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Abstract

We consider a two-dimensional square lattice in which each node is restricted to the
plane of the lattice, but is permitted to move in both directions of the lattice. We
assume nodes are connected to nearest neighbours along the lattice directions with
nonlinear springs, and to diagonal neighbours with linear springs. We consider a
generalised Klein-Gordon system, that is, where there is an onsite potential at each
node in addition to the (nonlinear) nearest-neighbour interactions. We derive the
equations of motion for the displacements from the Hamiltonian. We use asymp-
totic techniques to derive the form of small amplitude breather solutions, and find
necessary conditions required for their existence. We find two types of mode, which
we term ’optical’ and ’acoustic’, based on the analysis of other lattices which support
dispersion relations with multiple branches. In addition to the usual inequality on
the sign of the nonlinearity in order for the NLS to be of the focusing type, we ob-
tain an additional ellipticity constraint, that is a restriction in the two-dimensional
wavenumber space, required for the spatial differential operator to be elliptic.
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1 Introduction

In this paper, we investigate breathers in two-dimensional mechanical lat-
tices. Discrete breathers are spatially localised waves which have an internal
oscillatory mode. The simplest way to visualise of these systems is a lattice of
particles confined to a plane. At each node, the particle can move in the plane,
that is, it has two degrees of freedom, with displacement vectors written in
terms of the direction vectors of the lattice. The discreteness of the lattice
causes the dispersion relation for linear modes to have a finite range, giving
rise to frequencies where only nonlinear modes can exist. The form of disper-
sion relations in such lattices is frequently derived by those studying this type
of system, and is easily obtained from a small amplitude weakly nonlinear ex-
pansion. The novelty of our approach lies in solving the asymptotic expansion
at higher orders, in a system where the displacements in the two directions
are coupled. We obtain the amplitude of second harmonic terms for both dis-
placements, and an equation governing the shape of the envelope solution. We
find two conditions for breather solutions to exist: first, the usual condition in
order for the ’focusing’ form of the NLS to be obtained; and a second ‘ellip-
ticity’ constraint, which does not occur in the one-dimensional case. Here, we
only consider Hamiltonian systems, that is, conservative systems where there
are no losses due to friction or damping, etc.

The motivation to study such systems comes from understanding how en-
ergy is transported through crystal structures, one example of which is the
use of metal barriers to shield radiation. We are interested in whether such
crystal lattice structures could transport localised pulses of energy without
dispersion or dissipation. If radiation could initiate dislocations and cause
them to accumulate, then the physical properties of the shield could be af-
fected, potentially resulting in undesirable deleterious effects on the integrity
of the shield. Discrete breathers have also been postulated as a mechanism for
high Temperature superconductivity [23], and are of interest in the study of
granular crystals [21]. The behaviour of breather modes in discrete nonlinear
systems has been widely studied, under the terms ’nonlinear localised excita-
tions’, ’intrinsic localised modes’, or more commonly in recent years, ’discrete
breathers’.

Over the last few decades, many studies of discrete breathers have been pub-
lished. From the start, many general results were found to be valid for high di-
mensional lattices as well as one-dimensional (1D) chains. For example, Takeno
[29] applied Green’s function techniques to find analytical approximations of
breather solutions in one-, two- and three-dimensional (3D) lattices. The ini-
tial proofs of existence of breathers by MacKay and Aubry [22] relied on the
anticontinuum limit, in which the coupling between neighbouring nodes is
vanishingly small. Such techniques are as applicable in two and three dimen-
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sions as in one dimension. However, the energy-amplitude relationship differs
dramatically with dimension: in 1D, the energy of breather decreases to zero
with the amplitude, whereas in 3D, as the amplitude decreases to zero, the
energy increases without bound, as shown by Flach [17].

The explicit calculation of approximate breather modes was initially attempted
in one-dimensional systems, where the asymptotic reduction to NLS was found,
see, for example, Remoissenet [27]. Numerical approximations for two-dimensional
(2D) systems were obtained by Marin et al. [23], who initially considered the
case of the triangular lattice with both nonlinear nearest-neighbour interac-
tions alongside a nonlinear onsite potential. The same authors later considered
diatomic square lattice [24], once again finding moving breathers.

Until recently, the theoretical analysis of two-dimensional lattices has lagged
behind numerical works. A good recent review of the theory of two-dimensional
lattices can be obtained from the book of Archilla et al. [1]. The second chap-
ter, by Bajars et al. [2] describes various phenomena observed in simulations
of two-dimensional lattices with displacements in both in-plane directions.
Whilst this work covers plane-wave kink-solutions, the main focus is on moving
breathers which are localised in both spatial dimensions. Whilst such modes
do not propagate in a dispersionless manner, they are extremely long-lived,
and in many simulations, show remarkable robustness when colliding with
each other. Simulations of kinks - a dislocation due to a vacancy - also move
through the lattice with very little loss in energy; however, when they meet
another dislocation, they produce stationary and moving breathers. Details
of the loss in energy and reduction in breather speed is given in the paper of
Bajars et al. [3].

Related work on two-dimensional systems where solitary waves are relevant
includes Besse et al. [5, 6], who summarise the behaviour of dipoles and vor-
tices in the two-dimensional Ginzburg-Landau equation with cubic-quintic
nonlinearities. In [12], Cisneros-Ake and Minzoni analyse lateral dispersion
in discrete and continuous two-dimensional models using the Kadomtsev-
Petviashvili equation. They deduce connections between impurities and im-
posed stress produce solutions analogous to soliton modes, and draw analogies
with the work of Smyth [28] on resonant flow over prescribed topography, and
Chetverikov et al. [10] who analyse a 2D system modelling electron motion
in a crystal lattice. The Peierls-Nabarro (PN) potential has been used exten-
sively in analysing the mobility of travelling waves in discrete one-dimensional
systems. This concept has been generalised by Vicencio and Johannson [30]
to two-dimensional lattices. In [19], Johannson and Jason extend these ideas
to breathers in discrete 2D NLS, finding a PN potential which depends on the
direction of motion through the lattice. The idea of a PN potential has also
been generalised to cover breathers in one-dimensional systems [32], where it
is found to depend on the internal phase of the breather. Dmitriev et al. [14]
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simulate breathers in 2D and 3D systems with FCC, BCC, and HCP geometry,
generally finding that breathers are robust.

We have previously considered two-dimensional electrical transmission lattices
composed of inductors and nonlinear capacitors, in which there is only a scalar
unknown, the charge Qm,n(t), at each lattice site (m,n) [31], covering the
square [8], triangular [9] and honeycomb arrangements [33]. These cases are
considerably simpler than the mechanical system considered by Marin et al.
[23, 24], in which a two-component vector has to be found at each node,
and in such systems, the unknown horizontal and vertical displacements are
intrinsically coupled together. From numerical simulations of Marin et al. [23,
24], Yi et al. [34] noted that moving breathers are narrow in the direction
perpendicular to their motion, and so simplified the governing equations to
a ‘triple ladder’ model, finding a system of coupled NLS equations in 1+1
dimensions, which supported both stationary and moving breathers.

In this paper, we follow Marin et al. [23, 24], and include both nonlinear on-
site potential and nonlinear nearest-neighbour interactions. In one-dimension,
the inclusion of nonlinear rather than linear nearest-neighbour interactions
is a significant complication; however, in two-dimensional systems, even sys-
tem with linear interactions generate nonlinear equations of motion due to the
geometry of the lattice. In the remainder of this section, we summarise the for-
mulation of Klein-Gordon and Fermi-Pasta-Ulam systems in one-dimension,
before addressing two-dimensional Klein-Gordon problems in the remainder
of the paper. The two-dimensional FPU system will be the topic of a subse-
quent paper. In Section 2 we formulate the KG problem using Hamiltonian
mechanics, and in Section 3 we detail the asymptotic reduction which leads
to a nonlinear Schrödinger system. The work is summarised and conclusions
drawn in Section 4. The paper concludes with an appendix where details of
the lengthier expressions used in Sections 2 and 3 are quoted, and a couple of
special cases are illustrated.

1.1 One-dimensional systems

In one-dimension, the governing equation for a general lattice with nearest-
neighbour interactions is

d2un
dt2

= V ′(un+1 − un)− V ′(un − un−1)− V ′

0(un), (1.1)

which arises from the Hamiltonian

H =
∑

n

1
2

(
dun
dt

)2

+ V0(un) + V (un+1 − un). (1.2)
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Most analysis of such lattice equations usually focuses on two distinct simpli-
fications: namely

• Klein-Gordon (KG) lattices, in which V ′(φ) = kφ, that is, nearest-neighbour
interactions are linear, and there is a nonlinear onsite potential, V0, leading
to the governing equation

d2un
dt2

= k(un+1 − 2un + un−1)− V ′

0(un). (1.3)

• Fermi-Pasta-Ulam (FPU) lattices, in which there is no onsite potential (V0 =
0) and the nearest-neighbour interactions (V ′(φ)) are nonlinear, hence

d2un
dt2

= V ′(un+1 − un)− V ′(un − un−1). (1.4)

Using φn = un+1 − un, this equation can be rewritten as

d2φn
dt2

= V ′(φn+1)− 2V ′(φn) + V ′(φn−1), (1.5)

which simplifies the analysis and asymptotic derivation of solutions of the
FPU lattice [7, 18].

However, in two-dimensional lattices, even harmonic nearest neighbour inter-
actions (i.e. quadratic) potentials generate forces which are nonlinear in the
displacements, due to geometrical effects of the lattice. Whilst it is possible
to simplify the equations of motion, by ignoring the onsite potential, and so
generate a FPU lattice, the analysis of such systems is more complicated than
the Klein-Gordon case, in which the onsite potential is retained. Hence, here
we consider the Klein-Gordon system and, in a later paper analyse the 2D
FPU system.

2 Formulation of the 2D lattice equations

We consider a spring-mass system with square periodic geometry in which par-
ticles at the nodes are permitted to move in both directions within the plane
of the lattice. Each node has unit mass and is coupled to its four nearest
neighbours by nonlinear springs and to its four second (diagonal) neighbours
with linear springs. For the sake of generality we include a nonlinear on-site
potential in addition to nearest neighbour interactions. Later, we separately
consider the Klein-Gordon case, where there is an onsite interaction with lin-
ear nearest-neighbour interactions, and the FPU case, which has nonlinear
nearest-neighbour interactions but no onsite potential.
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Fig. 1. Illustration of the onsite potential energy function (2.1) for ω = 1, λ = 0.2
(top row) and λ = −0.1 (bottom row) and µ = −0.5 (left), µ = 0 (centre), and
µ = 1 (right).

At equilibrium, the particles are spaced regularly in the horizontal, and vertical
directions and all the springs unextended. Introducing lattice basis vectors i =
[1, 0]T and j = [0, 1]T , the nodes can be referenced by (m,n), the equilibrium
position being mi + nj. The displacement from equilibrium is then described
by the vector (um,n(t), vm,n(t)).

To obtain the equations of motion, we first construct the Hamiltonian. The
onsite potential is given by

V0(um,n, vm,n)=
1
2
Ω2r2m,n +

1
4
λr4m,n +

1
2
µu2m,nv

2
m,n,

where r2m,n = u2m,n + v2m,n. (2.1)

Here, the term involving Ω is a harmonic potential, whilst the λ term gives
a nonlinear contribution to the potential which is still isotropic in that it de-
pends purely on the absolute displacement from equilibrium, so contains no
directional dependence. The case λ > 0 corresponds to a hardening nonlinear-
ity, and λ < 0 to a softening nonlinearity. The term involving µ is a nonlinear
anisotropic contribution to the onsite potential. In Figure 1 we illustrate the
range of forms of the potential V0(u, v) showing the effect of the nonlinearity,
λ, with λ > 0 in the top row, and λ < 0 in the lower row; and the effect of
the anisotropy parameter, µ, with µ < 0 on the left, µ = 0 in the centre, and
µ > 0 on the right. If we were considering a fully three-dimensional lattice
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system, composed of parallel planes of atoms, the term V0 would model the
effects of atoms in the planes above and below the plane of interest.

In addition to V0, there are potential energies due to the stored energy of the
horizontal, vertical and diagonal springs, which we denote by Vh, Vv, Vd and
Ve respectively. These are given by

Vh(φ) = Vv(φ) =
1
2
φ2 + 1

3
aφ3 + 1

4
bφ4, Vd(φ) = Ve(φ) =

1
2
γφ2, (2.2)

where the extensions of the springs φ∗ in the horizontal (φh), vertical (φv) and
diagonal (φd, φe) directions are given by

φm,n,h=
√
(h + um+1,n − um,n)2 + (vm+1,n − vm,n)2 − h, (2.3)

φm,n,v=
√
(um,n+1 − um,n)2 + (h+ vm,n+1 − vm,n)2 − h, (2.4)

φm,n,d=
√
(h + um+1,n+1 − um,n)2 + (h + vm+1,n+1 − vm,n)2 − h

√
2, (2.5)

φm,n,e=
√
(h + um+1,n−1 − um,n)2 + (h− vm+1,n−1 + vm,n)2 − h

√
2. (2.6)

The definitions of um,n, vm,n, φm,n,h, φm,n,v, φm,n,d and φm,n,e are illustrated in
Figure 2.
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Fig. 2. Left: Illustration of unit cell of the lattice, with definitions of the displace-
ments (um,n, vm,n), from equilibrium positions marked with open circles to the
displaces positions, marked with filled circles, and the corresponding spring exten-
sions φm,n,h, φm,n,v, φm,n,d, φm,n,e defined by (2.3)–(2.6). Right: Illustration of the
shearing of the lattice which causes a degeneracy of the ground state in the special
case V0 = 0 with γ = 0, that is, no onsite potential and no diagonal interactions.

The Hamiltonian is given by
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H =
∑

m,n

{
1
2

(
dum,n
dt

)2

+ 1
2

(
dvm,n
dt

)2

+ V0(um,n, vm,n) + Vh(φm,n,h)

+ Vv(φm,n,v) + Vd(φm,n,d) + Ve(φm,n,e)

}
, (2.7)

where the spring extensions φm,n,∗ are defined in (2.3) –(2.6). We obtain the
equations of motion by applying Hamilton’s principle to (2.7). To simplify the
following calculations, we introduce the differences

δ+0u = (um+1,n − um,n), δ0+u = (um,n+1 − um,n),

δ++u = (um+1,n+1 − um,n), δ+−u = (um+1,n−1 − um,n),
(2.8)

with similar definitions made for δ∗∗v (where ∗ = ±). Since we are interested in
small amplitude disturbances, we expand all quantities in (2.3)–(2.6) assuming
u, v ≪ h, obtaining

φm,n,h= δ+0u+
(δ+0v)

2

2h
− (δ+0u)(δ+0v)

2

2h2
, (2.9)

φm,n,v= δ0+v +
(δ0+u)

2

2h
− (δ0+v)(δ0+u)

2

2h2
, (2.10)

φm,n,d=
(δ++u+ δ++v)√

2
+

(δ++u− δ++v)
2

4h
√
2

− (δ++u+ δ++v)(δ++u− δ++v)
2

8h2
√
2

,

(2.11)

φm,n,e=
(δ+−u− δ+−v)√

2
+

(δ+−u+ δ+−v)
2

4h
√
2

− (δ+−u− δ+−v)(δ+−u+ δ+−v)
2

8h2
√
2

.

(2.12)

Thus, to quartic terms in u, v, the Hamiltonian (2.7) can be written

H =
∑

m,n

1
2

(
dum,n
dt

)2

+ 1
2

(
dvm,n
dt

)2

+ V0 + Vh + Vv + Vd + Ve, (2.13)

V0=
1
2
Ω2(u2m,n+v

2
m,n) +

1
4
λ(u2m,n+v

2
m,n)

2 + 1
2
µu2m,nv

2
m,n, (2.14)

where expressions for the quantities Vh, Vv, Vd and Vd are given by (2.2),
(2.9)–(2.12), with asymptotic expansions quoted in the appendix, see equa-
tions (A.1)–(A.4).

Applying Hamilton’s equations, the equations of motion are found to be
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d2um,n
dt2

=−Ω2um,n − λum,n(u
2
m,n+v

2
m,n)− µum,nv

2
m,n + Fh + Fv + Fd + Fe,

(2.15)

d2vm,n
dt2

=−Ω2vm,n − λvm,n(u
2
m,n+v

2
m,n)− µu2m,nvm,n +Gh + Gv +Gd +Ge,

(2.16)

where F∗ = −∂V∗/∂um,n and G∗ = −∂V∗/∂vm,n (∗ = h, v, d, e) are the forces
in the horizontal, vertical and two diagonal directions, with asymptotic ex-
pressions given by (A.5)–(A.12).

2.1 Complications of the 2D system

Let us consider generalising the simplification of the 1D lattice to the Klein-
Gordon equation (1.3) to the two-dimensional setting. If we attempt to sim-
plify the system by setting a = b = 0 in (2.2) to remove the nonlinear nearest-
neighbour interactions, little simplification is gained since geometric nonlin-
earities are generated from the two-dimensionality of the problem, through
additional terms, such as those appearing in (A.5)–(A.12), for example, the
diagonal interactions (γ) and terms where a vertical displacement generates
a horizontal force and vice versa. Thus in two-dimensions, we may as well
consider nonlinear nearest-neighbour interactions (that is, a 6= 0 6= b).

Another simplification we could consider is putting λ = µ = Ω = 0, which
is equivalent to assuming V0 = 0 and retaining γ > 0 simplifies 2D system
(2.15)–(2.16) by reducing the general system (2.15)–(2.16) to the FPU form,
as in the 1D case discussed in §1.1. However, there is no way of defining φ as
a difference of um,n, vm,n variables to simplify the 2D equation to something
analogous to (1.5); we would need four such variables (φm,n = um+1,n − um,n,

φ̃m,n = um,n+1 − um,n, ψm,n = vm+1,n − vm,n, ψ̃m,n = vm,n+1 − vm,n). Instead,
we have to analyse the more complicated equations (2.15)–(2.16) directly.

A final simplification that we comment on is the case of vanishing diagonal
interactions (γ = 0) in the FPU case V0 = 0. Here, the ground state becomes
degenerate. If we describe the absolute positions of each node in the square
lattice at equilibrium by (Um,n, Vm,n) = (mh, nh); then we can construct a
sheared lattice in which all horizontal and vertical springs still have length h;
namely we define the absolute nodal positions by



Ûm,n

V̂m,n


 =



mh+ nh cos θ

nh sin θ


 . (2.17)

This corresponds to displacements from equilibrium given by (um,n, vm,n) =
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(Ûm,n −Um,n, V̂m,n − Vm,n) = (nh cos θ,−nh(1− sin θ)). Thus instead of being
square, the lattice cell is deformed into a rhombus, with diagonals of lengths
dshort = 2h sin 1

2
θ and dlong = 2h cos 1

2
θ. This is illustrated in the right panel

of Figure 2. Reintroducing an energy due to diagonal interactions, given by
(2.2) and Vdiag = Vd, we find

Vdiag =
∑

1
2
γ(d−

√
2h)2 = 8γh2 sin2

(
1
4
θ − 1

8
π
)
, (2.18)

which is minimised at θ = 1
2
π. Thus, in the FPU case, a nonzero γ term is

necessary to remove the degeneracy of the ground state solution, and stabilises
the lattice’s square geometry.

Thus, in the remainder of this paper we consider the 2D KG lattice, that is,
V0 6= 0, in the general case where γ > 0, Ω > 0 and a 6= 0 6= b. We comment on
the special cases where Ω and γ become vanishingly small, although detailed
analysis of the FPU case will be considered in a later paper.

3 Asymptotic solution

We now seek an approximate analytic solution to the equations (2.15) and
(2.16) by applying the method of multiple scales, which is covered in ad-
vanced texts such as Bender & Orszag [4] and Murray [25]. We define a small
parameter, ǫ as the amplitude of the wave, and introduce scaled variables

x = ǫm, y = ǫn, τ = ǫt, T = ǫ2t, (3.1)

to describe evolution over the large space scales, and long and very long
timescales. We retain the O(1) variables m,n, t, introduce the phase ψ =
km+ ln+ ωt and seek solutions of the form

um,n(t) = ǫeiψF + ǫ2(G0+e
iψG1+e

2iψG2) + ǫ3(H0+e
iψH1+e

2iψH2+e
3iψH3)

+ . . .+ c.c., (3.2)

vm,n(t) = ǫeiψP + ǫ2(Q0+e
iψQ1+e

2iψQ2) + ǫ3(R0+e
iψR1+e

2iψR2+e
3iψR3)

+ . . .+ c.c.. (3.3)

Here, F , Gj , Hj, P , Qj and Rj (j = 0, 1, 2, 3,) are all functions of the slow
variables x, y, τ, T (3.1). We substitute the ansatz (3.2) and (3.3), into the
relevant motion equations (2.15) and (2.16), equate the coefficients of each
frequency eijψ at each order of ǫ to find two sets of equations, which we analyse
in order below.
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3.1 The dispersion relation – O(ǫeiψ) terms

From the O(ǫeiψ) terms of equation (2.15)–(2.16), which give two equations
relating F and P we obtain

M



F

P


 :=



S − 2 cos k − ω2 2γ(1− cos k cos l)

2γ(1− cos k cos l) S − 2 cos l − ω2






F

P


 = 0, (3.4)

where

S = Ω2 + 2 + 2γ(1− cos k cos l). (3.5)

We are interested in solutions where (F, P )T 6= 0, thus (3.4) is in effect an
eigenvalue problem, with the eigenvalue being ω2. We require the determinant
of the matrix to be zero, which gives the dispersion relation

ω2(k, l)=S − cos k − cos l ±
√
D, (3.6)

D= (cos k−cos l)2 + 4γ2(1−cos k cos l)2. (3.7)

This dispersion relation describes the dependence of the temporal frequency
of the wave (ω) on the wavenumbers (k, l). For small amplitude solutions to be
stable, we require ω ∈ IR which is equivalent to ω2 ≥ 0. Consideration of the
dispersion relation for l = 0 and small k then implies γ ≥ 0, thus we impose
this condition in the following.

The negative square root in (3.7) leads to an acoustic branch or surface in
(k, l, ω) space of lower frequencies, which we denote by ωac, and the positive
root in (3.7) we donate by ωopt, which we describe as the optical branch. Note
that the two surfaces overlap in frequencies, and there is no gap between the
two, that is we do not have ωac < ωgap < ωopt. In following expressions, the
upper sign corresponds to the optical branch, and the lower sign to the acoustic
branch.

The surfaces are illustrated in Figure 3 for a variety of choices of γ,Ω. In
all cases, the surfaces are periodic in both k and l, with period 2π in each
direction. The surfaces meet, and have minima at k = l = 0, the classification
of the maxima and saddle points is more complicated, and is summarised in
Table 1. When γ = 0, the two modes decouple into ω2 = Ω2 + 4 sin2(1

2
k) and

ω2 = Ω2 + 4 sin2(1
2
l).

It is not sufficient to obtain the eigenvalue, ω, we also require the form of the
solution, given by F, P , hence we need the eigenvector of (3.4) as well. We
write this as (F, P )T = F (1, C)T , and plot the constant C(k, l) in figure 4.
Solving (3.4) we obtain C(k, l) as
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potential. The parameters λ, µ, a, b do not influence ω(k, l).
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Fig. 4. Plots of the constant C = P/F given by (3.8)–(3.9) with parameters as
in Figure 3, namely: left panels: Ω = 1, γ = 0, the KG case with no diagonal
interactions; centre panels: Ω = 1, γ = 1, the KG case with diagonal interactions;
right panels: Ω = 0, γ = 1, the FPU case where the onsite potential vanishes. In
each case the upper plot shows the optical case, and the lower plot the acoustic case.

Copt(k, l) =
cos k − cos l − 2γ(1− cos k cos l) +

√
D

cos k − cos l + 2γ(1− cos k cos l)−
√
D
, (3.8)

Cac(k, l) =
cos k − cos l − 2γ(1− cos k cos l)−

√
D

cos k − cos l + 2γ(1− cos k cos l) +
√
D
. (3.9)
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Location Type of critical point Type of critical point

on acoustic surface, ωac on optical surface, ωopt

(k, l) = (0, 0) Global minimum: Global minimum:

– surfaces meet ωac = Ω ωopt = Ω

(k, l) = (π, 0) Saddle point: ωac = Global maximum: ωopt =

or (k, l) = (0, π)

√
Ω2+2+4γ−2

√
1+4γ2

√
Ω2 + 2 + 4γ+2

√
1+4γ2

For 0 < γ < 1
4
: Global maximum: Degenerate saddle:

(k, l) = (π, π) ωac =
√
Ω2 + 4 ωopt =

√
Ω2 + 4

– surfaces meet

For γ > 1
4
: Global maximum: Local minimum:

(k, l) = (π, π) ωac =
√
Ω2 + 4 ωopt =

√
Ω2 + 4

– surfaces meet

For γ > 1
4
: Saddle point: ωopt =

k∗ = cos−1 −1
4γ N/A

√
Ω2 + 2 + 4γ − (1/4γ)

(k, l) = (k∗, k∗)

(k∗, 2π−k∗), (2π−k∗, k∗)
and (2π − k∗, 2π − k∗)

Table 1
Summary of the locations of stationary points of the dispersion surfaces in
wavenumber-space (k, l), from (3.7). At (k, l) = (0, 0), (π, 0), (0, π) and (π, π) both
optical and acoustic branches have stationary points. The type of critical point at
(π, π) depends on the sign of γ − 1

4
. In the case of γ > 1

4
, there is in additional

critical point in the optical branch of the dispersion relation.

Note that these results imply both that Cac, Copt ∈ IR and CacCopt = −1.

3.2 Special cases

If we were to consider the simplest possible KG case, where there are no
diagonal springs (that is, γ = 0), so that only the onsite potential removes the
degeneracy of the solution (2.17), then the leading order problem (3.4) still
becomes degenerate.

The case γ = 0 is an oversimplification of the system, since then at leading
order, (3.7) results in ω2 = Ω2 + 2 − 2 cos k and ω2 = Ω2 + 2 − 2 cos l. The
resulting eigenvectors are (F, P ) = (F, 0) and (F, P ) = (0, P ) respectively,
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corresponding to C = 0 or C = ∞, which indicates that solutions involve
motion in only one direction. That is, either vm,n = 0 or um,n = 0 for all m,n.
Such solutions are not genuinely two-dimensional modes. Whilst such solutions
may formally exist, the ansatz (3.2)–(3.3) does not generate an envelope which
is localised in both spatial directions. In the case γ = 0, there may be solutions
with different scalings in them,n directions with other asymptotic magnitudes
for um,n and vm,n. However, we do not consider the case γ = 0 any further in
this paper, instead we analyse the case γ > 0 where C 6= 0,∞. The expressions
for Cac, Copt will be used later, in the determination of expressions for the
functions G0, G1, G2, Q0, Q1 and Q2, in terms of F . We retain the nonlinear
onsite potential, taking Ω > 0 and λ 6= 0 which means that um,n = 0 = vm,n
is the unique stable equilibrium configuration. We also retain general values
for a, b, since setting a = b = 0 does not lead to any significant simplification,
since the presence of γ > 0 generates similar nonlinearities.

3.3 Zeroth harmonic – O(ǫ2e0)

From the O(ǫ2e0iψ) terms in (2.15)–(2.16), we obtain

0 = −Ω2(G0 +G∗

0), 0 = −Ω2(Q0 +Q∗

0), (3.10)

Due to the form of the ansatz (3.2)–(3.3), the imaginary parts of G0 and Q0,
Im(G0) and Im(Q0) do not contribute to um,n or vm,n, Thus, without loss of
generality we assume Im(G0) = 0 = Im(Q0) and so G0 = G∗

0 and Q0 = Q∗

0.
Equation (3.10) implies that the real parts of G0, Q0 are also zero, and so
G0 = Q0 = 0.

3.4 The second harmonic – O(ǫ2e2iψ) terms

Considering the terms at O(ǫ2e2iψ), we obtain two equations which relate the
amplitude of the second harmonic terms G2, Q2 to the nonlinear terms F 2,
P 2 = C2F 2 and FP = CF 2, namely

[
Ω2 − 4ω2 + 4 sin2 k + 2γ sin2(k+l) + 2γ sin2(k−l)

]
G2 (3.11)

+2γ
[
sin2(k+l) + sin2(k−l)

]
Q2=F 2r1,

2γ
[
sin2(k+l) + sin2(k−l)

]
G2 (3.12)

+
[
Ω2 − 4ω2 + 4 sin2 l + 2γ sin2(k+l) + 2γ sin2(k−l)

]
Q2=F 2r2,

where
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r1=
[
−16ai sin3 1

2
k cos 1

2
k − 6γi

h
sin3 k+l

2
cos k+l

2
− 6γi

h
sin3 k−l

2
cos k−l

2

]

+
[
4γi
h
sin3 k+l

2
cos k+l

2
− 4γi

h
sin3 k−l

2
cos k−l

2
− 16i

h
sin3 1

2
l cos 1

2
l
]
C

+

[
−8i

h
sin3 1

2
k cos 1

2
k + 2γi

h
sin3 k+l

2
cos k+l

2
− 2γi

h
sin3 k − l

2
cos k−l

2

]
C2,

(3.13)

r2=
[
+2γi

h
sin3 k+l

2
cos k+l

2
− 2γi

h
sin3 l−k

2
cos l−k

2
− 8i

h
sin3 1

2
l cos 1

2
l
]

+
[
4γi
h
sin3 k+l

2
cos k+l

2
− 4γi

h
sin3 l−k

2
cos l−k

2
− 16i

h
sin3 1

2
k cos 1

2
k
]
C

+
[
−16ai sin3 1

2
l cos 1

2
l − 6γi

h
sin3 k+l

2
cos k+l

2
− 6γi

h
sin3 l−k

2
cos l−k

2

]
C2.

(3.14)

Although lengthy, this is a straightforward system of two linear equations for
G2, Q2 of the form Z

(
G2

Q2

)
= F 2

(
r1
r2

)
, which can be solved by inverting the

symmetric 2× 2 matrix Z

Z =



Z11 Z12

Z12 Z22


 , where

Z12 = 2γ(sin2(k + l) + sin2(k − l)),

Z11 = Ω2 − 4ω2 + 4 sin2 k + Z12,

Z22 = Ω2 − 4ω2 + 4 sin2 l + Z12,

(3.15)

to give

G2 =
(Z22r1 − Z12r2)F

2

Z11Z22 − Z2
12

= γGF
2, Q2 =

(Z11r2 − Z12r1)F
2

Z11Z22 − Z2
12

= γQF
2.

(3.16)

where γG, γQ are functions of (k, l) which determine the strength of the second
harmonic relative to the first harmonic. As shown in Figure 5, these functions
are well-defined almost everywhere in (k, l)-space.

3.5 First consistency condition and the velocity – O(ǫ2eiψ) terms

Following our asymptotic strategy of substituting the ansatz (3.2)–(3.3) into
the governing equations (2.15)–(2.16) and equating terms of O(ǫ2eiψ) we find

M



G1

Q1


 =



A2

B2


 (3.17)

where the matrix M is as given in (3.4), and the rhs vector is given by
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Fig. 5. Plots of the functions γG (left panels), and γQ (right) against (k, l) as defined
in (3.16) for the case Ω = 1 and γ = 1; upper panels illustrate the optical mode;
and lower panels, the acoustic mode.

A2=2iωFτ + 2i sin kFx + iγ(Fx+Fy+Px+Py) sin(k+l)

+iγ(Fx−Fy+Px−Py) sin(k−l), (3.18)

B2=2iωPτ + 2i sin lPy + iγ(Fx+Fy+Px+Py) sin(k+l)

+iγ(Fx−Fy+Px−Py) sin(k−l). (3.19)

Equation (3.19) can be derived from (3.18) by the transformations k ↔ l,
F ↔ P , x↔ y.

The system of equations (3.17) for G1, Q1 is quite different to the system in
the previous section, since here, the matrix M is singular, and so not invert-
ible. The system (3.17) only has solutions if a consistency condition is met.
This requirement is the Fredholm alternative, which can be expressed as: the
system of equations (3.17)–(3.19) only has a solution if the rhs vector, that
is, (A2, B2)

T , is in the range of the matrix M . If this condition is satisfied, the
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system then has a one-parameter family of solutions of the form



G1

Q1


 = Ĝ




1

C


+ G̃



C

−1


 , (3.20)

where G̃ is determined by the equations (3.17)–(3.19), and Ĝ is arbitrary. The
vector (C,−1)T is chosen as it is clearly not parallel to (1, C): this choice is
made to simplify later calculations. Here, we take Ĝ = 0 by absorbing such a
component into the leading order term F (through F + ǫĜ 7→ F ).

The range of the matrix M (3.4) can be written as either column of the
matrix, or, for simplicity, we take the sum of the columns, rescale, and after
some simplification, we can write the range as any vector parallel to (C,−1)T .
For the rhs vector (A2, B2) to be parallel to (C,−1), it must be perpendicular
to (1, C), thus the consistency condition for a solution of (3.17)–(3.19) to exist
is A2 +B2C = 0.

An alternative derivation of the Fredholm condition uses the fact that MT is
singular, hence has a vector h such that MTh = 0. To obtain the consistency
condition for Mg = a, we consider the expression hTMg = h.a. However, we
also have (hTMg)T = gTMTh = g.0 = 0. Hence we require h.a = 0. Here h

is the normal to the range of M, which in our case is (1, C)T .

Since all the terms on the rhs of (3.17) are linear first derivative terms in
F, P , we seek a travelling wave solution of the form

F (x, y, τ, T ) = F (Z,W, T ), Z = x− Uτ,

P (x, y, τ, T ) = P (Z,W, T ), W = y − V τ, (3.21)

where the new variables Z,W are travelling wave coordinates in the horizontal
and vertical directions. We eliminate P by using P = CF , to simplify A2, B2

to

A2= iFZ [−2ωU + 2 sin k + 2γ(1 + C) sin k cos l]

+iFW [−2ωV + 2γ(1 + C) sin l cos k] , (3.22)

B2= iFZ [−2ωUC + 2γ(1 + C) sin k cos l]

+iFW [−2ωV C + 2C sin l + 2γ(1 + C) sin l cos k] , (3.23)

and then use the consistency condition A2 +B2C = 0 to determine the veloc-
ities U = U(k, l), V = V (k, l) as
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U =
sin k

ω(1 + C2)

(
1 + γ(1 + C)2 cos l

)
, (3.24)

V =
sin l

ω(1 + C2)

(
C2 + γ(1 + C)2 cos k

)
. (3.25)

These are illustrated in Figure 6 in the case Ω = 1, γ = 1. Due to the symmetry
of the system under the transformation k ↔ l, F ↔ P , x ↔ y, the velocities
satisfy V (l, k) = U(k, l).
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Fig. 6. Plots of the velocities (3.24)–(3.25) with Ω = 1, γ = 1; left panels show
the results for the optical mode; and the right panels illustrate the acoustic mode;
horizontal velocities U on the top row, vertical velocities, V , on the bottom row.

The Fredholm alternative A2 + B2C = 0 which results in (3.21)–(3.25) only
provides a partial solution to (3.17)–(3.19), in that it means that the two
equations are multiples of each other. Thus if one is solved, the other is too,
however, we still need to provide a solution to one of them, that is, we need
to find G̃ in (3.20). From (3.4) and (3.20), we note that

M

(
C

−1

)
= ±2

√
D

(
−C
1

)
, (3.26)

where the upper sign corresponds to the optical case and the lower to the
acoustic. Since the quantities A2, B2 only involve FZ and FW , we write

G̃1 = iŨFZ + iṼ FW , (3.27)

18



whereupon we find

Ũ =
±(−ωCU + γ(1 + C) sin k cos l)√

D
, (3.28)

Ṽ =
±(−ωCV + C sin l + γ(1 + C) sin l cos k)√

D
. (3.29)

These quantities are functions of the wavenumbers, and are defined for all
(k, l), as illustrated in Figure 7 for the case of Ω = 1, γ = 1. Note that these
quantities satisfy the symmetry property Ṽ (l, k) = Ũ(k, l). From (3.20) with
Ĝ = 0, our solutions for G1, Q1 are

G1 = iCŨFZ + iCṼ FW , Q1 = −iŨFZ − iṼ FW . (3.30)
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Fig. 7. Plots of the quantities Ũ , Ṽ (3.28)–(3.29) with (Ω, γ) = (1, 1); left panels
show the results for the optical mode; and the right panels illustrate the acoustic
mode; horizontal velocities U on the top row, vertical velocities, V , on the bottom
row.

3.6 The second consistency condition and the NLS – O(ǫ3eiψ) terms

When the ansatz (3.2)–(3.3) is substituted into the governing equations (2.15)–
(2.16) and terms of O(ǫ3eiψ) are equated, we obtain another singular system
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of equations, namely

M



H1

R1


 =



A3

B3


 (3.31)

where the matrix M is again that given in (3.4), and the rhs terms A3, B3

are given by equations (A.13)–(A.14) in the appendix.

Since the lhs of (3.31) is again singular, the analysis of this system is similar
to (3.17) studied earlier. However, here we only need to derive the consistency
condition which A3, B3 must satisfy for this system of equations to have a
solution. We do not need to find H1, R1.

Following the techniques used in Section 3.5, we require A3+B3C = 0, which
produces a single scalar equation for F . We use P = CF to eliminate P ,
and (3.16) to rewrite G2, Q2 in terms of F . We transform to the moving wave
coordinates (Z,W ) from (x, y, τ) using (3.21) and terms involving G1 and Q1

are rewritten using (3.30). The resulting expression for F has the form of a
nonlinear Schrödinger equation in 2+1 dimensions

0 = iΘFT +DZFZZ +DWFWW +DMFWZ +B|F |2F, (3.32)

where

Θ=−2ω(1 + C2), (3.33)

DZ =−U2(1 + C2) + cos k − 2CŨ sin k + γ(1 + C)2 cos k cos l

−2γ(C2 − 1)Ũ sin k cos l, (3.34)

DW =−V 2(1 + C2) + C2 cos l + 2CṼ sin l + γ(1 + C)2 cos k cos l

−2γ(C2 − 1)Ṽ sin l cos k, (3.35)

DM =−2UV (1 + C2)− 2CṼ sin k + 2CŨ sin l − 2γ(1 + C)2 sin k sin l

−2γ(C2 − 1)(Ũ sin l cos k + Ṽ sin k cos l), (3.36)

and B given by (A.17). This is the same form of equation as obtained for
the scalar two-dimensional lattices analysed previously [8, 9, 33]. To obtain
solutions which are localised in both spatial dimensions, we require that the
spatial derivatives are elliptic in nature. The alternative is that they are hy-
perbolic, which gives rise to ’X’-type solutions. Introducing a new variable
W̃ = DMZ − 2DZW , and retaining Z, leads to a PDE with only FZZ and
F
W̃ W̃

derivatives, and no terms in F
ZW̃

. For the two second derivatives to
have the same sign, we require 4DZDW > D2

M , which provides our ellipticity
constraint

E(k, l) := 4DZ(k, l)DW (k, l)−DM(k, l)2 > 0. (3.37)

In figures 8 and 9, we plot E(k, l) for the acoustic and optical cases respectively,
showing in black the areas where the constraint is satisfied, that is E > 0, and
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Fig. 8. Plots of the ellipticities E(k, l) (3.37) for the acoustic mode; in the top row
Ω = 0.1, in the centre row, Ω = 1, and the lowest row, Ω = 10. Across each row, γ
increases, taking the values γ = 1/8, 1/2, 1, 5. The black areas indicate the regions
of (k, l)-space where the NLS equation (3.32) is elliptic.

in white, the areas where E < 0 and so (3.32) is hyperbolic. The focusing
condition for the existence of bright breather modes, namely DB > 0 is too
complicated to be helpful, due to its dependence on so many parameters (γ,
a, b, h, λ, µ) and intermediate expressions (γG, γQ, C, U , V , Ũ , Ṽ ).

3.7 Example

To conclude these calculations, we consider one example case where the wavenum-
bers are given by (k, l) = (π, 0). In appendix A.3 we consider other special
wavenumbers, (namely, (k, l) = (0, 0) and (k, l) = (π, π)), where the calcula-
tions of the breather modes lead to inconsistencies. Both here and in Appendix
A.3, we calculate and quote simplified explicit expressions for:

• the frequency, ω given by (3.7),
• the relative amplitudes of the vertical to horizontal displacements, C = P/F

given by (3.8)–(3.9),
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Fig. 9. Plots of the ellipticities E(k, l) (3.37) for the optical mode; in the top row
Ω = 0.1, in the centre row, Ω = 1, and the lowest row, Ω = 10. Across each row, γ
increases, taking the values γ = 1/8, 1/2, 1, 5. The black areas indicate the regions
of (k, l)-space where the NLS equation (3.32) is elliptic.

• the strengths of the second harmonics γG, γQ as defined by (3.16),
• the velocities U , V , given by (3.24)–(3.25),
• the correction coefficients Ũ , Ṽ defined by (3.28)–(3.29),
• the dispersion coefficients, DZ , DW , DM given by (3.34), (3.35), (3.36),
• the ellipticity, E as defined by (3.37).

At the points (k, l) = (π, 0) and (0, π) the optical surface of the dispersion
equation has its global maximum and the acoustic branch has a saddle point.
We write

k = π +K cosψ, and l = K sinψ, (3.38)

with 0 < K ≪ 1; similar results to those quoted below can be obtained for
the point (k, l) = (0, π) by writing k = K cosψ and l = π +K sinψ.

Here the two surfaces are separate and we have
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ω{opt

ac }(π, 0)
2=

(
Ω2+2+4γ ± 2

√
4γ2+1

)
− 1

2
K2

(
cos 2ψ + 2γ ±

√
4γ2+1

)
,

(3.39)

together with

Copt(π, 0) =
1 + 2γ −

√
1 + 4γ2

1− 2γ +
√
1 + 4γ2

, Cac(π, 0) =
1 + 2γ +

√
1 + 4γ2

1− 2γ −
√
1 + 4γ2

. (3.40)

These leading order expressions are well-behaved in the limit K → 0. As γ
increases from zero, Copt rises from zero and plateaus at one. The value of
Cac is always negative (for γ > 0) and saturates to the value Cac ∼ −1 when
γ ≫ 1, and with Cac diverging to −∞ as γ → 0+. These expressions are
illustrated in Figure 10.
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Fig. 10. Left: plots of frequency, ω, against diagonal neighbour coupling strength, γ
in the case where the wavenumbers are given by (k, l) = (π, 0) as given by (3.39).
The thick solid curve corresponds to ωopt for Ω = 1 the thick dashed line to ωac for
Ω = 1, the lower thin solid curve to ωopt for Ω = 0.1 the lower dashed line to ωac for
Ω = 0.1 the upper thin solid curve to ωopt for Ω = 10 the upper dashed line to ωac
for Ω = 10. Centre: plots of Cac and Copt against γ as given by (3.40). We note that
0 < Copt < 1, whilst Cac < −1. Right: plots of the ellipticity, E , given by (3.44),
where the solid curve represents the optical case and the dashed line the acoustic
case.

In this case, we again have U = V = 0 from (3.24)–(3.25), but this time,
the expressions for Ũ and Ṽ given by (3.28)–(3.29) are well-defined. Since
D = 4(1 + 4γ2), we have Ũ = Ṽ = 0, and from (3.20) we have G1 = Q1 = 0.
Considering the expressions (3.15)–(3.16) for the second harmonic generation,
we find Z12 = 0, and Z11 = Z22 = Ω2 − 4ω2, r1 = r2 = 0 so G2 = Q2 = 0.
Further simplifications are gained by noting that when (k, l) = (π, 0), we have
x ≡ Z and y ≡ W , together with ∂τ = 0. These results significantly simplify
the expressions for A3 and B3, reducing (A.13)–(A.14), to
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A3=2iωFT − 3|F |2F (λ+ λC2 + µC2)− Fxx − 48b|F |2F (3.41)

−γ(1+C)(Fxx+Fyy)−
48(ah− 1)

h2
|F |2FC2 +

3γ

h2
|F |2F (6 + 3C − 7C2),

B3=2iCωFT − 3C|F |2F (λC2 + λ + µ) + CFyy −
24

h2
C3|F |2F (3.42)

−γ(1+C)(Fxx+Fyy)−
48(ah− 1)

h2
C|F |2F +

3γ

h2
|F |2F (3C2 − 7C + 2).

The solvability condition A3 + CB3 = 0 yields the NLS equation (3.32) with
Θ = 2ω(1 + C2) and

DZ = −1− γ(1+C)2, DW = C2 − γ(1+C)2, DM=0, (3.43)

being the simplified forms of (3.34)–(3.36). The ellipticity, E (3.37), is thus
given by

E(π, 0) =
[
γ(1 + C)2 + 1

] [
γ(1 + C)2 − C2

]
. (3.44)

This expression is plotted in the right panel of figure 10. We note that the
acoustic case is not elliptic for any choice of γ, whilst the optical case is elliptic
for all choices of γ. In order to have focusing solutions, we additionally require
DZB > 0 where B is the coefficient of |F |2F in A3 + B3C = 0 (3.41)–(3.42),
which reduces to the NLS being of focusing type provided

0< 48b+
24C2

h2
+

96C2(ah−1)

h2
+ 3λ(1+C2)2 + 6µC2 − 6γ

h2
(3C4−14C2+3).

(3.45)

Thus the combined effect of the onsite potential (parameterised by λ, µ), the
diagonal interactions (γ) and geometric nonlinearities result in a complicated
criterion for the NLS equation to be of the focusing type, even in the case
(k, l) = (π, 0). In one-dimensional lattices, the inequality usually has the form
b > νa2 for some constant ν; which shows that the coefficient of the cubic
nonlinearity has to be large enough to outweigh the square of the quadratic
nonlinearity; however, in (3.45), there is no a2 term, instead we have several
terms which arise due to the geometric nonlinearities of the lattice. With more
general wavenumbers (k, l), terms in a2 would be generated through the second
harmonics γG, γQ 6= 0, in additopm to the geometric nonlinearities. Due to the
presence of C in (3.45), this expression is really two inequalities – one for each
of the acoustic and optical cases and, in general, each is dependent on the
wavenumbers (k, l).
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4 Conclusions

To summarise, we have used Hamiltonian mechanics to formulate the problem
of motion of a two-dimensional lattice under the influence of nonlinear near-
est neighbour interactions and an on-site potential. Using a small amplitude
expansion, we have obtained the governing equations and found asymptotic
approximations for breather modes. Whilst the initial system of equations
and the final NLS system are both Hamiltonian, there is nothing special in
the asymptotic method of multiple scales which guarantees that the end result
will also have a Hamiltonian structure.

The resulting dispersion relation, which describes the properties of linear delo-
calised waves, has two branches, or sheets, with overlapping frequencies, which
share a common minimum, but have differing maxima. There is thus no ‘gap’
for stable breathers to exist in, but there is a cut off frequency, above which no
linear waves can exist. By writing a breather as an envelope solution specifying
the amplitude of these linear waves, we have constructed an approximation to
a localised moving wave.

At higher orders of the asymptotic calculation, we have found the relative
amplitude of motion in the two directions of the lattice, the strengths of
second harmonics, the speed of the envelope, and finally the shape of the
wave. All these properties of depend on the wavenumbers of the linear wave.
There is an ellipticity constraint, which is required for the NLS to be of the
elliptic form iFT = Fxx + Fyy + B|F |2F , rather than the hyperbolic form
iFT = Fxx − Fyy + B|F |2. This ellipticity constraint is in addition to the in-
equality B > 0 on the nonlinearity parameter which is needed for the NLS
equation to be of the focusing type rather than the defocusing type. Whilst
the dispersion relation for in-plane waves in two-dimensional lattices has been
derived by authors in many previously-studied examples, the higher order
terms, determining the nonlinear equation for the envelope is the main result
of this study. Of particular importance in the NLS equation is the ellipticity
constraint which imposes an additional restriction on the wave numbers where
long-lived breathers can be expected to exist.

Whilst one of our original aims in this work was to explain the numerical
observations of Marin et al. [23, 24] that discrete breathers only travel along
the lattice directions, we cannot claim that this work elucidates this behaviour.
However, by combining the domains of ellipticity shown in Figures 8 and 9 with
the velocities shown in Figure 6, we observe that large portions of the (k, l)-
space of potential solutions do not lead to breather solutions, in the remaining
regions, only a limited range of directions are represented. In future work, we
plan to extend these calculations to the triangular and the honeycomb lattices
as well as to the more complicated two dimensional FPU lattices.
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A Appendix

A.1 Details of energy and force expansions for Section 2

Here we give the full expressions for the small amplitude expansions of the
energies and forces which are needed for the derivation of the equations of
motion in Section 2. The energies corresponding to the horizontal, vertical
and diagonal springs, which appear in the Hamiltonian (2.13) are given by

Vh=
1
2
(um+1,n−um,n)2 +

1

2h
(um+1,n−um,n)(vm+1,n−vm,n)2

+
1

8h2
(vm+1,n−vm,n)4 +

(
ah− 1

2h2

)
(um+1,n−um,n)2(vm+1,n−vm,n)2

+1
3
a(um+1,n−um,n)3 + 1

4
b(um+1,n−um,n)4, (A.1)

Vv =
1
2
(vm,n+1−vm,n)2 +

1

2h
(um,n+1−um,n)2(vm,n+1−vm,n)

+
1

8h2
(um,n+1−um,n)4 +

(
ah− 1

2h2

)
(um,n+1−um,n)2(vm,n+1−vm,n)2

+1
3
a(vm,n+1−vm,n)3 + 1

4
b(vm,n+1−vm,n)4, (A.2)

Vd=
1
4
γ(um+1,n+1−um,n)2 + 1

2
γ(um+1,n+1−um,n)(vm+1,n+1−vm,n)

+
γ

8h
(um+1,n+1−um,n)3 −

γ

8h
(um+1,n+1−um,n)2(vm+1,n+1−vm,n)

− γ

8h
(um+1,n+1−um,n)(vm+1,n+1−vm,n)2 +

γ

8h
(vm+1,n+1−vm,n)3

+
7γ

32h2
(um+1,n+1−um,n)2(vm+1,n+1−vm,n)2 + 1

4
γ(vm+1,n+1−vm,n)2

− γ

16h2
(um+1,n+1−um,n)3(vm+1,n+1−vm,n)−

3γ

64h2
(um+1,n+1−um,n)4

− γ

16h2
(um+1,n+1−um,n)(vm+1,n+1−vm,n)3 −

3γ

64h2
(vm+1,n+1−vm,n)4,(A.3)
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Ve=
1
4
γ(um+1,n−1 − um,n)

2 − 1
2
γ(um+1,n−1 − um,n)(vm+1,n−1 − vm,n)

+
γ

8h
(um+1,n−1−um,n)3 +

γ

8h
(um+1,n−1−um,n)2(vm+1,n−1−vm,n)

− γ

8h
(um+1,n−1−um,n)(vm+1,n−1−vm,n)2 −

γ

8h
(vm+1,n−1−vm,n)3

+
7γ

32h2
(um+1,n−1−um,n)2(vm+1,n−1−vm,n)2 + 1

4
γ(vm+1,n−1 − vm,n)

2

+
γ

16h2
(um+1,n−1−um,n)3(vm+1,n−1−vm,n)−

3γ

64h2
(um+1,n−1−um,n)4

+
γ

16h2
(um+1,n−1−um,n)(vm+1,n−1−vm,n)3 −

3γ

64h2
(vm+1,n−1−vm,n)4.(A.4)

The corresponding forces in the equations of motion for um,n and vm,n (2.15)–
(2.16) are given by

Fh=(um+1,n−2um,n+um−1,n) +
1

2h

[
(vm+1,n−vm,n)2 − (vm,n−vm−1,n)

2
]

(A.5)

+a
[
(um+1,n−um,n)2 − (um,n−um−1,n)

2
]

+b
[
(um+1,n−um,n)3 − (um,n−um−1,n)

3
]

+

(
ah−1

h2

) [
(um+1,n−um,n)(vm+1,n−vm,n)2 − (um,n−um−1,n)(vm,n−vm−1,n)

2
]
,

Fv =
1

h
[(vm,n+1−vm,n)(um,n+1−um,n)− (vm,n−vm,n−1)(um,n−um,n−1)] (A.6)

+
1

2h2

[
(um,n+1−um,n)3 − (um,n−um,n−1)

3
]

+

(
ah−1

h2

) [
(um,n+1−um,n)(vm,n+1−vm,n)2 − (um,n−um,n−1)(vm,n−vm,n−1)

2
]
,
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Fd=
1
2
γ[(um+1,n+1 − 2um,n + um−1,n−1) + (vm+1,n+1 − 2vm,n + vm−1,n−1)] (A.7)

+
3γ

8h

[
(um+1,n+1−um,n)2 − (um,n−um−1,n−1)

2
]

− 3γ

16h2

[
(um+1,n+1−um,n)3 − (um,n−um−1,n−1)

3
]

− γ

4h
[(um+1,n+1−um,n)(vm+1,n+1−vm,n)− (um,n−um−1,n−1)(vm,n−vm−1,n−1)]

− γ

8h

[
(vm+1,n+1−vm,n)2 − (vm,n−vm−1,n−1)

2
]

− 3γ

16h2

[
(um+1,n+1−um,n)2(vm+1,n+1−vm,n)− (um,n−um−1,n−1)

2(vm,n−vm−1,n−1)
]

+
7γ

16h2

[
(um+1,n+1−um,n)(vm+1,n+1−vm,n)2 − (um,n−um−1,n−1)(vm,n−vm−1,n−1)

2
]

− γ

16h2

[
(vm+1,n+1−vm,n)3 − (vm,n−vm−1,n−1)

3
]
,

Fe=
1
2
γ[(um+1,n−1 − 2um,n + um−1,n+1) + (vm+1,n−1 − 2vm,n + vm−1,n+1)] (A.8)

+
3γ

8h

[
(um+1,n−1−um,n)2 − (um,n−um−1,n+1)

2
]

− 3γ

16h2

[
(um+1,n−1−um,n)3 − (um,n−um−1,n+1)

3
]

+
γ

4h
[(um+1,n−1−um,n)(vm+1,n−1−vm,n)− (um,n−um−1,n+1)(vm,n−vm−1,n+1)]

+
γ

8h

[
(vm+1,n−1−vm,n)2 − (vm,n−vm−1,n+1)

2
]

+
3γ

16h2

[
(um+1,n−1−um,n)2(vm+1,n−1−vm,n)− (um,n−um−1,n+1)

2(vm,n−vm−1,n+1)
]

+
7γ

16h2

[
(um+1,n−1−um,n)(vm+1,n−1−vm,n)2 − (um,n−um−1,n+1)(vm,n−vm−1,n+1)

2
]

+
γ

16h2

[
(vm+1,n−1−vm,n)3 − (vm,n−vm−1,n+1)

3
]
,

Gh=
1

h
[(um+1,n−um,n)(vm+1,n−vm,n)− (um,n−um−1,n)(vm,n−vm−1,n)] (A.9)

+

(
ah− 1

h2

)
[(um+1,n−um,n)2(vm+1,n−vm,n)− (um,n−um−1,n)

2(vm,n−vm−1,n)]

+
1

2h2
[(vm+1,n−vm,n)3 − (vm,n−vm−1,n)

3],
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Gv =(vm,n+1−2vm,n+vm,n−1) +
1

2h
[(um,n+1−um,n)2 − (um,n−um,n−1)

2] (A.10)

+a[(vm,n+1−vm,n)2 − (vm,n−vm,n−1)
2] + b[(vm,n+1−vm,n)3 − (vm,n−vm,n−1)

3]

+

(
ah−1

h2

)
[(um,n+1−um,n)2(vm,n+1−vm,n)− (um,n−um,n−1)

2(vm,n−vm,n−1)],

Gd=
1
2
γ[(vm+1,n+1 − 2vm,n + vm−1,n−1) + (um+1,n+1 − 2um,n + um−1,n−1)] (A.11)

+
3γ

8h
[(vm+1,n+1−vm,n)2 − (vm,n−vm−1,n−1)

2]

− γ

8h
[(um+1,n+1−um,n)2 − (um,n−um−1,n−1)

2]

− γ

4h
[(um+1,n+1−um,n)(vm+1,n+1−vm,n)− (um,n−um−1,n−1)(vm,n−vm−1,n−1)]

+
7γ

16h2
[(um+1,n+1−um,n)2(vm+1,n+1−vm,n)− (um,n−um−1,n−1)

2(vm,n−vm−1,n−1)]

− 3γ

16h2
[(um+1,n+1−um,n)(vm+1,n+1−vm,n)2 − (um,n−um−1,n−1)(vm,n−vm−1,n−1)

2]

− 3γ

16h2
[(vm+1,n+1−vm,n)3−(vm,n−vm−1,n−1)

3]

− γ

16h2
[(um+1,n+1−um,n)3−(um,n−um−1,n−1)

3],

Ge=
1
2
γ[(vm+1,n−1 − 2vm,n + vm−1,n+1) + (um+1,n−1 − 2um,n + um−1,n+1)] (A.12)

− γ

4h
[(um+1,n−1−um,n)(vm+1,n−1−vm,n)− (um,n−um−1,n+1)(vm,n−vm−1,n+1)]

+
γ

8h
[(um+1,n−1−um,n)2 − (um,n−um−1,n+1)

2]

−3γ

8h
[(vm+1,n−1−vm,n)2 − (vm,n−vm−1,n+1)

2]

+
7γ

16h2
[(um+1,n−1−um,n)2(vm+1,n−1−vm,n)− (um,n−um−1,n+1)

2(vm,n−vm−1,n+1)]

+
3γ

16h2
[(um+1,n−1−um,n)(vm+1,n−1−vm,n)2 − (um,n−um−1,n+1)(vm,n−vm−1,n+1)

2]

+
γ

16h2
[(um+1,n−1−um,n)3−(um,n−um−1,n+1)

3]

− 3γ

16h2
[(vm+1,n−1−vm,n)3−(vm,n−vm−1,n+1)

3].

A.2 RHS of (3.6) in O(ǫ3eiψ) equations

The equations for the rhs of the governing equations at O(ǫ3eiψ) from section
3.6, where we seek the consistency condition for M(H1, R1)

T = (A3, B3)
T to
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have solutions, are given by

A3=−2iωFT − Fττ − 2iωG1,τ − 3λ|F |2F − (λ+ µ)(2|P |2F + P 2F ∗)

+Fxx cos k + 2i sin kG1,x − 48b|F |2F sin4 1
2
k + 32iaG2F

∗ sin3 1
2
k cos 1

2
k

−16(ah− 1)

h2
(P 2F ∗ + 2|P |2F )(sin4 1

2
k + sin4 1

2
l) +

16i

h
Q2P

∗ sin3 1
2
k cos 1

2
k

−24

h2
|F |2F sin4 1

2
l +

16i

h
(G2P

∗ +Q2F
∗) sin3 1

2
l cos 1

2
l

+γ(Fxx + Fyy + Pxx + Pyy) cos k cos l − 2γ(Fxy + Pxy) sin k sin l

+2γi(G1,x +Q1,x) sin k cos l + 2γi(G1,y +Q1,y) sin l cos k

+
γ

h2
(9|F |2F+3|P |2P+3F 2P ∗+6|F |2P−7P 2F ∗−14|P |2F ) sin4 1

2
(k+l)

+
γ

h2
(9|F |2F−3|P |2P−3F 2P ∗−6|F |2P−7P 2F ∗−14|P |2F ) sin4 1

2
(k−l)

+
4iγ

h
(3G2F

∗ −G2P
∗ −Q2F

∗ −Q2P
∗) sin3 1

2
(k + l) cos 1

2
(k + l)

+
4iγ

h
(G2P

∗ +Q2F
∗ + 3G2F

∗ +Q2P
∗) sin3 1

2
(k − l) cos 1

2
(k − l), (A.13)

B3=−2iωPT − Pττ − 2iωQ1,τ − 3λ|P |2P − (λ+ µ)(2|F |2P − F 2P ∗)

+Pyy cos l + 2i sin lQ1,y − 48b|P |2P sin4 1
2
l + 32iaQ2P

∗ sin3 1
2
l cos 1

2
l

−16(ah− 1)

h2
(F 2P ∗ + 2|F |2P )(sin4 1

2
l + sin4 1

2
k) +

16i

h
G2F

∗ sin3 1
2
l cos 1

2
l

−24

h2
|P |2P sin4 1

2
k +

16i

h
(Q2F

∗ +G2P
∗) sin3 1

2
k cos 1

2
k

+γ(Fxx + Fyy + Pxx + Pyy) cos k cos l − 2γ(Fxy + Pxy) sin l sin k

+2γi(G1,x + Q1,x) sin k cos l + 2γi(G1,y +Q1,y) sin l cos k

+
γ

h2
(9|P |2P+3|F |2F+3P 2F ∗+6|P |2F−7F 2P ∗−14|F |2P ) sin4 1

2
(k+l)

+
γ

h2
(9|P |2P−3|F |2F−3P 2F ∗−6|P |2F−7F 2P ∗−14|F |2P ) sin4 1

2
(k−l)

+
4iγ

h
(3Q2P

∗ −Q2F
∗ −G2P

∗ −G2F
∗) sin3 1

2
(k + l) cos 1

2
(k + l)

−4iγ

h
(Q2F

∗ +G2P
∗ + 3Q2P

∗ +G2F
∗) sin3 1

2
(k − l) cos 1

2
(k − l), (A.14)

where B3 can be obtained fromA3 by making the transpositions k ↔ l, x↔ y,
F ↔ P , G1 ↔ Q1, G2 ↔ Q2.

We simplify these expressions for A3, B3 by making use of (3.8)–(3.9), (3.16),
(3.30), (3.21), namely, P = CF , G2 = γGF

2, Q2 = γQF
2, G1 = iCŨFZ +

iCṼ FW , Q1 = −iŨFZ − iṼ FW , ∂x = ∂Z , ∂y = ∂W , ∂τ = −U∂Z − V ∂W which
imply
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G1,τ =−iCUŨFZZ − iCV Ṽ FWW − iC(UṼ + V Ũ)FWZ), (A.15)

Q1,τ = iUŨFZZ + iV Ṽ FWW + i(UṼ + V Ũ)FWZ . (A.16)

Taking all the equations in this subsection together with those in section 3.6,
yields the PDE (3.32).

Finally, we quote the coefficient of nonlinearity, B, in (3.32), is given by

B=−6C2µ2 − 3λ(C2 + 1)2 − 48b
(
sin4 1

2
k + C4 sin4 1

2
l
)

+32ai
(
γG sin3 1

2
k cos 1

2
k + γQC

2 sin3 1
2
l cos 1

2
l
)

+
16Ci

h

(
γQ sin3 1

2
k cos 1

2
k + γG sin3 1

2
l cos 1

2
l
)

−96(ah−1)C2

h2

(
sin4 1

2
k + sin4 1

2
l
)
− 24

h2

(
sin4 1

2
l + C4 sin4 1

2
k
)

+
16i

h
(γQ + CγG)

(
C sin3 1

2
k cos 1

2
k + sin3 1

2
l cos 1

2
l
)

+3γ(3C+1)(C+3)(C−1)2 sin4 1
2
(k + l)

+3γ(3C−1)(C−3)(C+1)2 sin4 1
2
(k − l)

+
4iγ

h
[(3C+1)γQ − γG(C+3)] (C−1) sin3 1

2
(k + l) cos 1

2
(k + l)

+
4iγ

h

[
(3−C2)γG + γQ(1−3C2)

]
sin3 1

2
(k − l) cos 1

2
(k − l), (A.17)

which we note is real, since the quantities r1 and r2 given by (3.13)–(3.14) are
pure imaginary, and so the parameters γG, γQ are also both pure imaginary,
being defined by (3.16).

A.3 Example expansions for certain wavenumbers

In this section we consider the expansions quoted in Section 3, for certain
special values of the wavenumbers, (k, l). We use the stationary points of
the dispersion surfaces as examples, since breathers that bifurcate from these
points have the potential to have frequencies different from any linear wave.
We aim to follow the calculations listed at the start of Section 3.7.

A.3.1 Global minimum of dispersion relation, (k, l) = (0, 0)

To investigate the behaviour of the system as we approach the global minimum
of the dispersion relation at (k, l) = (0, 0) we put

k = K cosψ, and l = K sinψ, (A.18)
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and consider the asymptotic limit K → 0+ (0 < K ≪ 1). As noted in Table
1, both the acoustic and optical surfaces have a minimum at this point.

Determining the frequency from (3.7), we obtain

ω2

{opt

ac }(0, 0) = Ω2 +K2

(
γ + 1

2
±
√
γ2 + 1

4
cos2(2ψ)

)
, (A.19)

so the frequencies are well-defined in this limit as ω = Ω; however, the leading
order expressions for the ratio of vertical to horizontal displacements, C, as
given by (3.8) and (3.9) are

Copt(0, 0)=
cos(2ψ) + 2γ −

√
4γ2 + cos2(2ψ)

cos(2ψ)− 2γ +
√
4γ2 + cos2(2ψ)

, (A.20)

Cac(0, 0)=
−2γ − cos(2ψ)−

√
4γ2 + cos2(2ψ)

2γ − cos(2ψ) +
√
4γ2 + cos2(2ψ)

. (A.21)

Since both these expressions depend on ψ at leading order in K ≪ 1, the value
of C is not well-defined for either acoustic or optical modes. Furthermore,
whilst (3.24)–(3.25) give U = V = 0 when k = l = 0, the expressions for Ũ , Ṽ ,
(3.28)–(3.29) both diverge as k, l → 0 (since D = O(K4) as given by (3.7)).

A.3.2 Max/min of dispersion relation, (k, l) = (π, π)

Next, we consider the behaviour of the system in the limit of K → 0+ (0 <
K ≪ 1) where

k = π +K cosψ, and l = π +K sinψ, (A.22)

in which limit, the optical surface has a local minimum, and the acoustic
surface experiences its global maximum. Here, the surfaces meet and we find
the frequency ω is given by

ω2

{opt

ac }(π, π) =
(
Ω2 + 4

)
+K2

(
γ − 1

2
±
√
γ2 + 1

4
cos2(2ψ)

)
, (A.23)

which, in the limit K → 0,is well-defined as ω =
√
Ω2 + 4. However, the

leading order expressions for C are
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Copt(π, π)=
2γ − cos(2ψ)−

√
4γ2 + cos2(2ψ)

−2γ − cos(2ψ) +
√
4γ2 + cos2(2ψ)

, (A.24)

Cac(π, π)=
−2γ + cos(2ψ(−

√
4γ2 + cos2(2ψ)

2γ + cos(2ψ) +
√
4γ2 + cos2(2ψ)

. (A.25)

Since both of these expressions depend on ψ at leading order in K ≪ 1, the
value of C, namely the ratio of vertical to horizontal displacements is not well-
defined for either acoustic or optical mode. As in the case above, (3.24)–(3.25)
give U = V = 0 when k = l = π, and again (3.28)–(3.29) give divergences in
Ũ , Ṽ (again, since D = O(K4) by (3.7)).

A.4 The Townes soliton and moving solutions of the 2D NLS

Following Butt & Wattis [8, 9] we use the Townes soliton solution of the
2D NLS equation [11]. This solution is known to be unstable, with pertur-
bations leading to blow-up or dissipation, as discussed by many authors, see
Rasmussen & Rypdal [26] and Fibich & Papanicolaou [15] for more details.
However, many perturbations lead to stable soliton solutions, for example, the
fourth order system

iFT +D∇2F +B|F |2F + P∇4F = 0, (A.26)

for F (X, Y, T ) studied by Karpman et al. [20] has stable soliton solutions
when PD < 0. The presence of an additional fifth-order nonlinearity can also
stabilise the solitary wave solution, as in

iFT +D∇2F +B|F |2F + P∇4F +K|F |4F = 0. (A.27)

which Davydova et al. [13] showed has stable solutions when PK > 0. Since
our system (3.32) is merely the leading order approximation from an asymp-
totic expansion, we will also have fourth derivatives, fifth order nonlinearities
and other terms at higher order in ǫ, for example, second order spatial deriva-
tives of cubic terms.

It is possible to ‘boost’ soliton solutions, by which we mean convert from
a stationary breather to a moving breather through a generalisation of the
solution. For example, in one spatial dimension, the stationary solution F =

Ae−iBA
2T/2sech(AX

√
B/2D) of iFT = DFXX +B|F |2F , can be generalised to

F = A exp

(
−iBA

2T

2
− iV (2X − V T )

4D

)
sech


A(X − V T )

√
B

2D


 . (A.28)
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Similarly, in two dimensions, the Townes soliton given by Φ(X, Y ) which sat-
isfies ∇2Φ = Φ− Φ3, and generates the static solution

F = Ae−iBA
2TΦ

(
AX

√
B/D,AY

√
B/D

)
, (A.29)

of iFT = D∇2F + B|F |2F can, by writing Z = X − UT and W = Y − V T ,
be boosted to

F =A exp

(
−iBA2T − iU(2X−UT ) + iV (2Y −V T )

4D

)
Φ


AZ

√
B

D
,AW

√
B

D


 ,

(A.30)

which also solves iFT = D∇2F +B|F |2F .
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