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Abstract
The simulation of out-of-equilibriumdissipative quantummany body systems is a problemof
fundamental interest to a number offields in physics, ranging from condensedmatter to cosmology.
For unitary systems, tensor networkmethods have proved successful and extending these to open
systems is a natural avenue for study. In particular, an important question concerns the possibility of
approximating the critical dynamics of non-equilibrium systemswith tensor networks. Here, we
investigate this by performing numerical simulations of a paradigmatic quantumnon-equilibrium
systemwith an absorbing state: the quantumcontact process.We consider the application ofmatrix
product states and the time-evolving block decimation algorithm to simulate the time-evolution of
the quantum contact process at criticality. In the Lindblad formalism,we find that theHeisenberg
picture can be used to improve the accuracy of simulations over the Schrödinger approach, which can
be understood by considering the evolution of operator-space entanglement. Furthermore, we also
consider a quantum trajectories approach, whichwefind can reproduce the expected universal
behaviour of key observables for a significantly longer time than direct simulation of the average state.
These improved results provide further evidence that the universality class of the quantum contact
process is not directed percolation, which is the class of the classical contact process.

1. Introduction

Despite the recent experimental progress in probing the emergent behaviour of out-of-equilibrium ensembles
of cold atoms or trapped ions, [1–6], a clear understanding of these quantumnon-equilibrium systems remains
amajor challenge.While in classical settings the study of such systems—of their phases and critical phenomena
—are well developed, options for going beyond semi-classical treatments or the physics of exactly solvable
quantummodels are rather limited. This is especially true for open (dissipative) systems, which are of interest as
they have potential to display a rich set of novel non-equilibriumphysics—e.g. critical dynamical behaviour or
dynamical phase transitions—not possible in closed (unitary) settings.

Here, we explore the simulation of critical dynamics in dissipative quantummany body systems, in the case
of the quantum contact process (QCP) [7–11]. TheQCP is an attractivemodel to study for a number of reasons:
Firstly, theQCP is the coherent version of thewell-understood classical contact process (CCP) [12], which
exhibits a non-equilibriumphase transition (NEPT) in the directed percolation (DP) universality class, even in
1d. Formulating both theCCP andQCP in the Lindblad formalism then allows for a direct comparison between
the performance of a given numerical approach in the classical and quantum cases.

Secondly, theQCP contains an absorbing state, which leads to a rich—and computationally challenging—
universal dynamics [11]. To explore the link between the specific dynamics of the problem and the
computational difficulty, one can compare simulations performed in the Schrödinger picture with those of the
Heisenberg picture: In dissipative systems generically, there is an asymmetry between dynamics in the
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Schrödinger picture andHeisenberg picture. In theQCP, this asymmetry is particularly pronounced, and the
Heisenberg picture does not display an absorbing state. It is then of interest to investigate any difference in
performance between simulations in the two.

Finally, the critical physics of the 1dQCP is similar to that of theCCP, in the sense that key observables display
power-lawbehaviour butwith different exponents. Thismeans that, at criticality, different numericalmethods or
approaches to thedynamics can be comparedby their ability to reproduce the expected power-laws. Furthermore,
since theuniversality class of theQCP is currently debated, [7, 9, 11], it is of considerable interest in its own right to
make estimates of critical exponents, comparing thesewith previous estimates andknowncases.

To simulate the non-equilibriumdynamics of theQCP, we applymatrix product states (MPSs) and the time-
evolving block-decimation (TEBD) algorithm [13–15]. This algorithmbelongs to amore general class of tensor
network (TN)methods, well established for the simulation of closed quantum systems in 1d, which have also
been applied to dissipative quantum systems previously in a number of cases [16–24]. In the context of studying
dissipative quantumdynamics, a key question for TNmethods is whether different approaches, such as
quantum trajectories (QTs) as opposed to the Lindbladmaster equation, can lead to substantially different
accuracies. This question has been explored previously in [16, 17] and it has been suggested that in high-
entanglement scenariosQTsmight provemore accurate.

In the case of simulating the critical QCPwith TEBD,wefind the following key results: First, in the Lindblad
formalism, theHeisenberg picture can be used to improve the accuracy of simulations beyond that of the
Schrödinger picture and this can be explained by considering the evolution of operator-space entanglement
entropy. Second, wefind that aQTs approach leads to a significant improvement in the approximation of key
universal observables, i.e. the reproduction of power-law behaviour for longer times. Finally, using the results
fromQTs, we show that the estimated exponents of theQCP lie far from those ofDP, providing further evidence
that theQCPbelongs to a universality class different toDP.

While we focus on the application of TEBD to the critical dynamics of theQCP, we note there are also a
number of othermethods available withwhich it would be interesting to compare results [25]. For example,
clustermean-field [26], variationalminimisation [27] and algorithms based on variationalMonte Carlowith
neural networks, [28]—with applications to both time-dependent simulations [29, 30] and direct targetting of
the steady-state [31, 32], have all shownpromise for the simulation of open quantum systems.

The layout of the paper is as follows: In section 2we discuss the classical and quantum contact processes. In
section 3we provide a brief overview of the TEBD algorithm andMPSs for the unfamiliar reader. Section 4 then
shows the results for the simulation of theQCP in the Lindblad formalism, comparingwith theCCP. Section 5
examines theHeisenberg picture for theQCP,while section 6 examines aQTs approach. Conclusions and
outlook are contained in section 7.

2. The classical and quantum contact processes

2.1. Lindblad formalism for open quantumdynamics
Inmanyphysically relevant scenarios, it is not possible to characterise the time-evolutionof quantumsystembymeans
ofunitary closeddynamics. In fact, the simplepresenceof thermal surroundingsorof stochastic processes, e.g.
measurements of the systemorof its output,makes the studyof the time-evolutionof the systemmuchmore involved.
Theseopenquantumsystems (OQSs) arenotdescribedbyusual Schrödinger equation. Instead, their average
dynamics is implemented, in theMarkovian regime, bymeansof Lindblad-typemaster equations.Thesedescribe the
evolutionof the averagequantumsystemstateρ(t),where averagemightmeanexpectationover a stochastic process or
over thedegrees of freedomof an environment, according to thephysical scenarioonehas inmind.

Concretely, the quantum state of the system ρ(t) obeys the Lindblad differential equation [33],

t
t t

d

d
, 1r r=( ) [ ( )] ( )

where themap , also known as the Lindblad generator, ismade of two different contributions,

X H X Xi , . = - +[ ] [ ] [ ]

Thefirst piece represents the usual commutator with the systemHamiltonian, which implements the coherent
part of the dynamics. On the other hand, the term , often called the dissipator, contains information about the
effects of the environment, or of stochasticity in general, on the system. Thismust have the following form,

X J XJ X J J
1

2
, , å= -

m
m m m m⎜ ⎟⎛

⎝
⎞
⎠[ ] { }† †
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with {A,B}=AB+BA, in order to guarantee a physicalmeaning for the evolved quantum state ρ(t). Note that
the dynamics implemented by (1) does not preserve the purity of states and, therefore, in general ρ(t)will
represent amixed state.

2.2.Model definitions
As illustrated infigure 1, in a contact process, lattice sites can be either occupied ( ñ∣● ) or empty ( ñ∣⚪ ) and evolve
under processes of spontaneous decay and branching. TheCCP, i.e. a contact process with classical branching
(figure 1(a)), can be represented in the Lindblad formalism, thus representing theCCP as anOQS. The evolution
of theCCP is then given by a Lindbladmaster equationwith a zeroHamiltonian and dissipative contribution
given by two terms,

. 2cl br  r r r= +[ ] [ ] [ ] ( )

For a systemof size L, the dissipative term  is defined as,

n
1

2
, , 3

k

L
k k k

1

 år g s rs r= -
=

- +⎜ ⎟⎛
⎝

⎞
⎠[ ] { } ( )( ) ( ) ( )

where s ñ = ñ-∣ ∣⚪● , 0s ñ =-∣⚪ , s s=+ -( )†, n is the excitation density operator, n ñ = ñ∣ ∣● ● , n 0ñ =∣⚪ , and the
parameter γ sets the strength of the spontaneous decay. The term br instead describes the classical branching/
coagulation process and can bewritten as,

X J X J J J X
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where J n J n,k k k k k k
L 1

1
R 1

1s s= =+ +( ) ( ) ( ) ( ) ( ) ( ) with 1s ñ = ñ∣ ∣⚪ ⚪● ● .
In the limit L  ¥, the CCP exhibits aNEPTbetween a unique steady state devoid of particles and a

degenerate steady state with finite particle density [12]. The former steady state is known as the absorbing state,
as once it is reached during the dynamics it cannot be escaped, and the corresponding phase is called the
absorbing or inactive phase.

Absorbing phases occurwhen the strength of the decay process, characterised by the parameter γ, is
sufficient to overcome the process of branching, characterised by the parameterΓ. Conversely, when the process
of branching is strong enough relative to decay, i.e. the dimensionless branching is large, 1gG  , a steady state
withfinite particle density can been found, inwhat is known as the active phase.

Figure 1.The classical and quantum contact processes: (a)Dynamical rules for the classical contact process, which consists of
branchingwith strengthΓ and decaywith strength γ. (b)Corresponding rules for the quantum contact process, consisting of coherent
branchingwith strengthΩ and decay. (c)The classical contact process displays an absorbing state phase transition, as illustrated by the
three trajectories shown, one ofwhich is typical of the absorbing phase, one typical of the activate phase and one typical at criticality
(the values ofΓ/γ for these are 2,6.75 and 10 respectively). Since during a classical trajectory sites can only be empty or occupiedwith
certainty, all squares are either black orwhite. (d)Aswith the classical contact process, the quantum contact process displays an
absorbing state phase transition. This is illustrated again by three typical trajectories, withΩ/γ=2, 6 and 10. These show a similar
behaviour to the corresponding classical trajectories, as expected by the construction of the dynamical rules for the quantumprocess.
However, the coherent branching in the quantum case leads to expected occupancies different from zero or one.
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In theQCP, branching is coherent and represented by theHamiltonian,

H n n . 5
k

L
k k k k

1

1

1
1

1
1å s s= W +

=

-
+ +( ) ( )( ) ( ) ( ) ( )

The parameterΩ thus sets the strength of coherent evolution and, as a consequence, of the branching/
coagulation process. The relevant dimensionless parameter is thenΩ/γ, which determines the relative strength
of coherent evolution, tending to create excitations, and dissipation, represented by , tending to remove them.

Aswith theCCP, in the limit L  ¥, theQCPdisplays a non-equilibrium absorbing state phase transition
[7–9]. In fact, below the critical points,Ω<Ωc andΓ<Γc, in bothmodels the stationary state is the same
unique absorbing state, k kar = ñá⨂ ∣ ∣⚪ ⚪ . Above the critical point, instead, the stationary state is degenerate and
has a finite density of particles. Thus, bothmodels have an active phase, though the stationary state in this phase
will differ between theCCP and theQCP.

2.3. Non-equilibrium setting
The specific settingwe investigate is that of an initial single seed state evolving under the contact process
dynamics [34], see figure 1. In this scenario, the initial state of the system is a product state. This state is
unoccupied at all sites except the central one, xseed=floor(L/2)+1. Therefore, the initial state can bewritten
as, 0 x x

a
seed seedr s r s= + -( ) ( ) ( ).

Starting from an initial seed state, the contact process can be characterised by the survival probability, Psur,
total density,Na, and seed-site density, nseed, defined as:

P t t1 Tr , 6asur r r= -( ) [ ( ) ] ( )
N t n t k, , 7

k
a å=( ) ( ) ( )

n t n t k x, , 8seed seed= =( ) ( ) ( )

where n t k t n, Tr kr=( ) [ ( ) ]( ) is the density profile.
As illustrated infigures 1(c) and (d), in the absorbing phase, all clusters generated from a single seed die out

so thatPsur(t),Na(t) and nseed(t) all tend to zero as t  ¥. In contrast, within the active phase in the limit
L  ¥, these observables tend to non-zero values as t  ¥. At criticality, the observables are characterised by
universal power-law behaviour, which defines the exponents δ,Θ and z as:

P t t , 9sur ~ d-( ) ( )

N t t , 10a ~ Q( ) ( )

n t t . 11z
seed

1~ Q-( ) ( )

2.4. Universality classes of the contact processes
While theCCPhas been established to belong to the 1dDPuniversality class [12], the universal properties of the
QCP—in particular the values of exponents and towhich class theQCPbelongs—is under debate. However,
there have been a number of studies performed fromdifferent perspectives. For instance, theQCPhas been
examined from the perspective ofmean-field theory [7, 10], functional renormalisation group [8, 9] and tensor
networks [11]. The transition has been argued to be continuous [9], with the critical point being estimated as
Ωc≈6γ, [11]. A selection of critical exponents for theQCPhave been estimated in [11] aswell as in [8], where
the latter includes the effects of classical branching. Table 1 collects a number of these estimated exponents for
theQCP, aswell as those of theDPuniversality classes for comparison.We also emphasise that theQCP can in
principle be experimentally realised in Rydberg quantum simulators [7, 35–38], providing a possible check for
theoretical results in the future.

3. Time-evolving block decimation in closed quantum systems

The numerical simulationswe perform are based onMPSs and theTime-Evolving BlockDecimation (TEBD)
algorithm, [13], whichwe briefly summarise in this section. The TEBD algorithmhas been applied extensively in
closed quantum systems, onwhichwe focus.

We considermany-body quantum systems (in 1d)made of L equal components with single-siteHilbert
space having dimensionK. In TEBD, the state yñ∣ of such a system is represented as anMPS [14],

s s sM M M , 12
s s s

K

s s s
L

L
, , , 1

1 2
1 2

L

L

1 2

1 2åyñ = ¼ ¼ ñ
¼ =

∣ ∣ ( )[ ] [ ] [ ]
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where Ms
k
k

[ ] arematrices of size k k1c c´- . The total number of parameters in theMPS representation is
LK 2 c( ), whereχ is themaximummatrix dimension across the system and is known as the bond dimension. In

principle, any state in themany-bodyHilbert-space K L = Ä , can be represented exactly as anMPS
with K Lfloor 2c ( ).

In general, the exact representation of a state as anMPS is not possible, as the number of parameters
increases exponentially with L. Nonetheless, frequently, relevant quantum states belong to set of states which can
be represented as anMPSwith Lpolyc = ( ( )), or approximated to some arbitrary accuracy by such anMPS
[39]. These are said to be represented/approximated efficiently byMPSs.

As a trivial example, product states can be represented byMPSswithχ=1.More generally, the L
dependence of the vonNeumann entanglement entropy,

S tr log tr log , 13A A A B B    = - = -( ) [ ] [ ] ( )

where A B is the reduced densitymatrix of subsystemA/B generated by a bipartition of the system,

tr ,A B B A y y= ñá∣ ∣

can be used to characterise the efficiency of anMPS representation. In one spatial dimension, an entanglement
area law, S L0~ , for a given state suggests that the state can be efficiently represented as anMPS. This is indeed
true for the ground-states of gapped localHamiltonians, [40], or states with exponentially decaying correlations,
[41]. However, generally the scaling of S alone is not enough to establish the accuracy of an efficientMPS
approximation (in fact all Renyi entropies with indexα<1must be used [42, 43]). Nonetheless, the
entanglement entropy is useful in practice, particularly as a number of physical systems have been shown to obey
area laws [44].

Assuming the initial state of the system to be one represented efficiently by anMPS, then anMPS
representation of the time-evolved state can be found by applying some set of operators [14], typically those
constituting a Trotter decomposition of a quantumdynamics [45].When these operators are applied, the
resultingMPSwill generally have a larger bond dimension than before. In fact, over time this will lead to an
exponential increase in the required value ofχ and generally time-evolution can only be treated exactly with
MPS for short times [46]. This can be linked to the scaling of Swith time: if the entanglement entropy is growing
linearly with time, as is the case in commonquantumquench scenarios [47], an efficientMPS approximation of
the exact state is impossible [42].

Given the build-up of bond-dimension in anMPS representation over time, the key to performing time-
evolutionwithMPSs is to repeatedly approximate the time-evolvedMPSs, thus keeping the total number of
parameters under control.

To achieve this, consider theMPS approximation to the state at time t, ty ñ∣ , and assume it has a bond
dimensionχ, which is themaximumwewill allow. To approximate the state at time t’, we then apply the
operator, Ô, so that Ot ty yñ = ñ¢∣ ˆ∣ . The new state ty ñ¢∣ will nowhave some higher bond-dimension c¢, beyond
themaximumwe allow in our simulation. To remedy this, wewant tofind anMPS approximation to ty ñ¢∣ that
has bond dimensionχ. Calling this approximation tf ñ¢∣ , we thenwant to solve theminimisation problem,

argmin , 14t tf y fñ = ñ - ñf¢ ñ ¢∣ ∣∣ ∣ ∣ ( )∣

where ∣·∣ indicates theHilbert-space norm.One can iterate this procedure to produce an approximation to the
time-evolution of the state, allowing one to calculate desired observables along theway [14].

Table 1.Relevant exponents of theQCP andCCP. The exponents δ, z
andΘ can be associated to non-equilibriumobservables when starting
from an initial seed-state, see (9)–(11). The exponentα can be
associated to the decay of excitation density when starting from a
homogenous fully-occupied state, [34]. The exponents of theCCP are
given by theDPuniversality class [12]. TheQCP estimates of δ, z andΘ
are given in this work (see section 6)with two standard errors, while the
value ofα indicated by an asterisk is estimated in [11]. The twofinal
columns give exponents for theQCPwith the inclusion of classical
branching at the tricritical point where quantum and classical
branching compete, estimated using functional renormalisation group
[8]. Note that forDPα=δ, a consequence of the rapidity reversal
symmetry that is characteristic of the class [34].

QCP 1dDP 2dDP 1d [8] 2d [8]

δ 0.26±0.04 0.16 0.45 − −
z 1.61±0.16 1.58 1.77 1.93 1.97

Θ 0.26±0.05 0.31 0.23 − −
α 0.36±0.08* 0.16 0.45 0.21 0.35
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TheTEBD algorithm is, in essence, a simple approximation to the solution of (14) given by considering
successive bipartitions of the system at k=1, 2,K, L. At each cut, one performs a Schmidt decomposition of the
state ty¢ñ∣ and discards a sufficient number of the smallest Schmidt coefficients so as to reduce the bond-
dimension toχ.More specifically, across the cut at site-k the Schmidt coefficients,λj

[k], are placed into a non-
ascending order 0k k

1 2 l l ¼>[ ] [ ] . TheMPS approximationwith bond-dimensionχ at site k is then
constructed by retaining theχ largest Schmidt coefficients. In other words, all Schmidt coefficients with
j 1 c + are discarded, and the corresponding discardedweight,

, 15k

j
j
k

1

2

å l=c
c+

( ) ( )[ ] [ ]

measures the error in this approximation. At any given cut, this approximation is optimal. However, overall, the
error in the approximation depends on the errormade at each cut. Summing the discardedweight from every
cut then provides an approximation for the overall error, and the resulting state is a simple approximation to the
solution of (14).

In order to calculate the Schmidt decomposition at a given cut when usingMPS, singular value
decompositions can be used to place theMPS in ‘canonical form’ about the chosen cut. Details for implementing
this can be found in, e.g. [14]. However, we note here that when applying non-unitary operators to theMPS, as is
the case in open systems, the canonical formof theMPS is destroyed, so that truncation at a given cut would no
longer be optimal. This can be remedied by simply recalculating the necessary Schmidt decompositions after the
application of such operators (i.e. ‘recanonicalising’), prior to performing the trunctions.Wewill use this
method throughout, thoughwe remark thatmanymore sophisticated variations exist [15].

4. Simulation of universal dynamics in the double-space

4.1.Double-space representation of lindblad dynamics
Perhaps themost straightforwardway to apply TEBD to the study of Lindblad dynamics, (1), is to represent the
densitymatrix ρ(t) as a vector, tr ñ∣ ( ) , in the ‘double-space’ defined via theChoi-isomorphism,
n m n mñá  ñ Ä ñ∣ ∣ ∣ ∣ , [48]. One thus has,

t t m n t t m n .
mn

mn
mn

mnå år r r r= ñá  ñ = ñ Ä ñ( ) ( )∣ ∣ ∣ ( ) ( )∣ ∣

Mapped in this way, the evolution of the quantum state can then be shown to be generated by the following
Schrödinger-like equation ,

t
t t

d

d
, 16r rñ = ñ∣ ( ) ∣ ( ) ( )

where  is the representation of the Lindbladmap (1) in the double space. It is possible to show that onemust
have,

Hi , 17D D = - + ( )

whereHD isHermitian and has the form,

H H H , 18D
T = Ä - Ä( ) ( )

while,

J J J J J J
1

2

1

2
, 19D

T * * å= Ä - Ä - Ä
m

m m m m m m⎜ ⎟⎛
⎝

⎞
⎠ ( )†

where *means complex conjugation and Tmatrix transposition.
Solutions to (16) give the evolved state up to time t, t e 0tr rñ = ñ∣ ( ) ∣ ( ) , where 0r ñ∣ ( ) is the initial condition

for the densitymatrix in the vectorized representation. By performing a Trotter decomposition of the time-
evolution operator et, whichwe choose to be a second-order scheme, one can apply the TEBD algorithm
naturally to approximate tr ñ∣ ( ) using anMPSwith bond-dimensionχ. From the approximation of tr ñ∣ ( ) ,
observables can then be calculated as

O t t O O ttr , 20Dr r= = á ñ( ) [ ( ) ˆ ] ∣ ˆ ∣ ( ) ( )

where O OD = Äˆ ˆ and ñ∣ is the double-space state representation of the identity operator.
When considering theMPS representation of tr ñ∣ ( ) , a natural quantity to consider is the operator space

entanglement,

S tr log tr log , 21A A A A   = - = -˜ [ ˜ ˜ ] [ ˜ ˜ ] ( )
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with

tr .A B B A r r= ñá˜ ∣ ∣

The value of S̃ plays an analogous role to the vonNeumann entropy, S, for closed quantum systems and provides
a characterisation of the computational difficulty of TN simulations.

4.2. Schrödinger picture results
The evolution of the total density, survival probability and seed-site density are shown for theCCP andQCP in
figure 2. In both cases the sameTEBDalgorithm is used, with afixedTrotter step of γδt=0.1 and bond-
dimensions ofχ=16, 32, 64 and 256, 512, 1024 for theCCP andQCP respectively. The system size was set to
L=256, for which the observables agree closely with those calculated using L=128 up to γt=10. The
simulations are performedwith γ=1 at the estimated critical points,Γ=6.75γ andΩ=6γ for theCCP and
QCP respectively. For theCCP the critical point was estimated by scanning various values ofΓ andfindingwhere
both the total density and the survival probability show little deviation from a straight line in a log–log plot. In
the case of theQCP, we take the previously estimated critical value ofΩ=6γ, [11]. Both sets of observables
show the correct qualitative behaviour, in linewith the expectations of the critical dynamics, (9)–(11).

To approximate the critical exponents, power-law fits were performed toNa(t),Psur(t) and nseed(t) thus
estimating , dQ and z. To provide a best-estimate of these values, the simulationswith largestχwere used for the
fits, while the absolute differences between these estimates and those obtained byfitting to aχ of half the
maximumwere used for the error estimates.

In both theCCP andQCP,while all the different bond-dimension simulations agree at early times, at later
times the lowbond-dimension runs deviate considerably. This suggests thatfinite-bond effects can lead to a
significant build-up of errors in observables, as in the closed quantum system case, even for classical states.
However, the bond-dimensions needed to reach convergence until γt=20 are verymodest for theCCP. Since
thefits for theCCPperformed over γtä [5, 10] lead to estimated exponents within a few percent of the true 1d
DPvalues, we see that critical dynamics of theCCP can be accurately simulatedwithMPSs in the double-space,
and critical exponents estimatedwith small errors.

Figure 2.Critical dynamics in the classical contact process (a)–(c): The plots show the approximations of time-dependent observables
forΓ=6.75γ, obtainedwith the TEBD algorithm. (a)The plot shows the total density,Na(t), calculated using the TEBD algorithm in
the double space, with bond-dimensionsχ=16,32 and 64. At late times,finite bond-dimension effects can be seen clearly. To
establish the critical exponents, power-law fits were performed in the interval γtä [5, 10] forχ=32 and 64,with the latter fit
determining the best estimate ofΘ and the difference between the twoused as the error. (b)The plot shows the survival probability,
Psur(t), calculated using the sameMPS approximations as forNa(t). As in that case, significantfinite-bond effects can be seen, but again
only amodestχ=64 is needed to accurately approximate the observable. (c)The plot shows the evolution of the seed-site density,
nseed(t), and a power-law fit determines the exponents z1Q - . Combinedwith the estimatedΘ from (a), this leads to an estimate of
z, albeit with a relatively high error estimate due to error propagation. Critical dynamics in the quantum contact process (d)–(f): The
plots show approximations of universal observables for the quantum contact process atΩ=6γ, estimatedwith TEBD in the double-
space. These can be comparedwith the corresponding plots for the classical contact process, which are estimated using an identical
algorithm and show similar qualitative behaviour. See alsofigure 6 for the same quantities and analysis using a trajectories approach.
(d)The plot shows the total density,Na(t), with bond-dimensionsχ=256, 512 and 1024. Comparedwith the corresponding classical
plot, thefinite-bond effects are larger andmuch higher bond-dimensions are required to achieve convergence to a given time. (e)The
survival probability, Psur(t). Once again finiteχ effects are significant and to reach γt=10 a considerably higher bond-dimension is
likely required. (f)The seed-site density evolution nseed(t) for theQCP. The estimate of the exponent z is obtained, as in the classical
case, from apower-law fit within γtä [2, 4], with error propagation leading to a relatively large error estimate for this value.
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Comparedwith theCCP, simulation of theQCP requiresmuch larger values ofχ to achieve convergence in
the examined observables to a given time, withχ=1024 showing large deviations from a power-law by
γt=10. As such, fitting from γtä [2, 4]was used to establish these exponents, where theχ=1024 simulations
closely follow a power-law.

We emphasise that, while the errors shown quantify the finite bond-dimension effects in the estimate of the
exponents whenfitting over the chosen interval, there can still be considerable errors in the exponent estimates
due to the interval usedwhen performing the fits. In the case of the CCP,fitting from γtä [1, 5] as opposed to γt
ä [5, 10] only increases the errors in the estimated exponents from around 1%–5%.This suggests that, for the
CCP,finite time errors are relatively small, despite the short time interval over which the fits are performed. One
might then hope that this is also the case for theQCP, thoughwithout substantially higher bond-dimensions,
allowing one to reachmuch longer times, this cannot be confirmed.

4.3.Operator space entanglement in the schrödinger picture
Tounderstandwhy theQCP ismuch harder to simulate than theCCP,we can compare the evolution of the
operator space entanglement entropy, S̃ . Taking themaximumvalue of the entanglement entropy across all
bipartitions throughout, the evolutions of S̃ for theCCP andQCP are shown infigure 3(a).

In both theCCP andQCP, S̃ shows a clear ‘barrier’ behaviour, where initially it grows rapidly to a peak
around γt=0.5 before decaying to a lowerfinal value. This is consistent with an initial period of branching/
coagulation evolution, where correlations build up rapidly and spontaneous decay is irrelevant, followed by a
periodwhere the latter becomes relevant and removes correlations/excitations from the state.While the overall
picture seems the same for both theCCP andQCP, in the classical case the barrier is clearlymuch lower than in
theQCP.Given that the operator space entanglement entropy should characterise the error in simulations, the
difference between S̃ in theCCP andQCPhelps explain the difference in accuracies found in observables. The
relationship between S̃ and errors is illustrated in figure 3(b), which shows the error in the simulations of the
QCPover time, equal to the square root of the discardedweight defined in (15). As the value ofχ is increased, the
error at each time drops, approximately halvingwhen the bond-dimension is doubled. Aswith the entropy, the
error shows a peak-like structure, with the peak occurring shortly after that of the entropy.

5.Heisenberg picture in the double-space

To study theHeisenberg picture dynamics with TEBD in the double-space, one takes a representation of an
operatorO as a vector Oñ∣ , then evolves it through the dual Lindbladian †, such that

O t e O .tñ = ñ∣ ( ) ∣†

In the case of closed quantum systems, theHeisenberg picture can be used to extend themaximum time over
which simulations are accurate by roughly a factor of two [15]. Intuitively, this is expected because the dual

Figure 3.Evolutions of the operator space entanglement and discardedweight: (a)Operator space entanglement, S̃ for theCCP and
QCP. In both cases a barrier like structure can be seen, consistent with the initial build-up of correlations followed by a decrease due to
dissipation. In terms of bond-dimension, the value of S̃ convergences quickly, with the curves of S̃ usingχ=16, 128 for theCCP and
QCP respectively differing by approximately 10 , 107 2- - and thus appearing identical to those shown on the scale plotted. The fact that
the barrier for the CCP ismuch lower than for theQCP suggests that the dynamics should bemuch easier to approximate in the
former case. (b)The evolution of the error estimate for theQCP, defined here as the square root of the sumof squared Schmidt
coefficients discarded during truncation at each time-step, with the time-integrated discardedweight—which provides ameasure of
the total error to that time—displayed in the inset. As for S̃ , the error shows a barrier like structure, consistent with a build-up of
errors that lead to the significantfiniteχ effects seen in figure 2. As the value ofχ is doubled, the barrier peak decreases
correspondingly, leading tomore accurate approximation of observables over longer times.
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dynamics of the unitary evolution,U t( )† , is equal to the original dynamics but backwards in time,
U t U t= -( ) ( )† . Thus, onemight expect that the dual dynamics is not radically different in terms of
computational difficulty than that of the usual dynamics, and bothmaybe accurately approximated up to the
same time, thus doubling themaximum timewhen combined.

In contrast, for open quantum systems, the dynamics implemented by † is in principle completely different
from the one of . This is exemplified by the specific case of theQCP, where the dual dynamics does not have an
absorbing state. Furthermore, when studying the survivial probability, theHeisenberg picture can be
implemented using a homogenous initial vector, in contrast to the evolution starting froman initial seed state in
the Schödinger picture. In cases such as theQCP,where the differences in the dual dynamics are significant, it
might then be that performance in theHeisenberg picture is also substantiallymodified relative to that of the
Schrödinger picture.

To explore this, we calculate the survival probability for theQCP in theHeisenberg picture using TEBD and
χ=256, 512, alongwith the operator-space entanglement entropy, as shown in figure 4. As can be seen, the
entropy displays a characteristic barrier as in the Schrödinger picture. However, the barrier is substantially lower
for theHeisenberg picture than for the Schrödinger picture case (though it is also less sharply peaked).
Correspondingly, the survival probability shows dramatically reduced finite bond-dimension effects, with the
χ=512 approximation showing reasonable power-law behaviour up until γt=10, leading to an estimated
exponent of δ=0.27±0.04when fit over γtä [2, 4].

On a practical level, these results suggest that theHeisenberg picturemight allow for amore accurate
approximation of the survival probability, Psur, and thus δ, at cheaper computational cost (lower bond-
dimension). Other observables such as the total density can also be approximated in theHeisenberg picture, e.g.
in order to establish the exponentΘwith greater accuracy, thoughwe do not discuss this direction further.

6. Trajectories for theQCP

6.1. Entanglement distribution
As an alternative to the Lindblad formalism and double-space approach, we now consider a stochastic
unravelling of themaster equation realised algorithmically byQuantum JumpMonte Carlo (QJMC) [49, 50]. In
thisQTs approach, each individual quantum trajectory corresponds to a pure state evolution. Therefore, the
standard TEBDmethod for closed quantum systems can be applied quite directly to simulate a given trajectory,
with the samplemeans over all trajectories providing an approximation for the observables of the average
(Lindblad) dynamics.

As before, wewill be interested in quantifying the presence of entanglement in the dynamics and how this
affects the accuracy of TN calculations of universal non-equilibriumphysics. Since each individual trajectory in
QJMC is governed by a pure state evolution, the vonNeumann entanglement entropy of the state has the usual
physicalmeaning.However, unlike the closed system case, the entanglement of a trajectory, Straj, can nowbe
considered a randomvariable and thus associated to a distribution/probability.While thismight seem to be a

Figure 4.The survival probability and entanglement in the heisenberg picture: (a)The survival probability, Psur, calculated in the
Heisenberg picture, comparedwith the Schrödinger picture forχ=256 and 512 (theHeisenberg picture runs are denoted by a
subscriptH).While the Schrödinger picture approximations deviate dramatically from the expected power-law behaviour, the
Heisenberg picture simulations seemmuch better and theχH=512 case can be approximated by power-law until γt=10. (b)The
entropy barrier for the dynamics in theHeisenberg picture and Schödinger picture dynamics. In theHeisenberg picture, the evolution
of S̃ shows the same barrier structure as for the Schrödinger picture.However, the shape of the barrier is different, with a considerably
lower peak. This suggests that the same bond-dimension, and therefore the same computational costs, would lead to a significantly
higher accuracy approximation, consistent with the results for Psur .
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complicating feature compared to the single operator space entanglement entropy in the double-space case, it is
actually very helpful for building a picture of the accuracy of simulations usingMPSs: if we associate to a given
bond-dimension,χ, some characteristicmaximumentanglement ‘cutoff’, S c¯ ( ), thenwe expect that the set of
trajectories with S Straj c ¯ ( )will bewell approximated, while thosewith S Straj c» ¯ ( )will be subject tofinite
bond-dimension effects. In otherwords, for low-entanglement trajectories the entanglement cutoff will be
irrelevant but for high-entanglement trajectories it will be relevant.

To explore these issues, wefirst consider the distribution of Straj in 1000 trajectories simulatedwith TEBD for
χ=16,128 andχ=256. The evolution of each trajectorywas calculated up until γt=10 using a Trotter-step
of γδt=0.01, chosen so that the order of the associated error in theQJMC (which is afirst-order scheme) is
comparable with the second-order scheme used in the double-space case. The system size wasfixed at L=128,
for which observables agreedwith those simulatedwith L=256 in the double-space case, see section 2. The
entanglement distributions for γt=1,5 and 10 are shown infigure 5, with the rows illustrating the evolution of
the entanglement distributions forχ=16,128 andχ=256 respectively. Details of the histogram construction
are given in the caption.

Infigure 5(a), when γt=1, all the histograms displayed are very similar; they show the same bimodality with
one peak at S=0—attributable to the unentangled absorbing state—and are similar except for the fact that the
lowest bond-dimension distribution displays slightlymoreweight near S=0. As such, themeans of the
distributions, Sá ñ, shown as vertical dashed lines, are very close. This similarity can be explained by comparing
these distributions with themaximumvalue of S found for any trajectory at any time. These values, plotted as
dotted vertical lines, can be considered as ameasurement of the cutoff, S̄ . For allχ=16,128 and 256, the values
of S̄ lie well above the support of the distribution, andwe can expect the effect of the cutoff to beminimal. In fact,
given the separation between the support and S̄ , wemight expect there to be essentially no effect and it is
interesting that there is still a clear discrepancy at S=0 forχ=16. This discrepancy suggests that the presence
of an absorbing state poses challenges for numerical simulations.

Infigure 5(b), where γt=5, the distribution of entropies forχ=16 andχ=256 differ significantly, with a
large proportion of trajectories forχ=256 displaying entropies larger than the entanglement cutoff for
χ=16, leading to an artificial build-up of weight around S̄ for theχ=16 simulations. Thus, we can conclude

Figure 5.Empirical distribution of entanglement forQJMC trajectories: Histograms of 1000 trajectories generated byQJMC and
TEBDwith bond-dimensionsχ=16, 128 and 256. The bins are determined by dividing theχ=256 entanglements at γt=10 into
50 equal width bins. The histograms are normalised by the total number of trajectories, such that the sumof heights is one. For γt=5
and γt=10, thefirst bin, which covers the absorbing state with S=0, has been scaled by a factor of 0.1 to allow clearer visualisation
of the distributions at larger values of S. Themean values of S as each time, Sá ñ, are indicated by vertical dashed lines. The entanglement
cutoffs, S̄ , defined as themaximumvalues of S for each bond-dimension taken over all times and trajectories, are indicated by dotted
vertical lines. (a)The first column compares the three distributions at γt=1. All distributions agree closely and display a clear
bimodal behaviour. Themode near S=0 can be interpreted as the trajectories that have fallen into the absorbing state. The second
mode, which has a large density around a single value, corresponds to the proportion of trajectories that have not yet jumped and thus
have evolved deterministically. (b)The second columndisplays the three distributions at γt=5. By this time theχ=16 distribution
differs significantly from the others, showing awall-like behaviour near the correspondingmaximumentanglement, while the other
distributions largely agree. (c)By γt=10, shown in the third column, the distributions forχ=128 and 256 differ visibly.However,
the difference represents only a small fraction of the weight overall. Onemight then expect that simple quantities—such as the
densities—calculatedwith bothχ=128 andχ=256will be similar, as is indeed found for the observables displayed infigure 6.
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that the finite-entanglement cutoff is relevant at this time forχ=16, and the effect on themean is clearly visible.
This is in contrast to the case ofχ=128, which retains a good agreementwith theχ=256 simulations.

Infigure 5(c), where γt=10, the support of the distribution forχ=256 is close to the entanglement cutoff
S 256c =¯ ( ), and above S 128c =¯ ( ). This corresponds to a noticeable difference in the entanglement
distributions forχ=128 andχ=256, though the difference is only slight compared to that ofχ=16. In fact,
since only a small weight appears in theχ=256 distribution above the value of S 128c =¯ ( ), wemight expect
that the accuracy of theχ=128 simulations for observables will still be reasonably good.Moreover, wemight
expect that theχ=256 simulations themselves are accurate due to the fact there is no significant build-up of
weight near S 256c =¯ ( ), which for theχ=16 case provided a clear indication of the entanglement cutoff’s
relevance.

6.2. Universal dynamicswith trajectories
To assess the accuracy of the trajectories approach for theQCP and investigate the relationship between the
entanglement distributions and the approximation of observables, we repeat the analysis for theQCPperformed
in section 4, as shown infigure 6 forχ=64, 128 and 256. From analysis of the entanglement distributions,
figure 5, we expect tofind good accuracy up to γt=10 forχ=128 and 256, and indeed the curves of
N t P t,a sur( ) ( ) and nseed(t) overlap closely for these bond-dimensions, withχ=64 deviatingmore noticeably.

Compared to the double-space simulations, figure 2, the observables calculated from trajectories seemmuch
more accurate; withχ=128 and 256 they converge up to γt=10within statistical errors (given as two
standard errors from the sample-mean and indicated by the shaded region in plots). Furthermore, they display
the expected power-law behaviours, (9)–(11), for this whole period. This allows forfits to be performed over a
longer region of time, γtä [2, 10], thus helping to eliminate finite-time errors. Since the curves forχ=64, 128
andχ=256 lie well within the same shaded region for each observable, we can conclude that the finite bond-
dimension effects are essentially negligible relative to the statistical errors in this region. As such, we provide
purely statistical error estimates on the estimated exponents, obtained via a statistical bootstrap (see figure 6 for
details).While these error estimates are large (corresponding to an approximate 95%confidence interval), they
can easily be reduced by increasing the number of samples.

7. Conclusions and outlook

In this paper, we havemade use ofMPSs to study the critical dynamics of the classical and the quantum contact
processes, which display non-equilibrium absorbing state phase transitions. For theQCPwe have shownhow
theHeisenberg picture, where the dynamics does not display an absorbing state and can be implemented using a
uniform initial vector, can be used to improve the accuracy of simulations in the Lindblad formalism, over and
above the Schrödinger picture.Moreover, when combining TEBDwith aQuantum JumpMonte Carlo

Figure 6.Critical dynamics in theQCPusing the trajectories approach: Plots showing the evolution of N t P t,a sur( ) ( ) andnseed(t),
calculated usingQJMC andTEBD (see the second row offigure 2 for the same quantities calculated using the double-space approach).
The error estimates for the exponents are calculated by bootstrap: the relevant power-laws are refit to 1000 datasets of 1000 trajectories
generated by resampling. The error is then given as twice the standard deviation of the resulting empirical distributions. (a)The
evolution ofNa(t) calculated from the samplemean of 1000 trajectories withχ=64, 128 and 256. The shaded region indicates the
statistical uncertainty for theχ=256 estimate, quantified as twice the standard error. All three curves lie within this region, indicating
that finite bond-dimension effects are small relative to statistical error. All curves show a roughly power-law behaviour up to γt=10,
a significant improvement over the double-space case (figure 2). The critical exponentΘwas estimated by fitting a power-law between
γtä [5, 10] (shown as the dashed black line). (b)The evolution ofPsur(t), calculated using the samemethod asNa(t). Once again all
three curves lie well within the shaded region and display an approximate power-law behaviour and fitting between γtä [5, 10]
establishes δ. (c)The evolution of nseed(t). AswithNa(t) andPsur(t), the convergence with bond-dimension and agreement with a
power-law is dramatically improved relative to the double-space results offigure 2.However, the presence of statistical errors still
leads to a relatively high uncertainty on the estimate of the critical exponent z, calculated from the power-law fit to z1Q - and using
the value ofΘ from (a).
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approach, we find that the expected critical behaviour can be reproducedwithmuch higher accuracy for longer
times than that of the Schrödinger picture Lindblad approach. In all approaches, we show that the entanglement
in theMPSs can be used to understand these differences clearly, providing both a useful diagnostic tool and
physical picture that links the numericalmethod to the dynamics in question.

The difference in accuracies found between the Lindblad andQTs approaches in the case of the critical QCP
emphasises, as has beenmentioned previously [17], that when considering the simulation of open quantum
systemswith TN, one should examine different approaches to simulating the dynamics carefully. Given the
observed superiority of aQTs approach for capturing the critical QCPdynamics, it would be interesting to know
if this result ismore general andwhether approaches such asQJMC can allow one to study critical dynamics in
other systems at higher accuracies than possible otherwise.

Finally, in the process of investigating these primary issues, we have also provided several results for the
critical physics of theQCP. Themost convincing conclusion thatwe can draw from these is that the universality
class of theQCP cannot beDP, as evidenced by the fact that the best estimate of the exponent δ=0.26 is far
from that of 1dDPand 2dDP, see figure 6 and table 1. This was also confirmed by the results from the double-
space calculations, shown infigure 2.However, since that finite bond-dimension errors are small relative to
statistical errors when usingQJMC,we can use the statistical error to quantify the difference between exponents
more carefully.With a standard error of 0.02 for the estimate δ=0.26, we have that the 1dDP value of δ=0.16
liesfive standard errors from theQCP estimate, while the 2dDPvalue of δ=0.45 lies 9.5 standard errors away.
As such, it seems that theQCPuniversality class is genuinely different to directed percolation, though the
presence offinite-time errors prevents us from stating this with absolute certainty.

Given these results, it is of interest to understandwhether theQCP can be associated to some other known
universality class and to identify exactly what the relevant quantum contributionsmight be that pushQCP away
from1dDP.An interesting remark in this regard can bemade concerning the rapidity reversal symmetry present
inDP, [34], which leads to the relationα=δ between the two exponents characterising the decay of density, see
table 1.While we have only investigated the value of δ in this work, the value ofαhas been estimated previously
in [11] to giveα=0.36±0.08. This value lies 5 standard errors fromour estimated δ=0.26. This seems to
suggest that rapidity reversal is indeed broken in theQCP, though confirmation of this will require a better
determination ofα, withQJMCoffering a promising approach given the results presented here.
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