
ABSTRACT

In this study, we assessed for the first time the use of 
a reticuloruminal temperature bolus and a thresholding 
method to detect drinking events and investigated dif-
ferent factors that can affect drinking behavior. First, 
we validated the detection of drinking events using 16 
cows that received a reticuloruminal bolus. For this, we 
collected continuous drinking behavior data for 4 d us-
ing video recordings and ambient and water tempera-
ture for the same 4 d. After all the data were synchro-
nized, we performed 2 threshold algorithms: a general-
fixed threshold and a cow-day specific threshold algo-
rithm. In the general-fixed threshold, a positive test 
was considered if the temperature of any cow fell below 
a fixed threshold; in the cow-day specific threshold, a 
positive test was considered when the temperature of 
specific cows fell below the threshold value deviations 
around the mean temperature of the cow for that day. 
The former was evaluated using a threshold varying 
between 35.7 and 39.5°C, and the latter using the for-

mula µ σ−
n
10

, where µ = mean of the temperature of 

each cow for one day, n = 1, 2, …, 20, and σ = stan-
dard deviation of the temperature of each cow on that 
day. The performance of the validation of detection 
using each of the threshold types was computed using 
different metrics, including overall accuracy, precision, 
recall (also known as sensitivity), F-score, positive pre-
dictive value, negative predictive value, false discovery 
rate, false omission rate, and Cohen’s kappa statistic. 
The findings of the first study showed that the cow-day 
specific threshold of n = 10 performed better (true 
positives = 466; false positives = 167; false negatives = 
165; true negatives = 8,416) than using a general-fixed 
threshold of 38.1°C (true positives = 449; false positives 

= 181; false negatives = 182; true negatives = 8,402). 
With the information gained in this first study, we in-
vestigated the different factors associated with tem-
perature drop characteristics per cow: number of drops, 
mean amplitude of the drop, and mean recovery time. 
For this, we used data from 54 cows collected for almost 
1 yr to build a mixed-effect multilevel model that in-
cluded days in milk, parity, average monthly milk pro-
duction, and ambient temperature as explanatory 
variables. Cow characteristics and ambient temperature 
had significant effects on drinking events. Our results 
provide a platform for automated monitoring of drink-
ing behavior, which has potential value in prediction of 
health and welfare in dairy cattle.
Key words: reticuloruminal temperature, drinking 
behavior, algorithm, dairy cattle, precision livestock

INTRODUCTION

In recent years, the development of precision livestock 
farming technology has facilitated not only the collec-
tion of real-time data but also the integration of this 
information within the overall monitoring of individual 
animals (Berckmans, 2014; Walton et al., 2018). Among 
these technologies is the collection of reticuloruminal 
temperature data through the use of reticular boluses 
that transmit data to a central computer using an active 
radiofrequency transmitter (Costa et al., 2016; Kovács 
et al., 2017; Lees et al., 2018). This allows farmers to 
continuously monitor cows’ temperature, providing an 
alert when temperature goes out of a preset range; for 
example, during heat stress (Koltes et al., 2018). This 
technology could provide a high-quality, time-efficient 
approach to monitor the health of individual animals, 
thereby improving farmers’ and animals’ welfare.

Reticuloruminal temperature has been assessed as a 
potential prediction tool for estrus (Cooper-Prado et 
al., 2011), calving (Costa et al., 2016), dystocia (Kovács 
et al., 2017), and health status (Timsit et al., 2011) 
in cattle. In addition, reticuloruminal temperature can 
be affected by external variables such as water intake 
(Bewley et al., 2008b). This information could be used 
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as a potential proxy to measure automatically drinking 
behavior in cattle.

Monitoring drinking behavior is important for milk 
production, health, and physiological status in dairy 
cows. Cows require between 24 and 136 L of water per 
day based on their lactation period (Murphy, 1992), 
drink on average 7.3 (±2.8) times per day, and prefer to 
drink between 0600 and 1900 h, particularly after feed-
ing and milking (Cardot et al., 2008). Factors affecting 
water intake have a direct effect on milk production; a 
reduction in water intake can decrease milk yield up to 
26% (Steiger Burgos et al., 2001), whereas free access 
to water can increase milk production by up to 1.7 L/d 
(Daros et al., 2019). It has been observed that cows in-
crease their drinking bouts as temperature-humidity in-
dex (THI) increases; however, drinking bouts decrease 
once the THI is >82 (González Pereyra et al., 2010). In 
the case of health status, monitoring drinking behavior 
can be used to assess the development of health condi-
tions such as those seen in calves during diarrhea events 
(Wenge et al., 2014) or to predict diseases or physi-
ological states. Lukas et al. (2008) identified a negative 
association between water intake and calving and with 
fever and other diseases, whereas De Mol et al. (2001) 
was able to detect mastitis and other diseases using 
water intake events with a specificity of 86%.

Previous monitoring studies have associated water 
intake with events when temperature is below 37.8°C 
or below 3 times the standard deviation of a cow tem-
perature (Bewley et al., 2008a). Bewley et al. (2008b) 
observed that water intake and water temperature af-
fected the size of the reticuloruminal temperature drop 
and the duration of the effect; the colder the water, the 
greater the temperature drop and longer the time to 
recover. Cold water at 5.1°C decreased reticuloruminal 
temperature by an estimated 9.2°C, taking up to 3.5 h 
to return to the baseline temperature, whereas water 
at 34.3°C decreased reticuloruminal temperature by 
2.2°C, taking up to 2 h to return to baseline (Bewley et 
al., 2008b). However, the latter study did not control 
for other cow or environmental factors, and cows were 
observed under experimental conditions (e.g., feed and 
water access restricted for 2 h before and 3 h after 
study).

Reticuloruminal temperature can also vary depend-
ing on the cow breed, milk production level, and DIM 
(Bewley et al., 2008a; Liang et al., 2013; Stone et al., 
2017). It has been observed that reticuloruminal tem-
perature decreases as DIM and milk production increase 
(Bewley et al., 2008a; Stone et al., 2017); however, this 
latter association remains unclear. Although it could 
be expected that higher milk production will contrib-
ute to greater production of body heat, thus increasing 
reticuloruminal temperature, another study observed 

a negative association between milk production and 
reticuloruminal temperature (Liang et al., 2013).

The present investigation comprised 2 studies: 
the objective of the first was to validate the use of 
threshold algorithms to detect and determine drinking 
behaviors using a reticuloruminal temperature bolus. 
The objective of the second was to use the threshold 
algorithm from the first study to explore characteristics 
of drinking-related reticuloruminal temperature drops, 
including the effect of predictor variables such as ambi-
ent temperature, production, DIM, parity, and hour of 
the day. This work provides, for the first time, a com-
prehensive evaluation of the effect of drinking events 
on the reticuloruminal temperature of cows under field 
conditions.

MATERIALS AND METHODS

The present study was reviewed and approved by the 
Ethical Committee at the School of Veterinary Medi-
cine and Science, University of Nottingham (Approval 
Number: 1895- 161109).

Farm Management

All data used in this paper were collected on a com-
mercial dairy farm located in Worcestershire, United 
Kingdom. The herd comprised 432 Holstein Friesian 
milking cows with an annual yield of approximately 
10,000 kg/cow. The barn had deep sand-bedded stalls 
and fans located at each end that were operational over 
the summer months. Cows had ad libitum access to 
fresh water from 3 water troughs located around the 
barn and to a TMR pushed up 3 times a day after milk-
ing in one lane, to which cows had access from both 
sides. Cows were moved to pasture for approximately 3 
h after the morning milking year round, weather per-
mitting. While grazing, cows had ad libitum access to 
water.

Reticuloruminal Boluses and Ambient Temperature

For both studies (1 and 2), boluses (SmaXtec Animal 
Care GmbH, Graz, Austria) were used to collect reticu-
loruminal temperature data; boluses were administered 
by farm personnel using an oral applicator. Each bolus 
was powered by an internal lithium metal battery with 
a life of up to 4 yr. The internal antenna enabled com-
munication with an external receiver (SmaXtec Animal 
Care Technology). According to the product specifica-
tion, temperatures between 0 and 80°C could be mea-
sured with an accuracy of ±0.05°C (SmaXtec, 2018). 
The bolus has been validated for use in dairy cattle 
(Ammer et al., 2016a) and has been used to accurately 
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measure dairy cattle reticuloruminal temperature under 
different experimental settings (Gasteiner et al., 2009; 
Ammer et al., 2016b). The bolus also contained an ac-
celerometer generating an activity index between 1 and 
100. Activity and reticuloruminal temperature were 
recorded every 10 min and uploaded wirelessly to one 
of the several receivers within the barns when the cow 
came into range. Data were then logged on an Excel 
spreadsheet (Microsoft Corp., Redmond, WA), includ-
ing the date and time when activity and temperature 
were recorded. For the present study, activity data were 
not used. Ambient temperature was collected every 10 
min using one ambient temperature sensor located 2.5 
m above ground level in the middle of the barn (13.71 
m length × 12.19 m width barn).

Study 1: Validation of Detection of Drinking Events

Drinking Behavior. The validation study was de-
signed to assess the detection of drinking events by de-
tecting temperature changes using a threshold method. 
The drinking behavior of 16 cows with reticular boluses 
was recorded continuously for 4 d using CCTV cameras 
(5 Mp, 30 m IR; Hikvision Digital Technology Co. Ltd., 
City of Industry, CA) that were mounted 2 m above 
each of the 3 water troughs. The cameras were set to 
record at high quality (video format HEVC, H.265; and 
at 2,944 × 1,656 pixels quality) and at 20 frames/s. 
Cameras were connected to a 4-MB video recorder 
(Hikvision Digital Technology Co. Ltd.) from where 
video data were downloaded once the 4-d observation 
period was completed. Water and ambient temperature 
were also collected; water temperature was monitored 
using the same reticular boluses immersed in each wa-
ter trough for the duration of the study. Ambient tem-
perature was recorded using the previously described 
sensor.

An experienced behavioral researcher (G. G. M.-P.) 
scored the video recordings retrospectively to deter-
mine the times when cows were drinking, including the 
time spent on this behavior. To ease identification on 
the video recordings, each cow was spray marked on 
the back with a number from 1 to 20; when number 
identification was not possible, cows were identified on 
the videos by their coat patterns.

Videos were analyzed using drinking behavior defini-
tions as described by Cardot et al. (2008) and given 

in Table 1. Accordingly, each drinking behavior bout 
started with the first sip of water and finished when 
at least 4 min elapsed without any drinking. A drink-
ing sip started when the cow introduced its nose onto 
the water and finished when she raised her head above 
water level. A drinking bout could be made up of one 
or several events of water sipping. Two variables were 
obtained from the video analysis: number of drinking 
bouts and duration of drinking bouts.

Data Processing and Analysis. Drinking behav-
ior variables (number and duration of drinking bouts) 
were synchronized with reticular, ambient, and water 
trough temperatures. Synchronization was carried out 
in 2 steps. First, reticular, ambient, and water trough 
temperatures were synchronized by matching time-
stamps. In the second step, behavioral information 
(number and duration of drinking bouts) was combined 
with sensor temperature information. For this second 
step, binary labels for drinking behaviors (drinking/not 
drinking) were assigned, within the 10-min resolution 
of the reticular temperature boluses, whenever there 
was or was not a drinking bout.

Validation of the Detection of Drinking Events. 
The detection of drinking events was validated using a 
reticuloruminal temperature threshold method using 
2 threshold algorithms: a general-fixed threshold and 
a cow-day specific threshold. We used the threshold 
method because of its simplicity and effectiveness in 
detecting temperature dropping events that occurred 
as a result of drinking events, in a time series (Tong, 
2011). Moreover, simple threshold methods have shown 
to be accurate in classifying different activities in cows 
(Vázquez Diosdado et al., 2015) when using accelerom-
eter data. The algorithms were as follows:

 (1) General-fixed threshold algorithm: A single tem-
perature threshold was used for all cows to define 
a temperature drop (i.e., if the temperature of 
any cow fell below the general threshold, then it 
was considered a positive test). The general-fixed 
threshold type was evaluated using a threshold 
varying between 35.7 and 39.5°C in increments 
of 0.2°C.

 (2) Cow-day specific threshold algorithm: This 
threshold was computed using the formula 

µ σ−
n
10

, where n = 1, 2, …, 20 (n is a parameter 

Table 1. Drinking behavior definitions used in study 1 (validation of detection drinking events) based on Cardot et al. (2008)

Drinking behavior  Description

Drinking sip A cow introduces its nose onto the water and finishes when she raises her head above water level
Drinking bout Aggregation of one of several drinking events of water sipping
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that describes the different decreasing values of 
the cow-day specific threshold algorithm), µ is 
the mean of the temperature of each cow for one 
day, and σ is the standard deviation of the tem-
perature of each cow on that day. The cow-day 
specific formula looks at deviations below the 
mean core temperature of the cow using both the 
mean and standard deviation of the cow tem-
perature on the specific day. Therefore, a large n 
(e.g., n = 20) represents a low temperature 
threshold µ σ−( )2 , whereas a small n (e.g., n = 
1) represents a high temperature threshold 

µ σ−










1
10

.

Performance of the Validation. Algorithm 
performance was evaluated using different metrics 
which included overall accuracy, precision, recall (also 
known as sensitivity), F-score, positive predictive value 
(PPV), negative predictive value (NPV), false discov-
ery rate (FDR), and false omission rate (FOR), as 
defined in Dohoo et al. (2009), and Cohen’s kappa (κ) 
statistic (Ben-David, 2008):

 Cohen’s     κ =
−
−
p p
p

o e

e1
, 

where po is the relative observed agreement between 
the observed drinking event and the prediction of the 
drinking event, and pe is the hypothetical probability 
of change agreement. We also computed additional 
measures of the number of true positives (TP) divided 
by the number of drinking events, the number of false 
positives (FP) divided by the number of drinking 
events, the number of false negatives (FN) divided 
by the number of drinking events, and the number of 
predicted positives (TP+FP) divided by the number 
of drinking events. Receiver operating characteristic 
(ROC) curves, using both the general and the cow-
specific thresholds, were obtained by computing the 
true positive rate (TPR) and the false positive rate 
(FPR), where TPR = TP/(TP + FN) and FPR = FP/
(FP + TN) and TN = true negative.

Study2: Factors Associated with Drinking  
Event Characteristics

Data Processing. Seventy-six cows were selected 
for this study. Reticular boluses were placed into cows 
at different times between June 2016 and August 2017 
by farm personnel using an oral applicator and provided 
raw temperature data points every 10 min. Monthly 
milk production, DIM, and parity data were collected 
using the on-farm management software UNIFORM-

Agri (Assen, the Netherlands). Cows produced on aver-
age 41.82 (±10.45) L of milk per day and had an average 
of 140.62 (±101.68) DIM and a parity range between 1 
and 7. Cows in the data set that were diagnosed with 
either mastitis or another disease (e.g., retained fetal 
membranes) were removed entirely from the data set. 
This reduced the data set to 54 individual cows, with 
data collected from June 10, 2016, to April 12, 2018. 
From this group of 54 individual cows, we removed data 
from 3 wk before and 3 wk after a treatment event was 
reported (e.g., treated cows). Days where there was no 
information on DIM, production, or parity were also 
removed from the data set, giving a total of 3,474,983 
raw temperature data points. Therefore, data used for 
the analysis contained only information at times when 
cows were believed to be healthy, hence removing ef-
fects of illness. Additionally, temperature outliers (val-
ues <29°C; Bewley et al., 2008b), representing 0.0705% 
of the raw filtered data for the 54 cows, were removed 
from the data set.

Mixed-Effect Modeling. The potential associations 
between drinking event characteristics and explanatory 
variables were investigated using mixed-effect models. 
Three mixed-effect models were fitted, 1 for each of the 
3 different drinking event outcomes: (1) the number of 
drinking events per cow per day, (2) the mean ampli-
tude of cow drinking events per day, and (3) the mean 
recovery time of the drinking event per cow day. The 
number of drinking events was determined using the 
cow-day specific threshold method from study 1, where 
an event was detected when the temperature was below 
a specific threshold. The amplitude of a drinking event 
was computed as the difference between the minimum 
temperature within a drinking event and the tempera-
ture at the first point it fell below the threshold. Recov-
ery time was computed as the duration from the point 
at which temperature went below the threshold until it 
returned to the threshold value. The statistical models 
can be summarized as follows:

 
Z X X X

X X

ij ij ij ij ij ij ij ij

ij ij ij

= + + +

+ +

β β β β

β β

0 1 1 2 2 3 3

4 4 5 5

� � � �

� � iij oj ijV+ +� �ε ,
 [1]

where Z represents a transformed version of the drop 
characteristic, i represents a repeated measurement of 
Z, j represents a cow, and β0 represents the intercept; 
Voj
� is a random effect for cow, and εij is the residual 
error in the transformed space. Thus, 
β β β β β1 2 3 4 5ij ij ij ij ij
� � � � �, , , ,  and     represent vector coeffi-
cients for explanatory variables (X1 to X5). In each 
model, the Z drop characteristic was transformed using 
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a Box-Cox power transformation (Box and Cox, 1964; 
Sakia, 1992) defined according to the formula

 Z
y

y
=

− ≠

( ) =








/
,

λ λ λ
λ

1 0
0log

 [2]

where y was the variable to be transformed and λ was 
the transformation parameter. In each of the mixed 
models, the transformation parameter λ was obtained 
using the maximum likelihood (Seaks and Layson, 
1983). Box-Cox power transformation was performed 
using the Box-Cox function within the MASS package 
(Venables and Ripley, 2002) in R (R Core Team, 2017).

All models were set at the daily level resolution, 
meaning that the number of temperature drops was 
obtained for each cow each day; for the amplitude and 
recovery time, the mean of each day was used. The ex-
planatory variables ambient temperature (at the time 
of the drop), production, parity, DIM, and hour of the 
day were tested in each model. Days in milk, parity, 
and hour were treated as categorical variables; DIM 
was split into 3 categories—DIM phase 1, 2, and 3—
corresponding to ranges 1–75, 76–200, and >200 DIM, 
respectively. The distribution of predictor variables 
(DIM and parity) is shown in Table 2. Because of the 
percentage of data points in parities 5, 6, and 7, these 
categories were grouped into a single category labeled 
parity 5 and above. Hour of the day was grouped into 
3 categories: group 1, between 0000 and 0800 h, group 
2, between 0801 and 1600 h, and group 3, between 1601 
and 2400 h. These categories were selected based on 
milking patterns, because drinking behavior occurs 
more frequently after milking (Cardot et al., 2008).

Computation of the number of drops, amplitude of 
the drop, and recovery time for all models was per-
formed using custom-made scripts written in Matlab 
and Statistics Toolbox Release (2017a). The mixed 
model was fitted using the “lmer” function (Bates et al., 
2015) from the lme4 package in R (R Core Team, 2017). 
Inference for the parameters of the mixed model in the 
original scale was obtained using the procedure devel-
oped by Maruo et al. (2017), who proposed a method 
to obtain the model median difference between any 2 
groups on the original scale. This model median is read-
ily interpretable because it is an estimator on the origi-
nal scale. According to this procedure, the model me-
dian difference between groups g1 and g2 is given by 
δ ξ ξg g g g1 2 1 2; ;

  ,( ) = −  where ξ λη
λ

g g= +( )1 1/
, ηg represents 

the model mean on the transformed scale, and �ξg  is the 
model median in the original scale.

For DIM, median differences between DIM1 and 
DIM2, DIM1 and DIM3 were computed. For parity, 

median differences between categories parity 1 and 
parity 2, parity 1 and parity 3, parity 1 and parity 4, 
and parity 1 and parity 5 were computed. For hour, 
median difference between categories hour 1 and hour 
2, and hour 1 and hour 3 were computed. For ambi-
ent temperature, we created 2 categories: Temp_15_16 
(temperature between 15°C and 16°C) and Temp_16_17 
(temperature between 16°C and 17°C), to measure the 
effect that a change in 1°C in ambient temperature will 
have on the different drop characteristics in the original 
scale. Ambient temperature was used here as a proxy 
of water temperature because we expected them to be 
highly correlated (water on the tanks was not heated). 
For production, we created 2 categories Prod_41_42 
(production between 41 and 42 L) and Prod_42_43 
(production between 42 and 43 L), to measure the 
effect that a change of 1 L more milk in production 
would have on the temperature drop characteristics in 
the original scale. All of these categories were defined 
to model differences between categories at the original 
scale following the procedure developed in Maruo et al. 
(2017). All statistical analysis were completed using the 
R language and software (R Core Team, 2017).

Sensitivity Analysis. To determine how sensitive 
the model parameter estimates were to the definition 
of a reticular temperature drop, individual models were 
rebuilt and parameter estimates re-evaluated using the 
cow-day specific threshold for values of n = 10, 12, and 
15. This procedure was performed using an individual 
mixed model, as described above for each of the drink-
ing event characteristics.

RESULTS

Study 1: Validation of Detection Drinking Events

In Figure 1, we show an example of the reticulorumi-
nal temperature of the cow and “ground truth” (defined 
as the instances where a drinking event was observed) 

Table 2. Number of data points (measured in days) within each DIM 
and parity category1

Predictor
No. of data  

points
Percentage  

of total

DIM phase 1 3,954 36.45
DIM phase 2 2,665 24.57
DIM phase 3 4,227 38.97
Parity 1 1,263 11.64
Parity 2 1,904 17.55
Parity 3 4,303 39.67
Parity 4 2,299 21.19
Parity 5 546 5.03
Parity 6 328 3.02
Parity 7 203 1.87
1DIM was split into 3 categories: DIM phase 1, 2, and 3, which cor-
responded to ranges 1–75, 76–200, and >200 DIM.



VÁZQUEZ-DIOSDADO ET AL.

Journal of Dairy Science Vol. 102 No. 11, 2019

drinking events for the 4 d of the validation study. We 
recorded a total of 631 ground truth drinking events for 
the duration of the study.

Performance of Drinking Event Detection: 
General-Fixed Threshold Algorithm. The perfor-
mance of the algorithm for detection of drinking events 
using the general-fixed threshold is shown in Figure 
2. Both accuracy and specificity reached a plateau for 
threshold values between 35.7°C and 38.3°C, at which 
point they decreased rapidly. Recall increased with an 
increased threshold value to a maximum of 87.5% for 
a threshold of 39.5°C. Precision decreased with an in-
creased threshold, and the reduction in precision was 
particularly steep above 37.9°C. The F-score and Co-
hen’s κ increased from 35.3°C to 37.5°C and decreased 
for values above 37.5°C; NPV and FOR remained 
almost constant for all the threshold values. Positive 
predictive value decreased with an increasing thresh-
old, and the rate of decrease of PPV was higher for 
threshold values above 37.7°C. False discovery rate in-
creased with increasing threshold values and increased 
markedly above a threshold of 37.7°C. Therefore, the 
best range for maximizing the sensitivity (recall) of the 
detection of drinking events while maintaining a high 
level of precision (PPV) and specificity appeared to be 

located between 37.1°C and 38.1°C. In this range, the 
FDR was below 28.73%. The total number of TP, FP, 
total predicted positives, FN, and TN for this range 
(37.1°C–38.1°C) is shown in Table 2.

A threshold of 38.1°C produced a total of 630 posi-
tives (99.84% of the number of observed events) which 
was the closest to the 631 ground truth drinking events 
recorded. Using this threshold, 181 false positives 
(28.68% of the total number of events) and 182 false 
negatives were computed (28.84% of the total number 
of events).

Performance of the Drinking Event Detection: 
Cow-Day Specific Threshold Algorithm. The per-
formance of the detection of drinking events using the 
cow-day threshold and the different performance met-
rics are shown in Figure 3. Both accuracy and specificity 
reached a plateau for threshold values between n = 20 
and n = 1, at which point they decreased rapidly. Re-
call increased with an increased threshold value, with a 
maximum of 85.26% for a threshold of n = 1. Precision 
decreased with an increasing threshold and decreased 
particularly quickly for threshold values above n = 10. 
The F-score and Cohen’s κ reached a plateau from n 
= 20 to n = 10 and decreased for values above n = 10. 
Negative predictive value and FOR remained almost 

Figure 1. Example of reticuloruminal temperature changes in one cow (no. 328) over 4 d, illustrating temperature drops and ground truth 
behavior (red circles).
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constant for all the threshold values. Positive predictive 
power decreased with an increasing threshold, and the 
rate of decrease was higher for threshold values above 
n = 10. False discovery rate increased with increas-
ing threshold values and the rate was higher for values 
above n = 10. Therefore, the best range for maximiz-
ing the sensitivity (recall) of the detection of drinking 
events while maintaining a high level of precision (PPV) 
and specificity was between n = 15 and n = 10. In this 
range, FDR was below 13.68%. The total number of 

TP, FP, total predicted positives, FN, and TN for the 
range n = 15–10 are shown in Table 3.

A threshold of n = 10 produced a total of 633 posi-
tives (100.32% of the total number of observed events), 
which was the closest to the 631 ground drinking events 
recorded. Using this threshold, 167 FP (26.47% of the 
total number of events) and 162 FN (26.15% of the 
total number of events) were computed.

The exact performance values using the 2 thresh-
old types can be seen in the supplementary material 

Figure 2. Performance of validation using accuracy, specificity, recall, precision, F-score, Cohen’s kappa, positive predictive value (PPV), 
negative predictive value (NPV), false discovery rate (FDR), and false omission rate (FOR) for the general fixed threshold algorithm varying in 
a temperature threshold range between 35.7 and 39.5°C.

Figure 3. Performance of validation using accuracy, specificity, recall, precision, F-score, Cohen’s kappa, positive predictive value (PPV), 
negative predictive value (NPV), false discovery rate (FDR), and false omission rate (FOR) for the cow-day specific threshold that varied ac-

cording to the formula µ σ,−
n
10

 where n = 1, 2, …, 20, µ = mean of the temperature of each cow for one day, n = 1, 2, …, 20, and σ = stan-

dard deviation of the temperature of each cow on that day.
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(Supplemental Tables S1 and S2; https: / / doi .org/ 10 
.3168/ jds .2019 -16442). We also provide information on 
the TP, FP, total predicted positives, FN, and TN over 
the whole range of the 2 thresholds. A comparison of 
the ROC curves using both the general and the cow-
specific thresholds is shown in Figure 4. Additionally, 
we computed the area under the curve (AUC) for each 
of the thresholds, which showed a slightly higher AUC 
(0.7942) for the cow-day specific threshold compared 
with that (0.7905) for the general threshold.

Study 2: Factors Associated with Drinking  
Event Characteristics

The sensitivity analysis was performed using the 
cow-day specific threshold algorithm as this produced 
the best performance result. Results of the sensitivity 
analysis conducted using multilevel mixed models for 

each of the different drinking event characteristics with 
values n = 10, 12, and 15 are shown in Table 4.

Number of Drinking Events. The median number 
of drinking events (intercept; Table 4) varied between 
5.84 and 6.09 for the different threshold values (n = 
15, 12, and 10). The number of drinking events was 
significantly higher at ambient temperatures in the 16 
to 17°C range compared with the 15 to 16°C tempera-
ture range. Cows in DIM 2 and DIM 3 had significantly 
fewer drinking events compared with cows in DIM 1, 
and cows in DIM 3 had fewer drinking events than 
cows in DIM 2. Cows in parity 2 and parity 3 had 
significantly fewer drinking events compared with cows 
in parity 1.

Amplitude of the Drinking Event. The amplitude 
of the drinking event varied between 2.37°C and 2.82°C 
for the different threshold values (n = 15, 12, and 10). 
The amplitude of the drinking event was significantly 
smaller at ambient temperatures in the 16–17°C range 
compared with temperatures in the 15–16°C range. 
Cows in DIM 2 and DIM 3 had significantly larger am-
plitude of drinking event compared with cows in DIM 
1, and amplitude of the drinking event for cows in DIM 
3 was larger than that of cows in DIM 2. Cows in parity 
2, parity 3 had a significantly larger amplitude of the 
drinking event compared with cows in parity 1. Cows 
in parity 5 had a significantly smaller amplitude of the 
drinking event compared with cows in parity 1.

Recovery Time. The recovery time of the drinking 
event varied between 29.98 and 35.55 min for the differ-
ent threshold values (n = 15, 12, and 10). Cows in DIM 
3 had a significantly higher recovery time compared 
with cows in DIM 1. Cows in parity 4 had a significant 
lower recovery time of the drinking event compared 
with cows in parity 1.

In summary, we identified a significant effect from 
DIM 2 and DIM 3 and parity 2 and parity 3 in the 
number of drinking events for all 3 threshold values. 
Additionally, we identified a significant effect from 
ambient temperature, DIM 2 and DIM 3, and parity 2 

Table 3. Number of true positives (TP), false positives (FP), false negatives (FN), number of predicted 
positives (TP+FP), and true negatives (TN) using the cow-day specific threshold that varied according to the 

formula µ σ−
n
10

, with n = 15 to 101

Threshold  
value n TP FP TP+FP FN TN

15 421 61 482 210 8,522
14 429 68 497 202 8,515
13 433 80 513 198 8,503
12 442 103 545 189 8,480
11 452 133 585 179 8,450
10 466 167 633 165 8,416
1µ = mean of the temperature of each cow for one day, n = 1, 2, …, 20, and σ = standard deviation of the 
temperature of each cow on that day

Figure 4. Performance of validation using receiver operating char-
acteristic (ROC) curves using both the general (gen) and cow-specific 
thresholds. The plot shows the area under the curve (AUC) for both 
thresholds.

https://doi.org/10.3168/jds.2019-16442
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and parity 5 using the 3 different threshold values. For 
the recovery time of the drinking event, we identified 
a significant effect from DIM 3 using the 3 threshold 
values.

DISCUSSION

To our knowledge, this is the first study to develop 
and compare algorithms using reticuloruminal bolus 
temperature to detect drinking behavior in dairy cows 
and study what factors could affect drinking events 
as detected by temperature. We were able to robustly 
validate the use of a simple threshold algorithm to de-
tect drinking events through temperature drops in a 
short trial (4 d) and to use this method to investigate 
associations between drinking events and cow charac-
teristics on a larger longitudinal data set. Validation of 
threshold algorithms for detection of drinking events 
was performed using 2 types of thresholds (general-
fixed and cow-day specific) and over a wide range of 
values that provided a more robust assessment than 
using a single threshold value, as seen in a previous 
study (Boehmer et al., 2009). This was one of the key 
strengths of this study because we were able to evalu-
ate different performance parameters and trade-offs, as 
discussed below.

The general-fixed threshold algorithm showed that 
the best threshold values were located between 37.1°C 
and 38.1°C. Within this range, when maximizing recall 
(high level of specificity and accuracy and relatively 
high level of precision), the best value was 38.1°C. In 
the case of the cow-day specific threshold algorithm, 
we observed that the best result was located between 
n = 15 and n = 10; and when maximizing recall (sen-
sitivity) and maintaining a high level of specificity 
and accuracy and relatively high level of precision, the 
best value was located at n = 10. Overall, the cow-day 
specific threshold of n = 10 performed slightly better 
(TP = 466; FP = 167; FN = 165; TN = 8,416) than 
using a 38.1°C general-fixed threshold (TP = 449; FP 
= 181; FN = 182; TN = 8,402; Tables 2 and 3). This is 
possible because the cow-day specific threshold analy-
sis included individual cow reticulorumen temperature, 
which may be affected by external factors such as water 
and ambient temperature, humidity, and seasonality. In 
contrast, the general-fix threshold did not incorporate 
any of these factors.

Previous studies have suggested that drinking events 
can be detected using a fixed threshold value of 37.7°C 
(Cooper-Prado et al., 2011; Costa et al., 2016). This 
was based on previous studies that used a small sample 
(n = 9 cows; Boehmer et al., 2009), or few water in-
take observations per cow (e.g., 3 data points per cow; 
Bewley et al., 2008b; Boehmer et al., 2009), or col-T
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lected data under controlled experimental conditions 
(e.g., oral drench, water and feed restricted for up to 
21 h; Bewley et al., 2008b; Boehmer et al., 2009). The 
present study describes a method validated using a 
comparatively larger number of cows (16 in total), col-
lected data for a longer period (4 d in total), and car-
rying out observations under natural (e.g., not forced 
to drink) conditions. More importantly, we validated 
our method across a wide range of values (35.7°C to 
39.5°C for the general-fixed, and n = 1, …, 20 for the 
cow-day specific).

A general-fixed threshold algorithm may be useful to 
monitor drinking behavior at the herd level although 
possible differences between herds should be explored. 
For example, a herd that shows a sudden decrease in 
the number of drinking events may indicate a prob-
lem in the water supply, whereas a sudden increase in 
drinking events may be associated with a substantial 
change in ambient temperature (Polsky and von Key-
serlingk, 2017). A cow-day specific threshold algorithm 
is better suited to monitoring drinking events at the 
individual animal level, which could be used for health 
prediction and improving animal welfare. Siivonen et 
al. (2011) showed that cows with acute mastitis spent 
more time eating but less time ruminating and drink-
ing, and that those changes occurred at specific times 
of the day. These changes in individual behavior pat-
tern could be used for disease prediction. A cow-day 
specific threshold can provide a more reliable method 
for constructing a history of the drinking patterns for 
each individual animal, and hence for intra-individual 
comparison, because this considers the individual vari-
ability and the intensity of a behavior, which is im-
portant for identifying animals at greater risk of poor 
health and welfare (Cortés Fernández de Arcipreste et 
al., 2018; Vázquez Diosdado et al., 2018). Moreover, 
computing a cow-day specific threshold is very simple, 
requires only one day of data, and hence does not add 
any major computational cost.

The ability to detect drinking events using a thresh-
olding method and by incorporating this information 
rather that removing it, as in previous studies (Cooper-
Prado et al., 2011; Costa et al., 2016), has the potential 
to expand temperature monitoring in cows (Cooper-
Prado et al., 2011; Timsit et al., 2011; Costa et al., 
2016; Kovács et al., 2017). Drinking behavior in dairy 
cattle is important for the physical and emotional state 
of the animals (Baxter, 1983) and for farm economics 
because it is highly related to milk production (Steiger 
Burgos et al., 2001; Kramer et al., 2009; Daros et al., 
2019). Studies have shown that a decrease in water 
intake occurs during fever and mastitis episodes (De 
Mol et al., 2001; Lukas et al., 2008), and an increase in 
drinking events is associated with an increase in THI 

(González Pereyra et al., 2010; Ammer et al., 2016b). 
By monitoring drinking behavior on its own or in com-
bination with other behaviors, it might be possible to 
improve current methods for the detection of diseases in 
cows and heat stress. Additionally, monitoring drinking 
events during disease episodes can provide information 
on disease prognosis (Wenge et al., 2014). Therefore, 
monitoring drinking behavior using a simple threshold 
algorithm becomes very important because it is com-
putationally low cost and could therefore be done in 
real time, adding a highly accurate behavior prediction 
(97.07% maximum accuracy; Supplemental Table S2; 
https: / / doi .org/ 10 .3168/ jds .2019 -16442) and making it 
easier to be integrated in farms’ monitoring systems.

We investigated the association between reticuloru-
men temperature drop characteristics and environ-
mental and cow factors using the different threshold 
values for the detection of drinking events. Results of 
the mixed model analysis showed that ranges of 37.1°C 
to 38.1°C and n = 15 to n = 10 detected several reticu-
lorumen temperature drops (approximately 6 drinking 
events) that were close to previously reported values of 
7.3 drinking events per day (Cardot et al., 2008). The 
values of the amplitude of reticulorumen temperature 
drop observed (2.30 to 3.01°C) were close to previously 
reported values of 2.2°C (±0.50) when drinking hot 
water (34.3°C; Bewley et al., 2008b) but significantly 
different from an amplitude of 8.5°C (±0.50) when 
drinking cold water (5.1°C; Bewley et al., 2008b). Ad-
ditionally, the recovery times of 30 min observed in this 
study were significantly different from reported values 
of at least 2 h when cows drank cold water (16°C and 
7.6°C; Bewley et al., 2008b; Boehmer et al., 2009). It 
is important to consider that previously reported re-
covery times were observed under controlled environ-
ments where cows were not allowed to drink water (21 
h in Boehmer et al., 2009; 2 h in Bewley et al., 2008b) 
before the experiment. Also, the shorter recovery time 
observed in the present study may be explained not 
only by the fact that cows had ad libitum access to 
water and feed, but also by the water reticulorumen 
temperature, which may have been colder than ambient 
temperature.

As days in milk progressed (DIM 2 and DIM 3), 
cows showed fewer drops but a greater drop amplitude, 
meaning that cows with higher DIM had fewer drinking 
bouts but greater water intake. This finding could be 
related to changes in drinking behavior pattern associ-
ated with the stage of lactation, as cows have a higher 
water intake particularly between 60 and 180 d after 
calving due to the greater milk production (Kramer 
et al., 2009). Regarding parity, cows in parity 2 and 3 
showed fewer drops and larger amplitude of drops than 
cows in parity 1, meaning that these cows drank water 

https://doi.org/10.3168/jds.2019-16442
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less frequently but had larger water intakes than cows 
in parity 1. Dado and Allen (1994) observed than mul-
tiparous cows had higher water intake than primiparous 
cows, probably associated with milk production levels.

Interestingly, the number of drops was positively as-
sociated with ambient temperature at the cow level, 
meaning that cows appeared to drink more frequently 
when the ambient temperature was between 16 and 
17°C. In contrast, the amplitude of the drop was 
negatively associated with ambient temperature, being 
smaller when ambient temperature was between 16 and 
17°C. Previous studies have shown that water tempera-
ture has a positive effect on the amplitude of tempera-
ture drop and on recovery time (Bewley et al., 2008b; 
Boehmer et al., 2009). Other predictor variables such as 
milk production and hour of the day did not have any 
significant effect on the different drop characteristics. 
However, only average monthly milk production data 
were used in our study, which may not have allowed us 
to control for daily individual variation in the analysis.

The data to validate our threshold method were based 
on behavioral data collected by an experienced dairy 
cattle behavior scientist using the definition of drinking 
behavior from Cardot et al. (2008); considering that 
drinking behavior occurs at frequency of approximately 
8 events per day, it is easy to detect reliably, even by 
untrained observers (Martin and Bateson, 2007). Addi-
tionally, although the present study was carried out on 
a single farm, the cow-day specific threshold considers 
biological variation within cow; therefore, its applicabil-
ity could be generalized to other similar environments. 
However, it is important to consider that individual 
farm ambient and water temperature data, includ-
ing local seasonality, must be considered part of the 
method. Particularly, as demonstrated by the present 
and previous studies, these factors affect directly the 
drop in temperature and the extent of recovery (Bewley 
et al., 2008b; Boehmer et al., 2009; Cantor et al., 2018). 
Further research is needed to understand the effects 
of water quantity in rumen temperature and type of 
management system (e.g., restricted access to water) in 
the accuracy of the threshold method, particularly as a 
monitoring and predictive tool.

CONCLUSIONS

We demonstrated in this study how drinking behav-
ior can be detected at a high performance level using a 
simple thresholding algorithm, and how selection of the 
threshold value can affect the detection performance. 
Using a cow-day specific threshold with a threshold of 
µ − σ (mean cow-day reticuloruminal temperature mi-
nus 1 SD), we obtained the best detection performance 
and the closest number of predicted drinking events. 

The findings of this study provide useful information 
for the selection of a threshold value of reticuloruminal 
temperature to detect drinking events and further our 
understanding of associations between environmental 
or animal factors and drinking behavior. Future studies 
should look into integrating reticuloruminal tempera-
ture drops as a proxy for drinking behavior to monitor 
and predict health and physiological status of dairy 
cattle.
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