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Abstract 25 

Introduction 26 

The function of the placental vasculature differs considerably from other systemic vascular beds of 27 

the human body. A detailed understanding of the normal placental vascular physiology is the 28 

foundation to understand perturbed conditions potentially leading to placental dysfunction.  29 

Methods 30 

Behaviour of human stem villous arteries isolated from placentae at term pregnancy was assessed 31 

using wire myography. Effects of a selection of known vasoconstrictors and vasodilators of the 32 

systemic vasculature were assessed. The morphology of stem villous arteries was examined using 33 

IHC and TEM. 34 

Results 35 

Contractile effects in stem villous arteries were caused by U46619, 5-HT, angiotensin II and 36 

endothelin-1 (p ≤ 0.05), whereas noradrenaline and AVP failed to result in a contraction. Dilating 37 

effects were seen for histamine, riluzole, nifedipine, papaverine, SNP and SQ29548 (p ≤ 0.05) but not 38 

for acetylcholine, bradykinin and substance P. 39 

Discussion 40 

Stem villous arteries behave differently to vessels of the systemic vasculature and results indicate 41 

that the placenta is cut off from the systemic maternal vascular regulation. Particularly, 42 

endothelium-dependent processes were attenuated in the placental vasculature, creating a need to 43 

determine the role of the endothelium in the placenta in future studies.  44 

  45 
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Introduction 46 

Placental vessels are of low resistance and their control is mainly driven by local humoral factors [1]. 47 

Due to the lack autonomic innervation, many vasoactive substances of the systemic vasculature 48 

exhibit no effects in placental vessels [2]. This ‘failsafe’ function of placental vessels ensures 49 

sufficient blood flow to the fetus at any time, independent from factors affecting the maternal 50 

organism. 51 

There are two types of vessels in the placenta that exhibit characteristics of resistance arteries with 52 

normalised internal diameters of 100-400µm [3] and muscular walls [4]: chorionic plate arteries and 53 

stem villous arteries. Stem villous arteries are situated at the site of nutrient transfer and are also 54 

present in much higher numbers than chorionic plate arteries. Stem villous arteries are therefore 55 

thought to be the most significant structure for the regulation of the placental circulation [5]. 56 

Although chorionic plate arteries may be less important for direct regulation of the fetoplacental 57 

flow, they might affect the downstream vasculature by release of mediators [6]. 58 

Several publications report the effect of various pharmacological compounds on placental vessels [7-59 

12]. However, most of the recent literature on placental vessels focusses on chorionic plate arteries 60 

whereas knowledge about stem villous arteries dates back to research conducted in the 1990s. This 61 

early work was mostly performed using perfusion of whole placentae or isolated vessels, often 62 

under nonphysiological conditions using high oxygen pressures and high resting tensions, potentially 63 

leading to distorted findings. Therefore, the present study undertook to test the effect of a selection 64 

of known vasoconstrictors and vasodilators on stem villous arteries under physiological experimental 65 

conditions.  66 
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Methods 67 

Chemicals and Solutions 68 

Two types of buffers were used for wire myography experiments, physiological salt solution (PSS) 69 

and high potassium physiological salt solution (KPSS). The composition of PSS (in mM) is sodium 70 

chloride 119, potassium chloride 4.7, magnesium sulfate heptahydrate 1.17, sodium bicarabonate 71 

25, potassium dihydrogen orthophosphate 1.18, EDTA 0.027, D-(+)-glucose 5.5, calcium chloride 72 

dehydrate 2.5. For KPSS, sodium chloride was replaced with 123.7 mM potassium chloride. Both 73 

were prepared according to protocols developed by Mulvany [3]. (R)-(-)-Phenylephrine 74 

hydrochloride (P6126), [Arg8]-Vasopressin acetate salt (V9879), acetylcholine chloride (A6625), 75 

angiotensin II human (A9525), bradykinin acetate salt (B3259), histamine (H7125), indomethacin 76 

(I7378), L-norepinephrine hydrochloride (74480), nifedipine (N7634), NΩ-nitro-L-arginine methyl 77 

ester hydrochloride (L-NAME) (N5751), papaverine hydrochloride (P3510), riluzole (R116), sodium 78 

nitroprusside dehydrate (S0501) and Substance P acetate salt hydrate (S6883) were bought from 79 

Sigma, UK. U46619 (1932) was bought from Tocris, UK. Endothelin-1 (human, porcine) (ab120471) 80 

was purchased from Abcam, UK. Serotonin (hydrochloride) (14332) was bought from Cayman, US. 81 

SQ29548 (BML-RA103) was purchased from Enzo, UK. 82 

Tissue collection 83 

Placentae were collected from healthy pregnant women after obtaining fully informed written 84 

consent. Ethics approval was granted by Derby Research Ethics Committee (REC Reference No. 85 

09/H0401/90). Patient demographics for collected placentae are shown in Table 1. All subjects of the 86 

study delivered via caesarean section. 87 

Wire myography 88 

Stem villous arteries were dissected within one hour after collection and placed in physiological salt 89 

solution (PSS). In order to accurately identify arteries in stem villi for the purposes of myography, the 90 

umbilical artery from the point of cord insertion was followed to first excise a full cotyledon. The 91 

cotyledon was cleaned from excess blood using PSS and the artery was then followed directly while 92 
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continuously removing surrounding villous tissue using blunt forceps and a fine pair of scissors, 93 

taking extreme care not to damage the vessel wall. From the third to fourth order of the branch, 94 

dissection needed to be continued under the dissecting microscope in order to distinguish the artery 95 

from the vein that usually runs in close proximity within a villus. The arteries were cleaned from 96 

surrounding tissue and cut into 2mm segments. Vessel segments were mounted onto 40µm wires of 97 

a DMT 620 myograph system (Aarhus, Denmark) and normalised. For the present study, all vessels 98 

were normalised to a target pressure of 5.1kPa in order to simulate physiological placental 99 

conditions [10]. An internal circumference of 0.9*IC5.1kPa was used as optimal working diameter for 100 

stem villous arteries. Experiments were performed at 37°C in PSS gassed with 2% oxygen, 5% carbon 101 

dioxide in nitrogen (BOC special gas, British Oxygen Company, UK) to reproduce placental conditions 102 

at term [13]. 103 

Experiments were started with an initial contraction to 10-6M U46619 that served as a viability 104 

control. Effects of subsequently tested contractile or relaxant agents were expressed in % of this 105 

contraction. For the assessment of relaxant effects, test compounds were added in increasing 106 

concentrations directly following the initial U46619 contraction. U44619 was chosen as its 107 

vasoconstrictive effects have been shown to be consistent and reproducible in placental vessels [10]. 108 

For assessment of contractile effects, the initial U46619 dose was washed out and the vessels left to 109 

equilibrate to baseline tension before adding increasing concentrations of a test compound. Every 110 

experiment was completed with a final contraction by changing the buffer from PSS to KPSS to 111 

confirm viability. 112 

Immunohistochemistry (IHC) 113 

1mm long stem villous arteries post myography were placed immediately placed in Bouin’s solution 114 

overnight at 4˚C. Following fixation, samples were mounted in Optimum Cutting Temperature (OCT) 115 

embedding medium (Tissue Tek) and rapidly frozen in liquid N2 cooled isopentane. The freshly frozen 116 

samples were then transferred to a cryostat maintained at -18°C (Leica CM1900) and sectioned to 117 

give 5µm thick slices. The sections were then adhered to a gelatine-coated slide (76 x 26 x 1.2mm, 118 
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VWR) then left to air dry. Haematoxylin and eosin (H&E) staining was used to stain vessels by 119 

washing the slides in running tap water for 5mins before placing them in Mayer’s Haematoxylin for 120 

10mins. The samples were then washed again in running tap water before washing them in Scott’s 121 

tap water for 2mins to stain the nuclear chromatin and nuclear membranes blue. The samples were 122 

washed again in running water for 5mins before placing them in 1% eosin for 3mins. For 123 

immunohistochemistry, additional 5m thick sections were blocked firstly with 0.3% H2O2 for 124 

20mins. After a 5min PBS wash, 20% horse serum in PBS was applied for 30mins to block non specific 125 

antibody binding. Slides were then washed again for 5mins in PBS followed by incubation of 1:50 126 

dilution of primary -actin antibody (DakoCytomation) of each sample for 2hrs at room temperature 127 

without shaking. Slides were again washed in PBS for 5mins, before the staining was developed using 128 

the avidin-biotin Vectorstain Elite Kit (Universal, Vector laboratories) and antigen localised using 3,3' 129 

diaminobenzidine following the manufacturer’s instructions. After a brief wash in running water, 130 

slides were dehydrated through an ascending series (70%, 90% and 100%) of alcohol concentrations 131 

for 2mins each. The samples were then cleared using xylene for 5mins before mounting the slides 132 

with glass coverslips coated in DPX mounting medium before viewing under light microscopy (Zeiss 133 

Axiovert 25). 134 

 135 

Transmission electron microscopy (TEM) 136 

Vessel segments from wire myography were fixed overnight with 3% glutaraldehyde. Following this 137 

incubation the tissue specimens were washed in 0.1M cacodylate buffer. The tissue was then post 138 

fixed in 1% osmium tetroxide in 0.1M cacodylate buffer. Following five 1min washes in distilled 139 

water the samples were dehydrated with graded alcohol treatments (50%, 70%, 90% and 100% for 140 

15mins each) before finally being treated with 100% propylene oxide for a final 15mins. The samples 141 

were then infiltrated with resin (mixed with propylene oxide at ratio of 3:1) for 4h at RT. Finally, the 142 

tissue was embedded in a plastic mould which was left to polymerise overnight. For TEM, ultrathin 143 

(70nm) sections were cut using a diamond knife (Diatome) and collected on a copper mesh grid 144 
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ready for viewing using a FEI Tecnai 12 BioTWIN microscope. Images were captured with a 145 

Megaview III camera using Soft Imaging System software.  146 

Data analysis 147 

Recorded wire myography data was converted from tension to active effective pressure (AEP) to 148 

take varying vessel sizes into consideration. AEP was calculated using Laplace's equation, dividing 149 

recorded active tension (mN / mm) measurements by the internal vessel radius (mm). Effects are 150 

expressed in AEP as a percentage of the maximal AEP achieved with a preceding reference 151 

contraction to 10-6M U46619. Where possible, a nonlinear curve fit was performed using Prism 6 152 

(GraphPad Software, La Jolla, USA) to determine the EC50 or IC50 of a concentration-response curve. 153 

The three-parameter logistic equation was used to fit all curves, as recommended for data sets with 154 

low numbers of data points. Curve fitting was not performed on concentration-response curves 155 

lacking recognisable bottom or top plateaus. These incomplete concentration-response curves were 156 

caused by limited availability of drugs. To enable the analysis of incomplete concentration-response 157 

curves, responses to drug and vehicle were compared using a mixed two-way ANOVA reporting p-158 

values for the treatment factor. The null hypothesis was rejected at p < 0.05. Graphs show mean and 159 

SEM unless stated otherwise. 160 

 161 

Results 162 

Wire myography 163 

U46619, as a well-known vasoconstrictor in placental vessels, caused the strongest contraction of all 164 

tested agents with an EC50 of 1.2*10-7M. The contraction gave stable plateaus at each concentration 165 

point and reversed to baseline within 1h of starting PSS washes. Phenylephrine and noradrenaline 166 

were tested as well-known vasoconstrictors of the systemic vasculature. Only phenylephrine caused 167 

a small statistically significant contraction at high concentrations (3.3*10-5M). Arginine vasopressin 168 
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(AVP) did not show any effect in stem villous arteries. Results for U46619, phenylephrine, 169 

noradrenaline and AVP are shown in Figure 1. 170 

Figure 2 shows results for 5-HT, angiotensin II and endothelin-1. 5-HT resulted in a contraction of 171 

stem villous arteries with an EC50 of 1.1*10-7M, but the maximum AEP was only about a fifth of 172 

U46619's effect. Angiotensin II caused small initial contractions that were not sustained and not 173 

consistent across tested vessels. The concentration-response curve therefore did not depict any 174 

significant effect of this compound. Endothelin-1 caused the second strongest contraction of tested 175 

compounds in stem villous arteries with about 60% of U46619's AEP at 10-6M. Due to limited 176 

availability of drug, it was not possible to test higher endothelin-1 concentrations for the 177 

determination of relative Rmax to U46619. The contractions to endothelin-1 resulted in stable 178 

plateaus that were difficult to wash out. Endothelin-1 induced contractions did not return to the 179 

initial baseline within 2h, even after numerous washes using PSS. 180 

  181 

Results for test compounds examined for relaxant properties are shown in Figure 3 and Figure 4. 182 

Acetylcholine, bradykinin and substance P did not cause any effects in stem villous arteries. 183 

Histamine and sodium nitroprusside (SNP) relaxed vessels to about 50% of the preconstricted AEP 184 

with IC50 of 1.7*10-6M and 7*10-6M respectively. SQ20548 was the most potent relaxant amongst 185 

the test compounds, relaxing the vessel back to baseline tensions with an IC50 of 2.3*10-7M. Other 186 

substances that showed significant effects were riluzole, nifedipine and papaverine. All vessels 187 

relaxed back to baseline levels when drugs were washed out using SPSS. 188 

IHC and TEM  189 

IHC and TEM imaging of the vessel segments enabled a detailed examination of the cell layers within 190 

stem villous arteries after wire myography experiments. It was of special interest to verify the 191 

integrity of the endothelial layer in order to interpret the effects seen with wire myography. Figure 5 192 

depicts a subsection of a stem villus showing the three important portions of a stem villous artery; 193 

namely the lumen, EC and SMC are present. A stem villous artery and vein typically run in close 194 
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proximity to each other within one stem villous branch. In Figure 6, the single cell layer of 195 

endothelial cells (EC) can be distinguished by the elastic lamina (EL) which separates the EC layer 196 

from smooth muscle cells (SMC). Figure 5 and Figure 6 show that the EC layer does appear to remain 197 

intact following vessel isolation and myography. 198 

  199 

Discussion 200 

The placental circulation facilitates adequate supply of nutrients and gases to the fetus. Still little is 201 

known about the physiological behaviour of placental resistance vessels and their role in pregnancy 202 

complications. For this reason, the present study aimed to evaluate the effect of a range of 203 

pharmacological compounds and endogenous lipids on human placental arteries.  204 

 205 

Effects of various pharmacological compound on stem villus arteries 206 

Given the potential significance of stem villous arteries to placental dysfunction, a selection of 207 

pharmacological compounds was assessed for their potential contractile or relaxant effects. Two 208 

well-known constrictors of the placental vasculature, thromboxane agonist U46619 and endothelin-209 

1 caused reliable and strong contractions in stem villous arteries as previously demonstrated [7-9, 210 

14]. The stable thromboxane A2 receptor agonist U46619 is a strong and reliable vasoconstrictor. 211 

This property makes it a commonly used tool to assess vascular function in uteroplacental vessels. It 212 

has been shown by a number of groups that maximum tension development in response to U46619 213 

is significantly lower in pre-eclampsia, whereas there is no difference in the sensitivity. This has been 214 

shown for stem villous arteries [14], chorionic plate arteries [15, 16] and in a perfusion model of 215 

placental lobules[17].  216 

AVP as a reliable vasoconstrictor of the systemic vasculature did not cause any contraction in stem 217 

villous arteries. Vasoconstriction in response to AVP was reported in chorionic plate arteries, but 218 

stem villous arteries seem to be inert against this substance [10, 11, 15, 16]. This may be explained 219 
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by a low placental expression of the AVP receptor, 1A (AVPR1A), which is the main subtype involved 220 

in AVP's contractile effect [18]. 221 

5-HT concentration-response curves showed mild contractions in stem villous arteries, which is in 222 

line with previous findings [7, 11] supporting observations for the presence of 5-HT receptors in the 223 

placenta [19].  224 

Angiotensin II caused transient contractions in stem villous arteries that were prone to tachyphylaxis 225 

as previously noted by others [11, 20, 21]. There are also reports of sustained angiotensin-II 226 

contractions, but exclusively in chorionic plate arteries or perfused placental lobule preparations [1, 227 

22, 23]. Tachyphylaxis to angiotensin II is documented for many tissues other than placentae and is 228 

thought to be caused by internalisation or allosteric conformational change of the angiotensin II 229 

receptor [24].  230 

As the placenta lacks autonomic innervation, it was not unexpected that substances of the 231 

autonomic nervous system showed little or no effect [2]. While noradrenaline did not affect vessel 232 

tension at all, phenylephrine caused a weak contraction at high concentrations (3.3*10-5M). Despite 233 

its importance in the systemic vasculature, previous reports indicate that noradrenaline has reduced 234 

effects on placental vessels. No effects of noradrenaline could be observed in stem villous arteries, 235 

chorionic plate arteries or placental lobules [10, 11, 25]. In the case of phenylephrine, transient and 236 

unreliable contractions of chorionic plate veins were reported, which is similar to the effects seen in 237 

stem villous arteries in the present study [10, 26]. 238 

Similarly, as for previously discussed contractile agents, the lack of autonomic innervation can be 239 

observed in the ineffectiveness of several known relaxant agents. Acetylcholine (ACh) did not cause 240 

any relaxation of preimposed tone although it is a strong vasodilator in the systemic vasculature. The 241 

findings of the present study are supported by the observation that the cholinergic agonist, 242 

carbachol, did not show any effects in preconstricted chorionic plate arteries [10]. ACh was 243 

previously demonstrated to be endogenously released from single placental cotyledons and whole 244 

placentae [27]. Protein and mRNA expression of the nicotinic ACh receptor were demonstrated in 245 
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the human placental vasculature, while the muscarinic ACh receptor could only be detected in 246 

syncytiotrophoblasts but not in placental vessels [28, 29]. ACh could therefore potentially act on the 247 

placental vasculature via these ACh receptors and currently there is no evidence to explain its lack of 248 

impact on vascular tone. 249 

Two other endothelium-dependent vasodilators, bradykinin and substance P, similarly did not cause 250 

any alteration of the preimposed tone in stem villous arteries. This is again in line with findings of a 251 

range of authors who worked with chorionic plate arteries and stem villous arteries [10, 12, 16, 30]. 252 

Bradykinin has frequently been used as endothelium-dependent vasodilator in studies on 253 

uteroplacental blood vessels, via release of NO, prostacyclin and EDHF. The endothelium-dependent 254 

vasodilator substance P is a peptide that plays an important role as a neurotransmitter [31].  255 

Of all endothelium-dependent dilators, only histamine gave reliable relaxation to preimposed tone. 256 

Previous work observed a relaxation to histamine in stem villous arteries, which could only be seen 257 

in vessels that were not denuded of endothelium [7]. This supports that the endothelium in 258 

examined stem villous arteries of this study was intact, as also shown by TEM and IHC imaging. In 259 

contrast to this, a number of authors reported contractile instead of relaxant effects of histamine in 260 

chorionic plate arteries [32-34]. It was later found in chorionic plate arteries that part of the 261 

histamine induced relaxation is regulated via the H1-receptor mediated endothelium-dependent 262 

pathway and part by a direct H2-receptor mediated VSMC relaxation [35]. An initial contractile 263 

element at low concentrations of the histamine dose response was achieved over a direct H2-264 

receptor mediated VSMC activation. In the present study, no contractile element was noted in the 265 

histamine dose response, which could indicate a different mechanism of action of histamine in stem 266 

villous arteries compared to chorionic plate arteries. However, the preconstruction of vessels in this 267 

study might have masked a contractile element of the histamine effect, hence a more detailed 268 

investigation is needed to confirm the behaviour of stem villous arteries to histamine. 269 

The strongest relaxing effect of all tested substances was observed for SQ29548. The thromboxane 270 

A2 receptor antagonist was shown to reduce the sensitivity to U-46619 and 8-isoPGE2 induced 271 
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contractions in chorionic plate arteries and a placental lobule perfusion model [36, 37]. The 272 

relaxation back to baseline levels is not unexpected, as vessels were precontracted using 273 

thromboxane receptor agonist U46619. SQ29548 is most probably acting as a competitive receptor 274 

antagonist to U46619.  275 

Another strong vasodilator of stem villous arteries was sodium nitroprusside (SNP), which 276 

emphasises the important role of NO for the control of the placental vasculature. This is consistent 277 

with previous reports in stem villous arteries [7, 9] and chorionic plate arteries [10, 38]. 278 

Other tested endothelium-independent dilators were riluzole and papaverine. Both caused 279 

relaxation of the preimposed tone. Papaverine was previously shown to relax chorionic plate arteries 280 

[10] and riluzole was shown to relax stem villous arteries and chorionic plate arteries . The 281 

endothelium-independent blood vessel relaxant papaverine was first isolated from opium and acts 282 

as a PDE inhibitor and calcium channel modulator. The compound riluzole is a glutamate antagonist, 283 

sodium channel blocker and potassium channel opener, used for treatment of amyotrophic lateral 284 

sclerosis [39]. It acts on TREK-1 (a two-pore-domain potassium channel), which is expressed in 285 

placental vessels.  286 

As important drug for the treatment of non-gestational and gestational hypertension, the vascular 287 

effects of calcium channel antagonist nifedipine were examined. The compound caused relaxation of 288 

the preimposed tone in stem villous arteries. Relaxant effects of nifedipine or nitrendipine were 289 

previously demonstrated in chorionic plate arteries [40-42] and stem villous arteries [21]. This 290 

indicates the presence of L-type calcium channels in stem villous arteries, which were previously 291 

only demonstrated to be expressed in trophoblasts [43].  292 

In summary, stem villous arteries responded to a wide profile of pharmacological compounds. 293 

Contractile effects in stem villous arteries were caused by U46619, 5-HT, angiotensin II and 294 

endothelin-1, whereas noradrenaline and AVP failed to result in a contraction. Dilating effects were 295 

seen for histamine, riluzole, nifedipine, papaverine, SNP and SQ29548 but not for acetylcholine, 296 
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bradykinin and substance P. These findings were mostly consistent with research conducted in 297 

placental vessels as reviewed above.  298 

In general, it is observed that commonly used vasoactive substances of the systemic vasculature 299 

such as noradrenaline, AVP and acetylcholine seem to hardly affect stem villous arteries. This is a 300 

common finding in all placental vessels and attributable to the missing innervation in the placenta 301 

[2]. 302 

Placental vessels clearly behave differently to vessels of the systemic vasculature. Chorionic plate 303 

arteries and stem villous arteries show similar behaviour in many cases but there are several 304 

exemptions as well: AVP did not affect stem villous arteries whereas a contraction in chorionic plate 305 

arteries was reported by several authors [10, 15, 44, 45]. Furthermore, no contractile effect of 306 

histamine could be observed, as reported in chorionic plate arteries [32-34]. Given their importance 307 

in the placental circulation, it is therefore important to consider stem villous arteries as a distinct 308 

vascular bed in future research. 309 

 310 

The endothelium in the placental vasculature 311 

The integrity of the endothelium in the experimental setup is of particular interest, as effects various 312 

compounds are dependent on its presence. Therefore, experimental protocols typically involve 313 

checking endothelial function using acetylcholine [3]. However, acetylcholine and other 314 

endothelium-dependent vasodilators as bradykinin and substance P did not affect vascular tension 315 

in stem villous arteries as previously shown by a number of authors [6, 7, 10, 12, 16, 30]. An 316 

evaluation of endothelial integrity in the present study using the conventional acetylcholine 317 

relaxation was therefore not possible. Only one endothelium-dependent dilator, histamine, caused 318 

vasorelaxation whereby part of the dilating effect is, at least in chorionic plate arteries, attributed to 319 

an endothelium-independent process [35]. Assessment of the endothelial function in stem villous 320 

arteries revealed that histamine induced relaxations only in presence of the endothelium [7, 8]. 321 

These relaxations to histamine were also observed in the present study, which is an indicator that 322 
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the endothelium of stem villous arteries used in this study was intact. However, the role of the 323 

endothelium in stem villous arteries is poorly characterised. It is also doubtful that knowledge from 324 

other vascular beds such as chorionic plate arteries can be transferred and applied to stem villous 325 

arteries as they show considerably different vascular behaviour. For this reason, an in depth 326 

investigation is required to evaluate the effect of endothelium removal on vascular function in stem 327 

villous arteries. TEM imaging showed that the endothelium of stem villous arteries is present after 328 

the mounting procedure. The discrepancy of the endothelial function when comparing to other 329 

vascular beds can therefore only be explained on cellular level. The absence of effects caused by 330 

bradykinin or acetylcholine could also be explained by elevated intrinsic NO levels in the pregnancy 331 

[6]. Permanent basal NO production is thought to be key for the physiological maintenance of low 332 

vascular resistance in the placenta [1, 5, 6]. At the same time, NO inhibits CYP enzymes and with that 333 

the release of EDHF [46]. There are various compounds produced by CYP that are thought to 334 

contribute to the EDHF effect [47]. In general, it was suggested that the EDHF pathway might act as 335 

backup mechanism in vessels with impaired NO availability possibility due to endothelial dysfunction 336 

[48]. In the experimental setup of the present study, NO release by bradykinin or acetylcholine might 337 

not considerably add to the already increased NO availability. Furthermore, the NO-independent, 338 

CYP dependent component of the bradykinin/acetylcholine relaxation might be attenuated as CYP 339 

enzymes are blocked by high NO levels. However, this hypothesis needs to be tested and confirmed.  340 

 341 

In conclusion, the assessment of various pharmacological compounds provided a valuable overview 342 

of the physiological behaviour of stem villous arteries. This work will also be useful knowledge for 343 

future studies, where pharmacological tools are required to assess vascular function. Substances 344 

that are part of the autonomous system such as noradrenaline or acetylcholine showed no effects in 345 

stem villous arteries, which cuts the placenta off from the systemic maternal vascular regulation. 346 

The fact that stem villous arteries responded to a range of mediators that were previously reported 347 

to elicit altered vascular effects in pre-eclampsia, creates the base for future research on stem 348 
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villous arteries in the context of hypertensive gestational diseases. In this context, use of more 349 

specific blockers targeting individual pathways would enable a detailed understanding of the 350 

placental physiology. 351 

Our observation that particularly endothelium-dependent processes were attenuated in the 352 

placental vasculature indicates that there is an urgent need to determine the role of the 353 

endothelium in the placenta in future studies.  354 
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Figures 488 

 489 

Figure 1: Effect of (A) U46619, (B) phenylephrine, (C) noradrenaline and (D) AVP on stem villous arteries. Bars show 490 

mean and SEM with solid squares representing the tested substance and open circles representing the vehicle control. 491 

Effects are expressed as AEP in percent of the maximal AEP achieved with a preceding reference contraction to 10-6M of 492 

U46619. All vessels were normalised to 0.9*IC5.1kPa. Significance was tested using a mixed two-way ANOVA. 493 
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 494 

Figure 2: Effect of (A) 5-HT, (B) angiotensin II and (C) endothelin-1 on stem villous arteries. Bars show mean and SEM 495 

with solid squares representing the tested substance and open circles representing the vehicle control. Effects are 496 

expressed as AEP in percent of the maximal AEP achieved with a preceding reference contraction to 10-6M of U46619. All 497 

vessels were normalised to 0.9*IC5.1kPa. Significance was tested using a mixed two-way ANOVA. 498 

 499 
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 500 

Figure 3: Effect of (A) histamine, (B) riluzole, (C) acetylcholine, (D) bradykinin, (E) nifedipine and (F) papaverine on stem 501 

villous arteries. Bars show mean and SEM, solid squares representing the tested substance and open circles representing 502 

the vehicle control. Effects are expressed as AEP in percent of the maximal AEP achieved with a preceding reference 503 

contraction to 10-6M of U46619. All vessels were normalised to 0.9*IC5.1kPa. Significance was tested using a mixed two-504 

way ANOVA. 505 
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 506 

 507 

Figure 4: Effect of (A) sodium nitroprusside, (B) SQ29548 and (C) substance P on stem villous arteries. Bars show mean 508 

and SEM with solid squares representing the tested substance and open circles representing the vehicle control. Effects 509 

are expressed as AEP in percent of the maximal AEP achieved with a preceding reference contraction to 10-6M of 510 

U46619. All vessels were normalised to 0.9*IC5.1kPa. Significance was tested using a mixed two-way ANOVA. 511 

 512 
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 513 

Figure 5: IHC showing a subsection of a stem villus. The SMC layer around the artery (right) detected with α-actin is 514 

thicker and more prominent compared to the vein (left). The endothelium can be seen as a dense stain around the 515 

lumen of the stem villous artery.  516 
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 517 

Figure 6: TEM showing a subsection of a stem villous artery with intact endothelium. EC: Endothelial cell; EL: Elastic 518 

lamina; L: Lumen. 519 

  520 
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Tables 521 

 522 

Table 1: Patient demographics for collected placentae. Table shows mean (standard deviation) or total numbers. N=33.  523 
yrs: years; wks: weeks. Customised weight centiles were calculated using Weight Centile Calculator from GROW 524 
software version 8.0.4 (UK), 2019 [49, 50]. 525 

Age [yrs] 32.1 (6.2) 
BMI (at booking) 30.1 (7.9) 
Gravida 3.1 (1.5) 
Parity 1.4 (1.1) 
Gestational week at delivery [wks] 38.5 (1.2) 
Birthweight [g] 3491.8 (548.1) 
Customised weight centile 61.6 (28.2) 
Sex baby 22 female, 11 male 

 526 


