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ABSTRACT
One of the largest obstacles facing scanning probe microscopy is the constant need to correct flaws in the scanning probe in situ. This is
currently a manual, time-consuming process that would benefit greatly from automation. Here, we introduce a convolutional neural network
protocol that enables automated recognition of a variety of desirable and undesirable scanning tunneling tip states on both metal and nonmetal
surfaces. By combining the best performing models into majority voting ensembles, we find that the desirable states of H:Si(100) can be
distinguished with a mean precision of 0.89 and an average receiver-operator-characteristic curve area of 0.95. More generally, high and low-
quality tips can be distinguished with a mean precision of 0.96 and near perfect area-under-curve of 0.98. With trivial modifications, we also
successfully automatically identify undesirable, non-surface-specific states on surfaces of Au(111) and Cu(111). In these cases, we find mean
precisions of 0.95 and 0.75 and area-under-curves of 0.98 and 0.94, respectively. Provided that training data are available, these ensembles
therefore enable fully autonomous scanning tunneling state recognition for a wide range of typical scanning conditions.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5099590., s

I. INTRODUCTION

While scanning tunneling microscopy (STM) has allowed
researchers to make observations at the atomic level for decades,1–3

success is highly reliant on the production of atomically sharp scan-
ning tips. Although sharp tips are readily created ex situ,4 imperfec-
tions in the tip apex including the presence of “double” or multi-
ple tips mean that image artifacts often appear spontaneously dur-
ing experimental sessions. To maintain resolution, apex flaws must
be repeatedly corrected in situ through a repeated combination of
controlled voltage pulsing and/or tip crashing.

Despite the manual, time-consuming nature of tip correction,
there have been surprisingly few attempts to date to automate the
process5–8 and allow for the setup and collection of large amounts
of data in the absence of a microscopist. Of these attempts, a vari-
ety of pitfalls have been identified, ranging from low accuracy and
high computational cost to faltering when multiple tip flaws are
present. They also often require a degree of manual input, are

invariant to scale and rotation, or fail when the tip spontaneously
changes the visible resolution midimage. Convolutional neural net-
works (CNNs) are highly promising candidates for this task which
routinely achieve high accuracy in complex vision tasks such as med-
ical, satellite, and digit recognition.9–11 Despite this, in the context
of STM, only Rashidi and Wolkow8 have to the best of our knowl-
edge used CNNs for tip-conditioning and only while scanning the
H:Si(100) surface.

In this paper, we broaden the approach of Rashidi and Wolkow
to a method that can reliably assess the state of an STM tip while
scanning on both metallic and semiconducting surfaces. This is
achieved via majority voting from an ensemble of multiple CNNs.
We also increase the number of distinct recognizable states and
allow for desirable and nondesirable tip state classifications at non-
fixed length scales and rotations. We ultimately present ensemble
CNNs capable of classifying multiple tip states with humanlike per-
formance and weighted accuracies in excess of 80% (and 90% in
some cases).
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II. METHODS
When assessing the quality of an STM image, not all features

are considered equally. For example, STM tips with the highest pos-
sible image resolving power are not necessarily the most suitable
for nonimaging tasks such as atomic and molecular manipulation.12

Furthermore, an operator may want to observe desirable features
but actively avoid undesirable artifacts. While Rashidi and Wolkow8

distinguished two key tip states when imaging H:Si(100) for CNN-
driven automated STM, a much wider set of classifications is possi-
ble. For this surface, these include13 “atoms” (for the sharpest tips),
“dimers,” “asymmetries,” and “rows.” Example images are shown
in Fig. 1. Although H:Si(100) is a substrate that underpins many
advances in single atom technologies,12,14,15 these classifications are
surface-specific. “Double tips,” “tip changes,” “step edges,” “impu-
rities,” and image corruption “defects” are all undesirable artifacts
that could apply to any surface. To this end, and to demonstrate the
general applicability of our CNN protocol, we also study two other
commonly studied surfaces:16,17 Cu(111) and Au(111).

To train the CNNs, 13 789 images were first obtained. H:Si(100)
images were acquired at room temperature between March 2014 and
November 2015 on a Scienta Omicron variable temperature STM at
various rotations, length scales between 3 × 3 nm2 and 80 × 80 nm2,
and resolutions up to 512 × 512 pixels. The Au(111) and Cu(111)
images were acquired similarly on an Omicron LT but at a fixed
scan size (30 × 30 nm), resolution (150 × 150 pixels), and tem-
perature (4.5 K). The images of H:Si(100) were manually classified
into the four tip states listed above (i.e., atoms, dimers, asymmetries,
and rows) and two other categories, tip changes and generic defects.
Similarly, Au(111) and Cu(111) images were classified into five cat-
egories of undesirable defects and the one desirable state of sharp
resolution.18 To prevent overestimation of performance, a random
selection of images were withheld as holdout data for analysis. Train
and test data were then created by randomly splitting the remaining
images with an 80:20 ratio.

Although in practice STM images are multilabel (in which
images can belong to multiple categories), we classified and
discarded data such that we only trained with multiclass (in which

images can belong to only one category). This was beneficial as
CNNs learn from the relationship between categories and so did
not have to learn to ignore relations that did not exist. It is also
known that although a CNN can learn with ambiguous or mislead-
ing training labels, performance is reduced.19–21 However, because
undesirable tip changes can occur even when observing a desirable
tip state, these were not excluded. Instead, tip changes were trained
in a separate binary yes/no CNN for H:Si(100), and the remaining Si
images were trained in a four-class CNN. Tip change separation was
not applied to the Cu and Au datasets as the aim was to explore the
relations between undesirable defects.

There was also a great deal of variety between classifications
despite the consistent classification scheme and limited number of
classifiers. While we did not train on images that the human classi-
fiers did not agree on, the large degree of ambiguity in classification
meant that many ambiguous images remained. In the absence of a
perfect classification system and greater number of classifiers, these
imperfect human classifications formed the training data that the
network had to learn from. As such, no CNN could achieve 100%
accuracy without overfitting. For example, given that 78% of the sil-
icon dataset was agreed upon, it could be tentatively argued that a
humanlike CNN would score similarly. (A poll carried out in our
group which involved the manual classification of a small subset of
the Si dataset by nine scanning probe microscopists, similarly found
only 73% agreement.) Ultimately, 3386 H:Si(100), 3600 Cu(111), and
2470 Au(111) images were used for training/testing and 431, 1120,
and 432 images for verification, respectively.

To improve training performance, the training and testing data
were repeated and augmented. Expanding on the simple vertical and
horizontal flips used by Rashidi, we also applied rotations from 0○ to
360○, and cropped, panned, and added random amounts of Gaussian
noise. For the tip change categories, only horizontal flips and Gaus-
sian noise were applied as in our case tip changes were horizontal
shears, and zooming in might crop off the discontinuity. These steps
improve performance by reducing overfitting, in which a CNN uses
random trends to correctly classify training data at the expense of
misclassifying unseen data.22 Additional random trends created by

FIG. 1. Selection of images demonstrating key tip states for STM imaging of (a) H:Si(100), (b) Au(111), and (c) Cu(111), and the confidence thresholds of convolutional neural
networks used to classify them. We note that in many examples, features can appear to strongly blend between images, such as with asymmetries and dimerlike modulation
in rows in (a). Because creating unambiguous training data was impractical, we therefore combined these classes.
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the physical scan environment were negated with minimal process-
ing23 by flattening data on a line-by-line basis along the x axis. Data
were also scaled to the order of −1 to 1.

CNNs also had to be prevented from overfitting by learning
about the differing number of images in each class. For example,
5.6% of the images in the H:Si(100) filtered dataset were atoms, com-
pared to 41.9% generic defects. A large variety was also observed
in the Cu(111) and Au(111) sets. We therefore weighted each cat-
egory by the reciprocal of the percentage of each class present, used
a weighted accuracy metric24 (where the reciprocal of the number of
classes is defined as guessing), and randomly shuffled data. Without
these steps, a CNN could rapidly take an example dataset containing
nine good images and one bad, and be 90% accurate by guessing
all images as good. It is for this reason that other authors warn
against using solely accuracy to judge the performance of weighted
datasets.8,25

Furthermore, our priority when establishing a CNN protocol
was not to maximize the ratio of true to false classifications (i.e.,
accuracy) but to maximize true positive classifications. This was
observed using the metric of precision (defined as the ratio of true
positive classifications to total positive classifications). By increasing
the confidence threshold required to make a positive classification,
precision was increased at the cost of increased false negatives and
therefore decreased accuracy. This is visible in receiver operator
characteristic (ROC) and precision-recall (PR) curves. All-around
performance is given by the area under ROC (AUROC), in which
a perfect classifier has an AUROC of 1 and guessing 0.5. These met-
rics are also not affected by class imbalance25 and were therefore
superior to accuracy. (We therefore also made the traditional dis-
tinction between accuracy and precision, rather than using the terms
interchangeably.8)

In addition to the network described by Rashidi and Wolkow8

(RW), we tested models similar to the popular visual geometry group
(VGG) network with and without batch normalization. We also
tested a model highly similar to Google’s SqueezeNet.26 This net-
work had ten back-to-back convolutional layers, filters increasing in
number from 32 to 1024, strides alternating between 1 and 2, and
3 × 3 convolutions. Between layers, batch normalization and the
elu27 activation function were applied. The loss rate was also gradu-
ally reduced during training to reduce overfitting further.

We note that although multiclass networks are typically trained
with a sigmoid activation function and categorical cross-entropy loss
function, we did not use these. Because future data would be multi-
label, we instead opted for the multilabel standard of softmax and
binary cross-entropy.28 This made the confidence prediction of each

category 0–1 independent of each other, instead of mathematically
linking all the predictions for each category to sum to 1.29

To determine an optimal ensemble CNN, a variety of model
structures, optimizers30–33 and learning rates were trained and ana-
lyzed. In all cases, training was done at a batch size of 128 and
image sizes of 128 × 128 pixels. At higher sizes, training time mas-
sively increased but with little to no improvement in performance.
A more traditional Random Forest Classifier (RFC) was also imple-
mented for comparison. The top performing models were then
combined to create a majority voting ensemble, which have been
shown to further improve performance.34 For ambiguous data, this
was also more analogous to a majority human vote with different
models having different preferences. Training and analysis was per-
formed with Python 3.6.3, Keras35 2.2.2, Tensorflow 1.11.0, and an
Nvidia Titan Xp.

III. RESULTS
First, the individual models were compared. Table I displays

the best results obtained for all the desirable/undesirable multi-
class models. Although all networks performed significantly better
than RFC and weighted random guessing, the RW CNN performed
poorly and similar to the more traditional RFC. Furthermore, at
the 32 × 32 image size described by Rashidi and Wolkow,8 RW
performed comparable to random guessing, indicating the high
difficulty of this task.

We also found a wide variety in performance between differ-
ent surfaces, indicating that CNN architectures respond differently to
different surfaces. For example, while SqueezeNet was the best per-
former for H:Si(100), only VGG like networks were suitable for Au
and Cu. Furthermore, batch normalization improved performance
on H:Si(100) while negatively impacting Au(111) and Cu(111). This
variance is understandable, given the current lack of consensus on
how network structure relates to performance on a given data set.36

The best performing networks were then taken and turned
into an ensemble. Three were chosen as this gave a good balance
between performance and memory usage. As expected, small per-
formance improvements were seen when moving to ensembles. For
H:Si(100), the top performer was an ensemble of two SqueezeNets
and one batch-normalized VGG, with adam, sgd, and rmsprop opti-
mizers, and learning rates of 0.001, 0.0001, and 0.0001, respectively.
However, our ensemble structure did not train well with Cu(111)
and Au(111) [65% balanced accuracy, 0.64 precision, 0.89 AUROC
on Cu(111)]. This is likely because of the low performance of the
component networks on these surfaces. As such, ensembles for

TABLE I. Table to compare the performance of a variety of machine learning methods for classifying desirable and undesirable tip states for six classes of Au(111) and Cu(111),
and four classes of H:Si(100). The SqueezeNet, VGG, Rashidi-Wolkow (RW), and ensemble networks are examples of convolutional neural networks. These all performed
significantly better than the more traditional Random Forest Classifier (RFC) with 5000 trees, and random guessing, which performed as expected.

Ensemble SqueezeNet VGG (Batchnorm) VGG RW RFC Random

Si Au Cu Si Au Cu Si Au Cu Si Au Cu Si Au Cu Si Au Cu Si Au Cu

AUROC 0.95 0.98 0.94 0.94 0.95 0.88 0.92 0.93 0.85 0.91 0.98 0.93 0.87 0.82 0.77 0.79 0.88 0.83 0.50 0.50 0.50
Bal. Acc. 0.78 0.86 0.80 0.77 0.71 0.67 0.74 0.74 0.59 0.72 0.86 0.76 0.62 0.55 0.50 0.46 0.53 0.52 0.25 0.16 0.16
Precision 0.89 0.95 0.75 0.88 0.82 0.67 0.82 0.77 0.57 0.82 0.92 0.72 0.71 0.54 0.47 0.57 0.62 0.51 0.25 0.18 0.17
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Au(111) and Cu(111) were therefore created from multiple repeats
of the VGG like network.

Although Table I indicated strong overall performance, this was
likely underestimated. Considering Fig. 1, there was a high degree
of feature overlap (such as Si dimer images with bright, asymmet-
ric edges) which made the classification task subjective. While these
categories were eventually combined as they were routinely mis-
classified together,37 the filtered multiclass images still contained
acceptable multilabel answers. Because we only allowed one correct
classification for any image, the network was often punished despite
producing a sensible distribution. This would have been avoided
were significantly more classifiers employed.

Despite this, Fig. 2 shows that the AUROC for all categories
and surfaces was very high. This indicated that the classifier had a
low false positive rate but at the cost of a high false negative rate.
Although decreasing accuracy, this characteristic is not detrimen-
tal to areas such as ours when only positive predictions are to be
acted upon. Furthermore, ambiguous classifications often had con-
fidences <0.5, increasing false negative count and reducing accuracy
further still. Unambiguous cases, such as corruptions, impurities and
individual atoms of Au(111) and Cu(111), and generic defects of
H:Si(100), were otherwise classified extremely well with near perfect
AUROC.

Furthermore, misclassifications were often between sets of
desirable/undesirable states, rather than with desirable states being
misclassified as undesirable and vice versa. To demonstrate this,
the four class H:Si(100) and Au(111) ensembles were simplified
into “good/bad” classifiers. They then achieved improved balanced

FIG. 2. Receiver operator characteristic graphs demonstrating the overall perfor-
mance and area a under curve as the confidence threshold required to make a
positive prediction is varied for CNN ensembles. Classification performance is
compared for scanning tunneling images of (a) H:Si(100), (b) Au(111), and (c)
Cu(111). A perfect classifier has an area under a curve of 1, with guessing 0.50
(black dashed line, theoretical). For (a), we find asymmetry/dimer = 0.92 (blue),
individual atoms = 0.96 (yellow), rows = 0.95 (green), tip change = 0.79 (pink),
and generic defect = 0.98 (red). For (b) and (c), respectively, we find impurities
= 1.00, 1.00 (gray), double tip = 0.98, 0.91 (black), corruption = 1.00, 1.00 (brown),
individual atoms = 0.98, 0.91 (yellow), step edges = 0.99, 0.97 (orange), and tip
change = 0.97, 0.86 (pink).

FIG. 3. Precision-recall graphs to demonstrate the overall performance of ensem-
ble CNNs when classifying the known tip states for images of (a) H:Si(100) and (b)
Au(111) (c) Cu(111) as the confidence threshold required to make a positive clas-
sification was varied. Precision is the percentage of true positives compared to
total positive classification, while recall is the percentage of positive classifications
that have been correctly identified as positive. Some tip states are desirable and
surface specific, such as asymmetry/dimer (blue), individual atoms (yellow), and
rows (green). However, tip changes (pink), impurities (gray), double tips (black),
corrupted (brown), step edges (orange), and generic defect (red) are undesirable.
Performance is strong, except for individual atoms and tip change in (c).

accuracies of 93% and 91%, mean precisions of 0.96 and 0.97, and
AUROCs of 0.98 and 0.98, respectively. Cu(111) did not improve
owing to poor PR of individual atoms and tip changes, as visible in
Fig. 3(c).

However, although tip changes were classified respectably with
Au(111) and Cu(111), this was not the case with H:Si(100). When
including the separate binary network to cover all classes for
H:Si(100), performance was significantly poorer, with a balanced
accuracy of 77%, mean precision of 0.88, and average AUROC of
0.92. This is particularly visible in Fig. 2, with the tip change cat-
egory having an ROC line below the other categories and AU of
0.80. This is likely because when augmentations were limited to sim-
ple flips and noise, the network rapidly overfit, and learning had to
be stopped earlier. Regardless, few false positives were made for tip
changes when increasing confidence thresholds. This is because pre-
cision was only seen to decrease at high values of recall, as visible in
Fig. 3. As such, tip states could still be distinguished with a low false
positive rate by requiring a high confidence threshold.

IV. CONCLUSION
We have successfully trained CNNs capable of classifying

numerous desirable and undesirable STM tip states for multiple sur-
faces. We achieve significantly greater all-around performance than
other supervised learning techniques and an even stronger ability
to differentiate good and bad tip apices. The protocol is also likely
applicable to a broad range of other SPM techniques, given the
relative similarity of images produced by these methods.

However, there are a number of limitations to the approach
which limit its general applicability. Importantly, each trained
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ensemble is only applicable to a single surface (and in turn requires
large amounts of training data of each surface). We also find that
without significantly expanded datasets not all surfaces are equally
suitable for CNN classification. New datasets must therefore be man-
ually created for each surface studied. This not only makes practical
implementations of automatic recognition on other surfaces time-
consuming and inconvenient but also requires the surface to be well
studied in advance. It would therefore be nontrivial to use this pro-
tocol to explore STM tip states of previously unexplored surfaces.
Furthermore, the low number of human classifiers was also prob-
lematic. Were more human classifiers available, the networks should
have been trained on the entire multilabel dataset and then scored
based on a cross-entropy of average classifications. Performance
could also be improved further with the addition of more training
data and potentially combined with time-dependent data to allow
for real-time classification and tip enhancement during scanning.

Regardless, the CNN protocol in its current state will enable a
fully autonomous in situ approach to selecting and observing a vari-
ety of tip states during imaging, spectroscopic, and atomic manip-
ulation experiments in STM. Although such an approach would
still require using the unreliable and time consuming tip correc-
tion methods used today, future work aims to also automate this
aspect by combining CNN ensembles with other machine learning
methods.

SUPPLEMENTARY MATERIAL

Included in the supplementary material is a pictorial demon-
stration of the SqueezeNet network for H:Si(100). After inputting an
image manually classified to have atomic resolution, shown are the
output for each convolutional layer and the final network confidence
for each resolution category.
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