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Abstract: In this paper, the critical speeds of a rotating shaft fitted with eccentric balance sleeves are
identified from a scaled, high speed experimental test facility. The results are compared with the
results of dynamic finite element simulations. It is shown that the stiffness of the sleeves must be
accommodated when considering passive control characteristics critical speeds of a rotating shaft
using eccentric sleeves.
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1. Introduction

The analysis presented in the paper considers industrial shaft machinery that rotates at high
speeds, specifically the rotating shaft in sub-15MW industrial gas turbine units, typically used for power
generation or mechanical drive purposes. Operation of such machinery is accompanied by vibration,
attributable in part to mass unbalance due to asymmetry and manufacturing imperfection in the rotating
shaft, resulting in forces being exerted on surrounding structures [1]. It is vitally important to ensure
that such forces are controlled by eliminating the geometric unbalance of the rotor where possible.
Primarily this is achieved through design and high tolerances in manufacture [2]. Nevertheless, this is
frequently insufficient and other means of reducing vibration levels are necessary post-manufacture.

Safe operation is ensured by adherence to regulation, such as API 671, which dictates that, in
the case of a flexible coupling shaft, the lateral critical speed (LCS) margin should be 1.5 times the
maximum operating speed [3,4]. Therefore, the flexible coupling shaft design is dictated by the LCS
margin, resulting in couplings, which are more flexible than would otherwise be desirable. This
in turn results in shafts that are difficult to dynamically balance across a wide range of operating
speeds. As such, rotor unbalance is a commonly encountered issue in rotating machinery, requiring
periodic remediation. Vibration-based identification and characterization of rotor unbalance and
other faults in rotating machines has been the subject of numerous studies [5]. A model-based
method for the estimation of multi-plane unbalance and misalignment in a rotating shaft from a single
machine rundown was proposed by Sinha et al. [6]. The method was applied to a small, experimental
test-rig, with a sensitivity analysis showing the robustness of the method, particularly with regard
to phase estimation. Sudhakar et al. proposed a model based methodology for the identification of
rotor unbalance in an experimental rotor bearing system utilizing two approaches: equivalent loads
minimization and vibration minimization [7]. Considering errors in phase and amplitude estimation,
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it was concluded that the combined equivalent loads and vibration minimization method was more
effective than the equivalent loads minimization method alone. More recently, a method for the
identification and optimization of unbalance parameters in rotor-bearing systems was proposed by
Yao et al. [8]. The method combined a modal expansion approach with optimization algorithms and
allowed for the identification of the axial location of the unbalance, as well as its magnitude and phase,
showing good agreement with experimental observations.

Once the degree of residual unbalance in the rotor in terms of amplitude and phase has been
established, conventional corrective balancing techniques then involve the addition or subtraction of
mass at specified locations [9,10]. This is typically done using a series of fixed balancing flanges on the
shaft. Knowles et al. proposed an alternative method in which balance corrections are applied to the
free ends of a pair of balancing sleeves, attached to each end of the rotating shaft [11,12].

By this means, the trim balance mass applies a corrective centrifugal force to the drive shaft to
limit the shaft end-reaction forces. The balancing sleeves are flexible by design; as such, the magnitude
of the correcting forces is greater at higher speeds due to the increasingly eccentric position of the trim
balance mass. The sleeves also impart a corrective bending moment to the rotating shaft, which has a
beneficial tendency to limit the shaft deflection [13]. However, the addition of mass to the system in
the form of a sleeve can result in a change in the natural frequency and hence the critical speed of the
system. Significant research is required to analyze the behavior of the system due to the addition of the
eccentric sleeves prior to embedding them into engines. From this analysis, additional passive control
characteristics may be identified.

In this paper, the critical speeds of a rotating shaft fitted with eccentric balance sleeves are
identified from a scaled, high speed experimental test facility. The results are compared with the
results of dynamic finite element simulations. It is shown that the stiffness of the sleeves must be
accommodated when considering passive control characteristics critical speeds of a rotating shaft using
eccentric sleeves.

2. Methodology

2.1. High Speed Test Facility

A high speed test facility was designed for this work, as shown in Figure 1. It consisted of two
induction motors (QDI13.2-2F, Oswald Elektromotoren GmbH, Miltenberg, Germany). The motors
were supplied by a 415 V three phase supply and were capable of producing 49 kW with a maximum
operating speed of 20,000 rpm. The motors were controlled using a Unidrive SP AC Drive A and
positive feedback was provided using a rotary encoder (512 bit PPR TTL 5 V Quadrature encoder,
Heidenhaim Corporation, Traunreut, Germany).
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The motors were mounted on engine support frames that were bolted to the floor on vibration
isolation feet.

2.1.1. Test Shaft and Eccentric Sleeve

A test shaft linked the motors in the high speed test facility together. The shaft was dimensionally
scaled from a full sized SGT-400 MD coupling shaft. The shaft assembly consists of two hubs, four
adaptors, two flexible element packs, two eccentric balance sleeves and a single spacer shaft, as shown
in Figure 2.
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Figure 2. Test shaft and eccentric sleeve.

The spacer shaft length was 920 mm and inner and outer diameters 56 and 62 mm, respectively.
The shaft assembly hubs were fitted directly onto the motors with short, solid shafts. An interference
fit was provided by use of two externally fitted Tollock couplings. The spacer shaft, adaptors and
eccentric balance sleeves are constrained by the flexible element section of the coupling. The flexible
element constrains axial displacement and rotation but allows for limited rotation about the y- and
z-axes. The stiffness of the flexible elements was found to be 1 × 104 N/m. The material properties of
the shaft assembly components are given in Table 1.

Table 1. Material properties.

Material BS970 817M40T AISI 301 Stainless Grade 5 Titanium

Component(s) Hub, Spacer, Sleeves Flexible Elements Adaptors

Modulus of Elasticity (GPa) 205 195 114
Poisson Ratio 0.3 0.3 0.342

Ultimate Tensile Strength (MPa) 850 515 950
Tensile Yield Strength (MPa) 700 205 880

Compressive Yield Strength (MPa) 800 500 970

To investigate the effect of sleeve flexibility on the dynamics of the system, three eccentric sleeves
of varying length were designed a manufactured, as detailed in Table 2.

Table 2. Sleeve lengths used in analysis.

Short Medium Long

66 mm 76 mm 86 mm
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Shaft balancing was conducted by the manufacturer prior to delivery. Table 3 summarizes the
residual unbalance in each of the four eccentric balance sleeve configurations considered as supplied
in manufacturer’s certificate of conformity.

Table 3. Residual unbalance in test shaft/sleeve configurations.

No Sleeve Short Medium Long

Unbalance (g-mm) 4.89 6.24 4.52 7.62

2.1.2. Instrumentation

Shaft and sleeve deflections were measured using three laser displacement sensors (optoNCDT
ILD2300-20, Micro-Epsilon Messtechnik GmbH & Co. KG, Ortenburg, Germany), as shown in Figure 3.
The displacement sensors allowed for high accuracy measurement (<1 µm) with a sampling rate of up
to 50 kHz.
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Figure 3. Laser displacement sensors measuring shaft.

2.2. Finite Element Model Development

A dynamic finite element model of the full rotating shaft and eccentric sleeve system has been
developed in ANSYS Workbench (Version 17.0). A modal analysis was carried out using a rotating
coordinate system. An appropriate meshing strategy was obtained using a convergence study. All
components were meshed using 10 node higher order 3D (SOLID187) elements, as shown in Figure 4.
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Figure 4. Meshed geometry.

The model was fixed at each end to replicate connection to driving and driven equipment using a
remote displacement scoped to the hubs, constraining translational motion and rotation about the y-
and z-axes. A rotational velocity was applied about the x-axis.

To investigate the effect of sleeve flexibility on the dynamics of the system, finite elements models
incorporating the three lengths of eccentric sleeve detailed in Table 2 were created. Models were also
created in which the geometry of the eccentric sleeves was removed and replaced with a point mass
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with equivalent inertia properties. This allowed for the effect of the mass of the sleeve on the dynamics
of the system to be considered in the absence of any stiffness effects.

3. Results and Discussion

The experimental work focussed on determining the critical speeds of the shaft for four eccentric
balance sleeve configurations: no sleeve, short sleeve, medium sleeve and long sleeve. The numerical
work focussed on ascertaining the effect of sleeve flexibility on the dynamics of the system.

3.1. Experimental Results

The critical speeds of the system were identified by determining its peak response in terms
of measured shaft displacement (v) at the mid-point for each of the four eccentric balance
sleeve configurations considered with respect to rotational velocity, assuming only unbalance
excitation resulting in forward synchronous whirl. Previous studies have utilized mounted, wireless
accelerometers for on shaft vibration measurement to determine the natural frequencies during
run-up, allowing for the construction of experimentally-determined Campbell diagrams to identify the
critical speeds [14,15]. However, the high rotational velocities used in this study necessitate that the
critical speeds are inferred from the peak response. Figure 5 shows example shaft displacement (v)
measurements at the mid-point for each of the four eccentric balance sleeve configurations considered
with respect to rotational velocity. During run-up, a 10 s record of shaft deflection at steady state speed
was taken at 100 rpm intervals between 0 and 12,000 rpm. Symmetry of orbit and centering of shaft
displacement were checked and a mean displacement obtained for each data set.

Machines 2019, 7, x FOR PEER REVIEW  5 of 10 

 

point mass with equivalent inertia properties. This allowed for the effect of the mass of the sleeve on 

the dynamics of the system to be considered in the absence of any stiffness effects. 

3. Results and Discussion 

The experimental work focussed on determining the critical speeds of the shaft for four eccentric 

balance sleeve configurations: no sleeve, short sleeve, medium sleeve and long sleeve. The numerical 

work focussed on ascertaining the effect of sleeve flexibility on the dynamics of the system. 

3.1. Experimental Results 

The critical speeds of the system were identified by determining its peak response in terms of 

measured shaft displacement (v) at the mid-point for each of the four eccentric balance sleeve 

configurations considered with respect to rotational velocity, assuming only unbalance excitation 

resulting in forward synchronous whirl. Previous studies have utilized mounted, wireless 

accelerometers for on shaft vibration measurement to determine the natural frequencies during run-

up, allowing for the construction of experimentally-determined Campbell diagrams to identify the 

critical speeds [14,15]. However, the high rotational velocities used in this study necessitate that the 

critical speeds are inferred from the peak response. Figure 5 shows example shaft displacement (v) 

measurements at the mid-point for each of the four eccentric balance sleeve configurations 

considered with respect to rotational velocity. During run-up, a 10 s record of shaft deflection at 

steady state speed was taken at 100 rpm intervals between 0 and 12,000 rpm. Symmetry of orbit and 

centering of shaft displacement were checked and a mean displacement obtained for each data set. 

 

Figure 5. Raw displacement data from the shaft for different sleeve configurations: (a) no sleeve, (b) 

short sleeve, (c) medium sleeve and (d) long sleeve. 

Figure 5a–c reveals a reduction in critical speed and maximum transverse displacement with 

increasing eccentric balancing sleeve length. Operation of the long sleeve configuration was stopped 

at 8600 rpm due to unacceptably high levels of shaft and base vibration, as shown in Figure 5d. This 

Figure 5. Raw displacement data from the shaft for different sleeve configurations: (a) no sleeve,
(b) short sleeve, (c) medium sleeve and (d) long sleeve.

Figure 5a–c reveals a reduction in critical speed and maximum transverse displacement with
increasing eccentric balancing sleeve length. Operation of the long sleeve configuration was stopped at
8600 rpm due to unacceptably high levels of shaft and base vibration, as shown in Figure 5d. This could
be attributed to the increased flexibility of the sleeve and resultant high vibration of the sleeve itself.
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3.2. Numerical Results

Shaft critical speeds were obtained by modal analysis and Campbell diagrams. Natural frequencies
(ω0) were obtained for rotational velocities (

.
θ) of between 0 and 12,000 rpm. Figures 6 and 7 show the

Campbell diagrams for both the full geometry and point mass simulations for the first bending mode
of the shaft. For the purposes of clarity, the natural frequencies have been normalised with respect to
the non-rotating natural frequency for each configuration. The natural frequencies of the system were
obtained using a rotating coordinate system, with the critical speeds determined as the speed at which
the frequency of the mode becomes zero [16]. A forward whirling, synchronous critical speed in a
stationary coordinate system is determined by the coincidence of a forward whirling mode with the
excitation frequency. However, when observed in a rotating coordinate system, the same critical speed
corresponds to zero frequency. Table 4 provides a summary of the critical speeds for each of the four
eccentric balance sleeve configurations for both the full geometry and point mass simulations, as well
as the experimental results.
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Table 4. Summary of shaft critical speeds.

No Sleeve Short Medium Long

Critical Speed (rpm)
Full Geometry Simulation 11,630 11,420 11,290 10,950

Point Mass Simulation 11,525 11,500 11,480
Experimental 10,400 10,000 9900 -

Comparison of the Figures 6 and 7 and results in Table 4 show a disparity in the relative change of
critical speed between the two simulations. The point mass simulation shows a marked decrease in
critical speed with the addition of the short sleeve but no further significant change with the addition
of sleeves of increasing length. By contrast, the full geometry shows a continuing decrease in critical
speed with the addition of sleeves of increasing length, consistent with the experimental observations.
This discrepancy between the simulation results can be attributed to the point mass simulation only
considering the mass/inertia effects of the sleeves, as opposed to the full geometry simulation which
accounts for stiffness effects on the system. The effect of increasing sleeve length on stiffness can be
readily observed in the mode shapes of the system under free vibration, as shown in Figures 8–10.
For the short sleeve, the deflection of the sleeve is roughly equal to that at the same point on the
shaft; essentially it is rigid. However, as the length of the sleeve is increased, the deflection becomes
significantly greater than that of the shaft at the same point. This can be rationalized by considering
that, as the sleeve increases in length, it becomes more flexible. This indicates that sleeve flexibility
becomes progressively more influential on the dynamics of the system as sleeve length increases.
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3.3. Modifications to the Finite Element Model

Table 4 reveals that both the full geometry and point mass simulations overestimate the critical
speed for all sleeve configurations. This can be attributed to the increased length of the entire drive
train when the electric motor rotor shafts are considered, as well as the existence of bearings within the
motors. The combined effect of this is a reduction in the critical speed of the shaft.

Modifications were made to the finite element model detailed in Section 2.2 to include the effects
of the support structures. The motor casing was 450 mm in length, whilst the internal motor rotor
shafts were 250 mm long. The rotor shaft was supported by two bearings, one mounted at the front
edge of the motor casing, with the other at end of the shaft. The remainder of the motor casing was
empty to aid ventilation and prevent overheating. Figure 11 shows the shaft with the motor shafts and
bearings modelled as well as an outline internal schematic of the motor casing.
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Figure 11. Modified finite element model including support structures.

Based on the work conducted in [17], a parametric study was conducted in which the lateral
stiffness of the bearings was altered and the critical speed of the first bending mode recorded. Damping
and cross coupling terms were not included. A critical speed map is shown in Figure 12. For the
no-sleeve configuration, the experimental critical speed was found to be 10,400 rpm. To obtain a
matched critical speed in the modified finite element model, the critical speed map indicates that a
bearing stiffness of 3.5 × 107 N/m should be incorporated. This is consistent with the nominal stiffness
for the type of bearings used (spindle) of between 1 × 107 to 1 × 108 N/m.
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The critical speeds for each of the four eccentric balance sleeve configurations and all experimental
and model variants are shown in Figure 13. The results for the model, which does not account for
sleeve flexibility (point mass simulation) fall outside of the 100 rpm tolerance of the experimental
measurement and do not exhibit a strong correlation with the trend of the experimental data. The models,
which include sleeve flexibility (full geometry and modified simulations) provide the best qualitative
correlation with the experimental results, indicating that sleeve flexibility plays an important role
in determining the critical speeds of the combined shaft system. Through the inclusion of support



Machines 2019, 7, 56 9 of 10

structures in the modified simulation, the simulated critical speeds were brought to within the 100 rpm
tolerance of the experimental measurement.
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4. Conclusions

A detailed experimental and numerical study into the use of an eccentric sleeve mechanism for
the passive control of the critical speeds of a rotating shaft has been conducted. The addition of an
eccentric balancing sleeve to a rotating shaft has been shown to reduce the critical speed of the shaft.
Increasing the length of the eccentric balancing sleeve length was shown to further reduce the critical
speed of the shaft through modification of the mass and stiffness characteristics of the system.

The results of dynamic finite element simulations that neglect sleeve flexibility show poor
correlation with experimental measurements when compared with results from simulations in which
the full geometry was modelled. The inclusion of support structures incorporating bearing stiffness in
the full geometry finite element models yielded results that were within the 100 rpm margin of error
in the experimental measurement. This indicates that mass/inertia effects alone are not sufficient to
describe the change in critical speed as eccentric sleeve length is increased and sleeve flexibility is an
important parameter in the passive control of the shaft critical speeds.

Author Contributions: Conceptualization, A.K.; methodology, A.K.; software, A.K.; validation, A.K. and
J.G.; formal analysis, A.K. and J.G.; investigation, A.K. and J.G.; writing—original draft preparation, A.K.;
writing—review and editing, J.G.

Funding: This research was funded by Siemens Industrial Turbomachinery Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Adams, M.L. Rotating Machinery Vibration, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010.
2. Chuan, M.; Changsheng, Z. Unbalance Compensation for Active Magnetic Bearing Rotor System Using a

Variable Step Size Real-Time Iterative Seeking Algorithm. IEEE Trans. Ind. Electron. 2018, 65, 4177–4186.
[CrossRef]

3. American Petroleum Institute. AQPI Standard 617—Special Purpose Couplings for Petroleum, Chemical and Gas
Industry Services; American Petroleum Institute: Washington, DC, USA, 2017.

4. Meeus, H.; Verrelst, B.; Moens, D.; Guillaume, P.; Lefeber, D. Experimental Study of the Shaft Penetration
Factor on the Torsional Dynamic Response of a Drive Train. Machines 2018, 6, 31. [CrossRef]

http://dx.doi.org/10.1109/TIE.2017.2772144
http://dx.doi.org/10.3390/machines6030031


Machines 2019, 7, 56 10 of 10

5. Lees, A.W.; Sinha, J.K.; Friswell, M.I. Model-based identification of rotating machines. Mech. Syst. Signal
Process. 2009, 23, 1884–1893. [CrossRef]

6. Sinha, J.K.; Lees, A.W.; Friswell, M.I. Estimating unbalance and misalignment of a flexible rotating machine
from a single run-down. J. Sound Vib. 2004, 272, 967–989. [CrossRef]

7. Sudhakar, G.N.D.S.; Sekhar, A.S. Identification of unbalance in a rotor bearing system. J. Sound Vib. 2011,
330, 2299–2313. [CrossRef]

8. Yao, J.; Liu, L.; Yang, F.; Scarpa, F.; Gao, J. Identification and optimization of unbalance parameters in
rotor-bearing systems. J. Sound Vib. 2018, 431, 54–69. [CrossRef]

9. Morton, P.G. Modal balancing of flexible shafts without trial weights. IMechE Part C Mech. Eng. Sci. 1985,
199, 71–78. [CrossRef]

10. Parkinson, A.G. Balancing of rotating machinery. IMechE Part C Mech. Eng. Sci. 1991, 205, 53–66. [CrossRef]
11. Knowles, G.; Kirk, A.; Stewart, J.; Bickerton, R.; Bingham, C. Theoretical investigation into balancing

high-speed flexible shafts, by the use of a novel compensating balancing sleeve. IMechE Part C 2014, 228,
2323–2336. [CrossRef]

12. Kirk, A.J.; Griffiths, J.; Bingham, C.; Knowles, G.; Bickerton, R. Passive Control of Critical Speeds of a Rotating
Shaft Using Eccentric Sleeves: Model Development. In Proceedings of the 2016 ASME Turbo Expo, Seoul,
Korea, 13–17 June 2016; Volume 7A, p. V07AT32A034.

13. Knowles, G.; Kirk, A.; Bingham, C.; Bickerton, R. Generalised analysis of compensating balancing sleeves
with experimental results from a scaled industrial turbine coupling shaft. IMechE Part C 2017, 232, 3453–3468.
[CrossRef]

14. Elnady, M.E.; Sinha, J.K.; Oyadiji, S.O. Identification of Critical Speeds of Rotating Machines Using On-Shaft
Wireless Vibration Measurement. J. Phys. Conf. Ser. 2012, 364, 012142. [CrossRef]

15. Elnady, M.E.; Abdelbary, A.; Sinha, J.K.; Oyadiji, S.O. FE and Experimental Modeling of On-shaft Vibration
Measurement. In Proceedings of the 15th International Conference on Aerospace Sciences & Aviation
Technology, Cairo, Egypt, 28–30 May 2013. Paper: ASAT-15-168-ST.

16. Vollen, A.; Komzsik, L. Computational Techniques of Rotor Dynamics with the Finite Element Model; CRC Press:
Boca Raton, FL, USA, 2012.

17. Tiwari, R.; Lees, A.; Friswell, M. Identification of dynamic bearing parameters: A review. Shock Vib. Dig.
2004, 36, 99–124. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ymssp.2008.08.008
http://dx.doi.org/10.1016/j.jsv.2003.03.006
http://dx.doi.org/10.1016/j.jsv.2010.11.028
http://dx.doi.org/10.1016/j.jsv.2018.05.050
http://dx.doi.org/10.1243/PIME_PROC_1985_199_093_02
http://dx.doi.org/10.1243/PIME_PROC_1991_205_091_02
http://dx.doi.org/10.1177/0954406213517376
http://dx.doi.org/10.1177/0954406217737106
http://dx.doi.org/10.1088/1742-6596/364/1/012142
http://dx.doi.org/10.1177/0583102404040173
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	High Speed Test Facility 
	Test Shaft and Eccentric Sleeve 
	Instrumentation 

	Finite Element Model Development 

	Results and Discussion 
	Experimental Results 
	Numerical Results 
	Modifications to the Finite Element Model 

	Conclusions 
	References

