
sensors

Article

Privacy Engineering for Domestic IoT: Enabling
Due Diligence

Tom Lodge * and Andy Crabtree *

School of Computer Science, University of Nottingham, Nottingham NG7 2RD, UK
* Correspondence: thomas.lodge@nottingham.ac.uk (T.J.); andy.crabtree@nottingham.ac.uk (A.C.)

Received: 12 August 2019; Accepted: 28 September 2019; Published: 10 October 2019
����������
�������

Abstract: The EU’s General Data Protection Regulation (GDPR) has recently come into effect and
insofar as Internet of Things (IoT) applications touch EU citizens or their data, developers are obliged
to exercise due diligence and ensure they undertake Data Protection by Design and Default (DPbD).
GDPR mandates the use of Data Protection Impact Assessments (DPIAs) as a key heuristic enabling
DPbD. However, research has shown that developers generally lack the competence needed to
deal effectively with legal aspects of privacy management and that the difficulties of complying
with regulation are likely to grow considerably. Privacy engineering seeks to shift the focus from
interpreting texts and guidelines or consulting legal experts to embedding data protection within
the development process itself. There are, however, few examples in practice. We present a
privacy-oriented, flow-based integrated development environment (IDE) for building domestic IoT
applications. The IDE enables due diligence in (a) helping developers reason about personal data
during the actual in vivo construction of IoT applications; (b) advising developers as to whether
or not the design choices they are making occasion the need for a DPIA; and (c) attaching and
making available to others (including data processors, data controllers, data protection officers,
users and supervisory authorities) specific privacy-related information that has arisen during an
application’s development.

Keywords: general data protection regulation (GDPR); data protection by design and default (DPbD);
data protection impact assessment (DPIA); due diligence; privacy engineering; internet of things
(IoT); databox; integrated development environment (IDE)

1. Introduction

The European Union’s General Data Protection Regulation (GDPR) [1] has recently come into
effect to strengthen the protections provided to ‘data subjects’ or citizens (end users in more technical
terms) in the face of “rapid technological developments”. It is targeted at any system physical or digital
that ‘processes’ (collects, structures, stores, adapts, distributes, destroys, etc.) personal data and is
global in reach insofar as the processing touches EU citizens or their data no matter where it takes place.
GDPR defines a set of actors to which compliance applies, including ‘data controllers’ (parties who
commission and determine the purposes of personal data processing) and ‘data processors’ (parties
who process data on the controller’s behalf, including application developers that actually enable data
processing). Core to compliance is a set of Data Protection by Design and Default (DPbD) principles
such as data minimization and informed consent that are aimed at instilling good practice and reducing
risks to the data subject’s rights and freedoms.

Whether application developers like it or not, they are now obliged by regulation to take DPbD
into account and exercise due diligence unless they wish to be implicated in legal action that may result
in fines of up 10 million euros or 2% of worldwide annual turnover, whichever is greater and which
may be doubled if non-compliance is not rectified on the order of an EU member state. Application

Sensors 2019, 19, 4380; doi:10.3390/s19204380 www.mdpi.com/journal/sensors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/228168006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0857-7341
http://www.mdpi.com/1424-8220/19/20/4380?type=check_update&version=1
http://dx.doi.org/10.3390/s19204380
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4380 2 of 21

developers can no longer treat data protection as someone else’s problem, a disconnected process
that sits solely within the province of legal specialists. Rather, they will either be directly accountable
as data controllers or will be indirectly implicated by a requirement to ensure that data controllers
are able to fulfil their obligations in their capacity as data processors or actors who enable the data
processing operations.

A key heuristic mandated by GDPR to enable due diligence is the Data Protection Impact
Assessment (DPIA). DPIAs are a formal assessment of the privacy risks posed by a system; they
are mandatory in cases where processing is likely to be ‘high risk’ and are otherwise recommended
wherever personal data is processed. Both the assessment of whether a DPIA is necessary and the act
of conducting a DPIA will draw heavily upon the details of implementation, even if developers are not
directly accountable for performing a DPIA. The EU’s A29WP or Article 29 Data Protection Working
Party (now the European Data Protection Board) is clear on this: “If the processing is wholly or partly
performed by a data processor, the processor should assist the controller in carrying out the DPIA and
provide any necessary information” [2]. Compliance with privacy regulation has therefore become a
mundane but necessary feature of application development.

As Roeser [3] notes: “Engineers can influence the possible risks and benefits more directly than
anybody else.” However, despite the promise, research has shown that developers of all shades and
hues generally lack the competence to deal effectively with privacy management [4–7] and that the
difficulties of complying with regulation are likely to grow considerably [8]. Traditionally, developers
are faced with a couple of options. Firstly, they may hand off due diligence to experts. This presupposes
that (a) developers have access to such experts, which is unlikely in the case of a lone developer or small
business, and (b) the privacy expert has the technical competence needed to understand the impact of
development decisions upon privacy. Of course, guidelines exist, yet these tend to be oriented towards
a legal rather than technical domain. When they are aimed at the developer, in the form of privacy
patterns [9], checklists [10] and frameworks [11–13], they remain disconnected from the tools and
environments developers use to build their applications. This can mean that they are employed in
the later stages of the development workflow, rather than early on when changes to an application to
improve upon privacy are most easily and effectively made. Moreover, developers are faced with a
challenge of relating guidance to concrete technical considerations, i.e., whether a particular design
choice or implementation detail appropriately reflects given advice.

By way of contrast, the discipline of ‘privacy engineering’ [14] has recently emerged and aims to
embed privacy practice more deeply in the actual development process. Privacy engineering practices
are derived from privacy manifestoes such as privacy by design [15] and regulation (such as GDPR)
and may include data flow modelling, risk assessment and privacy impact assessments. Good privacy
engineering aims to embed privacy practice seamlessly into a developer’s workflow, to allow it to be
more easily assessed in relation to the specific artefacts being designed and implemented. By making
privacy tools a core part of the development process, rather than something that sits alongside it,
developers can be sensitized to the use of personal data (i.e., what it is and how it is being exploited)
during the actual in vivo process of building applications. This, in turn, may encourage developers to
reason about the implications of their applications and explore alternatives that minimize the risks
of processing personal data. More concretely, by building notions of privacy into a development
environment, the environment itself may provide guidance that relates specifically to the artefacts
being built and can even feed into formal processes required by GDPR, such as the DPIA, to enable
due diligence.

This paper contributes to current efforts to engineer privacy through the design of an integrated
development environment (IDE) enabling due diligence in the construction of domestic IoT applications.
The IDE enables due diligence in (a) helping developers reason about personal data during the in vivo
construction of IoT applications; (b) advising developers as to whether or not the design choices they
are making occasion the need for a DPIA; and (c) attaching and making available to others (including
data processors, data controllers, data protection officers, users and supervisory authorities) specific

Sensors 2019, 19, 4380 3 of 21

privacy-related information about an application. Our environment focuses on the development of
domestic IoT applications as these present a relevant and interesting privacy challenge, operating in
traditionally private settings and commonly processing data that is personal in nature (though not,
as we shall see, always immediately and obviously so).

2. Background

In this section, we begin with an overview of the various legal frameworks and regulatory
guidelines that impact application development that involves the processing personal data. Of
particular relevance to our work are (a) Data Protection by Design and Default (DPbD), a legally
mandated successor to Privacy by Design that provides a set of best practice principles and emphasizes
early engagement with data protection, and (b) Data Protection Impact Assessments (DPIAs), a primary
instrument and heuristic for assessing privacy and demonstrating compliance with the principles of
DbPD. We follow this with an overview of the support currently available to developers, covering
frameworks and guidelines and work on codifying and translating legal concepts to technical domains.
We conclude with a summary of various technical privacy tools and APIs available to developers.

2.1. Legal Frameworks

Data Protection by Design and Default. DPbD expects engagement in privacy-oriented reasoning
early on in the design process, rather than as a late stage bolt-on for post hoc compliance. It has been
embraced by Data Protection Authorities [16,17], is supported by the European Commission [18,19]
and is legally required by GDPR [1]. DPbD promotes various data protection measures such as data
minimisation, pseudonymisation and transparency as well as appropriate system security. Although
the legal requirement for DPbD ought to provide sufficient incentive for developers to engage with its
principles, there is no evidence that it has yet gained widespread, active adoption in the engineering
process. This may in part be due to the fact that its principles are largely disconnected from the actual
practice of systems engineering; translating between the sometimes vague terminology in regulation to
concrete engineering outcomes is non-trivial. Take, for example, the requirement for data minimisation.
In practice, this can include: minimising data collection, minimising disclosure, minimising linkability,
minimising centralisation, minimising replication and minimising retention [20].

Data Protection Impact Assessment. The DPIA is the recommended instrument for demonstrating
compliance with regulation. However, DPIAs are not mandatory in all cases. This means that the
decision as to whether or not a DPIA is required can only be made with reference to the detail of the
design and implementation of code. DPIAs are legally required when a type of processing is “likely
to result in a high risk to the rights and freedoms of natural persons” [1] While there is no definitive
template for a DPIA, GDPR states that there must be “a level of rigour in proportion to the privacy risk
arising” (ibid.). This can be a nuanced distinction, especially when apps run on privacy enhancing
technologies (PETs) designed to offer privacy protection. Even when personal data from IoT devices
are processed, the requirement for a DPIA may be waived if the app presents a low privacy risk to
a data subject. All of this and more draws into question how a developer is to assess the need for a
DPIA? Any effort must draw heavily upon context and consider the particular environment an app
will operate in and how it will process personal data.

2.2. Documentation

Frameworks. Several consortia promote the use of frameworks that adopt a common lexicon and
standardised definitions for privacy practice. OASIS’s Privacy Management Reference Model [10],
for example, is an 11,000-word document that presents steps to identify risks and ways to address
them. The National Institute of Standards and Technology Privacy Risk Management Framework [12]
is an ongoing effort at draft stage and aimed at organisations to help “better identify, assess, manage,
and communicate privacy risks.” It takes a harm-based perspective on privacy, identifying a range
of potential harms and developing a risk management approach (including a set of specific privacy

Sensors 2019, 19, 4380 4 of 21

preserving activities) to address them. There are also a variety of frameworks used to help developers
capture the development requirements necessary to mitigate likely privacy threats for a specific use
case. Most notable is the LINDDUN methodology [13], which instructs developers on what issues
should be investigated, and where in a design those issues could emerge. The methodology requires
developers to construct use cases as Data Flow Diagrams (DFD) from a set of predefined elements
including (a) an external entity (an endpoint of the system), (b) a process (a computational unit),
(c) a datastore (data at rest), (d) dataflow (data on the move), and (e) a trust boundary (the border
between untrustworthy and trustworthy elements). The resulting use cases can then be expanded
into a set of high-level privacy engineering requirements, which are used as a basis for selecting from
a set of privacy solutions to mitigate perceived threats (i.e., design patterns such as unlinkability,
unobservability). The creation of the DFD is key to the analysis. Naturally, an incorrect DFD will lead
to incorrect results.

Ideation Cards. Luger et al. [21] consider an alternative approach towards enabling developers
to respond to privacy risks. Their human-centered approach focuses on the early design stage of
development, i.e., from the minute that “pen hits paper”. They use a card game as an approach
to sensitise and educate designers to regulation and its requirements, where the cards foreground
designers’ reasoning about four core GDPR tenets: informed consent, data protection by design, data
breach notifications, and the right to be forgotten. The study reveals how “a lack of awareness of
the breadth of regulation” limits the “desire or ability to incorporate such considerations at an early
stage.” In exploring ideation cards with a range of development practitioners (designers, programmers,
human-computer interaction developers), Luger et al. express real concern over the threshold of
knowledge required to understand and respond to regulation when designing and building applications
that exploit personal data.

2.3. Bridging between Tools and Design

We turn now to consider the technical tools that are currently available to developers and offer a
bridge between regulation and development practice.

Policies/Ontologies. GDPR, as with most legal texts, cannot be codified and subsumed into a
purely technical system. Policy and law frequently prescribe non-computational decisions that can only
be affected by human judgment. In spite of the inherent difficulties of formalising regulation, work has
been undertaken to create translations between the legal and technical domains. Typically, this has
involved the codification of legal text, to create formalisms that can be directly utilised by systems
and code. The objectives vary from seeking to enforce legally binding policies [22,23] to assessing a
system’s compliance or comparing the degree and scope to which systems comply with regulation.
Pandit et al. [24], for example, provide an ontology for formalising relationships between regulations;
Fatema et al. [22] present a method that uses Natural Language Processing to automate the translation
between data protection rules and policy rules; and Corrales et al. [25] elaborate an alternative approach
that requires legal specialists to work more directly with code. The authors describe a system for
building smart contracts that uses pseudo code (in the form of a set of IF THEN clauses) written by
lawyers, which can be subsequently translated into a contract. However, the authors goal is relatively
modest—to ‘nudge’ cloud providers to a greater level of compliance by aligning their Service Level
Agreements with respect to data processing more closely with GDPR.

Design Patterns. Privacy design patterns are repeatable solutions to recurring problems within a
given context [9]. Patterns may be chosen and applied to satisfy a set of privacy goals, e.g., anonymity,
unlinkability, unobservability, pseudonymity, minimisation, etc. In most cases, systems will require
that a variety of patterns are composed together using a pattern language. In the context of privacy
by design, a few design patterns have been presented to date. Hafiz [26], for example, presents a
set of privacy mitigations in response to known attacks and extends the work to present a pattern
language to help developers choose patterns that are relevant to a particular domain (for which the
domestic IoT is not one) [27]. Pearson [28,29] argue that we need to move beyond guides and checklists

Sensors 2019, 19, 4380 5 of 21

and towards “automated support for software developers in early phases of software development”
given that “developers do not usually possess privacy expertise”. The authors utilise a decision
support-based system where developers provide a set of requirements (in the form of a questionnaire)
and these are then used to generate a candidate set of high-level privacy patterns (such as opt-in
consent, or negotiation around privacy preferences) that must be implemented by the developer.
Privacy patterns offer a useful reference for developers [30], though typically at a relatively late stage
of design when a range of choices and decisions have been made, and they help document common
practices and standardize terminology. Practically, however, the problem remains that developers
must have the necessary competence to choose and implement patterns relevant to the artefacts that
they are designing.

2.4. Privacy Tools

The discipline of privacy engineering aims to improve support for developers by embedding
privacy support more deeply into everyday development tools. Various tools have emerged to help
developers build applications and systems that are compliant with (some aspect of) GDPR. These
tools concentrate on technical compliance with GDPR; for example, that their systems meet security
standards, that they restrict the flow of personal data, or that they fulfil contractual obligations and
meet auditing requirements.

Automated Program Analysis. Some progress has been made in considering how program
analysis techniques might be used to help demonstrate privacy compliance. The approach has its roots
in efforts to assess where applications contain security vulnerabilities (e.g., data leakage, permission
misuse, malware). Taint analysis, for example, examines program execution by tracking local variables
and heap allocations. Sensitive data are labelled or ‘tainted’ so they can be tracked as they flow
through a system and arrive at a ‘sink’ (the point where data is exposed, e.g., network access). Tainted
data may move through multiple paths before arriving at a sink, so multiple flows may need to be
analysed. An important consideration with taint analysis is identification of the sources of data that
are deemed to be sensitive. In the mobile domain, the authors of Taintdroid [31] taint phone sensor
data (e.g., microphone, accelerometer, GPS, camera), contacts and text messages and device identifiers
(IMEI, phone number, SIM card IDs). The authors of Flowdroid [32] extend taints to include data
from user interface fields (e.g., user passwords). In IoT domains, SAINT [33] marks all sensor device
states, device information, location data, user inputs and state variables as sensitive. To make analysis
tractable, there is a trade-off is between ensuring that all potentially sensitive data are tainted whilst
minimising false positives that arise from tainting non-sensitive data. Ferrara [34,35] directly applies
taint analysis to demonstrate compliance with GDPR. The outputs from analysis take the form of
privacy leak reports. However, further contextually dependent analysis is required to determine whether
a ‘leak’ actually constitutes a violation of privacy. While program analysis techniques can be used
to demonstrate that an application is free of certain security vulnerabilities and inform analysis of
privacy vulnerabilities, higher-level analysis is needed to identify, for example, where data exposure
is a deliberate and legitimate design decision or, alternatively, where data marked as ‘sensitive’ is or
is not so within a specific context. The specific intentions of an application, the specific data being
processed, the specific processing being undertaken and the context of disclosure must all play a part
in the analysis of taints.

APIs and Services. We are also seeing the emergence of cloud-based data privacy services or Data
Privacy as a Service (DPaaS) that sit between applications and data providers. The types of services
on offer include disclosure notices, consent management, compliance software or solutions to more
technically challenging privacy engineering tasks. Privatar, for example, provides Publisher [36], which
offers policy-controlled data pipelines to de-identify data, and Lens [37], which utilises differential
privacy to provide insights over sensitive data. However, this class of solution is not aimed at the
developer per se, but instead seeks to enable businesses to outsource privacy management.

Sensors 2019, 19, 4380 6 of 21

3. Designing for Due Diligence

Despite the laudable aims of privacy engineering, we remain unaware of any examples of privacy
tools that are actually embedded within development environments and allow developers to reason
about the risks to privacy created by the specific artefacts that they are building as they are building
them. In this section, we consider how in vivo support for due diligence might be more strongly
embedded within development environments. We start by drilling down into Data Protection Impact
Assessment before relating guidance to features provided by our own development environment.

GDPR promotes the use of a DPIA for two purposes: first, as a tool for evidencing compliance,
and, second, as a heuristic device enabling data protection by default. As A29WP’s guidance on
DPIAs [2] puts it “in cases where it is not clear whether a DPIA is necessary”, one should be “carried
out nonetheless” as resolving the matter is key to complying with data protection regulation. Moreover,
A29WP takes the view that “carrying out a DPIA is a continual process, not a one-time exercise” that
will “encourage the creation of solutions which promote compliance” (ibid.). However, from the
developer’s perspective, the more pressing concern might be to avoid punitive fines and to thus be able
to demonstrate to oneself the parties one works for, or to the authorities that reasonable steps have been
taken to comply with the regulation and the developer has thus acted with due diligence. The first
consideration for a developer, therefore, is to determine whether or not a DPIA is actually necessary.

Article 35(1) of the General Data Protection Regulation, states that a DPIA must be carried out:
“Where a type of processing in particular using new technologies, and taking into account the nature,
scope, context and purposes of the processing, is likely to result in a high risk to the rights and freedoms
of natural persons . . . ”

To complicate matters, specific guidance on whether or not a DPIA is necessary falls under the
jurisdiction of each EU member state (e.g., the UK’s Information Commissioner’s Office or ICO).
However, A29WP provides general clarification, defining nine “common criteria” and states that
“processing meeting two criteria would require a DPIA to be carried out.” The criteria include:

1. Evaluation and scoring
2. Automated decision making with legal or similar significant effect
3. When the processing prevents data subjects from exercising a right or using a service or entering

a contract
4. Systematic monitoring
5. Sensitive data or data of a highly personal nature
6. Matching or combining datasets
7. Innovative use or applying new technological or organisational solutions
8. Data processed on a large scale
9. Data concerning vulnerable subjects

The first two criteria are concerned with the methods used to process personal data: evaluation and
scoring relates to the use of personal data for the creation of models that might then be used as a basis
for profiling or predicting; automated decision-making is concerned with outcomes generated without
any human intervention with the principal risk being discriminatory algorithms that create legal or
similarly significant effects. The third criteria cover any cases of processing that can result in a denial
of service, right or contract (e.g., insurance, government services, education, finance). Systematic
monitoring is concerned with the observation, monitoring or control of data subjects, particularly
when they are unaware and have not provided consent; the predominant scenario is monitoring in
public spaces where it may be impossible for individuals to avoid processing; however, domestic
settings are not exempt from consideration given that sensors may often gather data without the
explicit awareness of householders. In home environments, it is tempting to simply suggest that all
data that originate from IoT devices are sensitive or of a highly personal nature as per criterion number
five, given that it relates to a private setting and may be attributable to a household or individual.

Sensors 2019, 19, 4380 7 of 21

This would, in our view, impede a deeper engagement with the design implications of working with
specific types of personal data. The risks involved in matching and combining datasets emerge from the
potential for secondary inferences to be made without the explicit consent of a user. The guidance is
primarily concerned with cases where the combined data is sourced from independent data processing
operations or controllers (rather than, for example, within a single app) and outside the remit of the
original purpose of processing. With respect to criteria number 7, innovative use or new technological
or organisational solutions, there is a view that “due to the growing importance of the IoT and the
associated risks for privacy, a DPIA will be mandatory for most IoT devices” [18]. However, this
is arguably of limited utility as the IoT will not remain innovative for long and is indeed already
becoming commonplace. Furthermore, we imagine that any diligent developer will want to assess the
privacy implications of any new solution they create if only to avoid penalty. Criteria number eight,
data processed on a large scale, can be interpreted as numbers of users, volume of data, geographic
reach and/or the duration and permanence of the processing activity. Criteria number nine, data
concerning vulnerable subjects, refers to data processing that relies on a power imbalance between
data subjects and controllers and includes, for example, children, those with disabilities, workers, etc.
While there is clearly a good degree of interpretive flexibility in determining just what the common
criteria require or amount (see the ICO, for example [10]), they nevertheless provide a framework
around which we can consider embedding due diligence within the actual in vivo process of building
IoT applications. Thus, in the following section, we consider how we can exploit knowledge about
the way an app is constructed and the method and type of data being processed to offer points for
reflection and advice enabling developers to exercise due diligence.

4. Embedding Support for Due Diligence in Design

As underscored by A29WP, the question of whether or not a DPIA is required lies at the heart of
due diligence. It is a question that must be continuously asked throughout development and so our
aims in seeking to embed due diligence into an IoT application development environment are:

1. To enable reflection and in vivo reasoning during app construction concerning the impact of the
developer’s design choices on privacy risks;

2. To provide advice to developers that responds to data protection regulation and which is specific
to the application being built. This advice will relate:

a. To determining whether or not a DPIA is likely to be needed;
b. To the details of design/implementation that most influence that decision.

Our starting point is to consider an overall paradigm that suits both the development of IoT
applications and reasoning about privacy. GDPR is principally concerned with the flow of personal
data and it is common, when assessing data privacy, to employ data flow diagrams, where data flows
are represented as edges between nodes. Nodes may be locations (e.g., EU member states or third
countries), systems, organisations or data subjects. This is where reasoning about data protection must
take place. Edges between nodes represent data transfer. Data flow modelling can also form the basis
of programming environments, in particular data flow programming, which emphasises the movement
of data between nodes along a series of edges. It is particularly suited to designing applications
and systems that are composed of a set of ordered operations. With data flow programming, nodes
are black boxes of functionality and edges provide connections over which data is transferred. This
paradigm can be particularly effective when applied to IoT (see node-RED, ioBroker, no-flow, total.js),
where it can be natural to model systems and applications as sources of data, connected to processes
en route to a final endpoint (i.e., actuation or external service).

We therefore use a data flow modelling paradigm as the basis of our development environment.
We leverage it to simultaneously build application functionality and support reasoning about privacy.
In our case, we distinguish between several top-level node types that are straightforward to translate

Sensors 2019, 19, 4380 8 of 21

between privacy and developer domains. The simplest view of an application is of sources of data,
processors that act upon the data, and sinks or outputs that produce an event (which may or may not
include external data transfer). We consider the reasoning attached to each:

• Sources of data. When working with data, the first job of the developer is to determine which
data is personal, and which data is not. Perhaps as a testament to how difficult this can be, the UK
ICO has published a 23-page document titled ‘What is Personal Data?’ [38]. By understanding the
data, a developer is able to reason about the fifth DPIA criterion (sensitive data or data of a highly
personal nature) when judging whether or not a DPIA is necessary.

• Processors. When operating upon personal data, processors may reidentify a data subject, generate
new personal data (using, for example, data fusion, inference, profiling) or remove personal
data (e.g., through anonymisation). To relate the structure of apps more closely to regulation,
in addition to a standard processor (what we call a transformer), we add two special classes: a
profiler and a privacy pattern. A profiler will infer new personal information (not already explicitly
contained in its input data) about a data subject. A privacy pattern is one of a set of ‘off the
shelf’ privacy preserving techniques (e.g., pseudo/anonymisation, metadata stripping, encryption)
developers may make use of to help resolve privacy issues. By making these distinctions, we can
help developers reason about the first, second and sixth DPIA criteria (evaluation and scoring,
automated decision making, matching or combining datasets). Machine learning is commonly
utilised to infer new personal data and our profile nodes capture cases where this occurs within
an app. Note that our intention is not to surface issues relating to the quality of the algorithms or
models employed by profilers (such as concerns around fairness/adverse consequences) as this
sits beyond the scope of our work. Rather, it is to offer prompts for reasoning, given the emphasis
GDPR regulation places upon the use of automated profiling (Recital 71, Article 22(1)).

• Outputs. These represent the points where something is done by an application; it may be that
sensors are actuated, and data are visualised, stored, or transferred from the app. It is here that careful
reasoning about how data are used must occur, and the remaining DPIA criteria must be considered.

Figure 1 provides a summary of the components of our development environment. Applications
can be constructed by creating connections between combinations of nodes. The assumption is that
each node will contain core logic to provide a common operation which can then be specialised through
configuration, but we also assume that there is a ‘general’ processor to allow developers to process data
through raw code. The advantage of providing pre-baked logic, aside from simplifying development,
is that the IDE can automatically calculate how the characteristics of data change after each processing
operation. This enables developers to reason about data’s characteristics as it flows into an output (the
point at which risks are realised).

Sensors 2019, 18, x FOR PEER REVIEW 8 of 22

understanding the data, a developer is able to reason about the fifth DPIA criterion (sensitive
data or data of a highly personal nature) when judging whether or not a DPIA is necessary.

• Processors. When operating upon personal data, processors may reidentify a data subject,
generate new personal data (using, for example, data fusion, inference, profiling) or remove
personal data (e.g., through anonymisation). To relate the structure of apps more closely to
regulation, in addition to a standard processor (what we call a transformer), we add two special
classes: a profiler and a privacy pattern. A profiler will infer new personal information (not
already explicitly contained in its input data) about a data subject. A privacy pattern is one of a
set of ‘off the shelf’ privacy preserving techniques (e.g., pseudo/anonymisation, metadata
stripping, encryption) developers may make use of to help resolve privacy issues. By making
these distinctions, we can help developers reason about the first, second and sixth DPIA criteria
(evaluation and scoring, automated decision making, matching or combining datasets). Machine
learning is commonly utilised to infer new personal data and our profile nodes capture cases
where this occurs within an app. Note that our intention is not to surface issues relating to the
quality of the algorithms or models employed by profilers (such as concerns around
fairness/adverse consequences) as this sits beyond the scope of our work. Rather, it is to offer
prompts for reasoning, given the emphasis GDPR regulation places upon the use of automated
profiling (Recital 71, Article 22(1)).

• Outputs. These represent the points where something is done by an application; it may be that
sensors are actuated, and data are visualised, stored, or transferred from the app. It is here that
careful reasoning about how data are used must occur, and the remaining DPIA criteria must be
considered.

Figure 1 provides a summary of the components of our development environment. Applications
can be constructed by creating connections between combinations of nodes. The assumption is that
each node will contain core logic to provide a common operation which can then be specialised
through configuration, but we also assume that there is a ‘general’ processor to allow developers to
process data through raw code. The advantage of providing pre-baked logic, aside from simplifying
development, is that the IDE can automatically calculate how the characteristics of data change after
each processing operation. This enables developers to reason about data’s characteristics as it flows
into an output (the point at which risks are realised).

Figure 1. Integrated Development Environment node types.

4.1. Tracking Personal Data
Figure 1. Integrated Development Environment node types.

Sensors 2019, 19, 4380 9 of 21

4.1. Tracking Personal Data

What, then, are the characteristics of the data that we wish to capture? Referring back to our aims,
we want to understand if the data is personal and/or sensitive in nature. GDPR distinguishes between
‘personal’ and ‘non-personal’ (anonymous) data, with a further distinction around ‘special categories’
(Article 9, GDPR) to which additional protections must apply. How might this be operationalised?
How can we use it to get to the point where developers are able to reason about whether (often
seemingly benign) data has the potential to reveal personal and even sensitive insights, or how new
transformations (such as fusion with other sources, profiling and inference) will affect data’s personal
characteristics? To tackle this challenge, we consider a minimum set of personal data features that will
enable this reasoning:

• Data categorisation. Underlying the need for categorisation is the recognition that all personal
data is not equal. Article 17(1) and Recital 46, GDPR, confirm that the “nature of the personal
data” to be protected should be taken into account. Craddock et al. [39] note that categorising
personal data is one way of contextualising it and understanding its nature. They thus note that
categories can act as an anchor to which further information about processing can be attached,
which can help with the creation of Data Protection Impact Assessments. From the perspective of
a developer, categorisation can act as an aid to reasoning around the nature and severity of risk
for particular design decisions.

• Derivable characteristics. Various combinations of personal data, under certain conditions, will
lead to the possibility of further personal inferences. To this end, we distinguish between primary
and secondary sources of personal data. Secondary data, as with primary, will correspond to
a category but will also be attached to a set of conditions that must be met before the category
is realised. Typically, these conditions might include the existence of additional categories of
personal data (for example, given various physical characteristics it may be possible to infer
gender), but that might also might refer to other conditions such as data sampling rate (live energy
data may make it possible to derive house occupancy patterns whereas daily readings will not).
There is a distinction between the possibility and actuality of an inference being made. That is,
there will be many cases where a set of conditions make inferences theoretically possible, even if
they are not being made during an app’s processing of data.

• Data accuracy. Relatedly, the accuracy of a particular source of personal data can have as
significant a bearing upon potential privacy harms as the data themselves. There is a challenge in
ensuring that applications do not lead to unfair, unrepresentative, and even dangerous outcomes
as a result of inaccurate data. Getting developers to reason about the accuracy of the data that
their applications process is therefore a part of the mix.

With regard to data categorisation, various categories have been proposed in the literature [40],
by data protection authorities [1] and technical consortia [41]. There is considerable divergence across
approaches and weaknesses in each [39]. For our own purposes, none are expressive enough to capture
the types of IoT data that developers are working with, nor are they able to support the particular
form of developer reasoning around personal data processing that we require to enable due diligence.
In developing our own categorisation, we are not presenting our work fait accompli, but as a vehicle for
investigating how we might contextualise personal data to improve support for developer reasoning
about privacy risks.

With regard to derivable characteristics, we want to be able to calculate and represent the creation
or loss of personal data at each processing point within an application. Figure 2 provides a summary
of each transformation we deal with. The blue squares represent a data processor that performs some
kind of transformation on personal data inputs (Px). The conditions block (v) shows, in the first case,
that when personal data is captured at a low frequency, it is not possible for an inference (Pc) to be
made. In the second case, with a higher sampling frequency, the inference is made possible.

Sensors 2019, 19, 4380 10 of 21

Sensors 2019, 18, x FOR PEER REVIEW 10 of 22

Figure 2. Personal data flows.

4.2. Developing a Categorisation

We now present more detail on the schema we have developed to enable tracking and reasoning
around the flow of personal data within our privacy-aware IoT applications. Our schema
distinguishes between three top level classes of personal data (identifier, sensitive, personal). It
provides a set of subcategories and a set of subtypes under each subcategory. As a start, inspired by
GDPR, we specify six top-level personal data types (Table 1). In our schema (Table 2), the (type,
ordinal) attributes establish the top-level type. The category, subtype and description attributes
(originated by us) provide further context.

Table 1. Personal data types.

Label Type Ordinal Description
i1 identifier primary data that directly identifies a data subject
i2 identifier secondary data that indirectly identifies a data subject
p1 personal primary data that is evidently personal
p2 personal secondary derived personal data
s1 sensitive primary GDPR special categories of data
s2 sensitive secondary derived sensitive data

Thus, for example, a data subject’s undergraduate degree is classified under (type:personal,
category: education, subtype: qualification). The schema has a required attribute to denote which
attributes must be present for a schema to apply. For example, if an IoT camera provides a timestamp,
bitmap and light reading, only the bitmap attribute is required for the data to be treated as personal.

Table 2. Personal data attributes.

Attribute Description
type identifier|sensitive|personal

ordinal primary|secondary
category physical|education|professional|state|contact|consumption|…

subtype e.g., physical includes hair colour, eye colour, tatoos etc. education includes
primary school, secondary school, university etc.

description details of this particular item of personal data (and method of inference if
secondary)

required
list of attributes of this data that must be present in order for it to constitute as

personal

The schema is extended for secondary (i.e., inferred) types, to specify the conditions that must
be satisfied to make an inference possible (Table 3). We do not claim that our schema is capable of

Figure 2. Personal data flows.

4.2. Developing a Categorisation

We now present more detail on the schema we have developed to enable tracking and reasoning
around the flow of personal data within our privacy-aware IoT applications. Our schema distinguishes
between three top level classes of personal data (identifier, sensitive, personal). It provides a set of
subcategories and a set of subtypes under each subcategory. As a start, inspired by GDPR, we specify
six top-level personal data types (Table 1). In our schema (Table 2), the (type, ordinal) attributes
establish the top-level type. The category, subtype and description attributes (originated by us) provide
further context.

Table 1. Personal data types.

Label Type Ordinal Description

i1 identifier primary data that directly identifies a data subject
i2 identifier secondary data that indirectly identifies a data subject
p1 personal primary data that is evidently personal
p2 personal secondary derived personal data
s1 sensitive primary GDPR special categories of data
s2 sensitive secondary derived sensitive data

Table 2. Personal data attributes.

Attribute Description

type identifier|sensitive|personal
ordinal primary|secondary

category physical|education|professional|state|contact|consumption| . . .

subtype e.g., physical includes hair colour, eye colour, tatoos etc. education includes primary
school, secondary school, university etc.

description details of this particular item of personal data (and method of inference if secondary)
required list of attributes of this data that must be present in order for it to constitute as personal

Thus, for example, a data subject’s undergraduate degree is classified under (type:personal,
category: education, subtype: qualification). The schema has a required attribute to denote which
attributes must be present for a schema to apply. For example, if an IoT camera provides a timestamp,
bitmap and light reading, only the bitmap attribute is required for the data to be treated as personal.

The schema is extended for secondary (i.e., inferred) types, to specify the conditions that must
be satisfied to make an inference possible (Table 3). We do not claim that our schema is capable of

Sensors 2019, 19, 4380 11 of 21

classifying all possible personal data types, but, in the absence of a universal standard, it is sufficient
for our purposes.

Table 3. Secondary data attributes.

Attribute Description

confidence an accuracy score for this particular inference, ranging from 0 to 1
conditions list of granularity|attributes.
evidence where possible, a set of links to any evidence that details a particular inference method

status inferred|inferable

We currently define two types of conditions: (i) attributes—the additional set of personal data
items that, when combined, could lead to a new inference and (ii) granularity—the threshold sampling
frequency required to make an inference. When multiple attribute and/or granularity conditions are
combined, all must hold for an inference to be satisfied. Finally, our status attribute distinguishes
between personal data where (i) an inference has been made, and (ii) the data is available to make
inference possible. For example, browsing data and gender may be enough to infer whether an
individual is pregnant (i.e., these two items combined make pregnancy inferable) but if a node makes
an actual determination on pregnancy, then the resulting data is inferred.

5. Implementation and Overview of IDE

We now provide details on how the work we have described has been implemented in the
construction of our web-based integrated development environment (IDE). Underlying our work is
an assumption that the privacy constraints built into our applications will be respected at runtime,
i.e., that there is a PET that can enforce any contractual arrangements entered into between a data
subject and an application. To this end, the applications that are constructed in our IDE will run on the
Databox platform [42]. The Databox platform utilises an app store, from which privacy preserving
apps can be downloaded to local dedicated hardware that runs within a home and connects to IoT
devices and cloud services. For the purposes of the work reported here, the critical features of the
platform are:

1. Support for local data processing. Databox promotes (but does not mandate) local processing
over data transfer and external processing. This makes it possible to construct applications that
either do not transfer data to an external service, or perform data minimisation, ensuring that the
smallest amount of data is transferred for a specific purpose.

2. Access to multiple silos of IoT data. Databox has a growing number of drivers that are able to
collect data from IoT devices and online services and make them available to apps.

3. Enforceable contracts between data subjects and applications. Apps built in the IDE may be
published to the Databox app store, see [42]. When publishing an app, a developer is required
to provide information to inform data subjects about the data that will be accessed by the app,
and the purpose, benefits, and perceived risks that attach to the use of the app.

The IDE runs out of a web-browser, with both the frontend and backend written in Javascript. We
utilised Node-RED [43] as a starting point for the IDE, as this is a popular community IoT development
tool. We undertook a full rewrite of the Node-RED frontend and modified the backend to add in
our new features. The following are the most significant differences between the Databox IDE and
Node-RED:

1. Datastore nodes and output nodes communicate with the Databox API to collect data.
2. Applications are bundled with a manifest that specifies the resources that it will require access to.
3. Nodes in the IDE provide a function that takes the node inputs as an argument and outputs

a schema describing the output data; in Node-RED, nodes are oblivious to the details of the
upstream nodes.

Sensors 2019, 19, 4380 12 of 21

In relation to the third feature, we maintain two separate schemas for each node. The personal
schema contains the personal characteristics of each attribute of the data. It includes the rules to
determine the conditions under which new personal data might emerge. For example, a part of our
Bluetooth sensor datastore’s schema has an entry as follows:

{

type: “personal”,

subtype: “relationships”,

ordinal: “secondary”,

status: “inferable”,

description: “bluetooth scan information can be used to infer social relationships”,

required: [“payload.address”],

conditions: [{

type: “granularity”,

granularity: {threshold: 300, unit: “seconds between scans”}

}],

evidence: [

“https://dl.acm.org/citation.cfm?id=2494176\T1\textquotedblright,

“https://doi.org/10.1109/MPRV.2005.37\T1\textquotedblright

]

}

This states that relationship data can be inferred if the Bluetooth sensor scans obtain the mac
address (payload.address) with a frequency greater than or equal to once every 300s. Note that the
schema can also provide further details on how the inference can be made; in this case, it will be
presented to developers when they construct applications that make use of the Bluetooth sensor. We
also maintain a JSON-schema for each node; this provides type information, so that each node can
inform downstream nodes of the structure of its output data. For example, the following is a snippet of
the JSON schema for the Bluetooth sensor:

{

name: {

type: ‘string’,

description: ‘the name of the node, defaults to \’sensingkit\”

},

id: {

type: ‘string’,

description: ‘<i>[id]</i>‘

},

type: {

type: ‘string’,

description: ‘<i>sensingkit</i>‘

},

subtype: {

type: ‘string’,

description: ‘<i>${subtype}</i>‘

},

payload: {

type: ‘object’,

https://dl.acm.org/citation.cfm?id=2494176\T1\textquotedblright
https://doi.org/10.1109/MPRV.2005.37\T1\textquotedblright

Sensors 2019, 19, 4380 13 of 21

description: ‘the message payload’,

properties: {

ts: {

type: ‘number’,

description: ‘a unix timestamp’

},

name: {

type: ‘string’,

description: ‘user assigned name of the device’

},

address: {

type: ‘string’,

description: ‘mac address in the form aa:bb:cc:dd:ee:ff’

},

rssi: {

type: ‘number’,

description: ‘received signal strength indicator’

},

}

}

}

The ‘description’ field in the schema is used to display type information to the developer. Schemas
are only used in the frontend to support application development. Because the schema output from
a node is influenced by how the node is configured, every time a node’s configuration changes,
all downstream nodes will re-calculate their schemas.

The schemas are used by the frontend to mark the flow of personal data through an application;
each edge is marked with a summary of the personal data type (e.g., primary, secondary, sensitive).
If and when an ‘export’ node—the node that exports data off the Databox—is connected to, the IDE will
gather information to help the developer determine whether a DPIA is likely to be required. We provide
further details on this in the next section. With each change in configuration, the recommendation
will update to reflect the changes, thus supporting in vivo reasoning, where any changes to node
configurations or connections will cause any changes to privacy implications to be immediately
recalculated. This is in contrast to typical data analysis, which is commonly performed less frequently
(often when applications are in the latter stages of production).

On the backend, all applications are saved as JSON node-RED compatible flow files, alongside an
application manifest that describes the resources (sensors/storage) that the application will access as
well as the purpose and benefits of the app, which the developer is prompted for at publication time.
The application is bundled into a Docker container [44] and uploaded to a registry (referenced in the
manifest file).

By associating sources of data with a schema, our work distinguishes itself from taint tracking
(which typically assesses data sensitivity based upon its source, e.g., microphone, GPS, camera),
by providing additional context for a developer to reason more fully about the nature of the personal
data flowing through an app.

5.1. Using the IDE

To illustrate a basic example in the IDE, consider Table 4 which outlines the relevant parts of the
accelerometer schema for the flows in Figures 3 and 4.

Sensors 2019, 19, 4380 14 of 21

Table 4. Accelerometer personal data schema.

Attribute Description

type Personal
subtype Gender
ordinal Secondary

required [x,y,z]
conditions Type: granularity, threshold:15, unit: Hz

Sensors 2019, 18, x FOR PEER REVIEW 15 of 22

In Figure 3, p2 is output from the accelerometer to show that personal data (i.e., a data subject’s
gender) is inferable from the x,y,z components of its data (it is semi-transparent to denote it is inferable
rather than inferred).

Figure 3. Applying the schema (a).

Similarly, with the profile node, i1 is output to show fullname. When these are merged in the
combine processor, the output schema will contain the accelerometer’s p2, and the profile’s i1.

Figure 4. Applying the schema (b).

In Figure 4, the combine node is configured to only combine the x and y components of the
accelerometer data with the profile data. Since x,y and z are all marked as required (Table 4) for a
gender inference to be possible, the combine node’s output schema will only contain i1 (and not p2).
The IDE automatically recalculates and re-represents the flow of personal data whenever a node or
edge is removed, added or reconfigured. As flows get more complex, this becomes invaluable. It
helps the developer to quickly determine how changes in configuration affect the flow of personal
data. The IDE also flags points in an app that may require further attention from the developer, e.g.,
when personal data is being exported off the box (i.e., connected to the export node).

5.2. Providing DPIA Recommendations

In this section, we demonstrate how the personal data tracking work that we have described
above may be used to support due diligence. Consider a health insurance app shown in Figure 5. The
app creates a health profile, using a health profiler node, from smartwatch ECG data and a user’s
postcode. It also takes grocery shopping data which it passes into a function which will generate a
score. The output from the health profiler and the function are combined and exported to generate a
quote.

combine function

profile: fullnam e

accelerometer: x,y,z

accelerometer

x,y,z

i1

i1

p2
p2

profile

fullnam e

combine function

profile: fullnam e

accelerometer: x,y

accelerometer

x,y,z

i1

i1

p2

profile

fullnam e

Figure 3. Applying the schema (a).

Sensors 2019, 18, x FOR PEER REVIEW 15 of 22

In Figure 3, p2 is output from the accelerometer to show that personal data (i.e., a data subject’s
gender) is inferable from the x,y,z components of its data (it is semi-transparent to denote it is inferable
rather than inferred).

Figure 3. Applying the schema (a).

Similarly, with the profile node, i1 is output to show fullname. When these are merged in the
combine processor, the output schema will contain the accelerometer’s p2, and the profile’s i1.

Figure 4. Applying the schema (b).

In Figure 4, the combine node is configured to only combine the x and y components of the
accelerometer data with the profile data. Since x,y and z are all marked as required (Table 4) for a
gender inference to be possible, the combine node’s output schema will only contain i1 (and not p2).
The IDE automatically recalculates and re-represents the flow of personal data whenever a node or
edge is removed, added or reconfigured. As flows get more complex, this becomes invaluable. It
helps the developer to quickly determine how changes in configuration affect the flow of personal
data. The IDE also flags points in an app that may require further attention from the developer, e.g.,
when personal data is being exported off the box (i.e., connected to the export node).

5.2. Providing DPIA Recommendations

In this section, we demonstrate how the personal data tracking work that we have described
above may be used to support due diligence. Consider a health insurance app shown in Figure 5. The
app creates a health profile, using a health profiler node, from smartwatch ECG data and a user’s
postcode. It also takes grocery shopping data which it passes into a function which will generate a
score. The output from the health profiler and the function are combined and exported to generate a
quote.

combine function

profile: fullnam e

accelerometer: x,y,z

accelerometer

x,y,z

i1

i1

p2
p2

profile

fullnam e

combine function

profile: fullnam e

accelerometer: x,y

accelerometer

x,y,z

i1

i1

p2

profile

fullnam e

Figure 4. Applying the schema (b).

In Figure 3, p2 is output from the accelerometer to show that personal data (i.e., a data subject’s
gender) is inferable from the x,y,z components of its data (it is semi-transparent to denote it is inferable
rather than inferred).

Similarly, with the profile node, i1 is output to show fullname. When these are merged in the
combine processor, the output schema will contain the accelerometer’s p2, and the profile’s i1.

In Figure 4, the combine node is configured to only combine the x and y components of the
accelerometer data with the profile data. Since x,y and z are all marked as required (Table 4) for a
gender inference to be possible, the combine node’s output schema will only contain i1 (and not p2).
The IDE automatically recalculates and re-represents the flow of personal data whenever a node or
edge is removed, added or reconfigured. As flows get more complex, this becomes invaluable. It helps
the developer to quickly determine how changes in configuration affect the flow of personal data.
The IDE also flags points in an app that may require further attention from the developer, e.g., when
personal data is being exported off the box (i.e., connected to the export node).

Sensors 2019, 19, 4380 15 of 21

5.2. Providing DPIA Recommendations

In this section, we demonstrate how the personal data tracking work that we have described
above may be used to support due diligence. Consider a health insurance app shown in Figure 5.
The app creates a health profile, using a health profiler node, from smartwatch ECG data and a user’s
postcode. It also takes grocery shopping data which it passes into a function which will generate a
score. The output from the health profiler and the function are combined and exported to generate
a quote.
Sensors 2019, 18, x FOR PEER REVIEW 16 of 22

Figure 5. Health Insurance quote app.

At the point where data flows to an output node, the IDE flags an exclamation mark to warn that
personal data is being utilised (in this case, exported). When selected, a DPIA screening form (Figure
6) is presented, generated in part from information on the app. On the right-hand side of the form is
a column where yes/no answers can be provided for each question. The questions are drawn from
the nine criteria provided by A29WP (see Section 3). Where possible, the IDE extracts app-specific
information to provide relevant context for each of the questions. With regard to the use of sensitive
or personal data, for example, the IDE summarises which personal data is being processed; in this
case, identity data, personal (shopping data) and sensitive (heart trace) data. With regard to the use
of evaluation/scoring, the IDE presents those parts of the application where it does occur (i.e., where
data flows into the health profiler node) or where it might occur (where shopping data flows into the
function node). Because the application makes use of the health profiler node, the evaluation/scoring
criteria is set to “yes”; the developer cannot set it to “no” without first deleting the profiler node,
given that the profiler node unequivocally entails evaluation and scoring. Five of the criteria are only
relevant if data is exported from a user’s PET (the Databox in our case) where it may be subject to
further processing. In this example, because personal data is exported, the developer is asked an
additional set of general questions about the nature of any follow-on processing. Note also, with
regard to the use of systematic monitoring, that the IDE examines the sensors used to determine
whether monitoring is feasible. In this case, the use of smartwatch ECG data could theoretically be
used to monitor a user’s behaviour. This is therefore flagged for consideration by the developer.
Regardless of whether or not a DPIA is subsequently carried out, the answers to these questions are
published alongside the app to demonstrate that due diligence has been exercised.

Figure 5. Health Insurance quote app.

At the point where data flows to an output node, the IDE flags an exclamation mark to warn that
personal data is being utilised (in this case, exported). When selected, a DPIA screening form (Figure 6)
is presented, generated in part from information on the app. On the right-hand side of the form is
a column where yes/no answers can be provided for each question. The questions are drawn from
the nine criteria provided by A29WP (see Section 3). Where possible, the IDE extracts app-specific
information to provide relevant context for each of the questions. With regard to the use of sensitive
or personal data, for example, the IDE summarises which personal data is being processed; in this
case, identity data, personal (shopping data) and sensitive (heart trace) data. With regard to the use
of evaluation/scoring, the IDE presents those parts of the application where it does occur (i.e., where
data flows into the health profiler node) or where it might occur (where shopping data flows into the
function node). Because the application makes use of the health profiler node, the evaluation/scoring
criteria is set to “yes”; the developer cannot set it to “no” without first deleting the profiler node, given
that the profiler node unequivocally entails evaluation and scoring. Five of the criteria are only relevant
if data is exported from a user’s PET (the Databox in our case) where it may be subject to further
processing. In this example, because personal data is exported, the developer is asked an additional
set of general questions about the nature of any follow-on processing. Note also, with regard to the use
of systematic monitoring, that the IDE examines the sensors used to determine whether monitoring is
feasible. In this case, the use of smartwatch ECG data could theoretically be used to monitor a user’s
behaviour. This is therefore flagged for consideration by the developer. Regardless of whether or not a
DPIA is subsequently carried out, the answers to these questions are published alongside the app to
demonstrate that due diligence has been exercised.

Sensors 2019, 19, 4380 16 of 21
Sensors 2019, 18, x FOR PEER REVIEW 17 of 22

Figure 6. IDE DPIA recommendations.

6. Enabling Due Diligence

Figure 6. IDE DPIA recommendations.

Sensors 2019, 19, 4380 17 of 21

6. Enabling Due Diligence

GDPR creates a practical imperative for developers to take reasonable steps ensuring that their
applications are compliant with regulation and that they therefore implement Data Protection by
Design and Default (DPbD) in their construction. The Data Protection Impact Assessment (DPIA)
provides a key heuristic for enabling due diligence and bringing about DPbD. Adopting a privacy
engineering perspective, we have sought to move beyond developing external guidance to build due
diligence into the development environment itself in a bid to (a) help developers reason about personal
data during the in vivo construction of IoT applications; (b) advise developers as to whether or not the
design choices they are making occasion the need for a DPIA; and (c) make specific privacy-related
information about an application available to others implicated in application development and use
(including data processors, data controllers, data protection officers, users and supervisory authorities).

We do not suggest that the IDE provides a silver bullet to the manifold challenges of compliance
(e.g., providing compliance information to users and enforcing their rights), or that due diligence with
respect to DPbD can be wholly automated. Of the nine criteria implicated in determining the need
for a DPIA, five require that developers draw upon information external to app construction. Thus,
criteria number three (where processing denies a right, service or contract), six (matching or combining
datasets), seven (innovative new solutions), eight (data processed on a large scale) and nine (data
concerning vulnerable subjects) turn on a developer’s knowledge of an app, its novelty, what it will
be used for, its intended users and what might subsequently be done with their data. The IDE does
not negate human skill and judgement, and in this respect there will still be need for education and
learning (e.g., as to what constitutes ‘vulnerable’, or the ‘rights and freedoms’ that may be impacted
through data processing). However, the IDE does sensitise developers to key DPbD concerns and
makes us aware of the issues we need to be able to address if we are to satisfy ourselves and those to
whom we are professionally accountable that we have acted with due diligence.

The IDE demonstrates that it is possible to build due diligence into application development
not only by sensitising developers to core DPbD concerns but also by surfacing salient information
and advice within the in vivo process of app construction. While the IDE cannot directly address
criteria six (matching or combining datasets) or eight (data processed on a large scale), it can flag to the
developer that personal data is exported elsewhere (i.e., for processing outside an app) and when a
function node (i.e., a node that permits arbitrary code) operates on personal data. Furthermore, by
introducing different classes of processing node, and specifically profiling nodes, the IDE can flag
concerns that directly relate to DPIA criteria number one (evaluation and scoring) and two (automated
processing with legal or similar effect). Criteria number four (systematic monitoring) is made visible
by reference to the type and rate of flow of personal data, both of which the IDE can determine from an
app’s construction (i.e., when personal data flows to an output at a threshold rate). Take, for example,
a camera that continuously streams data to a screen or to the cloud. This will clearly create conditions
where systematic monitoring is feasible; a camera configured to only take a picture every hour, however,
may not. Again, the IDE has access to the personal data types and configurations of input nodes
(i.e., sensors) and is able to utilise these to help make this determination. The characteristics of data
flowing through an app also enable the IDE to assess whether criteria number five (sensitive data or
data of a highly personal nature) is a relevant concern present this to the developer.

Our IDE has been inspired by the program analysis community, particularly the use of taint
tracking. However, unlike taint tracking, our goal is not to discover program vulnerabilities but to
make the flow of personal data amenable to analysis by developers so that they can make demonstrably
diligent design decisions with respect to the DPbD requirement. Just as taint tracking has its limitations,
so does the IDE: our schema will not cover all possible personal data types, we cannot encode an
exhaustive set of rules for all possible inferences across all personal data, and we cannot definitively state
which DPIA criteria are met; we can only prompt the developer to assess potential conflicts. However,
privacy assessments are unlikely ever to become fully automated, given the highly interpretable
character of the law and the limits of mapping between technical and legal domains. Nonetheless,

Sensors 2019, 19, 4380 18 of 21

encouraging early reasoning that is directly relevant to the application in hand is in the spirit of regulation
and manifestoes such as Privacy by Design. The IDE demonstrates that we can move DPbD beyond
costly expert advice, disconnected documentation, and after the fact considerations. Instead, we might
embed due diligence in the application development environment and in the actual in vivo process
of app construction to assist developers in understanding the privacy risks that accompany their
particular design choices and to help them arrive at an informed judgement as to whether or not a
DPIA is needed to comply with the requirements of GDPR.

Information on where to access the Databox and IDE can be found in ‘Supplementary Materials’
section at the end of this paper.

7. Future Work

In this paper, we have argued that embedding tools within an IDE to aid a developer’s reasoning
about personal data is an essential part of designing privacy into applications. Our work sits within
a wider eco-system and assumes the existence of a home-based Privacy Enhancing Technology that
is capable of (i) accessing a wide variety of personal data sources and (ii) enforcing an app’s privacy
obligations. Both of these must be met in order to encourage developer communities to build apps in
earnest. Once the technology has matured (the Databox is one such solution that supports a limited, but
growing variety of sources of personal data), we will be in a position to undertake a meaningful user
evaluation in order to understand more fully how our tools are used by developers (where genuine
privacy tradeoffs can be made during app design), and the extent to which they help improve upon
privacy related design decisions.

8. Conclusions

IoT application developers, like developers everywhere, find themselves confronted by the General
Data Protection Regulation (GDPR) and the associated Data Protection by Design and Default (DPbD)
requirement. It is imperative that developers demonstrate due diligence and take reasonable steps to
meet the DPbD requirement when building IoT applications. However, developers largely lack the
competence to understand legal requirements or to translate them into technical requirements, and legal
experts are often similarly challenged in reverse. We have presented an integrated development
environment (IDE) to demonstrate the possibility of building due diligence into IoT application
development. The IDE is designed to help developers understand personal data and reason about
its use, to identify potential DPbD conflicts, and to make specific design choices available to others
to whom the developer is professionally accountable. It flags the privacy implications of the design
choices a developer makes as they make them and provides them with the tools to reflect upon and
alter a design decision when it is most easily accomplished. The IDE is not a silver bullet, but it does
show that is possible to engineer privacy into the IoT. Though we have concentrated on an application
environment for home IoT, the principles of our work, in particular the in vivo reasoning about privacy
implications at development-time, may be applied to other development environments whose products
process personal data (for example, the Android/iOS mobile development environments).

Supplementary Materials: The IDE and Databox code is open source and can be found at: https://github.com/
me-box/ [45]. An online version of the IDE can be found at https://sdk.iotdatabox.com/ [46].

Author Contributions: Conceptualization, T.L. and A.C.; methodology, T.L. and A.C.; software, T.L.; investigation,
T.L.; resources, A.C.; writing—original draft preparation, T.L.; writing—review and editing, T.L. and A.C.; project
administration, A.C.; funding acquisition, A.C.

Funding: This work was supported by the Engineering and Physical Sciences Research Council grant numbers
EP/M001636/1, EP/N028260/2].

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/me-box/
https://github.com/me-box/
https://sdk.iotdatabox.com/

Sensors 2019, 19, 4380 19 of 21

References

1. General Data Protection Regulation. Off. J. Eur. Union 2016, 59, 1–88. Available online: https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2016%3A119%3ATOC (accessed on 18 July 2019).

2. Article 29 Working Party. Guidelines on Data Protection Impact Assessment (DPIA); European Commission:
Brussels, WP248 rev.01. Available online: https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=

611236 (accessed on 18 July 2019).
3. Roeser, S. Emotional Engineers: Toward Morally Responsible Design. Sci. Eng. Ethics 2012, 18, 103–115.

[CrossRef] [PubMed]
4. Balebako, R.; Marsh, A.; Lin, J.; Hong, J.; Cranor, L.F. The Privacy and Security Behaviors of Smartphone

App Developers. In Proceedings of the Network and Distributed System Security Workshop on Useable
Security, San Diego, CA, USA, 23–26 February 2014; Internet Society: Geneva, Switzerland. Available online:
https://www.ndss-symposium.org/wp-content/uploads/2017/09/01_2-paper.pdf (accessed on 18 July 2019).

5. Balebako, R.; Cranor, L.F. Improving App Privacy: Nudging App Developers to Protect User Privacy.
IEEE Secur. Priv. 2014, 12, 55–58. [CrossRef]

6. Jain, S.; Lindqvist, J. Should I Protect You? Understanding Developers’ Behavior to Privacy-Preserving
APIs. In Proceedings of the Network and Distributed System Security Workshop on Useable Security,
San Diego, CA, USA, 23–26 February 2014; Internet Society: Geneva, Switzerland. Available online:
https://www.ndss-symposium.org/wp-content/uploads/2017/09/01_1-paper.pdf (accessed on 18 July 2019).

7. Van Der Sype, Y.S.; Maalej, W. On Lawful Disclosure of Personal User Data: What Should App Developers Do?
In Proceedings of the IEEE 7th International Workshop on Requirements Engineering and Law, Karlskrona,
Sweden, 26 August 2014; IEEE Computer Society: Washington DC, USA, 2014; pp. 25–34.

8. Consumers International. Connection and Protection in the Digital Age: The Internet
of Things and Challenges for Consumer Protection, Consumers International. Available
online: https://www.consumersinternational.org/media/1292/connection-and-protection-the-internet-of-
things-and-challenges-for-consumer-protection.pdf (accessed on 18 July 2019).

9. Graf, C.; Wolkerstorfer, P.; Geben, A.; Tscheligi, M. A Pattern Collection for Privacy Enhancing Technology.
In Proceedings of the 2nd International Conference on Pervasive Patterns and Applications, Lisbon, Portugal,
21–26 November 2010; IARIA: Wilmington, DE, USA, 2010. Available online: https://www.researchgate.net/
publication/228579692_A_Pattern_Collection_for_Privacy_Enhancing_Technology (accessed on 18 July 2019).

10. ICO DPIA Checklist. Available online: https://ico.org.uk/for-organisations/guide-to-data-protection/guide-
to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-impact-
assessments/ (accessed on 22 July 2019).

11. OASIS Privacy Management Reference Model. Available online: https://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=pmrm (accessed on 22 July 2019).

12. NIST Privacy Framework. Available online: https://www.nist.gov/privacy-framework (accessed on 22 July 2019).
13. LINDDUN Privacy Threat Modeling. Available online: https://linddun.org/ (accessed on 22 July 2019).
14. Spiekermann, S.; Cranor, L. Engineering Privacy. IEEE Trans. Softw. Eng. 2009, 35, 67–82. [CrossRef]
15. Cavoukian, A. Privacy by Design: The 7 Foundational Principles; Information and Privacy Commissioner of

Ontario, Canada: Toronto, ON, Canada, 2009.
16. Article 29 Working Party. The Future of Privacy; European Commission: Brussels, WP168. Available

online: https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2009/wp168_
en.pdf (accessed on 18 July 2019).

17. Resolution on Privacy by Design. In Proceedings of the 32nd International Conference of Data Protection and
Privacy Commissioners, Jerusalem, Israel, 27–29 October 2010; Available online: https://edps.europa.eu/sites/
edp/files/publication/10-10-27_jerusalem_resolutionon_privacybydesign_en.pdf (accessed on 18 July 2019).

18. Towards a Thriving Data-driven Economy; EUR-lex: COM(2014)442 Final. Available online: http://ec.europa.
eu/newsroom/dae/document.cfm?action=display&doc_id=6210 (accessed on 18 July 2019).

19. Cybersecurity Strategy of the European Union: An Open, Safe and Secure Cyberspace. Available online:
https://edps.europa.eu/sites/edp/files/publication/13-06-14_cyber_security_en.pdf (accessed on 18 July 2019).

20. Troncosco, C. Engineering Privacy by Design. Available online: https://summerschool-croatia.cs.ru.nl/2017/

slides/Engineering%20privacy%20by%20design.pdf (accessed on 18 July 2019).

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2016%3A119%3ATOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2016%3A119%3ATOC
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=611236
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=611236
http://dx.doi.org/10.1007/s11948-010-9236-0
http://www.ncbi.nlm.nih.gov/pubmed/20936371
https://www.ndss-symposium.org/wp-content/uploads/2017/09/01_2-paper.pdf
http://dx.doi.org/10.1109/MSP.2014.70
https://www.ndss-symposium.org/wp-content/uploads/2017/09/01_1-paper.pdf
https://www.consumersinternational.org/media/1292/connection-and-protection-the-internet-of-things-and-challenges-for-consumer-protection.pdf
https://www.consumersinternational.org/media/1292/connection-and-protection-the-internet-of-things-and-challenges-for-consumer-protection.pdf
https://www.researchgate.net/publication/228579692_A_Pattern_Collection_for_Privacy_Enhancing_Technology
https://www.researchgate.net/publication/228579692_A_Pattern_Collection_for_Privacy_Enhancing_Technology
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-impact-assessments/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-impact-assessments/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-impact-assessments/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pmrm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pmrm
https://www.nist.gov/privacy-framework
https://linddun.org/
http://dx.doi.org/10.1109/TSE.2008.88
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2009/wp168_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2009/wp168_en.pdf
https://edps.europa.eu/sites/edp/files/publication/10-10-27_jerusalem_resolutionon_privacybydesign_en.pdf
https://edps.europa.eu/sites/edp/files/publication/10-10-27_jerusalem_resolutionon_privacybydesign_en.pdf
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=6210
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=6210
https://edps.europa.eu/sites/edp/files/publication/13-06-14_cyber_security_en.pdf
https://summerschool-croatia.cs.ru.nl/2017/slides/Engineering%20privacy%20by%20design.pdf
https://summerschool-croatia.cs.ru.nl/2017/slides/Engineering%20privacy%20by%20design.pdf

Sensors 2019, 19, 4380 20 of 21

21. Luger, E.; Urquhart, L.; Rodden, T.; Golembewski, M. Playing the Legal Card: Using Ideation Cards to Raise
Data Protection Issues within the Design Process. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; ACM Press: New York, NY, USA, 2015;
pp. 457–466.

22. Fatema, K.; Debruyne, C.; Lewis, D.; Morrison, J.P.; Mazed, A.-A. A Semi-Automated Methodology for
Extracting access control rules from the European Data Protection Directive. In Proceedings of the IEEE
Security and Privacy Workshops, San Jose, CA, USA, 22–26 May 2016; IEEE Computer Society: Washington,
DC, USA, 2016; pp. 25–32.

23. Singh, J.; Pasquier, T.; Bacon, J.; Powles, J.; Diaconu, R.; Eyers, D. Policy-driven Middleware for a
Legally-Compliant Internet of Things. In Proceedings of the 17th International Middleware Conference,
Trento, Italy, 12–16 December 2016; ACM Press: New York, NY, USA, 2016; p. 13.

24. Pandit, H.J.; Fatema, K.; O’Sullivan, D.; Lewis, D. GDPRtEXT-GDPR as a Linked Data Resource. In Proceedings
of the 15th European Semantic Web Conference, Heraklion, Greece, 3–7 June 2018; Springer: Cham,
Switzerland, 2018; pp. 481–495.

25. Corrales, M.; Jurčys, P.; Kousiouris, G. Smart Contracts and Smart Disclosure: Coding a GDPR Compliance
Framework. Available online: https://www.researchgate.net/publication/323625892_Smart_Contracts_and_
Smart_Disclosure_Coding_a_GDPR_Compliance_Framework (accessed on 18 July 2019).

26. Hafiz, M. A Collection of Privacy Design Patterns. In Proceedings of the 2006 Conference on Pattern Languages of
Programs, Portland, OR, USA, 21–23 December 2006; ACM Press: New York, NY, USA, 2006; p. 7.

27. Hafiz, M. A Pattern Language for Developing Privacy Enhancing Technologies. Softw. Pract. Exp. 2011, 43, 769–787.
[CrossRef]

28. Pearson, S.; Benameur, A. Decision Support System for Design for Privacy. In Proceedings of the Prime Life
2010, Helsingborg, Sweden, 2–6 August 2010; IFIP: Laxenburg, Austria, 2010; Volume 352. Available online:
http://dl.ifip.org/db/conf/primelife/primelife2010/PearsonB10.pdf (accessed on 18 July 2019).

29. Pearson, S.; Shen, Y. Context-aware Privacy Design Pattern Selection. In Proceedings of the 7th International
Conference on Trust, Privacy and Security in Digital Business, Bilbao, Spain, 30–31 August 2010; Springer
Nature: Cham, Switzerland, 2010; pp. 69–80.

30. Privacy Patterns. Available online: https://privacypatterns.org (accessed on 18 July 2019).
31. Enck, W.; Gilbert, P.; Chun, B.-G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid: An Information-Flow

Tracking System for Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th USENIX
Conference on Operating Systems and Implementation, Vancouver, BC, Canada, 4–6 October 2010; USENIX
Association: Berkeley, CA, USA, 2010; pp. 393–407. Available online: https://www.usenix.org/legacy/event/
osdi10/tech/full_papers/Enck.pdf (accessed on 18 July 2019).

32. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon, Y.; Octeau, D.; McDaniel, P.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps. In Proceedings of the 35th Annual ACM SIGPLAN Conference on Programming Language Design
and Implementation, Edinburgh, UK, 9–11 June 2014; ACM Press: New York, NY, USA, 2014; pp. 259–269.

33. Celik, Z.B.; Babum, L.; Sikder, A.; Aksu, H.; Tan, G.; McDaniel, P.; Uluagac, A.S. Sensitive Information
Tracking in Commodity IoT. In Proceedings of the 17th USENIX Security Symposium, Baltimore, MD,
USA, 15–17 August 2018; USENIX Association: Berkeley, CA, USA, 2018; pp. 1687–1704. Available online:
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-celik.pdf (accessed on 18 July 2019).

34. Ferrara, P.; Spoto, F. Static Analysis for GDPR Compliance. In Proceedings of the 2nd Italian Conference
on Cybersecurity, Milan, Italy, 6–9 February 2018; CEUR: Aachen, Germany, 2018; Volume 2058, p. 9.
Available online: http://ceur-ws.org/Vol-2058/paper-10.pdf (accessed on 18 July 2019).

35. Ferrara, P.; Olivieri, L.; Spoto, F. Tailoring Taint Analysis to GDPR. In Proceedings of the Annual Privacy
Forum, Barcelona, Spain, 13–14 June 2018; ENISA: Athens, Greece, 2018. Available online: http://www.pietro.
ferrara.name/2018_APF.pdf (accessed on 18 July 2019).

36. Privatar Publisher. Available online: https://www.privitar.com/publisher (accessed on 22 July 2019).
37. Privatar Lens. Available online: https://www.privitar.com/lens (accessed on 22 July 2019).
38. Information Commissioners Office. What is Personal Data? Available online: https://ico.org.uk/media/

for-organisations/guide-to-the-general-data-protection-regulation-gdpr/what-is-personal-data-1-0.pdf
(accessed on 18 July 2019).

https://www.researchgate.net/publication/323625892_Smart_Contracts_and_Smart_Disclosure_Coding_a_GDPR_Compliance_Framework
https://www.researchgate.net/publication/323625892_Smart_Contracts_and_Smart_Disclosure_Coding_a_GDPR_Compliance_Framework
http://dx.doi.org/10.1002/spe.1131
http://dl.ifip.org/db/conf/primelife/primelife2010/PearsonB10.pdf
https://privacypatterns.org
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-celik.pdf
http://ceur-ws.org/Vol-2058/paper-10.pdf
http://www.pietro.ferrara.name/2018_APF.pdf
http://www.pietro.ferrara.name/2018_APF.pdf
https://www.privitar.com/publisher
https://www.privitar.com/lens
https://ico.org.uk/media/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/what-is-personal-data-1-0.pdf
https://ico.org.uk/media/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/what-is-personal-data-1-0.pdf

Sensors 2019, 19, 4380 21 of 21

39. Cradock, E.; Stalla-Bourdillon, S.; Millard, D. Nobody Puts Data in a Corner? Why a New Approach to Categorising
Personal Data is Required for the Obligation to Inform. Comput. Law Secur. Rev. 2017, 33, 142–158. [CrossRef]

40. Leon, P.; Ur, B.; Wang, Y.; Sleeper, M.; Balebako, R.; Shay, R.; Bauer, L.; Christodorescu, M.; Cranor, L.F.
What Matters to Users? Factors that Affect Users’ Willingness to Share Information with Online Advertisers.
In Proceedings of the 9th Symposium on Usable Privacy and Security, Newcastle, UK, 24–26 July 2013; ACM
Press: New York, NY, USA, 2013; p. 7.

41. W3C. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. Available online: http://www.w3.org/

TR/P3P/#Categories (accessed on 22 July 2019).
42. Crabtree, A.; Lodge, T.; Colley, J.; Greenhalgh, C.; Glover, K.; Haddadi, H.; Amar, Y.; Mortier, R.; Li, Q.; Moore, J.; et al.

Building Accountability into the Internet of Things: The IoT Databox Model. J. Reliab. Intell. Environ. 2018, 4, 39–55.
[CrossRef] [PubMed]

43. Node-RED. Available online: https://nodered.org/ (accessed on 22 July 2019).
44. Docker. Available online: https://www.docker.com/ (accessed on 22 July 2019).
45. Databox and IDE source code. Available online: https://github.com/me-box/ (accessed on 30 September 2019).
46. Databox IDE. Available online: https://sdk.iotdatabox.com/ (accessed on 30 September 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.clsr.2016.11.005
http://www.w3.org/TR/P3P/#Categories
http://www.w3.org/TR/P3P/#Categories
http://dx.doi.org/10.1007/s40860-018-0054-5
http://www.ncbi.nlm.nih.gov/pubmed/31259143
https://nodered.org/
https://www.docker.com/
https://github.com/me-box/
https://sdk.iotdatabox.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Legal Frameworks
	Documentation
	Bridging between Tools and Design
	Privacy Tools

	Designing for Due Diligence
	Embedding Support for Due Diligence in Design
	Tracking Personal Data
	Developing a Categorisation

	Implementation and Overview of IDE
	Using the IDE
	Providing DPIA Recommendations

	Enabling Due Diligence
	Future Work
	Conclusions
	References

