state
that B is also a coalgebra object in 5. The last three axioms may be rephrased by saying that A,
and e are morphisms of algebras in B, or, equivalently, that m, 1 are morphisms of coalgebras in B.
Morphisms of bialgebras are morphisms in B which commute with all of these structural maps. If,
in addition, there exists an invertible morphism S: B — B in B which is a two-sided convolution
inverse to Idp, i.e.

(2.8) m(Idp ®S)A = m(S®Idg)A = 1e,

then we say B is a Hopf algebra in B. Morphisms of Hopf algebras are required to commute with
this antipode S. It is a consequence that S is an anti-algebra morphism in B (see [Maj00, Fig. 9.14]
for a proof).

We denote the category of algebra objects in B by Alg(), and write CoAlg(B) for coalgebras
in B, BiAlg(B) for bialgebras, and Hopf(B) for Hopf algebras. Note that while Alg(B) and
CoAlg(B) are monoidal categories with the underlying tensor product in B (under use of the
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braiding), BiAlg(B) and Hopf(B) are not. Given an algebra A in B, we denote the category of
left A-modules by A-Mod(B), and right A-modules by Mod-A(B). Similarly, given a coalgebra C,
we write C~CoMod(B) and CoMod-C(B) for left and right comodules over C' in B.

3. BALANCED BIMODULES AND THE RELATIVE MONOIDAL CENTER

This sections contains this paper’s main constructions on the level of monoidal categories and
their (bi)modules. The main object is the relative monoidal center Zg(C) which is defined here
using the concept of B-balanced bimodules, refining the construction from [Laul5] and related
to centralizer of [Miig03]. The Morita dual to this center construction is the monoidal category
C X C°P, for which an existence statement is provided. All constructions are carried out in the
2-category Caty.

3.1. Categorical Modules. Following [EGNO15, Definition 7.1.3], a left module V over a monoidal
category C is a category V together with a monoidal functor

>: C — Endj(V),

where Endg, (V) is the monoidal category of endofunctors on V in Caty, with respect to composition. It
is often helpful to spell out the definition of a categorical module in terms of a functor =: CKY — V
together with a natural isomorphism y: = (® X Idy) = =(Ide Kr>) satisfying compatibility
conditions with the monoidal structure of C. Recalling that we shall treat C as a strict monoidal
category, cf. Assumption 2.1, this amounts to the conditions that 1 =V = V for any object V of V,
and the diagram

XM®N,P,V

(MN®P)=V
(3-1) iX]\xI,N@P,V

Me>=({(N®P)=V))

(M@N)=(P=V)

iX]w,N,P|>V

MexnN,pv

Me(Ne(PeV))

commutes for any choice of objects M, N,P € C and V € V (cf. [EGNO15, Definition 7.1.2]).
Further, note that XM,V = X1,M,V = Idyev.

A morphism (G, \): (V,>p) — (W, ) of left modules over C is a functor G: V — W together
with a system of natural isomorphisms

Ax: G(X >y Idyy) = X >y C.

which is natural in X and compatible with the monoidal structure in C as in [EGNO15, Eq. (7.6)].
We write Ax vy = (Ax)y. The compatibility conditions amount to Ay = IdF(V), and that the
diagram

>\M,N>vvl/

M >y G(N >y V)

ixﬂ,mc(x/)

M >y (N =y G(V))

MDW/\N,V

commutes for any objects M, N in C, and V in V.
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In other words, the coherent isomorphism A defines a weakly commuting diagram of functors

%

C Endj (V)
iDW / iG(_)
End; (W) G Funi;(V,W).

Given two morphisms G,H: ¥V — W or C-modules, we can define a 2-morphism 7: G = H to
be a natural transformation such that

(3.3) (Ide Bwm)AS = A7,
i.e. the diagram

G
)‘M,V

GM >y V) M =y G(V)
(34) T]\/I>VV\L lMl>WTV
Aty

commutes for any objects M of C and V of V. Hence, we obtain a k-linear 2-category C—-Mod.
Indeed, given two morphisms of left C-modules G: V - W, H: W — X, the composition HG is a
morphism of C-modules with A\HG defined by

(3.5) Ay = AraanBOSLy)-

The category of C-module morphisms from V to W, denoted by Hom¢(V, W), contains finite
colimits and hence C-Mod is enriched over Cat;.

Remark 3.1. This information can be rephrased as follows: A left module V over C is a k-linear
bifunctor =) : C — Catj, where C is viewed as a bicategory with one object, and V is the image
of this object. A morphism of left modules over C is now a morphism of bifunctors =) = .
This way, 2-morphisms of C-modules correspond to modifications of morphisms of bifunctors.

From the monoidal functor point of view, a right C-module structure on V is a monoidal functor
C°? — Endg(V), and a C-bimodule is a monoidal functor C X C°? — Endj (V). More generally, a
C-D-bimodule is a monoidal functor C X D°? — Endj (V). We may equivalently express the data
of a bimodule category as follows (cf. [F'SS17, Definition 2.5]):

Proposition 3.2. An C-D-bimodule structure on V is equivalent to the data of two functors
> CXY — YV, and <: VXD — V, together with natural isomorphisms

x: > (@KRIdy) = =(Id¢ X =), ¢ <(IdyX ®) = <(< K 1dp),
¢: < (>Xldp) = =>(Ide X <).

These natural isomorphisms satisfy the coherence condition given by Eq. (3.1), as well as the
following Eqs. (3.6)—(3.8) below.

&v,M,N®P

Va(M®NQ® P) (VaM)<(NQ®P)

(3.6) l§v<M,N,P

(VaM)< N)< P,

lgv,M®N,P

Va(M®N)< P

&v,m,N<IP
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(X®Y=V)aM
(3.7) Xe=(Ye=V)<aM XY =(V<aM)
\LCX,Y>V,]\4 iXX,Y,V<1]\/[
XeCy,v,m

Xe(Y=V)<M) X (Y= (V<aM)),

Xe=(V<aM®N)

—1
i Ty

(3.8) X=(VaM)<N) (X=V)<sM®N
lc)_(,lv<]\/[,N ) i€X>V,M,N
™ <N
(X=(V<M)<N m (X =V)< M)<N,

for objects X, Y of C, V of V, and M, N, P of D. In addition, we require 1=V =V, Val =V,
and that

(3.9) X1,x,v = Xx,1,v = ldxev, via,n =&vna = Idyan,
(310) CX,V,]l = ldxev, C]l,VJV = Idyay,

for objects X of C, N of D, and V of V.

Definition 3.3. We define the 2-category BiMod¢ p as the 2-category of C-D-bimodules in Caty,
using the equivalent description of the data from Proposition 3.2. This amounts to having as objects
C-D-bimodules, 1-morphisms in BiMod¢ p are given by functors G: V — W together with natural
isomorphisms

A: G(X >y Idy) = X >y G,
p: G(Idy <yN) = G <)y N,

for objects X of C, N of D, which are coherent with the structural isomorphisms of the modules.
That is, diagram (3.2) commutes, in addition to a similar diagram for p and &:

G(V <y M ® N)
(3.11) G((V <y M)<y N) G(V)<=w M ®N
PV<VM,N\L igc\/;v(v),M,N
<y N
GV <y M)<y N UMY (G(V) <y M) <y N,
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for objects M, N of D; further, the diagram

G((X =y V)=<yp N) G G(X =y (Vay N))
lpxwv,zv l/\xyq‘)N
(3.12) G(X =y V)<awN X ey G(V <y N)
lkx,\mwN \LXDWPV,N
o).

(X = G(V)) <y N ————= X >y (G(V) <y N),
is required to commute for objects X of C, M, N of D, V of V. Moreover, we require that
(3.13) /\17\/ = Idg(v), pvi = Idg(v), YV e V.

Note that given two such morphisms (G, A%, p&): V — W and (H, \H, pH): W — X the composi-
tion is (HG, A\HG | pHG) with AHS defined in Eq. (3.5) and

(3.14) Pg,cfv = pg(V),NH(p\C},N)‘

In BiMod¢ p, a 2-morphism 7: (G, A%, p%) = (H, AH, pH) is a natural transformations commuting
with this structure. That is, diagram (3.4) and the diagram

G
GV <y N) —N L G(V) <y N
(315) Tv<le iTV<1WN
H
H(V <y N) — L H(V) <y N

commute for objects N of D, V of V. Given two C-D-bimodules, we denote the category of
C-D-bimodule morphism from V to W by Home_p(V, W).

The discussion can be summarized by saying that there is a biequivalence of k-linear 2-categories
BiMod¢ p ~ C K D°P-Mod.

3.2. Balanced Functors and Relative Tensor Products. We recall the following definition of
balanced functors from [ENO10,FSS17]:

Definition 3.4. Let V be a right C-module and W a left C-module category. A functor
F:VRW - T, VW w+— F(V,W)
is called C-balanced if it comes equipped with a system of isomorphisms
nvew: FV<aC,W)-=SFV,Ce=W), VCeC, VeV, WeW,

natural in V,C,; W, which is compatible with the natural isomorphisms of the module structures (as
in [ENO10, Definition 3.1]). That is, the diagram

F W
F(V < (C®D),W) oot F((V<C)<D,W)
nV,C@D,Wl an<lC,D,W
(3.16) F(V,(C® D) =W) F(V<C,D=W)

F(V,xc,p,w M

F(V,C > (D =W))
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commutes for any objects V in V, W in W, C, D in C. Further, we require
(3.17) nvaw = Idpw,w) -

A morphism of C-balanced functors ¢: (F,n") — (G,n%) is a natural transformation ¢: F = G
such that the diagram

F(V<C,W) Y L pv,CeW)
(3.18) ¢V<C,Wl/ i‘z’VvCWV
G
GV aC,W) —2Y GV, C e W)

commutes. The category of C-balanced functors is denoted by Fun® 'bal(V X W, T) where, again,
all categories and functors are in Cat;,.

Relative tensor products of module categories were defined in [ENO10, Definition 3.3] and
generalize the tensor product of categories of [Kel05, Section 6.5], or [Del90, 5] for abelian categories.
The following definition is a adapted from [Sch15, Definition 3.1] to working in Cat.

Definition 3.5. Let C be a monoidal category with a right C-module V, and a left C-module W in
Cat. A category T in Caty, together with a C-balanced functor Ty yy: VW — T, is a relative
tensor product of V and W over C if for any category D, Ty )y induces an equivalence of k-linear
categories

Uy yy: Fung(7,D) — Fun{ (VK W, D), G+ GTy .
Further, part of the data is a fixed choice of a k-linear functor
Py yy: Fung (T, D) > Funf P (VR W, D)
such that there are natural isomorphisms
Oy w: Id = Oy Uy, vw: Uy wdyyy = Id

satisfying the adjunction axioms (so that Wy, ®yyy form an adjoint equivalence of k-linear
categories).

It follows that if such a category 7T exists, then it is unique, up to unique adjoint equivalence of
categories. We hence use the notation 7 =V K¢ W.

It follows from [Sch15, Proposition 3.4] that the tensor product K¢ (if existent in this generality)
has the following naturality properties. Given a functor F: V — V' of right C-module categories,
and G: W — W' of left C-module categories, there exists an induced factorization functor

F&cG:V@cW—)V,®cW/,

which is unique up to unique isomorphism of functors.
This is proved by first observing that the composition functor

Ty (FRG): VRW 25, SV RW Y, Y R W

is C-balanced, using the C-balancing isomorphism determined by Bg v c.qw) for 8 the C-balancing
isomorphism of T'. Further, [Sch15, Prop051t10n 3.4 (1)] gives an isomorphism of morphisms of
balanced bimodules ¢p.q: Ty (FXG) = (F X G)Ty .

Further, assume given pairs of right (respectively, left) C-module functors F,F': V — V' (respec-
tively, G, G’ : W — W) and natural transformations a: F = F’, 8: G = G’ of such functors,
there exists a unique natural transformation

Oé@c,@:F&cG:Flch,
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such that the following diagram commutes:
o ’ ’
TV/’W/ (F X G) _ TV’,W’ (F X G )

(3.19) HW,G ﬂd)F’,G’

(F Ko G) Ty yy ——Z s (F' Ko G/ Ty .

These assignments are functorial to give a bifunctor
Xc: Mod—C x C-Mod — Caty, VW) —» Ve W.
The following existence statement is proved in Appendix A.

Theorem 3.6. Let C be a monoidal category with a right C-module V and a left C-module W in
Caty. Then VX W ezists in Caty,.

Remark 3.7. The existence statement of V K¢ W can, in principle, be proved in any cocomplete 2-
category which has finite pseudo-colimits. For the 2-category Catj, of cocomplete k-linear categories,
pseudo-colimits exist by [BKP89].

Corollary 3.8. If V is an C-B-bimodule, and W is a B-D-bimodule, then VX W can be given the
structure of an C-D-bimodule.

Proof. Based on the existence statement of V¢ W in this setup, we can now use [Sch15, Proposition
3.20] to obtain the result. Note that the full structure of the collection of categorical bimodules
with relative tensor products is that of a tricategory as detailed in [Sch15, Section 3.2]. O

We now provide some examples that will be important in the paper.

Definition 3.9. Let A and B be algebra objects in B. We denote by A-B-Mod(B) the category
of left A-B modules in B. That is, an object V' of A-B-Mod(B) is an object of B together with a
left A-action >4: AQV — V and left B-action >g: B® V — V which commute in the sense that

(320) = (IdA ®I>B) = I>B(IdB®I>A)(\IfA7B ®Idv)

A morphism in A-B-Mod(B) commutes with both the left A-action and B-action.
Similarly, we define the category A-Mod-B(B) and Mod-A-B(B). In the former, we have a
left A-action and a right B-action which commute, where in the later both are right actions.

It in fact follows that A-B-Mod(B) is equivalent to A ® B-Mod(B) in a natural way. However,
when working with bialgebras we shall see that A-B-Mod(B) can still be monoidal even though
A ® B is not a bialgebra object in B.

Lemma 3.10. The category A-B-Mod(B) (or A-Mod-B(B), Mod-A-B(B)) is a bimodule over
B, with left and right action given by the induced action on the tensor product in B. That is, given
objects (V,=4,>p) of A~-B-Mod(B) and X of B, V®X is an object in A—-B-Mod(B) with actions
given by

BARQIdx: ARV R®X — VX, g RIdx: BRIVRX —VRX;
and X ®V is an object in A-B-Mod(B) with actions given by

(IdX®>A)(‘1JA,X RIdy): AQRXQ®V — X RV,
(Idx ®=5)(Tpx ®Idy): BRX®V — X QV.
Proposition 3.11. The category A-B-Mod(B) satisfies the universal property of A-Mod(B) X

B-Mod(B), A-Mod-B(B) satisfies the universal property of A-Mod(B) Xz Mod-B(B), and
Mod-A-B(B) satisfies the universal property of Mod-A(B) Kz Mod-B(B) as B-bimodules.
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Proof. The statement is proved similar to [DSPS19, Theorem 3.3|, but working with finitely
cocomplete categories with functors that preserve colimits in both components. ]

When more structure is present (for example, an abelian structure), the existence of a universal
category describing C-balanced functors is not guaranteed as a category having such structure.
For a finite k-tensor category C, it was shown in [DSPS19] that V X W exists as a finite k-linear
category, given that V and W are finite. This uses the characterization from [EGNO15, 2.11.6] (and
[Ost03b, Theorem 1] for the semisimple case) that finite exact modules are of the form A-Mod(C)
as right C-modules, for an algebra object A in C.

3.3. Augmented Monoidal Categories. We want to work with monoidal categories that are
augmented by a braided monoidal category B. This notion is a categorical analogue of a C-algebra
over a commutative ring C which is also C-augmented.

Definition 3.12. A B-augmented monoidal category C is a monoidal category C in Catj, equipped
with the additional data of monoidal functors

F:C=5B:T
and natural isomorphisms
7: FT = 1dg, o: @ (Ide ®T) = ®°°(Id¢ XT),

such that for any objects V of B and X of C,

—1
(3.21) Floxyv) = ,ug(x/),)((T;1 ® ldp(x)) Ve x),v (Idpx) @Tv) <M§<,T(v)) ;

or, equivalently

-1
(3.22) F(ox,v) = i), x Ve Fnv) (“ECT(V)) '

That is, o descents to ¥ under F. Equivalently, the following diagrams commute for any objects X
or Cand V of B

Flox,v)

F(X®TV) ’ F(TV ® X)
(o) | |6
(3.23) FX@FTV — " pTy @FX
Ildrx ®7v l \LTV®IdFX
FX®V Yrxv VQFX.

The natural isomorphisms are required to be coherent with the structure of C and B. That is, the
following diagrams commute for any objects X, Y in C, V,W in B

OX®Y,V

(X®Y)®TV TV ®(XQY),

(3.24)
Idx ®UX 4 oXx, v®Idy

XRQTVRY
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OX,. VW

XQT(VQW) TVOW)®X
ldx ®(M3,w)1l Tuaw@ﬂdx
(3.25) XQTV@TW TVRTW ® X,
TVRXQTW
M%V,TW F(Maw)
FT(V) @ FT(W) F(T(V)® T(W)) FT(V @ W).
(3.26)
TV QT TVRW
VW

The last condition states that 7 is a morphism of monoidal functors, cf. [EGNO15, Definition 2.4.8].
Moreover, we require that for any objects X of C and V' of B,

(3.27) ox1 = Idx, o1,V = IdT(V)7 7 =1dy .

A monoidal functor of B-augmented monoidal categories G: C — D is a monoidal functor such
that the there exists isomorphisms of monoidal functors

(3.28) 9 =0%: GT; = Tp, ¢ = ¢%: Fo = FpG.
Further, the compatibility condition that the diagrams

G(o%.y)

G(X®@Tc(V)) G(Te(V) ® X)
1 —1
(“g;(’Tc(V)) J, J,(“%:(vm)
(3.29) G(X)® GTe(V) GTe(V) ® G(X)
G(X)®by l l0V®G(X )
Ug(X),V

GX)®@Tp(V) —————Tp(V) ® G(X),

o
FeTe(V) — Y ppaTe(V) —2) L ppp(v)
(3.30)
TC TD
\% \%
v

commute for all objects X of C, V of B is required. In particular, 6y = Idy, ¢1 = Idy.

We define the k-linear 2-category MonCatg of B-augmented categories of C as having B-
augmented monoidal functors as 1-morphisms, and all monoidal natural transformations as 2-
morphisms. Note that given two functors G: C — D, H: D — O of B-augmented monoidal
categories, the composition HG is a functor of B-augmented monoidal categories with the natural
isomorphisms given by

(3.31) 016 = oHH(6S), 8 = 0G0 o8-
Ezxample 3.13. Every monoidal category in Caty which is complete under arbitrary countable

biproducts is Vecty-augmented for the category of k-vector spaces. For example, for a bialgebra B
over k, B-Mod gives such a category.
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Example 3.14. If C is a B-augmented monoidal category, then C°P is B-augmented. The isomorphism
o°P: ®°P (Ide XT) = (®°P)°P(Ide XT) is taken to be o 1.

FEzample 3.15. Let B be a braided monoidal category. Then B is B-augmented, with F = Idp,
T =1dg, and 7 = Id, 0 = ¥, the braiding. The next lemma generalizes this example and clarifies
the relation to braided monoidal categories.

Lemma 3.16. If C is braided monoidal and both ¥, T are functors of braided monoidal categories,
such that T is an isomorphism of monoidal functors, then C can be given the structure of a B-
augmented monoidal category.

Proof. If C is braided monoidal, and F, T are compatible with the braided monoidal structure as in
[EGNO15, Definition 8.1.7], and 7 is a morphism of monoidal functors, then Eq. (3.26) holds by
assumption. Setting

3.32 oxy = W , XeC,VeB,
; X, T(V)

then Eqgs. (3.24)—(3.25) hold by the hexagonal diagrams (cf. e.g. [EGNO15, 8.1.1]), combined with
T being a functor of braided monoidal categories. The condition of Eq. (3.23) follows from the
assumption that F is a functor of braided monoidal categories. O

Ezample 3.17. Our main source of examples of B-augmented monoidal categories in Caty will be of
the form B-Mod(B), where B is a bialgebra object in B (cf. Section 2.1). The category B-Mod(B)
is monoidal. The tensor product of two objects (V,ay), (W,aw), where ay: BQV — V and
aw: B®W — W are the action morphisms, is (V ® W, aygw) with

(3.33) avew = (ay @aw)(Idp@VYpy ®@Idy)(A @ Idvew).

Graphical calculus, as in [Laul9], which is inspired by that used in [Maj94], is helpful for
computations in B-Mod(B). For example, the tensor product of modules is depictured as

(334) ayw = m .

Here, U = X denotes the braiding in B, A = ~~ denotes the coproduct of B, and &= = \{: BV — V
denotes a left coaction of B on V.

The monoidal category B-Mod(B) is B-augmented, using the forgetful functor F mapping a
left B-module to the underlying object in B, and defining T(V) to be the trivial B-module V',
using the trivial action 'V = ¢ ® Idy via the counit e. Then oxy := T(¥r(x),v) is a natural
isomorphism as required, for X in B-Mod(B) and V in B. For this, we check that T(¥p xyy) in
fact is a morphism X @ V¥V — V¥V @ X of left B-modules in B. Indeed, this follows from

Here, the isomorphism 7: FT = Id consists of identity morphisms.
A morphism of bialgebras B — C' in B induces a functor of B-augmented monoidal categories
C-Mod(B) — B-Mod(B), where the natural isomorphisms § and ¢ both consist of identities.
Note the subtlety that the category of right B-modules Mod-B(B) is B-augmented, rather than
B-augmented.

Ezample 3.18. Dually, we can define B-CoMod(B) using left comodules instead of module. This
category is B-augmented, while right B-comodules CoMod—B(B) yield a B-augmented monoidal
category.

In the case of C = H ~Mod(B) for a Hopf algebra in B we will require the following equivalence
for the B-augmented monoidal category with opposite tensor product.
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Lemma 3.19. Let H be a Hopf algebra object in B with invertible antipode. There is an equivalence
of B-augmented monoidal categories (H-Mod(B))°® ~ Mod-H (B).
Proof. Consider the equivalence of categories given by the functors

®: H-Mod(B) — Mod-H(B), (V,=)+— (V,<'), < = Uy g (Idy ®S)

®': Mod-H(B) — H-Mod(B), (V,<)r— (V,&'), '= <1\Il‘_/’1H(Sfl ®Idy). O
Lemma 3.20. Let C be a B-augmented monoidal category which is braided s.t. the structural

functors Fe, Te are compatible with the braiding, and D a C-augmented monoidal category. Then D
is also a B-augmented monoidal category.

Theorem 3.21. If C, D are B-augmented (rigid) monoidal categories, then the B-balanced tensor
product C X D is a (rigid) monoidal category.

Proof. Note that (Catj,X) is a monoidal category. In the proof, we work with different bracketing
of iterated Kelly tensor products K. For these, we chose a (coherent) set of natural isomorphisms
between different ways of bracketing. We will however omit these from the notation for reasons of
simplification of the exposition.

Note that there exist a swap functor 7: CXD — D KX (C, and we observe that the composite

Mp(@° B ®@P)(Ide ¥r K 1dp): CRDKC KD — C Kg D
factors (up to natural isomorphism) through a functor
R™sP: (C K D)X (C Kp D) — C K D.

To demonstrate this, denote the balancing of the functor X¢: C XD — C X D by 7. Fix a pair
of objects M ® N € C X'D. Then the functor

CXD— CXpD, XQV — (M@ X)®(NQPY)
is B-balanced via the balancing isomorphism
nﬁ%)jjv = (Idyex ® Xr,lB @ Idy )nuex,BNeY -

This B-balancing isomorphism clearly satisfies Eq. (3.17), and Eq. (3.16) follows from commutativity
of the outer diagram in

UX®Y
(M®XQT(BRC))Q(N®Y) Mooy (M®X)Q(NQT(BRC)®Y)
1d@u} ®Id (MRX)®(T(B®C)®NQ®Y) ld®uj ®Id
(M®X®TBRTC)R(N®Y) @} (®Id (M®X)®(N®TB®TC®Y)
NTMEX®TB,C,N@Y MX)®(TBRITCRNR®Y) Id®a]f,,1B®Id
(M®X®TB)®(TCRN®Y) (M®X)®(TBRNQTC®Y).

-1

(M®X®TB)®(NQTC®Y)
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The inner diagrams commute using Eqs. (3.16), (3.25), naturality of n applied to a]f,lv as well as
the definition of nX®Y . Hence, we obtain a factorization through C Xz D, which is the endo-functor

of C X D denoted by Rxgy. By completion under biproducts this gives a functor
CXD — Endg(C Xg D), X®Y — Rxgy.
Using the symmetric closed structure from [Kel05, Section 6.5] we obtain a functor
R:CXDKX (CXpD) — CKpD.

We claim that the functor R is one of balanced bimodules (in the rightmost X-product). Indeed,
we may use the composite natural isomorphism

Mensxey: (M TBEF X))@ (N@PY) — (M®° X)®(TBR” N®"Y),
Mien,sxgy = TMex,sNey (Idy ®y's @ ldygy ).

It follows very similarly to before that n® satisfies Eqs. (3.16) and (3.17). Hence we obtain a
factorization through (C Mg D) X (C Mg D), denoted by ®¥5P | as stated. As such, it is unique up
to unique natural isomorphism by the universal property.

To proof that @°™8P provides a monoidal structure now follows by use of the functoriality
properties of KX as detailed after Definition 3.5. This way, we obtain the functors

®C®3D (®CX|B'D X IdC®3D)7 ®C®B'D(Idc®BD &@C&B'D)

as factorization via the universal property of K. However, using that C, D are strict monoidal
categories, these are factorization of the same balanced functor through canonically isomorphic (iter-
ated) relative tensor products. Hence the functors are isomorphic via a unique natural isomorphism.
Uniqueness of the induced natural isomorphism ensures coherence, thus giving a monoidal structure.

If C and D are rigid, the so is C X D. As a monoidal functor, the canonical factorization functor
CXD — CKp D preserves duals. As this functor is essentially surjective, duals exit in the latter
category. ]

_ Note that one can similarly prove a variation of Theorem 3.21 where C is B-augmented and D is
B-augmented as the inverse o~! also satisfies @-compatibility. In particular, given a B-augmented
monoidal category C, then C Xz C°P is a monoidal category. Using Lemma 3.16, we obtain:

Corollary 3.22. If C and D are braided monoidal categories with functors Fe: C = B: T¢,
Fp: D = B: Tp of braided monoidal categories together with isomorphisms of monoidal functors
7C¢: FeTe = Idg, and 7°: FpTp — Idg, then C X D is a braided monoidal category.

Note that for braided fusion categories, a similar construction as obtained in Corollary 3.22
has been carried out in [Grel3a]. To conclude this section, we shall examine some examples of
representation-theoretic nature.

Ezample 3.23. Let B € Hopf(B), and consider C = B-Mod(B) as a B-augmented monoidal
category as in Example 3.17. It was shown in Proposition 3.11 that C Xg C°P is equivalent to
B-Mod-B(B) as a B-bimodule category. The tensor product on the latter category is given by
(V@W, >vew,<vew), where

(3.36) syew = (v @ow)(Idp @Up vy @ Idw)(Ap @ Idvew),

(337) <yw = (<1V ®<lw)(ldv ®\IIW7B X IdB)(IdV®W ®AB)

for (V, >y, <v), (W, =w,<w) objects of B-Mod—B(B), and accordingly for morphisms. Recall
the equivalence of B-augmented monoidal categories Mod-B(B) ~ (B-Mod(B))°® = C°P from
Lemma 3.19. By Theorem 3.21, the category C Kz C° has the structure of a monoidal category

which is equivalent, under the equivalence from Proposition 3.11, to the monoidal structure on
B-Mod-B(B) described above.
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3.4. Balanced Categorical Bimodules. We saw in Section 3.1 that a categorical C-D-bimodule
over monoidal categories C, D in Catj, can be defined as a monoidal functor C X D°? — Endf (V).
Working with a B-augmented monoidal categories C and D, we present the following definition of a
suitable category of B-balanced bimodules. Note for this that C and D are B-bimodules with action
induced, via T¢: B — C, respectively Tp: B — D, from the regular bimodule structure.

Definition 3.24. Let C and D be B-augmented monoidal categories. A B-balanced C-D-bimodule
is a C-D-bimodule V as in Proposition 3.2, together with a natural isomorphism

B: < (Idy XTp) = =(Te K 1dy),

satisfying the coherence condition that the diagrams (3.38) and (3.39) commute for any objects V'
of V, X,Y of B, M of C, and N of D:

Bv,xeY

VaTp(X®Y) Te(XQY)=V
Va(uyB)! (%) Tev
V<Tp(X)®Tp(Y) Te(X)@Te(Y) =V
(3.38) €V (X) T p (V) XTe (X) T (V),V
(V< Tp(X))<Tp(Y) Te(X) &= (Te(Y) = V)
By,x<Tp(Y) Te(X)=Byy

(T (X),V,Tp(Y)

(Te(X)=V)<Tp(Y) —————=Te(X) = (V<aTp(Y));

Me(By,x<N)
—_—

M= ({(V<Tp(X))< N) M ((Te(X)=V)< N)

M=€50 xy N MeCre(x),v,n
Me(V<Tp(X)®N) M = (Te(X) = (V< N))
M=(V=oyly) XAL T (X). VN
(3.39) M (V< NQ®Tp(X)) M®Te(X) > (V< N)
MeEy, N Tp(x) om, x=(V<N)
Me((V<N)<Tp(X)) Te(X)®M = (V< N)
CMVaNTp(X) XTe(X),M,VaN

Brme(VaN),x
_——

(M=>(V<aN))<Tp(X) Te(X) = (M = (V < N)).

In addition, we require
(3.40) Bva = Idy .

A morphism of B-balanced C-D-bimodules G: (V, 8Y) — (W, ") is a functor (G, A, p): V - W
of C-D-bimodules such that the diagram

F(BY x)
F(V <y Tp(X))

F(Te(X) =y V)
lAde),v

Te(X) >w F(V)

(3'41) lpV,TD(X)

F(V) <y Tp(X)

BElv).x
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commutes for all objects V of V and X of B.

A 2-morphism of B-balanced C-D-bimodules is just a 2-morphism of C-D-bimodules. This way,
we obtain the 2-category BiModg,D of B-balanced bimodules over C as a 2-full subcategory of
BiMod¢ p. Given two B-balanced C-D-bimodules V, W, we write Homg,D(V, W) for the category
for B-balanced morphisms of C-bimodules from V to W. We refer to B-balanced C-C-bimodules
simply as B-balanced C-bimodules.

If we interpret the concept of a B-augmented monoidal category as a categorical analogue of the
concept of a C-augmented C-algebra R, over a commutative ring C', then B-balanced bimodules are
the categorical analogue of an R-bimodule such that the left and right C-action coincide.

A large supply of examples of B-balanced bimodules will be constructed in Proposition 3.41.

Proposition 3.25. The datum of a B-balanced C-D-bimodule for B-augmented monoidal categories
C and D is equivalent to the datum of a monoidal functor =: C X D°? — Endy (V) together with
a structural natural isomorphism p=: >R = >(Id®1Id) such that the functor = is B-balanced
with balancing n, and satisfies the compatibility that the diagrams (3.42) and (3.43) commute for
any objects M, M' of C, N,N' of D, and X of B:

= MAN) 1y x,N7)
S(MEN)=>(MRIT(X)®N') ————==(MRN)=>(M®(T(X)®N"))

(3'42) l“;@v,(M'@T(x))@N’ u]TI@N,NI’@(T(X)@N’) l
~(M®M @T(X))® (V' ®N)) "2 (M o M) ® (T(X) @ N'® N));
(M ®T(X))®N) = (M ® N’S”M )>(M ® (T(X)® N)) = (M' @ N')
lul(>1M®T(X))®N,JVI’®N’ MJTI@(T(X)@N),JVI’@N’ i
(3.43) =(M @T(X)® M) ® (N'® N)) =(M@M)® (N ®@T(X)®N))

l><<M®U;;,X>®(N’®N>> ><(N®N’)®(0Nr,X®N)>i
(M @M @T(X))® (N © N)) MMM (0 @ M) @ (T(X)® N' ® N)).

Moreover, a morphism of B-balanced C-bimodules (G, m): (V,>y) — (W, >w) is a morphism of
bimodules such that the natural isomorphism w in

C X DoP - End¢ (V)
(3.44) >Wl / ic;(—)
c (=& c
End; (V) Hom; (V, W)

is one of B-balanced functors.

Proof. Assume given a B-balanced module (V, 8). Recall Proposition 3.2 to translate this data into
a monoidal functor =y : C X D°? — Endj(V), by setting

>(M@N)(V)=Mre(V<N),

for objects M of C, N of D, and V of V. To provide a B-balancing for the action functor =, we
require natural isomorphisms ny x nv: M @T(X)=(V<aN) - M= (V<T(X)®N). We define

X, v,N = (M DSQ,%D(X),N)(M > (/Bx;,lx < N) (M >Cfg(x)’V,N)XM,TC(X),V<N‘

It then follows that n satisfies Condition (3.16) of a B-balancing isomorphism using Condition (3.38),
naturality, and coherence conditions of the bimodule structure from Egs. (3.6)—(3.8).
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Now we define
Erenen,y: =MON) =M @N') (V) — =((M@M')® (N @N))(V),
HM@N MQN,V = XJT/II,M’,V<N’®N(M > (M’ >§;}V,’N))(M > (M’ V<N, N)-

Next, we observe that 1y x v,1 = B;;(, and the very definition of nys x,v,n implies that

TM.X,V,NMEN,Te(X)@LV = Haren 1@Tp(x),v (M & (1, x,v1 < N)).

This proves the compatibility condition of 7 with the monoidal structure as in diagram (3.42) in the
case where M’ ® N' = 1 ® 1. The general case follows as p* is compatible with tensor products.
The second condition, Equation (3.43), can also first verified if M @ N = 1 ® 1. In this case, it
precisely reduces to Equation (3.39). Again, using that u~ is compatible with tensor products, the
general case follows.

One further checks that given a morphism of B-balanced bimodules G, by Eq. (3.41) together
with compatibility with the bimodule structures, G is compatible with the balancing isomorphism 7
in the sense of Eq. (3.16). This amounts to commutativity of the diagram

v
G(”M,X,N,V)

G(M ®Te(X)=(V<aN)) GIM=V<aTp(X)®N))
>‘1\/I®TC(X),V>N\L \LANI,V|>TD(X)®N
(3.45) M ®Te(X) =CG(V < N) M =GV <Tp(X)®N)

M®TD(X)‘>PV,N\L \LMDPV,TD(X)@)N

,,]W
M®Te(X) = (G(V) < N) —2"CY A e (G(V) < Tp(X) @ N).
A natural isomorphism 7 as in the diagram of Eq. (3.44) is obtained as

TN = (M > py N) A (—)<n-

It is a morphism of B-balanced functors using that G satisfies the condition of Eq. (3.41).
Conversely, given =y, as in the statement of the proposition, we define

Bvx = 77{5(713/-
Conditions (3.38)-(3.39) are now a consequence of Egs. (3.42), (3.43) and (3.16). A morphism
(G, ) satisfying the conditions of the statement of the proposition provides Ay = mav,1 and

pv,N = m1,v,ny wWhich are compatible with 7, so in particular, are compatible with By, x = 7, g( 1LV
It is readily verified that the two functors described give an equivalence of categories.

Lemma 3.26. If C is a B-augmented monoidal category, then the regular bimodule on C is a
B-balanced bimodule over C.

Proof. The natural isomorphism ¢ which is part of the definition of a B-augmented monoidal
category provides a B-balancing for the regular module. O

Theorem 3.27. The k-linear bicategories BiModg,D and C R D°P-Mod are biequivalent.

Proof. Proposition 3.25 provides a bifunctor BiModg,D —> CXD’-Mod. We want to show that
the image (=, u”): C X D°P? — Endg (V) of a B-balanced bimodule V under this functor factors
through C Xz D°P. As > is balanced, it follows that there exists a factorization =>p5: C Kz DP —
Endg (V). We want to show that the natural isomorphism x4~ induces such a natural isomorphism
after passing to the relative tensor product C X D°P defined in Theorem 3.21. We proceed in two
steps, as in the proof of Theorem 3.21.
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First, 4~: >N — =>@® is an isomorphism of B-balanced functors which are defined from
CXDPKCKXDP to Endg(V), and the B-balancing is defined in the last X-product. Here, the
balancing isomorphisms are given by

=(M @ N) = (M @ Te(X)) @ N') (V) Zo2hexiv), (v @ Ny = (M @ (Te(X) @ N'))(V),

(M @M ®Te(X)) ® (N @ N)(V) ~(M® M) ® (Te(X) @ N @ N)(V),

for =X >, respectively, > ®. Condition (3.42) gives that = indeed is a morphism of B-balanced
functors, satisfying the diagram (3.18). Hence, by the universal property of the relative tensor
product, there exists an isomorphism of the factorizations through CKD°PXICKzDP. By uniqueness
of the factorization, the coherences of u~ making = a monoidal functor also hold for the factorization.

Second, the induced functors =X, = ®: CKDPXCXpDP — Endg (V) from the first step are
also a B-balanced functors in the first X-tensor product. Here, we use the images of the balancing
isomorphisms

MMM, X,N'®QN,V
e bl S RN

M, X,N,>=(M'QN')(V)

(M@ Te(X))@N) = (M @N') (V) =M ® (Te(X) @ N)) &= (M @N')(V),

=(M@Te(X) @ M) @ (N' @ N)) XMV, o (M @ M') @ (N @ Te(X) @ ),
after factoring through C X DP K> KgDP, where
e xmen v =>(MOM')® (UX//{X ® N))nmem!, X, N'@N,V
o=((M @0y x) ® (N @N))(V).

Condition (3.43) gives that p™ is a morphism of B-balanced functors with respect to these B-
balancing isomorphisms. Hence, again by the universal property, we obtain a natural isomorphism
on the factorizations through (C X D°P) X (C K DP), which is coherent by uniqueness. Thus, there
is a monoidal functor (=, u=): C Xz D°? — Endg (V).

Conversely, given a monoidal functor (=, ”): C Kg D°? — Endg(V), we can consider the
monoidal functor =T¢ por, using the universal functor T¢ pov: C KIDP — C X DP from Definition
3.4, which is monoidal by Theorem 3.21. Hence, this composition is again a monoidal functor. The C-
D-bimodule thus obtained necessarily satisfies the conditions from Egs. (3.42—(3.43). Moreover, this
assignment upgrades to a bifunctor C Xg D°°~Mod — BiModg,D which forms local equivalences
with the bifunctor provided in the beginning of the proof. O

3.5. The Relative Monoidal Center. In this section, the relative center of a monoidal category
augmented by a braided monoidal category is discussed.

Definition 3.28. Let C be a B-augmented monoidal category in Caty. The relative monoidal
center of C over B is defined to be the monoidal category

Z5(C) := Homg¢ ¢(C, ),

with composition as tensor product

G®H = HG.

An object in Z5(C) is a morphism of C-bimodules ¢: C — C commuting, as in Equation (3.41),
with the B-balancing isomorphisms. As the B-balancing isomorphisms on C are given by the
B-augmentation, cf. Example 3.26, the requirement is equivalent to ¢ commuting the the B-
augmentation, i.e.

(346) (b(O'MJ/) = A';(lv)7MU¢(M),VpM,T(V)7 VM e C, VeB.

Theorem 3.29. IfC be a B-augmented monoidal category in Caty, then Zg(C) is a braided strict
monoidal category in Caty together with a functor of monoidal categories F: Zg(C) — C. Moreover,
if C is rigid, then so is Zg(C).
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Proof. By definition, Z5(C) is a strict monoidal category with respect to composition of functors.
Given (G, %, p%), (H,\H, p): € — C, then GH has structural isomorphisms )‘%41,{\/ = )\5\;/[ H(V))‘?/I,Vv
and p‘G/I]{V[ = )‘g(v) M)\ﬁ - This monoidal category is braided, using the braiding Wq 1, defined by
the composition

-1

Glpi'y) (Plaoy)
— -

G
GH(V) =CGH(1®V) (xmm®vyf@iﬂﬂm®ew) H(1 ® G(V)) = HG(V).
The hexagon axioms of a braided monoidal category, cf. [EGNO15, Definition 8.1.1], follow by the
definition of ASH and p“H as above. There is a monoidal functor F: Z5(C) — C mapping G to G(1)

which is monoidal. An isomorphism p is given by the composition of natural isomorphisms

(3.47) G(1) @ H(1) M

H(G(1)®1) = HG(1).
The naturality square as in [EGNO15, Eq. (2.23)] necessary to make (F, 1) a monoidal functor
follows from Eq. (3.11).

We will prove that Zz(C) is rigid provided that C is rigid after Proposition 3.34. O

Example 3.30.

(1) If B = Vectg, and C has countable biproducts, as in Example 3.13, then Z5(C) = Z(C) is
equivalent to the monoidal center from [Maj91] (in the case of the identity functor).

(2) If C is a braided B-augmented monoidal category as in Lemma 3.16, then there exists a
functor of B-augmented monoidal categories C — Z3(C) which is a right inverse to the
forgetful functor. It is defined by mapping M to the functor M ® (—) of left tensoring by
M, which is in the center using the braiding of C.

Remark 3.31. Note that the definition of the relative monoidal center in [Laulb] is a slightly different
one, which is, in general, not equivalent. There, the goal was to use a set of assumptions in order to
recover the category BYD(B) in the special case where C = B-Mod(B), cf. [Laul5, Proposition
2.4.7]. Here, the language of B-balanced functors is used to give a more natural construction with
additional properties, for which the Morita dual can be identified, see Section 3.6.

We now give an alternative description of the relative monoidal center analogous to the original
definition of the monoidal center of [Maj91,JS91],.

Definition 3.32. Define the category Isom%(c ®1Ide, Ide ®C) to consist of objects which are pairs
(V,c) where V is an object of C and ¢: V ® Ide = Id¢ ®V is a natural isomorphism satisfying that

(i) for two objects M, N of C, the diagram

CM@N

VOM®N M@N®V
(3.48) i Ao
cpRId dy ®cn
X®VeY

commutes (tensor product compatibility);
(ii) Any object (V, ¢) satisfies that for any object X of B, we have

(3.49) ere) = ov,eo, (compatibility with augmentation).
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A morphisms ¢: (V,c) —» (W,d) in Isom%)(C ®1Ide¢,Ide ®C) corresponds to a morphism ¢: V- — W
in C such that the diagram

VM --MeV
(3.50) ¢®Mi lxm
wWeM-Y. Mew
commutes for any object M of C.
Proposition 3.33. The category Isom%(c ®Ide,Ide ®C) is a braided monoidal category.

Proof. 1t follows directly that Isom%)(C ®Ide, Ide ®C) is a full monoidal subcategory of the category
Isom®(C ®Id¢, Ide ®C), which is the monoidal center of [Maj91], as the compatibility of Eq. (3.49)
with the augmentation is stable under composition and tensor products.

We recall that the tensor product of (V,c") and (W,c") is defined as (V ® W,c"®W), where

cV®W is defined to make the diagram
CV®VV
VWX = XVeW
(3.51) \ /
Id®cy cy®Id
VeXeWw

commute for any object X of C. Note that Equation (3.49) for (V ®@ W, cV®W) translates to diagram
in Eq. (3.24), which holds as C is B-augmented monoidal.

Also recall that a braiding Wy vy gy vy (V @ W, VW) = (W @ V,cV®Y) is defined by
Vvevy,wew) = CK/. This is an isomorphism in Isom%(C ®1de, Ide ®C) using ®-compatibility from
Eq. (3.48) and naturality of ¢ applied to c‘?{, for any object X in C. The braiding axioms also
follow from Eq. (3.48). O

Proposition 3.34. There is an equivalence of braided monoidal categories between Zg(C) and
Isom§(C ®Ide,1de ®C).

Proof. The equivalence can be obtained by restriction of the known equivalence of Z(C) ~ Isom®(C®
Ide,1de ®C), cf. e.g. [EGNO15, Proposition 7.13.8], to the subcategories Z5(C) and Isom$(C ®
Id¢, Ide ®C). O

The B-augmented monoidal structure of C gives rise to a functor of braided monoidal categories
B — Z(C),C — (T(C),0~1). Now Eq. (3.49) recovers the centralizer condition of [Miig03, Definition
2.6]. Hence, Z5(C) is equivalent to the centralizer of B in Z(C) in the sense of Miiger. See also
[DNO13, Section 4] for the case where B is symmetric.

We can now prove that Zg(C) is rigid (i.e. has left duals, see e.g [Maj00, Definition 9.3.1]),
provided that C is rigid. Equivalently, we can prove that Isom?(c ®1Ide, Ide ®C) is rigid. Given an
object (V,¢), the left dual is defined as (V*,¢*), where

(3.52) cir = (evy ®Idygy+)(1d®cy; ®1d)(Idy g @coevy).

Here, coevy: k - V@V* evy: V¥*®V — k are the structural maps making V* the left dual of V'
(cf. [Maj00, Definition 9.3.1]). It follows that (V*,¢*) defines an object in Isom®(C ® Id¢, Idc ®C),
and we have to verify Eq. (3.49). If M = T(X), then c%(lx) = 0‘21)( and we have to show that
c%( X) = OVEX- This follows, using uniqueness of the inverse, from

)T x = Mdvegrex), ove xCrixy = ldrey
which is derived from Eq. (3.24) and naturality of o_ x applied to evy and coevy.
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Ezample 3.35. Let B € BiAlg(B). We define the category 5YD(B) of Yetter-Drinfeld modules
over B as having objects V' € B-Mod(B) which, in addition, have a left B-comodule structure in
B, such that the compatibility

(mB X a)(IdB ®\IJB,B X Idv)(A X 5)
= (mB X Idv)(IdB ®\IIVVB)((5CL X Idv)(IdB ®\1137v)(A X® Idv).

holds. In graphical calculus notation, that is,

(3.53)

(3.54) —

Morphisms in BYD(B) are those commuting with both the left B-action and left B-coaction. The
category BYD(B) is braided monoidal (see [BD98, Section 4] or [Laul9, Section 2.1] for details).

For a Hopf algebra H in B, a partial dual was defined and the category ZYD(B) was shown to
be equivalent to YD modules over its partial dual in [BLS15].

Proposition 3.36. Let C be the B-augmented monoidal category C = B-Mod(B) from Example
3.17. Then there is an equivalence of braided monoidal categories

Z5(C) ~ BYD(B).
Proof. We will construct an equivalence of braided monoidal categories
®: Isom$(C ®Ide,Ide ®C) — BYD(B).
Given an object (V,c¢), define ®(V,¢) = V with its B-module structure >: B®& V. — V. The
morphism
de :=cp(ldy®1): V> B®YV,
where B € B-Mod(B) has the regular B-module structure, defines a B-coaction on V. Indeed,
(Idp ®dc)éc = cpep(Ildy @1 @ 1) = cpgp(ldy ®Ap1) = (Ap ®Idy)d.,

where the last equality uses that Ap is a morphism of B-modules, which holds by the bialgebra
axiom from Eq. (2.5). Moreover, V becomes a Yetter-Drinfeld module in B. This follows from cp
being a morphism of B-modules, combined with the fact that the product map mp: B® B"Y — B
is a morphism of left B-modules:

(mp®=)(Idp®¥Yp p®Idy)(Ap ® d)

=cp(e@mp)(Idp@¥Ypy ®1dp)(Ap ®Idy ®1)
=cp(@mp)(Ildp®Ypy ®1)(Ap ®Idy)

= (mp @ 1dy)(cpgpr ®1dp)(1A@L) = 1dy) (Ids ®¥ 1) (Ap ® Idy)
— (mp @ 1dy)(Id Qe (5. ® Td) (= ® Idy ) (Idp @V 1) (A @ Tdy)
= (mp®@I1dy)(Idp®¥py) (0. ®1dp) (=@ 1dy)(Idg ¥ B v)(Ap ®Idy).

The last equality uses that B-Mod(B) is a B-augmented braided monoidal category as in Example
3.17, with augmentation cguiv = oy, p = Yy B.

A morphism in Isom%)(C ®1Id¢,Ide ®C), in particular, commutes with the B-action and Ap, and
is hence a morphism in BYD(B). Thus, we obtain a functor ® as claimed. For two objects (V,¢)
and (W, d) in Isom%)(C ®Ide,Ide ®C), the calculation

3.5
Sea U2 (5 ® Idw) (1dy ®dg)(Idyew 1)

= (cp®@Idw)(Idy @mp @ Idw)(Idy ®1 ® dp)(Idvew ®1)
= (mp®Ildyvgw)(Idp®@¥y s ®Idw)(6. ® dq)
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shows that the functor ® is monoidal. Here, we again use that the map mp: B® B — Bis a
morphism of left B-modules. Moreover, it follows that

\II(V,C),(W,d) = cw = ey (Idw ® =) (Idw ®1 ® Idy)
= (> (9] Idv) (Idv ® CWmv)((SC ® Idw)
= (=®Idy)Idy @Tvw) (6. ®Idw) = Ty},

using that =: B® W"Y — W is a morphism of left B-modules in B and applying naturality to it.
Hence, @ is a functor of braided monoidal categories.

An inverse to ® can be constructed using the last calculation which is valid even if W is any
B-module — not necessarily coming from an object (W, d). It shows that ¢y can be recovered from
d.. Hence, we obtain an equivalence of categories as stated. O

Ezample 3.37 ([BV13, Prop. 2.13]). Let C be a monoidal category and H € Hopf(Z(C)). Then one
can define a monoidal structure on H-Mod(C) using the half-braiding of H. There is an equivalence
of braided monoidal categories between ' YD(Z(C)) and Z(H-Mod(C)). Using Proposition 3.36
this implies that Zz)(H-Mod(Z(C))) is equivalent to Z(H-Mod(C)).

Lemma 3.38. Let B be a bialgebra in B and consider the B-augmented monoidal category C =
CoMod-B(B) as in Example 3.18. Then there is an equivalence of k-linear braided monoidal
categories Z5(C) ~ YDE(B).

Proof. We can define a right B-module structure on an object (V,¢) of Isom%(C ® Id,1d ®C) by
<1:= (¢ ®Idy)cp and proceed dually to the proof of Proposition 3.36. O

In particular, if B is a Hopf algebra in B, then the relative centers of “° B-Mod(B) and
CoMod-B(B) are equivalent by [Laul9, Lemma 2.5].

Note that BYD(B) is in general not B-augmented. The trivial Yetter-Drinfeld module structure
can only be defined on objects of BB for which the braiding squares to the identity. However, this
only holds for all objects of B if B is symmetric monoidal. Hence the monoidal center Z3(C) for C
a B-augmented monoidal category is not B-augmented, in general.

We further note that [Grel3b| provides a result in which a different object is referred to as the
relative center — the center of a bimodule category V over C. It is shown there that this center is
equivalent to Homegeor (C, V). This category is naturally a categorical module over Z(C), but not
monoidal.

3.6. Modules over the Relative Monoidal Center. We observe that there are two natural
ways to produce categorical modules over Z5(C), summarized in the following lemma.

Lemma 3.39. Let C be a B-augmented monoidal category in Caty. There are k-linear 2-functors
Hom¢ ¢(C,—): BiMod¢ ¢ — Z5(C)-Mod,
V +— Hom¢ ¢(C, V),
Hom5 .(C,—): BiModZ ;. — Z5(C) Mod,
W — Hom5 ,(C,W).
For both, the action of Z3(C) is given by pre-composition of functors. In fact, the containment
(3.55) Hom? -(C,WW) € Home ¢(C, Wlee)
is one of Zg(C)-modules. Here, we use the k-linear 2-functor
(—)le¢ : BiMod% ; —: BiModc ¢,

where W|,_ is W as C-bimodule category, forgetting about the B-balanced structure. In fact, we
can construct a right 2-adjoint to the 2-functor (—)|, .. Here, 2-adjoint refers to an adjoint as
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a Catj-enriched functor, in the sense of [Kel05, Section 1.11]. For this, we require the following
construction, generalizing Definition 3.32.

Definition 3.40. Let C, D be monoidal categories together with a monoidal functor G: D — C.
Further let V be an C-bimodule. Define the category Isom®(V < G, G =) to consist of objects
(V,¢), where V is an object of V, and ¢: V<« G = G >V is a natural isomorphism satisfying the
condition that the diagram

VaG(XeY) —22 L G(X@Y)=V
Valu©)yly Hy =V
V< G(X)QG(Y) GX)®GY)=V
(3.56) Ev.xy Xxvw
(V< G(X)) < G(Y) G(X) = (G(Y) =V)
bx<G(Y) G(X)=¢y
x,v,y

(GX)=V)<aG(Y) == GX) = (V<aG(Y))

commutes for any objects X,Y of D. A morphisms f: (V,¢) — (W,4) in Isom®(V < T, T V) is
a morphism in V such that

(3.57) Px(f@G(X)) = (G(X) ® fox-

The above construction of Isom®(V < G, G V) can be extended to a 2-functor, turning C-
bimodules into B-balanced bimodules.

Proposition 3.41. The assignment V — Vg := Isom®(V < T, T = V) estends to a 2-functor
(-)5: BiMod¢ ¢ — BiMod5 .

Proof. We construct Vg := Isom® (V< T, T)) as a B-balanced bimodule. Since C is B-augmented,
this category becomes a C-bimodule. The left action X = (V, ¢) is the pair (X =V, X = ¢), where
X = ¢ is the composition

X=¢=x(o=V)x(X=9).
The right action (V,¢) < X is the pair (V < X, ¢ < X), where ¢ < X is the composition

p=X = (0= X)E(V o),

The structural isomorphisms x, &, for Vg can be taken to be the corresponding isomorphisms
coming from the C-bimodule structure of V. We first have to verify that these are morphisms
in Vp. This follows using ®-compatibility of ¢ and ¢, combined with the coherence of V as an
C-bimodule. To demonstrate this idea, we prove the property that for any objects M, N of C,
XM,N,v is a morphism in Vg. That is, we have to verify commutativity of the diagram

(M@N = V)< TX —MEVEX oy o (M@ N & V)
XM,N,V<‘TX\L lTXDXM,N,V
(M>(N>V))<TXMTX > (M > (N =V)).
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This follows from the calculation
(TX =xmnNv) (M QN >¢)x
—(TX = xanv)xTx.MeNv (Oaen.x & V)Xo rx.v (M ® N & éx)Cuen virx
=XTx M NV XTXM NV (0 x @ N =V)(M Q0N x &= V)Xpgnrxyv (MO N & ¢x) uen,vrx
=x1x.mN=v(oarx = (N &= V)X oy vey (M =x1x,8 1) (M & (on,x = V) X0 NeTX,V
XZT/[1®N,TX,V(M ® N > ¢x)CMeN,V,TX
=XTX.M NV (0arx = (N >V))XJT/II,TX,N>V(M >xTx,N,V) (M > (onx = V) (M >X]_\/,lTx,v)
(M > (Nr=ox)) (M > Cuvrx)Sunevtx (xmny < TX)
=x1x,m,N=v (081,x = (N = V) Xifrx veyv (M > (N > 0)x)Cuvevrx (Xa,n,y < TX)
=(M = (N =¢))x(xm,n,y < TX).

The first equality is the definition of (M ® N = ¢). In the second equality we use Eq. (3.24)
and Eq. (3.1). The third equality applies naturality of x to the morphism oy x in the second
®-component, and then uses naturality of x applied to oy, x (under application of Eq. (3.1)). Again
under application of the left module coherence and Eq. (3.8), the forth equality applies naturality
of x to ¢x. The last two equalities follows by definition of M = (N = ¢).

Next, we check that V is a B-balanced C-bimodule. This follows using the natural isomorphism

Bvgx =¢x: VaTX —TX V.

The isomorphism [ defined this way is, by Eq. (3.56), compatible with ® as required in Eq. (3.38).
The compatibility condition (3.39) holds by the way in which M = (¢ < N) is defined. However,
we have to verify that  is indeed a morphism in V. This follows from naturality of ¢ applied to
T(¥xy), using Eq. (3.21), and the ®-compatibility from Eq. (3.56). Indeed,

(TY = ¢x)(¢ < TX)y = (TY & ¢x)(rvvrx(dx < TX)évryrx (V< orxy)éyxry
= xryrx v (v, x) T = V)dvex(V <y x)(V < orxy)érxry

= xtyvrx,viorxy = V)((M?{,y) e V)oxgy (V < N)T(,Y)éa,lTX,Ty

= xryvrxvi{orxy & V)xrx ryy (TX = ¢y)irx vy (dv < TY)

= (TX =¢)y(px < TY).

Now assume given a morphism of C-bimodules F: V — W. We can define an induced morphism
Fi: Vg — Wz by declaring that an object (V, ¢) be mapped to the pair (F(V), $"(V)), where

V) = Apx v F(6x) oy

It follows that ¢F(V) satisfies the required tensor compatibility from Eq. (3.56) using that ¢ itself
satisfies this compatibility, and that F is a morphism of bimodules. Functoriality is also readily
verified using that the composition of two morphisms of C-bimodules is again a morphism of
C-bimodules. Finally, F is a morphism of B-balanced bimodules as by construction of ¢F(V) the
diagram

F(3 —F
F(V < TX) B 07F8x) F(TX = V)

lATXM
@F%@V%X=A1&VF@XWQ%X

F(V)<TX TX =F(V)

ipV,TX

comimutes. i
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The functor thus constructed provides a right 2-adjoint to the functor (—)|, - of forgetting the
B-augmented structure:

Theorem 3.42. Given a B-balanced C-bimodule W and a C-bimodule V, there exists is an isomor-
phism of categories in Caty,

which is natural in YW and V.

Proof. Assume given a morphism G: W|, , — V of C-bimodules. The bimodule W is B-balanced.
This means, in particular, that there exists natural isomorphisms Sy x: W < T(X) - T(X) =W
for any objects W of W and X of B. In order to construct a morphism of bimodules Gg: W — Vg
we map an object W € W to the pair (G(W), ¢¢W)), where &) = AG(Bw.x)p~!. Indeed, U
satisfies the ®-compatibility of Eq. (3.56), which follows, under application of naturality of A, p and
uT, from Eq. (3.38). Functoriality of Gg is clear by construction.

Next, we check that Gg is a morphism of B-balanced C-bimodule. Indeed, the compatibility of 3
which makes W a B-balanced C-bimodules with the structural isomorphisms of C as a B-augmented
monoidal category imply that ¢SW) satisfies ®-compatibility of Eq. (3.56). Conversely, given a
morphism of B-balanced bimodules H: W — Vg we can restrict to a morphism H|, ,: W|,, — V.

Starting with a morphism H: W — Vg, we consider (H|; ), which maps an object W to the
pair (H(W), AH(8)p~!). But as H is a morphism of B-balanced bimodules, we see that

)\TX,WH(/BW,X)p;V%T(X) = <¢H(W))X7

and hence, (H|,_;)z = H. On the other hand, given a morphism G: W|, . — V, consider the
morphism of C-bimodules Gg|y . It is clear that Gg|,_o (W) = G(W). This shows the claimed
isomorphisms of k-linear categories.

It remains to show that the isomorphism of categories in the statement of the theorem are natural
in W and V. To this end, let G: W|,» = V, F: V — V' be morphisms of C-bimodules, and
H: W - W, G: W — Vg be a morphism of B-balanced C-bimodule morphisms. Consider the
compositions

Wle e v w Vi
V’ Wl

We want to show that FpGp = (FG)g and (G'H)|,_», = G'|,_ H|c_(. First,
FeGa(W) = Fa(G(W), ¢“MM)) = (FG(W), ")) = (FG)s,

which uses a very similar argument as in the proof of functoriality of (—)s in Proposition 3.41.
Further, for a morphism f in W, both sides evaluate to FG(W). The second equality is clear. This
concludes the proof of functoriality, and hence the proof of the theorem, as we observe that the
adjunction is Catg-enriched, in the sense of [Kel05, Section 1.11], since we have an isomorphism of
categories rather than a bijection of sets. O

Under the biequivalence from Theorem 3.27, we may reformulate the 2-adjuction as a collection
of equivalences of categories

Homegeor (W, V) ~ Homegzcor (W, Vi)

which is natural in W and V. Here, V is a CIXKIC°P-module and W is a C Xz C°P-module. The module
W] is the restriction of the action along the universal functor B: C X C% — C Xp C°P.

As a consequence, we obtain a relationship between the two natural ways to introduce categorical
modules over the relative monoidal center Zz(C) presented in Lemma 3.39.
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Corollary 3.43. In the setup of Theorem 3.42, there are isomorphisms of Zp(C)-modules
Hom¢ ¢(C,V) =~ Hom? (C, Vs),
which are natural in V.

Ezample 3.44. Let B € BiAlg(B), where B = H-Mod, for H a quasi-triangular Hopf algebra over
k. Then C = B-Mod(Vecty) is a bimodule over B using the induced bimodule structure. It follows
that Cp is equivalent to the category B—-Mod(B).

FEzample 3.45. Given functors of B-augmented monoidal categories Hi, Ho: C — D, we can define
the bimodule H1cHz,

A special case is to use the functor triv := TF: C — C. We call the Z5(C)-module Hp(C) :=
Homg ' o(C,™8CtY) the relative Hopf center of C over B. We will see in Example 4.2 how this name
is justified by a characterization using Hopf modules as in [Laul5].

When working with finite multitensor tensor categories [EGNO15, Sections 1.8, 4.1], stronger
statements can be derived. It follows that the finite multitensor categories Zz(C) and C K C°P are
categorically Morita equivalent, in the terminology of [EGNO15, Section 7.12], as their 2-categories
of modules are biequivalent.

Corollary 3.46. If B and C are finite k-multitensor categories, then Homegcor (C, —) is part of a
biequivalence of 2-categories between C X C°?-Mod and Z3(C)-Mod.

Proof. The category C K C°P is a k-multitensor category by Theorem 3.21 and finite by [DSPS19,
Theorem 3.3]. Further, with the construction of the functors in Lemma 3.39, we have that
Z5(C) is the image of the regular B-balanced bimodule C. This multitensor category is finite by
[EGNO15, Proposition 7.11.6]. Now, the C K C°P-module C is faithful as no non-zero object acts
by zero on it. Hence, by [EGNO15, Theorem 7.12.16], the functor Homeg,cor (C, —) is part of an
equivalence of categories. O

This result is a version of [EGNO15, Proposition 7.13.8], [Ost03a, Section 2] for the relative
monoidal center.

4. REPRESENTATION-THEORETIC EXAMPLES

In this section, we apply the general results from the previous section to monoidal categories of
representation-theoretic origin. This way, the results of this paper can, in particular, be applied to
quantum groups Uy (g) for generic g (see Section 4.3) and small quantum groups uc(g) (see Section
4.4), where € is a root of unity.

4.1. Yetter—Drinfeld Module Tensor Actions. Let B be a braided monoidal category with
braiding ¥. The category B-Mod(B) (or B-CoMod(B)) of modules (respectively, comodules)
over a bialgebra B in B is a monoidal category. Hence, we can again consider (co)algebra objects in
this category.

Recall Proposition 3.36 which states that the relative center Z5(C) is equivalent as a braided
monoidal category to the category of Yetter—Drinfeld modules gYD(B). The constructions in Section
3 lead to the following statement, for which a more direct proof was given in [Laul9, Theorem 2.3].
We give an alternative proof here.

Corollary 4.1. Let B be a bialgebra in B, C = B-Mod(B) and A an algebra in B-CoMod(B).
There is a left categorical action of the center Z5(C) ~ BYD(B):

>: BYD(B) X A-Mod(B-CoMod(B)) — A-Mod(B-CoMod(B)).
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An object (V,av,dv) of BYD(B) acts on an object (W, aw,dw) of A-Mod(B-CoMod(B)) by

(4.1) (V,ay,dy) = (W, aw, ow) :== (VO W, avew, dvew),
(4.2) ayew = (ay @aw )(Idp @V 4y @ Idw) (64 ® Idyvew),
(4.3) VoW = (mB ® IdV®W)(IdB ®\IIV,B ® Idw)(5v ® (5w)

Proof. We note that the result is a special case of Lemma 3.39, under the equivalence from Proposition
3.36. For this, we consider the category V = A-Mod(B). Note that these are not modules in
B-CoMod(B). We now give V a B-balanced C-bimodule structure. First, there is the trivial right
action, just given by tensoring in B, with the A-action given on the A-module factor (the first tensor
factor) only. Second, we can obtain a left action of C on V as follows: Given a left A-module (V, =y)
and a left B-module (W, =y ), we can define a left A-module structure on W ® V' using the A-action

(4.4) cwey = (Bw @ >y)(Idp @V A w @ Idy) (64 @ Idwey ).

Now consider, the left Zg(C)-module Homg ' o(C,V), and claim that it is equivalent to the category
A-Mod(B-CoMod(B)). Indeed, a C-bimodule functor ¢ is uniquely determined by the image
V = ¢(1) of 1, together with a natural isomorphism c¢: V®F — F®V satisfying ®-compatibility,
and compatibility with the augmentation, from Definition 3.40. Proceeding similarly to 3.34, we see
that there is an equivalence of B-balanced bimodules

Hom{ »(C,V) ~ IsomE(V < F,F=V) = Vp.

It can be shown that Isom§(V < F,F =V) ~ A-Mod(B-CoMod(B)) using a similar argument as
used in Proposition 3.36. O

We observe that the underlying B-comodule structure in the above categorical action of the center
is given by the monoidal structure in B—~CoMod(B), where the A-action is a generalization of the
induced action (which is recovered in the case where H = k was simply a field and B = Vecty).
Hence the result of Theorem 4.1 can be interpreted as a natural generalization of the induced action
to comodule algebras, which requires the use of the monoidal center as the category B-CoMod(B)
does not act on A-Mod(B-CoMod(B)) in a similar, non-trivial way.

Ezxample 4.2.

(i) Note that B is always a comodule algebra B™® with respect to the regular coaction given
by A. This case gives the category B-Mod(B-CoMod(B)), which is also known as the
category BH(B) of Hopf modules over B in B. A left Hopf module is an object V in B which
is both a left B-module, with action =, and left a B-comodule, with coaction J, such that
the structures satisfy the compatibility condition

(4.5) o> = (mB®>)(IdB®WB7B®Idv)(A®(S), = j= Q{I

In [Laul5], the category of Hopf modules is described by a general categorical construction,
called the Hopf center. The result of a categorical action of the monoidal (or Drinfeld center)
on the Hopf center is hence a special case of Theorem 4.1. Such a result was first proved in
[Lu94] in the case of finite-dimensional Hopf algebras over a field k.

(ii) We can also view B as a comodule algebra BV with respect to the trivial coaction (via the
counit €) on itself. In this case, the category B"V-Mod(B-Mod(13)) consist of simultaneous
left B-modules and comodules such that the structures commute, i.e. an object (V, >, 0)
with action = and coaction ¢ satisfying

(4.6) o> = (Idp ®>)(¥p 5 ®Idy)(Idp ®J).

In this case, there is an action of B-CoMod(B) on B"V-Mod(B-Mod(B)) and the action
of the center factors through this action via the forgetful functor 5YD(B) — B-CoMod(B).
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We can also provide a version of Corollary 4.1 for module algebras.

Corollary 4.3. Let B a bialgebra in B, C = Mod-B(B) and A an algebra in Mod-B(B). There
is a left categorical action of the center Z5(C) ~ YDEB(B):

>: YDZ(B) K A-Mod(Mod-B(B)) —> A-Mod(Mod-B(B)).

An object (V,ay,dy) of YDB(B) acts on an object (W, aw,bw) of A-Mod(Mod-B(B)), where
aw: AQW — W and byy: W B — W are A-, respectively B-actions, by

(4.7) (Viay,dv) = (W, aw,bw) := (VO W, avew, bvew),
(4.8) ayvew = (Idy ®aw)(Idy ®bs @ Idw ) (¥ 4,v ® Idpgw ) (Id4 @y & Idw ),
(4.9) byew = (by @ by )(Idy @V p @ Idg) Idvew ®AR).

Proof. First note that ay~w can be used to define a left action of C = CoMod-B(B) on V =
A-Mod(B). Similarly to the proof of Corollary 4.1, one can show — by making V a B-balanced
C-bimodule by using the trivial C-action on the right — that Home ¢(C,V) is equivalent to
A-Mod(Mod-B(B)). This way, the statement is a corollary of Lemma 3.39. For a direct proof,
see [Laul9, Theorem 2.4]. O

4.2. Applications to Braided Drinfeld Doubles. In this section, apply the results of this paper
to categories of modules over braided Drinfeld doubles, and explain connections to the construction
of comodule algebras and 2-cocycles over these double from [Laul9]. For this, let B = H-Mod for
a quasi-triangular k-Hopf algebra H throughout this section.

To define the braided Drinfeld double Dring (C, B) (due to [Maj00,Maj99], where this construction
is called the double bosonization), we let B and C' be braided bialgebras B with a non-degenerate
Hopf algebra pairing ev: C ® B — k. Then Dring(C, B) is a Hopf algebra such that there is a fully
faithful monoidal functor

BYD(B) — Dring(C, B)-Mod.

It induces an equivalence 5YD(B) ~ Dring (C, B)-Mod®~ ! to the category of modules with locally
finite C-action, i.e. modules V' where dim(C =>v) < oo for any v € V. In the case where H =k, and
B is a finite-dimensional Hopf algebra with C' = B* the dual Hopf algebra, this recovers a version
of the quantum double Drin(B) of [Dri86], and 5YD ~ Drin(B)-Mod is an equivalence of braided
monoidal categories (see e.g. [Kas95, Section IX.5] for a direct proof).

In the finite-dimensional case, Theorem 3.27 and Corollary 3.46 provide a new characterization of
categorical modules. For this, we use the superscript fd to restrict to finite-dimensional objects.

Corollary 4.4. If C, B are dually paired Hopf algebras in B = H-Mod, then there is a bifunctor

from categorical modules over B-Mod-B(B) to categorical modules over Dring (C, B)-Mod® !,
If B is a finite-dimensional Hopf algebra in B and B* its dual, then this bifunctor is a biequivalence,

i.e. the categories Dring(B*, B)-Mod™ and B-Mod™-B(B) are categorically Morita equivalent.

We can further described B-Mod-B(B) as modules over a Hopf algebra.

Definition 4.5. Let B be a Hopf algebra in 5. We can define a Hopf algebra structure on
B, ® H® B_, where By and B_ are two copies of the algebra B. The algebra structure is given
by requiring that B., B_, and H are subalgebras, such that

(4.10) bd = (R? =d)(RY =b),  hb=(hqy=b)hw),  hd= (hqy=d)he),
forbe By, de B_, and h € H. The coproduct is given on generators by
(4.11)  A(h) = Ap(h), A®) =byRP @ (RY =by)), A(d) =R Dde @ (R =d)).
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Here b1y ® b2y and d(1) ® d(2y denote the coproduct of B. The counit is given by ep ® ey ® €.
The antipode S is given by

(412)  S(h) = Su(h),  SOb) = S(RP(RV =Sp(0b)),  S(d) = S(R™W)RE? = S5 (d)).
The resulting Hopf algebra is denoted by (B ® “PB) x H.

He note that if B is a self-dual Hopf algebra in B (for example, a Nichols algebra [AS02]), then
(B®PB) x H has the same coalgebra structure as Dring (C, B), but the algebra structure is easier.

Proposition 4.6. Let B be a Hopf algebra in B. Then there is an equivalence of monoidal categories
B-Mod-B(B) ~ (B® “°’B) x H-Mod.

Proof. Assume given an object V' in B-Mod—B(B) with left actions of B and H denoted by = and
right B-action <t. Then a left action &= of (B ® “°°B) x H is defined by

htv = hro, b>v = b, dsv= (R Veov)< Sgl(Rf(z) = d),

forveV,be By, ce B_, and h € H. We note that the right action of B_ is obtained from the left
B action through the functor ®~! in Lemma 3.19. ([l

Further, the results of this paper relate to the constructions of comodule algebras over the braided
Drinfeld double in [Laul9]. Let A be a left B-comodule algebra in B = H-Mod. It was shown in
[Laul9, Corollary 3.8] that the braided crossed product A x “PC x H is a Dring(C, B)-comodule
algebra. Therefore, there is a categorical action of Dring (C, B)-Mod on A x “PC' x H-Mod, such
that the fully faithful functor (obtained by using the pairing ev)

A-Mod(B-CoMod(B)) — A x “°PC' x H-Mod

is one of Zg(C)-modules. The action of the former is given by Corollary 4.1, and the action on the
latter is given by restricting the Dring (C, B-Mod)-action to the subcategory BYD(B) ~ Z5(C).
As examples for the braided crossed product, we may consider the braided Heisenberg double
Heisy (C, B) or the twisted tensor product algebra B ®g-1 C' x H (see [Laul9, Section 3.3] for
details).
Related to this, there exists two maps of spaces of left 2-cocycles in non-abelian cohomology
[Laul9, Section 4.4]:

Indg: H%(B,k) — H?*(Dring(C, B),k), Indc: Hy(“PC,k) — H?*(Dring(C, B),k).

It follows that if an algebra A is a 2-cocycle twist of the bialgebra B in B by a cocycle 7, then
A x “PC % H is a 2-cocycle twist by Indg(7), cf. [Laulb, Proposition 3.8.4]. As a special case,
Heisy (C, B) is a 2-cocycle twist of Dring (C, B) by the 2-cocycle Ind g(triv) for the trivial 2-cocycle
of B. This result generalizes the theorem from [Lu94] for finite-dimensional k-Hopf algebras.

4.3. Applications to Generic Quantum Groups. The construction of Z5(C) is motivated by
the representation theory of quantum groups U,(g) as discussed in the introduction, see Section 1.2.
We will discuss first applications to this setup. A more detailed study of representation-theoretic
applications in this important example will appear elsewhere.

For this section, denote by F the field k(q) for a generic variable ¢ over k. Following Lusztig
[Lusl10] fix a Cartan datum I. That is, a finite index set I together with a symmetric bilinear form -
on the free abelian group L := Z{I) = Z{g; | i € I), such that i - i is even, and a;; := 2% € Z<o,
for all ¢ # j. We can use this datum to define a dual R-matrix on the category L-CoMod by
R(gi,95) = ¢*7. The braided monoidal category thus obtained is denoted by L-CoMod,.

We now define E := Fle; | i € I) to be the left L-comodule where §(e;) = ¢; ® e;, and
F :=TF{f; | i€ I) the left dual L-comodule, i.e. 6(f;) = g;l ® fi. A duality pairing can be given by

¢ )
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where ¢; := ¢/2. Using the dual R-matrix, F and F' become dually paired Yetter—Drinfeld modules
over the lattice L. The L-actions are given by

(4.14) gi-ej=q"7ej, gi-fi=a"fj.
Hence, we can consider the Nichols algebras (or Nichols-Woronowicz algebras) U,(ny ) := B(E),

Uy(n_) := B(F). See e.g [AS02] for details on this construction. We note that Uy(ny) and Uy(n_)
are dually paired braided Hopf algebras in L-CoMod, which are primitively generated. That is,

(4.15) A(el) =6 ®1+1Qe;, A(fl) =fi®1+1Q f;.

The pairing of the braided Hopf algebra is the unique extension ev of the pairing of £ and F' to one
of braided Hopf algebras (see [Lus10, Proposition 1.2.3]). It is a theorem of [Maj99] and [Som96]
that there exists an isomorphism of Hopf algebras between Dring (Uy(n_), Uy(ny)) and Uy(g), where
g denotes the semi-simple Lie algebra corresponding to the Cartan datum I, and H = U,(t) is a
group algebra generated by K; for i € I (cf. also [Laul9, Theorem 3.25]).!

Here, we use the following version of the quantum group U,(g). The algebra U,(g) is generated
by FEj;, Fi,Kiﬂ, for 7 € I, subject to relations

(416) KB =qVEK;, KiFj=q YFEK, KSKP =1, [EF]= 5JK:K_11
1—a;; 1—ai; e

(4.17) 2 (_1)k (1 _kaij) Eilfaij*lcEngC —0, 2 (_1)k (1 —kaij> El—aij—ijﬂk —0,
k=0 ai k=0 ai

for i # j € I. Here, (gl)q = %, for n > m, where [n], = %. We use the coproduct

(4.18)  A(K) =K, ®K;, AE)=E®K +1®E, AF)=F®1+K, '®F.

This version of the quantum group appears e.g. in [CP95, Section 9.1]. It is the coopposite Hopf
algebra of the quantum group of [Jan96, Chapter 4].

Theorem 4.7. Let B = L-CoMod, and C = Uj(n_)-Mod(B). Then the category Z5(C) is
equivalent to the full subcategory of Uy(g)-modules V' s.t.

(i) V is a weight module, i.e. V =@, Vi, where Kj - v; = qIv; for any v; € Vi;

(ii) V is locally finite over Uy(ny), i.e. dim(Uy(ny)-v) < oo for anyve V.
That is, V is a Ug(ny)-locally finite weight module over Uy(g). We denote the full subcategory of
U,(g) Mod of such modules by U,(g)-ModVs(m+)—1fv,

Ug(n_) o . .
Proof. Recall that Z3(C) ~ UZ (n_)YD(B) by Proposition 3.36. Given a Yetter—Drinfeld module over

U,(n_) with action f; - v, and coaction §(v) = v(=H @ (%) for v € V, we define a U,(g) action by
K; v =g, F,-v=fi-v, E;-v= q_i'|”(0)‘ evie; @ o) 0]

where v — |v|®uw is the L-grading of V. The action of Fj is locally finite by construction. One checks

ggg;;;gYD(B) is a
morphism of the corresponding U, (g)-module. As the pairing is non-degenerate, any Ugy(n)-locally
finite U,(g)-module, with action of the K; induced by an L-grading, arises this way. This uses that
the dual R-matrix of kL induces a non-generate Hopf algebra pairing of kL with the group algebra

K generated by the K; (using that ¢ is generic). ([l

that this action preserves the quantum group relations. Further, any morphism in

1n [Maj99] and [Laul9], ug(n_) is the left dual of u,(ny). In the present paper, we reverse the roles so that ug(ny)
acts locally finitely in Theorem 4.7.
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Note that the above conditions on U,(g) modules are two out of the three conditions used to
define the category O, for quantum groups in [AM15]. Modules in Z3(C) are not necessarily finitely
generated. Note that, however, unlike Z5(C), Oy is not a monoidal category as the requirement of
finite generation is not stable under taking tensor products over F.

The category C X C°P is, by Proposition 3.11 and Example 3.23, equivalent as a monoidal
category to Uy(n_)-Mod-U,(n_)(L-CoMod,). This category can be identified as the category
Ty(g)-Mod" of weight modules (that is, modules satisfying condition (i) from Theorem 4.7) over
the following Hopf algebra:

Definition 4.8. Consider the Hopf algebra T;(g) generated by z;, y;, K, K;l for i € I, subject to
the relations

(4.19) vy = ¢ywi,  Kixg=q 5K, Kiyj=q yK, KUK =1
1—aij 1—ay;
1 — qis T 1— a T
(4200 ) (_1)k( k W) z " agal =0, ) (_1)k< k Zj) v "Nyl =0,
k=0 ai k=0 g

with coproducts defined on generators by
(4.21) Alr) =2, @1+ K '@y, Aly) =1 @1+ K; @y, A(K;) = K; Q@ K;.

It was shown in [Mas08, Example 5.4] that Uy,(g) is related to a version of Tj(g) via so-called Doi
twist. That is, a two-sided twist of the algebra structure by a 2-cocycle.

The constructions of this paper, see Section 3.6, imply that given a categorical module over
T,(g)-Mod" of weight modules over T;(g), we can construct a categorical module over the category

Uq(g)fMoqu(M)_lfw. Further, this constructions is bifunctorial.

4.4. Applications to Small Quantum Groups. In this section, we explain how to obtain the
small quantum group u.(g) as a braided Drinfeld double, and apply the results of this paper to this
example as a main application.

Let (I,-) be a Cartan datum (as in the previous section) which is assumed to be of finite type.
Denote the associated Lie algebra by g. Assume that k is a field of characteristic zero and e e k a
primitive [-th root of unity, where [ > 3 is an odd integer (assume that [ is coprime to 3 if g contains
a Go-factor). Note that € is also a primitive I-th root of unity. We set ¢; := €"/2.

Let K = (ki,..., k) be the abelian group generated by k; such that k! = 1. Consider the group
algebra kK as a quasi-triangular Hopf algebra with universal R-matrix given by

1 ..
(4.22) R:W D1 ek

1,j€Z(I)

Similarly to Section 4.3, we can define a kK-module E' = k{e; | i€ I), with action given by
k; >e; = €Jej. The universal R-matrix induces a coaction on E given by

(4.23) 5(e;) = R ® (RY =¢;) = ki ®e;.

Consider the dual kK-module F = k({f; | i€ I, with action given by k; = f; = ¢ *J f;. Following
[Lus10], the pairing (, »: EQ F — k, {fi,e;) = (e — 61-_1)*1 uniquely extends to a pairing
ev: T(E) ® T(F) — k. of primitively generated Hopf algebras in K-Mod,. The quotients by the
left and right radical of the pairing ev yields braided Hopf algebras B(FE), B(F'), so-called Nichols
algebras [AS02], such that the induced non-degenerated pairing ev on B(FE) ® B(F') is one of Hopf
algebras. It is well-known, see e.g. [AS00, Section 3|, that B(E) can be identified with u(n. ), and
B(F') with ue(n_). In addition to the quantum Serre relations of Eq. (4.17), with e;, f;, €; instead of
E;, F}, q;, these algebras satisfy the nilpotency relations el, =0, fL =0, for all positive roots a.
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The following theorem can be found in [Shil6, Section 6.5]. Here, it is derived similarly to
[Laul9, Theorem 3.25]. Details on the version of the small quantum group u(g) (in the De
Concini-Kac-Procesi form) used here can be found in [BG02, Chapter I11.6].2

Theorem 4.9. There is an isomorphism of Hopf algebras between Dring (B(E), B(F')) and uc(g).

Proof. The braided Drinfeld double is the Hopf algebra generated by e;, f;, k:;—rl subject to the
relations

. . _ . 1— k™2
kiej = €Jejki,  kifi = ik, kPRI =1 eifj — € fiei = 6 —",
i
= 1—-a g 1-a
—ai\ 1k — i\ ek
2 (_1)k( B z]) e, a;j ejef _ 07 2 (_1)k( B z]) fz aij fjfz’k — 07
k=0 % k=0 i

=0,  fhL=0,
with coproducts given by
A(ki) = ki ® ki, Ale) =e;®1+k; ' ®e;, Alf)=fi®1+k'® fi.

One now checks that the mapping ¢(k;) = K;, ¢(e;) = Ki_lEZ-, o(f;) = F; extends to an isomorphism
of Hopf algebras ¢: Dringg (B(E), B(F)) — uc(g). O

Corollary 4.10. Denote B = K-Mod, and C = u.(n_)-Mod(B). Then there is an equivalence of
monoidal categories between Zz(C) and u(g)-Mod.

We can now apply Theorem 3.46 to the B-augmented monoidal category C = uc(n_)-Mod™(B).

Corollary 4.11. The monoidal categories ue(g)fModfGl and C K C°P are categorically Morita
equivalent. The latter category is equivalent as a monoidal category to u(n_)-Mod™ u.(n_)(B).

Definition 4.12. Denote by ¢.(g) the algebra generated by x;, k;, y; for i € I, subject to the relations
obtained from Egs. (4.19)—(4.20) by replacing ¢; with ¢;, and the additional relations xi =0, yé» =0
and Hopf algebra structure given using the same coproduct formulas as in Eq. (4.21).

Corollary 4.13. The monoidal categories C K CP? and t.(g)-Mod are equivalent.

APPENDIX A. EXISTENCE OF RELATIVE TENSOR PRODUCTS

Proof of Theorem 3.6. We prove the theorem in two steps. First, we show the existence of a k-linear
category V ®¢ W, which is then completed under finite colimits to give V K W.

In the first step, we work in the 2-category of small k-linear categories Caty. That is, we do not
require the existence of finite colimits (or biproducts) at this stage. The 2-category Caty is cartesian
closed, with tensor product ® and cocomplete (see [Wol74]) as it is the category of Vecty-categories.
We also require the existence of conical pseudo-colimits in Caty (see [Kel89, Section 5]). Indeed, it
was shown in [Str76] that such conical pseudo-colimits reduce to indexed colimits, and hence exist.

We fix some notation. Denote by D the 2-category described by

— l2
D= (1 m 2 3),
- T2
T1
lQT‘l = 1"2[1, X:Trom é rori, f: lgm é lgll.

2We use the coopposite Hopf algebra of the one appearing there.
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Given a right C-module V and a left C-module W, we can define a strict 2-functor I': D — Caty by
the diagram

l1=<®Id¢ ® Idyy
—_— T —
m=Idy, @R @ Idyy ==l

r=(vececew VOCOW Vew ),

ro=Idyy ®=

r1=Idy ®Id¢ ®c
I(x)=x®ldw, I[(§)=1dy&¢.
where by slight abuse of notation, rq, l1, 72, I and m also denote their images under I'.

In short, the relative tensor product V ®¢ W of a right C-module V and a left C-module W can
be defined as the (conical) pseudo-colimit (see [Kel89, Eq. (5.7)]) over I' in Caty which exists by
the above considerations.

We shall now spell out the data and universal properties involved in the definition of V ®¢ W in
detail. Let D be a k-linear category and assume the existence of a diagram

l1=<®Id¢e ®Idyy
—_— A T —
m=Idy @R @ Idyy lr==®ldyy

VRCRCQW VRCRW VoW

- re=Idy Q= pi,
r1=Idy ®Id¢ ®=> PLy
Pm Prg

Pry

(A1)

Fy

i.e. there are natural isomorphisms

pi: F1 = Fali, pp: F1 = For1, pm:F1 = Fom, p,:Fo= F3la, pp,: Fo = Faro,

satisfying

(A'Q) (pT2 ©0 Idll)pll = (:012 ©0 Id?‘l)pha
(A.3) F3(x @ Idw)(pr, 00 Idm) pm = (pry 00 Idr ) 1
(A4) F3(Idy &) (p1, 00 Idim) pm = (p1, 20 1dy, ) pi, -

Note that the data of such a diagram is the same as a pseudo 2-natural transformation A7 —
Funy (I'(—), D), where AZ is the constant 2-functor from the (opposite of) the 2-category D to
Caty, see [Kel89, Section 5]. (In the case of the simple diagram D, (A.2)—(A.4) are all coherences
for the morphisms of the form p.)

Together with modifications, the pseudo 2-natural transformations Z = Funy(I'(—), D) form a
k-enriched category, which we denote by coConey(I", D). That is, coConeg(I', D) has diagrams of
the form (A.1) as objects. Given two such diagram, where in the second one the functors and natural
isomorphisms are equipped with a dash, e.g. F7, p/. , a morphisms in coConey(I', D) consists of
natural transformations p;: F; = F}, such that the following diagrams commute (for i = 1,2):

PL; Pry Pm
F,; — Fi+1li F,— Fi-&-lri Fi—Fom
(A.5) uiﬂ , umHOoli Mﬂ ) ﬂmﬂoon mﬂ um%m
Py P o
, 1 , I 2 / / my /
Fy == Fi 1l Fy == Fi " b =—=Im.

The relative tensor product V ®¢ W comes together with the data of a counit in the language
of [Kel89], i.e. a pseudo 2-natural transformation o: AZ = Funy(G(—),V ®c W). That is, there
exists a diagram as in (A.1) for D = V®¢ W, where we denote the appearing functors by ¥y, Wy, and
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W3, and the natural isomorphisms by o, for x = ry,11, 79,12, m. Given a functor F: V& W — D,
the counit provides a diagram of the form (A.1). The universal property of ¥V ®¢ W now asserts
that this assignment gives an isomorphism of categories

coConeg(T', D) = Fung(V ®: W, D).
Next, we claim that there is an equivalence of k-enriched categories
coConey (', D) ~ Fun{ (V@ W, D).

An object of coConey (T, D) already comes with a functor F := F3: V®W — D, and a C-balancing
isomorphism can be defined using 7 := p, pl_Ql. We need to verify the coherence diagram (3.16).
This follows from commutativity of the diagram

F3((V<C)< D)@ W) F3(¢®1d) F3((V < (CQFD)@W)
iplz ooldy, \Lpélooldm
Fo(V=C)®D@W) - Fo(V® (C®°D)QW)
\progldlx /
F3(V<C)®(D>W)) (VeceDew)
\Lpl oold,/ X
Fo(V®CQ(D=W)) Fo(V®(CR D)@W)
\meooldrl WQoOIdm
F3(V®(C=(D=W))) F214S0 F3(V ® ((C &° D) =W)),

for objects V in V, W in W and C,D in C. Commutativity of the smaller, enclosed, diagrams
follows from Eqs. (A.2)—(A.4). This implies commutativity of the outer diagram, which implies Eq.
(3.16). A morphism p in coConeg(T', D) clearly gives a natural transformation p;: F — F', which
commutes with the balancing as required in Eq. (3.18) using Eq. (A.5). Hence, we have constructed
a functor

T: coConey (', D) — Fun{ (V@ W, D),

which is k-linear by construction.
Conversely, we want to construct a k-linear functor

Q: Fun{ (V@ W, D) — coConey (I, D).

Assume given a C-balanced functor F with balancing isomorphism 7, we define

F3 = F, F2 = F(lg), F3 = F((ZQ o0 Idll)ll);
pr, = 1d, Pry =1, pm =F( " ®1d),
1, = 1d, pr, = nooldy .

Equation (A.2) follows as it is an equality by definition, and Equation (A.3) follows from Equation
(3.16) for the balancing isomorphism 7, while Equation (A.4) is just the invertibility condition of
F(£®Id). Thus, we obtain an object in coConey (I, D). Next, giving a morphism ¢: (F,n) = (F', )
of C-balanced functors, we define

p1 = o, p2 = ¢ op Idy,, w3 = ¢ oo Id,001a),

It is clear that the diagrams in (A.5) commute. For r1,1j,79,ls this follows from compatibility of 7
and the identities with ¢, while for m this follows from the compatibility of ¢ with the C-module
structure of V. This assignment is clearly k-linear and functorial, providing a functor €2 as required.
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Next, we show that T, (2 give an equivalence of categories. It is clear that T2 =~ Id. We apply
QY to an object (F,p) of coConex(I',D) and denote the image by (F,p). Then we define an
isomorphism u: (F, p) — (F,p) by

p = (p1, c0 Idyy ) puy H2 = Plys pz = 1d.
It is then readily verified that all diagrams in Eq. (A.5) commute, using that
Fy=Fy,  Fp=Fy(b),  Fy=Fs((booldy)), 7 =14,
pr =14 P =pnp,,  Pa=Fa( Q) Pre = Prapyy! 00 1dy, .

Note that the square involving p,, commutes by Eq. (A.4). As all u; are invertible, the claim
follows.

To this point, we have shown that V ®¢ W exists in Catg. By [Kel05, Theorem 5.35] we can
consider the closure V ®¢ W of V ®¢ W under finite colimits (which form a small class of indexing
types). Then there is an equivalence of k-linear categories

Funi(V ®: W, D) ~ Fung(V ®: W, D)

which is induced by composition with the inclusion functor ¥V ®c W — V ®¢ W. Hence, we denote
VXe W =V ®c W which is a category in Caty and claim that it satisfies the universal property
defining the relative tensor product of V and W over C as in Definition 3.5.

Indeed, since V X W has finite coproducts, there exists a functor T: VXKW — V K¢ W such that
T = 1¢T'. Now, given a C-balanced functor F: VX W — D, we can restrict to a C-balanced functor
F' = Fu.: YV ® W — D which, under equivalence, corresponds to a functor G’': V ®: W — D such
that F/ = G'T’. Such a functor extends to a functor G: V Xz W — D such that G’ = G, and
hence F' = GieT! = GTu, and thus F =~ GT. This way, we obtain an equivalence

Funf(V Xe W, D) ~ Fun{ (VX W, D)

induced by the functor T. Since V K¢ W is defined using two universal properties which satisfy
naturality, it is natural in both components V and W.

Note that given an equivalence, after choosing an inverse equivalence with the required natural
isomorphisms, these can be altered to obtain an adjoint equivalence [Mac71, Section IV.4]. O
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