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ABSTRACT7

Metal bioavailability and phytotoxicity may be exaggerated when derived from studies based8

on amending soils with soluble metal salts. It is therefore important to evaluate soil tests for9

their consistency in estimating plant uptake and phytotoxicity in both field-contaminated and10

freshly-spiked soils. This study aimed to compare the effects of Zinc (Zn) on plant growth in11

soils (i) recently spiked with soluble Zn and (ii) historically amended with biosolids. The12

objective was to reconcile methods for determining bioavailability in both cases by testing a13

range of ‘quantity-based’ and ‘intensity-based’ assays. Soils with a range of Zn concentrations,14

from an arable farm used for biosolids disposal for over a century, were further amended with15

Zn added in solution, and were incubated for one month prior to planting with barley seeds in16

a glasshouse pot trial. The majority (67-90%) of the added Zn remained isotopically17

exchangeable after 60 days. Zinc in the solution phase of a soil suspension was present mainly18

as free Zn2+ ions. Cadmium bioaccumulation factors were inversely proportional to Zn19

concentration in the soil solution confirming that greater Zn availability suppressed Cd uptake20

by plants. Measurements of soil Zn ‘quantities’ (total, EDTA-extractable and isotopically21

exchangeable) and ‘intensity’ (solution concentration and free ion activity) were correlated22

with Zn uptake and toxicity by barley plants. Correlations using Zn intensity were much23

stronger than those using quantity-based measurements. The free Zn2+ ion activity appears to24
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be a consistent driver for plant uptake and phytotoxic response for both metal-spiked soils and25

historically contaminated soils. Surprisingly, soil Zn accumulation of up to 100 times the26

current regulations for normal arable land only produced a mild toxic response suggesting that27

constituents in biosolids (e.g. organic matter and phosphates) strongly restrict metal28

bioavailability.29
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1. INTRODUCTION31

Potentially toxic elements (PTEs) are naturally present in soils or occur as a result of32

anthropogenic activities, such as mining, and contamination from agrochemicals, sewage33

sludge and industrial waste (Cambrollé et al., 2013; Jiao et al., 2015). Concentrations of bio-34

accessible PTEs in soil can be sufficiently large to have dangerous implications for components35

of the biosphere, hydrosphere and lithosphere (Concas et al., 2015).36

In general, multi-metal contamination is more common than contamination from a single37

element (Qiu et al., 2016). This is particularly relevant in the case of sewage sludge disposal to38

soils where inevitably there is enrichment of several contaminants, such as Zn, Cd, Cu, Pb and39

Ni. Consequently, elemental interactions may influence metal dynamics in soil-plant systems40

in ways that are difficult to predict. For example, increased competition for adsorption sites in41

soil will increase metal solubility (Qiu et al., 2016) but, simultaneously, this will also supress42

uptake of individual elements by plants through competition for sorption sites on roots43

(Komjarova and Blust, 2009).44

Zinc is an essential micronutrient for plants (Cherif et al., 2011), however, an excess of Zn can45

result in adverse effects on plants such as photosynthesis inhibition, leaf chlorosis, and nutrient46

imbalances at different stages (Cambrollé et al., 2013; Sidhu, 2016). Cadmium, by contrast, is47

not essential for plant growth and is a highly toxic metal known to interfere with several plant48

metabolic processes (Balen et al., 2011; Cherif et al., 2011). Zinc and Cd have similar49

properties and co-occur in primary sources (e.g. sphalerite ore) and so are often associated with50

each other in soils (Chaney, 2010; Gharaibeh et al., 2016). Zinc and Cd also compete with each51

other for plant uptake and for translocation from roots to shoots (Zare et al., 2018). Both52

synergistic and antagonistic relations are reported in the literature (Gharaibeh et al., 2016;53

Reiser et al., 2014), therefore Zn toxicity should not be studied without consideration of Cd in54

soil.55
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Identifying the bioavailable fraction of PTEs is a prerequisite for predicting plant uptake and56

potentially phytotoxic response. It is well established that the total concentration of PTEs in57

soil provides a relatively poor means of predicting toxic response because this depends on the58

fraction of the element that can actually be absorbed by an organism (Kim et al., 2015). Thus,59

assessing bioavailability is a vital consideration in environmental toxicology and agronomy. In60

particular the importance of metal fractionation and speciation in determining metal61

bioavailability in the environment has been shown (Scheckel et al., 2009). Nevertheless, it is62

the total soil metal content that is normally used to develop regulations governing disposal of63

metal-enriched wastes to soil with little consideration given to contaminant interactions64

(McBride, 2003; Oliver et al., 2004).65

Generally, two approaches have been adopted to assess metal bioavailability in soil; these may66

be classed as ‘quantity-based’ and ‘intensity-based’ soil tests (Q and I) (Hamels et al., 2014).67

Quantity-based approaches measure the pool of reactive metal that is able to replenish the soil68

solution in response to depletion. EDTA-extractable metal and isotopically exchangeable metal69

(the E-value) are well known quantity-based assays of the reactive metal fraction (Hamels et70

al., 2014). ‘Intensity’ approaches measure the concentration or activity of metal ions in the soil71

solution or in dilute neutral salt extractions of soil intended to simulate the ionic environment72

of soil pore water (Hamels et al., 2014; Hough et al., 2005; McBride and Cai, 2015). The Free73

Ion Activity Model (FIAM) is an intensity-based model based on the hypothesis that free metal74

ions in solution are the immediately available species for uptake and determine the biological75

response of organisms (Hooda, 2010). However, the basic FIAM does not consider metal76

interaction with ligands in the soil solution and on roots, nor possible uptake of soluble complex77

metal species (Degryse et al., 2006; Wang et al., 2009). The Biotic Ligand Model (BLM) is an78

extension of the FIAM which incorporates competition from protons and other metal ions for79
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receptor sites on root surfaces when applied to the terrestrial ecosystem (Le et al., 2012; Thakali80

et al., 2006).81

The aim of this study was to assess a range of quantity- and intensity-based measurements of82

soil Zn status to predict metal uptake and identify the soil properties that provide the best83

prediction of phytotoxicity. To achieve this aim, soils historically amended with biosolids were84

further enriched with several levels of soluble Zn and the effects on barley growth and metal85

uptake were observed. Our specific objectives were to: (i) test contrasting estimates of Zn86

bioavailability (total, EDTA-extractable, isotopically exchangeable, dissolved, metal free ion87

activity) as drivers for Zn uptake and plant toxic response; (ii) assess the role of Zn in88

suppressing uptake of Cd in soils amended with biosolids; (iii) evaluate different forms of the89

FIAM – BLM as predictive models for uptake. The EDTA-extractable and isotopically90

exchangeable metal fractions were chosen to reflect quantity-based soil tests. EDTA was91

chosen because it is possibly the most extensively used in the literature for estimating trace92

metal availability. The isotopic dilution method was used because it is a robust mechanistically-93

based method for assessing the potentially available or ‘reactive’ fraction in soil; and because94

the EDTA generally tends to overestimate the reactive fraction in soil. The 0.01 M Ca(NO3)295

extraction of soil was chosen to reflect intensity-based methods. This soil test is a proxy for96

porewater metal concentrations or readily available metals and it is routinely used.97

2. MATERIALS AND METHODS98

2.1. Soil collection99

Eight soil samples were collected from a sewage treatment facility, operated as an arable farm,100

in the East Midlands (52.58°N, 1.03°W), U.K. The site is located adjacent to the River Trent,101

close to the city of Nottingham and has been dedicated to sewage sludge disposal since 1880.102

Topsoils (015 cm) from 8 fields covering a wide range of zinc concentrations were sampled.103
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Each sample consisted of approximately 6 kg of soil collected as an aggregated sample from104

each specified field. The soils were air-dried, homogenised, and sieved to < 4 mm.105

2.2. Experimental setup106

2.2.1. Soil amendment.107

Of the eight soils sampled, six were amended with 6 levels of Zn including a zero Zn addition.108

The remaining two soils were used without any Zn amendment – this gives a total of 38 soil-109

treatment combinations. A table detailing Zn addition levels can be seen in the supplementary110

material (Table S1). The concentrations of Zn applied (ZnAdded; mg kg-1) were intended to111

enrich the existing bioavailable soil Zn up to double the level of isotopically exchangeable Zn112

(ZnE) in the sampled fields. To accomplish this, it was assumed that initially ≈ 90% of added 113 

Zn would remain isotopically exchangeable, based on previous studies by Crout et al., (2006).114

Thus different levels of soluble Zn were applied to each soil, depending on the native ZnE value115

of each soil. The intended purpose was to produce a comparable range of both available native116

and added Zn to enable discrimination between their effects on plant uptake and eventual117

phytotoxicity. The highest concentration added to each of the six test soils varied from 1037118

to 1523 mg kg-1 Zn. Zinc was added to the soils as variable volumes of a ZnSO4 stock solution119

containing 15 g L-1 Zn. The spiking solution was added to the soils while they were being120

mixed using a stainless-steel food mixer for 5–10 min. To counterbalance acidity arising from121

Zn adsorption, KOH solution was also added at a rate equivalent to the metal salt addition,122

assuming a proton⇌metal exchange stoichiometry of 2 (Tye et al., 2003). The final water123

content of the incubated soils was made up with Milli-Q water (18.2 MΩ cm) to achieve a 124 

friable moist soil capable of free gas exchange; no attempt was made to achieve a fixed125

moisture potential, or content, across the range of soils. Soils were then placed in 2 L plastic126

containers (20×14×8 cm) with holes in their lids and incubated for 4 weeks at 10°C to allow127

the added Zn to react with the soil.128
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2.2.2. Pot experiment129

After the incubation period, each soil (n = 38; 6 soils amended with 6 levels of Zn + 2 un-130

amended soils) was split into 4 replicate samples of 250 g and transferred into pots (n = 152131

pots). Each pot was initially planted with six pre-germinated barley seeds, which were thinned132

later to four plants. Seeds were germinated on moist paper in a Petri dish in the dark at room133

temperature. The pots were randomly placed in a glasshouse with a day temperature of 22 °C134

and night temperature of 20 °C. The photoperiod was 16 h with a mixture of natural and135

supplementary light; the latter was set to switch on when the outdoor light level falls below136

25000 lux. Addition of N equivalent to 200 kg ha-1 as KNO3 was made to all the pots with the137

first watering event following planting. For the duration of the experiment, treated soils were138

maintained at approximately 60% water holding capacity by adding distilled water to reach the139

original weight of the pots. After 28 days of growth, chlorophyll content was measured with a140

SPAD-502 meter (Konica-Minolta, Japan) on three randomly selected leaves of each plant.141

Light saturated rates of net carbon assimilation (Asat) were also measured on two consecutive142

days on one randomly selected fully expanded leaf from each replicate pot using a portable143

infrared gas analysis system (LI-COR 6400-XT, LI-COR, Nebraska, USA). Leaf temperature144

during the measurement was maintained at 26 °C. The area of the leaf cuvette was measured145

for individual plant, the photosynthetic photon flux density (PPFD) was set to 500 µmol146

photons m−2 s−1, the CO2 partial pressure was set to 400 ppm, and the relative humidity was147

maintained at 55%. The measurement were conducted between 9:00 am – 4:00 pm for two148

days. After taking chlorophyll and photosynthesis measurements, the above-ground biomass149

(leaves and stems) was harvested. Plant tissues were washed with tap water, then deionised150

water, and oven-dried at 50 °C for four days.151

2.3. Plant analysis.152
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Dried ground plant tissues were acid-digested on a block digester with 10 mL of HNO3 and 5153

mL of H2O2 for 2 h at 95 °C and analysed using ICP-MS (Thermo-Fisher Scientific X-SeriesII;154

Thermo Fisher Scientific Inc., Waltham, MA, USA). A standard reference material, NIST155

1573a Tomato Leaves (National Institute of Standards and Technology), and 4 operational156

blanks, were included to assess the accuracy and precision of the digestion and analysis. The157

elemental recoveries for NIST 1573a Tomato Leaves were 99.5% Zn and 91.2% for Cd.158

Biological Accumulation Coefficients for Zn (ZnBAC) and Cd (CdBAC) were calculated as the159

ratio of ZnPlant to (Zn2+) and CdPlant to (Cd2+) respectively (Eq. 1)160

ܼ ݊ =
ುೌ 

{మశ}
ܥ��; ݀ =

ௗುೌ 

{ௗమశ }
(1)161

2.4. Soil analysis162

2.4.1. General characterization163

Soil pH was measured in a suspension of air-dried soil (< 4 mm) and Milli-Q water (1:2.5 m/v).164

Total carbon content in soil was measured using Shimadzue TOC-Vcp analyser. Soil organic165

matter content was also estimated from loss on ignition (LOI).166

2.4.2. Total elemental concentration167

Total soil elemental concentrations were determined by ICP-MS following acid digestion in a168

block digester (Model A3, Analysco Ltd, Chipping Norton, UK). Approximately 200 mg of169

finely ground soil were digested with 2 mL of HNO3 (70% trace element grade) and 1 mL of170

HClO4 (70% analytical grade) at 80 °C for 8 hrs followed by 2 h of heating at 100 °C. This171

was followed by addition of 2.5 mL of HF, (40% trace element grade) and heating at 120 °C172

for 8 hrs. A further 2.5 mL of HNO3 and 2.5 mL of Milli-Q water were then added to the dried173

residue and the vessels were heated at 50 °C for 30 min. After the digestion was complete the174

final volume was made up to 50 mL using Milli-Q water. A certified reference material, NIST-175

2711 Montana soil (National Institute of Standards and Technology) and 10 operational blank176
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digestions were used to determine the accuracy of the analysis and the limit of detection (LOD)177

for quality control. The elemental recoveries for NIST-2711 Montana soil were 109% Zn and178

129% for Cd.179

2.4.3. Isotopic dilution assay180

Concentrations of ‘isotopically exchangeable’ Zn and Cd (ZnE and CdE) were measured in181

calcium nitrate suspensions. Two replicate samples of each soil were suspended in 0.01 M182

Ca(NO3)2 (2 g : 30 mL) and pre-equilibrated on an end-over-end shaker for 2 days, then an183

aliquot (0.4 mL) of an isotopic spike solution with known isotopic abundance (IA), prepared184

from a stock solution enriched with 70Zn (250 mg L-1; IA = 95.47%) and 108Cd (123 mg L-1;185

IA = 69.74%) was added to the suspensions. Isotope spike levels were calculated as equivalent186

to ≈ 1% of the estimated labile metal following an assessment of the effect of isotope spike 187 

level on the robustness of E-value determination (details are given in the supplementary188

material). The suspensions were shaken for a further three days to attain isotopic equilibrium.189

Samples were then centrifuged (2200 g) and syringe-filtered (<0.22 µm) and the isotopic ratios190

(70Zn/66Zn and 108Cd/111Cd) were measured in the filtered supernatant by ICP-MS. Isotopically191

exchangeable Zn and Cd (ME, mg kg-1) were calculated from equation 2.192

ாܯ =�൬
௦ܯ

ܹ
൰ቆ
௦ܥ ௦ܸ

௦ܯ
ቇ

(ூ௦ଵܣܫௌ�−
ூ௦ଶܣܫௌܴௌௌ)

( ூ௦ଶܣܫௌܴ ௌௌ– ூ௦ଵܣܫௌ)
(2)193

Where Msoil and Mspike are the average atomic masses of the metal in soils and spike solutions194

respectively, W is the weight of the soil (kg), Cspike is the gravimetric concentration of the metal195

in the spike solution, Vspike is the volume of spike added (L), IA is the isotopic abundance of a196

particular isotope in the spike or soil and Rss is the ratio of isotopic abundances for the two197

isotopes in the spiked soil suspension (70Zn to 66Zn and 108Cd to 111Cd). In the case of ZnE, Iso1198

and Iso2 refer to 66Zn and 70Zn; for CdE, Iso1 and Iso2 refer to 111Cd and 108Cd respectively.199

Values of ZnE and CdE were measured (i) after 28 days of soil amendment with Zn (before200
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transferring amended soils into pots for plant growth), (ii) three times during the growth period201

and (iii) after harvesting and removal of plant residues. Soil moisture content was determined202

at each time and ME (mg kg-1; dw basis) was corrected accordingly.203

2.4.4. Chemical extractions204

Estimates of EDTA-extractable metal (MEDTA) were obtained by extraction of 2.0 g soil in 20205

mL 0.05 M EDTA, shaking for 1 h end-over-end, and analysis by ICP-MS following206

centrifuging and filtration (0.45 µm syringe filter). Soluble metal concentrations (MSoln) were207

determined in the 0.01 M Ca(NO3)2 suspensions used for E-value determination. Dissolved208

organic and inorganic carbon concentrations (DOC and DIC) and pH were also measured in the209

suspension using a Shimadzu TOC –Vcp analyzer. The free ion activities (M2+) of Zn2+ and210

Cd2+ were calculated using the geochemical speciation model WHAM (VII) (Tipping, 1994).211

Input to the model included pH and measured cation and anion concentrations in the Ca(NO3)2212

suspension. Fulvic acid concentration was also included as an input variable to WHAM (VII);213

this was estimated by assuming that DOC contains 50% C and that 65% of DOC consists of214

active fulvic acid (Buekers et al., 2008; Marzouk et al., 2013).215

2.5. Modelling plant uptake of metals.216

The concentration of Zn in plant tissue (ZnPlant, mg kg-1) was described as an asymptotic217

function of Zn2+ ion activity (Zn2+; µM) incorporating competition from other divalent metal218

ions (M2+) and protons (Eq. 3)219

ܼ ݊௧ =
ଵ(ܼ݊ଶା)ܭ

1 + ଶ(ܼ݊ଶା)ܭ + ெܭ ܯ) ଶା) + (ାܪ)ுܭ
(3)220

221

Parameters in Equation 3 (KZn1, KZn2, KM, KH) were derived by minimizing the root mean222

square deviation (RMSD) between the predicted and measured values of plant concentration223

using the ‘nls2’ package in R (Grothendieck, 2013).224
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2.6. Zinc phytotoxicity225

Biomass of the 28-day growth, photosynthetic measurements, and chlorophyll content were226

used to establish EC50 values, i.e. the effective concentration of Zn added to soil that reduces227

the plant response to 50% of control values. Values of EC50 were established by fitting the228

dose–response data to a log-logistic curve according to Eq. (4).229

ܻ =
100

1 + �݁ (ିெ )
(4)230

Where Y is a response variable (yield, chlorophyll content and photosynthetic rate), X is the231

logarithm (log10) of different measurements of Zn availability in soil. The fitted parameter M232

is the logarithm of the EC50 and b is a slope parameter. Dose-response data were fitted to the233

log-logistic curve using the ‘nls2’ package in R (Grothendieck, 2013).234

3. RESULTS AND DISCUSSION235

3.1. General soil characteristics236

The general characteristics of soils used in the study (prior to addition of Zn) are shown in237

Table 1. Soil pH was in the range 6.1–7.1, except for soil S1 which was more alkaline (soil pH238

= 7.8). Soil total organic carbon content (OC) ranged between 2.0–9.9%. The total239

concentration of Zn varied over one order of magnitude, from 140 to 1990 mg kg-1; for Cd,240

there was almost a 30-fold variation, 1.5 - 43 mg kg-1. The broad range of characteristics in241

Table 1 reflects different rates, or durations, of biosolid application to individual fields242

throughout the site.243

3.2. Zinc lability in soil244

Following plant harvest, ZnEDTA concentrations ranged from 46 to 2560 mg kg-1 and showed a245

strong relationship with total soil Zn concentration (ZnTotal), r = 0.97 p<0.0001 (Fig 1A). Only246

32–60% of the native Zn (control soils) was EDTA-extractable, while 75−100% of the added247
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Zn (assessed as the difference between ZnEDTA in amended soil and corresponding controls)248

remained EDTA-extractable, indicating its greater availability for the duration of the249

experiment (Figure 1B).250

Values of ZnE for soils ranged from 51 to 1630 mg kg-1. Expressed as a percentage (%) of the251

total soil content, %ZnE in control soils was, on average, 32.1% (SD = 2.07%). This is in line252

with values reported in the literature for polluted and unpolluted soils, which are typically in253

the range 10–40% (Degryse et al., 2004; Gäbler et al., 2007; Izquierdo et al., 2013). However,254

the addition of Zn to soils resulted in increased values of %ZnE to 40–60% of ZnTotal. Values255

of ZnE were also strongly correlated with ZnTotal (r = 0.93, p<0.0001) (Fig. 1C). However, there256

was a lower slope than that found for EDTA extraction (Fig 1A), with greater differentiation257

between amended soils. Similarly, when subtracting the native ZnE (controls soils) (Fig. 1D) it258

was clear that the added Zn (ZnAdded) remained largely labile. The exception was Soil 1259

(Fig.1D) which showed a distinctive trend with a lower slope indicating lower ZnE compared260

to the other studied soils. This could be explained by the higher pH (pH = 7.6) of this soil261

(Table 1) enhancing Zn adsorption and thus resulting in approximately 50% fixation of ZnAdded.262

Excluding soil 1, 67–90% of the added Zn remained isotopically exchangeable. These263

observations indicate that initial rapid adsorption processes took place at different rates and264

some of the added Zn rapidly became non-isotopically exchangeable in the soil, although it265

remained extractable by 0.05 M EDTA (Fig. 1A and B). This initial adsorption is probably266

followed by a slow aging process (Oorts et al., 2007), which would be expected to progress to267

some degree during the span of the experiment (60 days). However, ZnE was determined268

throughout the growth period (4 times) and revealed no change in Zn lability, indicating that269

any variation in Zn uptake or toxicity cannot be attributable to a change in Zn lability during270

the growth period.271

3.3. Zinc solubility and speciation272
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The concentration of soluble Zn (ZnSoln) increased linearly as a function of ZnAdded for273

individual amended soils, suggesting that a constant proportion of the ZnAdded was potentially274

available for plant uptake. However, the extractable proportion varied between soils, indicating275

an influence of soil properties, primarily soil pH and organic matter content. Lower pH values276

increased Zn solubility; correlation coefficients between soil pH and ZnSoln or the free ion277

activity (Zn2+) were -0.77 and -0.79 respectively. Soils with greater organic matter contents,278

such as S5 and S6, had lower values of ZnSoln.279

Chemical speciation of the solution phase of the soil suspensions, using WHAM (VII), showed280

that free ionic Zn2+ was the predominant species present (68–90%; average 80% of ZnSoln).281

Values of (Zn2+) ranged from 0.05 to 3.4 µM in control soils and up to 6.5 - 82 µM across the282

greatest Zn additions to the six soils. Bicarbonate-complexed Zn (ZnHCO3
+), on average,283

accounted for 9% (SD = 4.69 %) of ZnSoln except for soil 1, which had up to 19% HCO3
--284

complexed ZnSoln. Fulvic acid bound Zn ranged between 4.1–19.0 % with an average of 9.8%285

of ZnSoln (SD = 3.8%).286

3.4. Plant uptake of Zn287

Zinc addition to soils increased the concentration of Zn in the barley (Znplant). For the control288

soils, the range of Znplant was 28 – 116 mg kg-1, whereas for the highest level of ZnAdded it was289

421 – 1220 mg kg-1 for the six soils tested. Figure 2 shows the relationships between different290

estimates of Zn bioavailability in soil and Znplant. There was a general increase in Znplant with291

all estimates of available Zn in soil although the quantity-based indices (ZnTotal, ZnEDTA and292

ZnE) provided only weak correlations with Znplant. Nonetheless, it was evident that measures293

of ‘reactive’ Zn pools (ZnEDTA, ZnE) provided better indices of plant-availability than ZnTotal;294

ZnE showed the strongest relationship, accounting for 67% of the variability in Znplant.295

Intensity-based measurements, ZnSoln and (Zn2+), provided much better predictions of Znplant,296
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explaining 87% and 86%, respectively, of the variability (Figs 2D and 2E). Thus there was no297

apparent advantage in speciating ZnSoln to derive (Zn2+), suggesting that a simple soil extraction298

with 0.01 M Ca(NO3)2 may provide a reliable prediction of plant uptake. However, the strength299

of this relationship may reflect a strong underlying covariance between concentrations of Zn300

and soil organic matter at the study site.301

Figure 2 clearly emphasises the importance of assessing intensity-based indices of trace metal302

availability in any assessment of potential harm to the environment or human health (Adamo303

et al., 2014; Bravo et al., 2017; Rodrigues et al., 2010). Therefore, Biological Accumulation304

Coefficients (BAC) for Zn and Cd were calculated based on the free metal ion activity in soil,305

rather than total concentration in soil (Eq. 1). Values of ZnBAC decreased with ZnSoln, indicating306

that plant root affinity for Zn declines with the greater supply provided by increased Zn307

concentration in the soil solution. This is consistent with physiological control over trace metal308

uptake (Adamo et al., 2014; Moodley et al., 2012), but may also arise from increased solubility309

of other metals (e.g. Cd; Fig 3A) providing competition for plant uptake (Murtaza et al., 2017).310

Factors causing increased Zn solubility (lower pH or increased Zn loading) are also likely to311

increase the solubility of other metals through competition for adsorption sites from Zn2+ and312

H+ ions. Antagonistic interactions in soil between Zn and Cd are well known (Murtaza et al.,313

2017; Sikka and Nayyar, 2012). However, competition effects apply to both soil and plant314

adsorption sites: Zn addition will increase Cd solubility (Fig. 3A) but will also cause increased315

competition for plant uptake (Fig. 3B). Despite this complexity, Fig. 3C shows a remarkably316

strong relationship between the ratios ZnSoln:CdSoln and ZnPlant:CdPlant. This consistent317

relationship may be explained by factors relating to the heterogeneity of both soil and root318

adsorption sites. Thus, (i) as ZnAdded increases it solubilizes more Cd but the ratio ZnSoln/CdSoln319

should increase as Zn2+ ions compete with increasingly strongly bound soil Cd; (ii) as ZnSoln320
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increases it is progressively absorbed by lower-affinity root sites which will tend to offset the321

effect of the increasing ratio ZnSoln/CdSoln.322

3.5. Modelling plant uptake323

Table 2 shows the results of two approaches to modelling plant uptake of Zn. In Models 1 and324

2, values of ZnPlant were related to (i) (Zn2+) only; (ii) (Zn2+) with competition from other325

cations and H+ ions. Model 1 assumed that the driver for uptake was (Zn2+) and the relative326

values of KZn1 and KZn2 (Table 2) indicate that the relationship between plant uptake and Zn327

did not reach an asymptote. Including proton competition (Model 2), produced no improvement328

in the prediction of ZnPlant. This may appear to be in contrast to previous studies. For example,329

Hough et al., (2005) reported that inclusion of H+ ions as a competitor in a FIAM improved the330

prediction of Cd and Zn uptake by perennial ryegrass (Lolium perenne L); Ardestani et al.,331

(2015) confirmed proton competition with free metal ion binding onto BL sites of different332

plant species and soil invertebrates; Thakali et al., (2006) showed that including H+ ions333

improved models describing the response to Ni and Cu toxicity of barley root elongation and334

tomato shoot yield. The lack of response of the current model to proton competition may be335

explained not only by the strong correlation between H+ and Zn2+ ion activity (r = 0.80) in the336

solution phase, but also because of the contrasting effects of pH: at lower pH there will be337

greater Zn solubility but at the same time there will be greater competition from H+ for root338

uptake. It is possible that these contradictory effects are largely cancelled out in the restricted339

pH range (6.1 – 7.8) of the studied soils. Including competition from Cd, produced a significant340

improvement in predicting ZnPlant. However the coefficient representing root affinity for Zn341

(KZn2) was negative and insignificant, implying that root affinity for Zn increased with ZnSoln342

and that Cd played a decisive role in governing Zn uptake. However, values of CdSoln were343

very low compared to ZnSoln, so that restriction of root site occupancy and mass transfer of Zn,344

by Cd, seems unlikely. The apparent effect of Cd is probably an artefact of the high correlation345
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between ZnSoln and CdSoln (r = 0.82) which arises because of the single source of soil346

contamination (biosolids).347

Replacing (M2+) with MSoln in Eq. 3 provided a minor improvement in prediction of ZnPlant.348

This small difference partly reflects the observation that c. 89% of ZnSoln was present as Zn2+349

ions (as calculated by WHAM VII) but may also indicate that complexed metal species, in350

addition to free divalent ions, may be taken up by plant roots. For instance, Weggler et al.,351

(2004) demonstrated uptake of Cd chloride complexes by wheat; López et al., (2005) reported352

enhanced Cd uptake by alfalfa following the addition of EDTA suggesting uptake of non-ionic353

Cd species (i.e. EDTA-Cd complexes). Dissociation of organically complexed Zn on the root354

surface may also contribute to plant uptake; Krishnamurti et al., (1997) showd that soluble355

organic-Cd species can contribute to the bioavailability of Cd.356

3.6. Zinc phytotoxicity357

Zinc addition typically induced (visual) leaf chlorosis in plants receiving the two greatest Zn358

treatments suggesting a toxic response affecting chlorophyll synthesis (Adriaensen et al.,359

2006). Iron or manganese deficiency and interference with Ca metabolism are other possible360

mechanisms causing Zn-induced chlorosis (Sidhu, 2016). Barley growth, photosynthetic rate,361

and chlorophyll content exhibited a significant response to Zn additions in all Zn-amended362

soils. This is congruent with the findings of Sun et al., (2014) who reported that increased Zn363

uptake led to increased toxic symptoms in wheat and maize plants. Toxic responses included364

leaf chlorosis and a significant decrease in shoot and root biomass. They highlighted a threshold365

of 400 mg kg-1 and 800 mg kg-1 of Zn concentration in soil, for maize and wheat respectively,366

beyond which plants exhibited toxic responses. They suggested nutrient (eg. Mn, Fe)367

deficiency as possible reasons for Zn toxicity. Compared to the control soils, the maximum368

inhibitory effects on barley, at the maximum level of ZnAdded (1310 mg kg-1 to soil 4) were369
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53%, and 28% for yield and chlorophyll content respectively, and it was 45% for370

photosynthetic rate at the maximum level of ZnAdded (1210 mg kg-1 to soil 3).371

Different estimates of bioavailability were used in the log-logistic model (Eq. 4) to predict Zn372

toxicity thresholds. For relative plant growth, expressed as a percentage of the control, (Zn2+)373

and ZnSoln (intensity measures) accounted for 79% and 78% of the variation in the toxic374

response of the relative plant growth, respectively (Figs. 4A and 4B). Estimated EC50 values375

for biomass yield were 85.5 and 204 µM for (Zn2+) and Znsoln, respectively. These values are376

in agreement with those of Kader et al., (2015) who found that soil pore-water and (Zn2+)377

successfully predicted Zn toxicity to cucumber explaining 78% and 80% of the variation in378

relative growth. In particular, they found that the EC50 was 79.2 µM for (Zn2+) which is very379

similar to that of the current study (85.5 µM). When the dose was expressed as a function of380

one of the labile ‘quantity’ measurements, only ZnE resulted in significant parameters of the381

log-logistic model, but explained only 38% of the variation in the yield; the use of ZnEDTA382

resulted in insignificant (0.05 level) parameters and using ZnTotal failed completely as model383

parameters could not be resolved (Fig. 4 and Table 3).384

Relative to the control soils, the greatest Zn additions resulted in a 10-28% reduction in the385

chlorophyll content. The toxic response described by the log–logistic dose–response model386

only provided a viable fit when the intensity variables, ((Zn2+) and ZnSoln) were used to387

represent the exposure (Fig. 5 and Table 3). Values of EC50 for the chlorophyll content were388

725 and 1105 µM when exposure was expressed as (Zn2+) and ZnSoln respectively. Compared389

to the biomass and chlorophyll content, the photosynthetic rate was less sensitive to Zn toxicity.390

Only intensity-based variables resolved a solution to the log-logistic response model, but391

explained only 39% of the variation in the photosynthetic response to Zn toxicity (Fig. 5, Table392

3). Values of EC50 for the photosynthetic rate were 259 and 567 µM when the exposure to Zn393

was expressed as (Zn2+) and Znsoln respectively.394
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Reductions in the chlorophyll content and the photosynthetic rate, as a response to Zn toxicity,395

were quite small (Fig. 5) compared to the reduction in the biomass (Fig. 4). This is consistent396

with analogous findings by Dias et al., (2013), who examined the effect of Cd toxicity on397

lettuce. They found that even though the net photosynthetic rate was not affected by Cd398

concentration up to 1 µM, there was a significant decrease in plant biomass, and only at a very399

high concentration of the exposure, 50 µM, there was impairment of photosynthetic rate. These400

authors attributed the biomass reduction to induced genotoxicity and delayed cell division.401

Therefore, it is unlikely that the reduction in plant growth could be attributed solely to the toxic402

effect of Zn on chlorophyll content and photosynthetic rate. A possible reason for the403

differences observed may simply be that whereas biomass reflects conditions experienced404

during the growth period of the plant, photosynthesis rate was measured just once, shortly405

before harvest.406

Previous studies (Smolders et al., 2015; Stevens et al., 2003) have shown that metal toxicity is407

confounded by pH decrease associated with adding metal salts to soil. For instance, Smolders408

et al., (2015) observed a decrease in pH of up to two units in soil spiked with Pb in solution. In409

the current study an average decrease of only 0.3 pH units (maximum of 0.5 pH unit at high410

rates of metal addition) was observed, probably because of the addition of KOH with added Zn411

and the buffer capacity of the soils provided by the organic matter originating from biosolids412

application.413

3.7. Implications for biosolids regulations414

The results of the phyto-toxicity test indicate that differences in the pattern of toxic response415

to Zn due to soil type and soil-metal contact time are minor when the exposure is expressed as416

ZnSoln or (Zn2+). This is consistent with the findings of Hamels et al., (2014) who also found417

that 0.01 M CaCl2 extraction and the DGT method (intensity-based estimates) were the most418
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robust indices of Zn inhibition of barley shoot growth. To put these results in the context of419

biosolids use in agriculture regulations, Table 4 shows a comparison between Zn2+ free ion420

activity in individual control soils and the Predicted No Effect Concentration (PNEC). The421

Table shows that the current limit of 200 mg kg-1 of Zn in soil (The Sludge Use in Agriculture422

Regulations, 1989) is broadly in line with the point at which there is a negligible toxic response423

in barley plants grown in the control soils. However, at greater values of ZnTotal in the control424

soils barley showed only a very limited yield response even though ZnTotal extended to an order425

of magnitude above the current regulations for ‘non-dedicated’ arable sites. This may reflect426

the co-occurrence in biosolids of potentially toxic metals and constituents that limit metal427

bioavailability, such as organic matter and phosphate. These findings appear to validate the428

‘protection’ theory (Frost and Ketchum, 2000; McBride, 1995; Stietiya and Wang, 2011),429

which hypothesizes that the hazard from heavy metals introduced with biosolids into soils is430

limited by the high adsorptive capacity of organic sludge constituents.431

4. CONCLUSIONS432

Our results demonstrate that while soil characteristics are important in determining metal433

solubility, it is the intensity, rather than the quantity, of metal in soil that best predicts metal434

uptake and subsequent phytotoxic response. Therefore, assessing the ecological consequences435

of pollutants should be based on the intensity of the exposure. Moreover, it can be concluded436

from the observed pattern of toxic response by barley plants that the current U.K. (E.U)437

regulation governing the use of biosolids in agriculture are appropriate, and conservative, in438

terms of phytotoxicity.439
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Free metal ion activity is the driver for plant uptake and phytotoxicity

Greater Zn availability suppressed Cd uptake by plants

Ratios of Zn:Cd in barley strongly reflected those in the soil solution

Only mild phytotoxicity was found in biosolids-amended soils with up to 2000 mg

Zn/kg

E.U. rules on biosolid use in agriculture seem appropriate in terms of phytotoxicity



Table captions

Table 1. Main characteristics (pH, organic matter composition and trace metals) of the soils

(mean of three replicates ± standard errors)

Table 2. Coefficients of determinations and root mean squared deviation (RMSD) for the

prediction of ZnPlant (mg kg-1) using the asymptotic function (Equation 3). NS denotes not

significant.

Table 3. Phytotoxicity ‘effective concentration’ values (EC50) for different estimates of Zn

bioavailability. L.CL and U.CL are the 95% lower and upper confidence limits; NS signifies a

non-significant fit of the model; ‘No fit’ indicates that the parameter could not be resolved.

Table 4. Comparison between Zn2+ activity (Zn2+) at the Predicted No-Effect Concentration

(PNEC, 0.51 µM) and Zn2+ activity in control soils; ZnTot is the total soil Zn concentration.



Table 5. Main characteristics (pH, organic matter composition and trace metals) of the soils (mean of three replicates ± standard errors)

Soil
sample

pH
LOI TIC TOC N Ni Cu Zn Cd Pb

% mg/kg

S1 7.84 ±
0.009

4.44 ±
0.086

0.440 ±
0.018

2.03 ±
0.15

0.19 ±
0.106

31.7 ±
1.42

44.7 ±
2.20

139 ±
5.75

1.49 ±
0.042

71.1 ±
2.70

S2 6.89 ±
0.006

8.55 ±
0.160

0.150 ±
0.054

4.24 ±
0.076

0.361 ±
0.076

110 ±
3.50

174 ±
5.41

415 ±
18.8

10.7 ±
0.234

199 ±
4.25

S3 7.15 ±
0.307

13.7 ±
0.359

0.230 ±
0.034

7.18 ±
0.055

0.474 ±
0.055

135 ±
3.84

249 ±
4.76

623 ±
14.3

11.4 ±
0.15

251 ±
2.99

S4 6.13 ±
0.020

13.8 ±
0.145

0.163 ±
0.036

6.57 ±
0.016

0.60 ±
0.016

201 ±
2.63

408 ±
4.86

1020 ±
14.8

15.1 ±
0.15

413 ±
6.31

S5 6.66 ±
0.003

17.3 ±
0.230

0.462 ±
0.034

9.43 ±
0.14

0.87 ±
0.14

339 ±
7.53

672 ±
14.7

1740 ±
35.3

33.7 ±
0.646

717 ±
5.29

S6 6.56±
0.030

19.7 ±
0.346

0.463 ±
0.155

9.94 ±
0.457

0.92 ±
0.46

335 ±
4.57

664 ±
10.6

1850±
30.4

42.8 ±
0.678

588 ±
11.3

S7 6.57 ±
0.009

17.1 ±
0.392

0.315 ±
0.042

9.34 ±
0.088

0.78 ±
0.088

364 ±
4.43

742 ±
10.1

1990 ±
24.1

37.1 ±
0.399

678 ±
6.31

S8 6.54 ±
0.009

18.7±
0.083

0.385 ±
0.006

9.58 ±
0.127

0.906 ±
0.13

335 ±
6.96

655 ±
14.8

1770 ±
35.4

37.4 ±
0.336

647.9 ±
4.74



Table 6. Coefficients of determinations and root mean squared deviation (RMSD) for the

prediction of ZnPlant (mg kg-1) using the asymptotic function (Equation 3). NS denotes not

significant.

Coefficients
Model 1

(M2+)

Model 2

(M2+)

KZn1 29.3 29.2

KZn2 0.018 0.018

KH - - 0.00736 NS

R2 0.85 0.85

RMSD (mg kg-1) 113 115



Table 7. Phyto-toxicity ‘effective concentration’ values (EC50) for different estimates of Zn

bioavailability. L.CL and U.CL are the 95% lower and upper confidence limits; NS signifies a

non-significant fit of the model; ‘No fit’ indicates that the parameter could not be resolved.

Relative

Endpoint (%)
Dose EC50 L.CL U.CL

Plant

growth

Zn2+ (µM) 85.5 54.3 134.4

ZnSoln (µM) 204.3 136.1 306.9

ZnE (mg kg-1) 2495.2 439.7 14159

ZnEDTA (mg kg-1) 1100NS 0.0038 3×108

ZnTotal (mg kg-1) No fit - -

Chlorophyll

content

Zn2+ (µM) 725 111 4719

ZnSoln (µM) 1105 235 5195

ZnE (mg kg-1) No fit - -

ZnEDTA (mg kg-1) No fit - -

ZnTotal (mg kg-1) No fit - -

Photosynthetic

rate

Zn2+ (µM) 259 57 1179

ZnSoln (µM) 567 126 2546

ZnE (mg kg-1) No fit - -

ZnEDTA (mg kg-1) No fit - -

ZnTotal (mg kg-1) No fit - -



Table 8. Comparison between Zn2+ activity (Zn2+) at the Predicted No-Effect Concentration

(PNEC, 0.51 µM) and Zn2+ activity in control soils; ZnTot is the total soil Zn concentration.

ZnTot (Zn2+)

(mg kg-1) µM

PNEC - 0.51

Soil 1 139 0.05
Soil 2 415 0.76
Soil 3 623 0.66
Soil 4 1022 3.41
Soil 5 1739 1.69
Soil 6 1987 1.52
Soil 7 1768 1.99
Soil 8 1852 2.10



Figure captions

Figure 1. Variation in (A) EDTA-extractable Zn (ZnEDTA) and (C) isotopically exchangeable

Zn (ZnE) with total soil Zn (ZnTotal); variation in (B) ZnEDTA and (D) ZnE, with added Zn

(ZnAdded) following subtraction of the native Zn concentrations. Dashed lines represent a 1:1

relation.

Figure 2. Concentration of Zn in plants [ZnPlant] as a function of (A) soil total content [ZnTotal],

(B) concentration of labile Zn in soil [ZnE], (C) EDTA-extractable Zn in soil [ZnEDTA], (D) Zn

in the soil solution (0.01 M Ca(NO3)2) [ZnSoln], and (E) free ion activity of Zn in the soil

solution (Zn2+), on a log-log scale. Shaded areas are 95% confidence intervals of the linear

models.

Figure 3. Cadmium concentration in soil solution (CdSoln) as a function of ZnSoln (A); Cd

bioaccumulation factor (CdBAC) as a function of ZnSoln (B); relationship between Zn to Cd ratio

in the soil solution and plant (C). Shaded areas in B indicate 95% confidence intervals around

the linear regression model. The dashed line in C represents a 1:1 relation.

Figure 4. Relationships between relative barley yield (% of controls) and five estimates of

available Zn: (A) (Zn2+), (B) ZnSoln, (C) ZnE, (D) ZnEDTA, and (E) ZnTotal. Shaded areas indicate

± RMSD.

Figure 5. Toxic response of photosynthetic rate of barley (% of controls) to: (A) (Zn2+) activity

(B) ZnSoln. Toxic response of chlorophyll content of barley to: (C) (Zn2+) activity (D) ZnSoln.

Shaded areas indicate ± RMSD.

Figure 6. Predicted toxic response in control soils as a function of total Zn concentration in

soil. Vertical dashed line indicate the maximum permissible limits (MPL) in the soil because

of biosolids application. Error bars represent standard errors of the mean.



Figure 1. Variation in (A) EDTA-extractable Zn (ZnEDTA) and (C) isotopically exchangeable
Zn (ZnE) with total soil Zn (ZnTotal); variation in (B) ZnEDTA and (D) ZnE, with added Zn
(ZnAdded) following subtraction of the native Zn concentrations. Dashed lines represent a 1:1
relation.



Figure 2. Concentration of Zn in plants [ZnPlant] as a function of (A) soil total content [ZnTotal], (B) concentration of labile Zn in soil [ZnE], (C)
EDTA-extractable Zn in soil [ZnEDTA], (D) Zn in the soil solution (0.01 M Ca(NO3)2) [ZnSoln], and (E) free ion activity of Zn in the soil
solution (Zn2+), on a log-log scale. Shaded areas are 95% confidence intervals of the linear models.



Figure 3. Cadmium concentration in soil solution (CdSoln) as a function of ZnSoln (A); Cd bioaccumulation factor (CdBAC) as a function of
ZnSoln (B); relationship between Zn to Cd ratio in the soil solution and plant (C). Shaded areas in B indicate 95% confidence intervals around the
linear regression model. The dashed line in C represents a 1:1 relation.



Figure 4. Relationships between relative barley yield (% of controls) and five estimates of available Zn: (A) (Zn2+), (B) ZnSoln, (C) ZnE, (D)
ZnEDTA, and (E) ZnTotal. Shaded areas indicate ± RMSD.



Figure 5. Toxic response of photosynthetic rate of barley (% of controls) to: (A) (Zn2+) activity
(B) ZnSoln. Toxic response of chlorophyll content of barley to: (C) (Zn2+) activity (D) ZnSoln.
Shaded areas indicate ± RMSD.



Figure 6. Predicted toxic response in control soils as a function of total Zn concentration in
soil. Vertical dashed line indicate the maximum permissible limits (MPL) in the soil because
of biosolids application. Error bars represent standard errors of the mean.
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Table S1. Zinc levels added to individual soils S denotes soil; L denotes Zn addition level)

Background Added
Zn

Total

(mg kg-1) (mg kg-
1)

(mg kg-
1)

S1L0 139 - 139.4

S1L1 139 164 303.8

S1L2 139 280 419.3

S1L3 139 501 640.7

S1L4 139 899 1038.7

S1L5 139 1037 1176.2

S2L0 415 - 415.3

S2L1 415 197 612.6

S2L2 415 330 745.5

S2L3 415 582 996.8

S2L4 415 989 1404.6

S2L5 415 1120 1535.0

S3L0 623 - 623.2

S3L1 623 237 860.0

S3L2 623 390 1012.9

S3L3 623 675 1297.8

S3L4 623 1088 1711.4

S3L5 623 1209 1832.5

S4L0 1022 - 1022.2

S4L1 1022 284 1306.4

S4L2 1022 460 1482.0

S4L3 1022 782 1804.7

S4L4 1022 1197 2219.2

S4L5 1022 1306 2328.3

S5L10 1739 - 1739.4

S5L11 1739 341 2080.4

S5L12 1739 543 2282.0

S5L13 1739 908 2647.1

S5L14 1739 1317 3056.1

S5L15 1739 1411 3150.0

S6L0 1987 - 1987.1

S6L1 1987 409 2396.3

S6L2 1987 640 2627.4

S6L3 1987 1053 3040.0

S6L4 1987 1448 3435.5

S6L5 1987 1523 3510.5

S7L0 1768 - 1767.6

S8L0 1852 - 1852.5



Effect of isotope spike level on E-value determination

Figure S1 shows the effect of variable amounts of isotopic tracer, 70Zn and 108Cd, on E-values

determination. In general, different levels of isotopic enrichment did not have a major impact

on the E-values, which remained consistent across the different spike levels studied,

particularly for Zn. Isotopic tracer additions as small as 0.1% of the total labile metal caused

an analytically measurable shift in the isotopic ratios and provided a reasonable estimate of the

E-value. However, low tracer amounts (<0.5%) appeared to slightly underestimate the E-values

in comparison to the use of greater tracer additions. Moreover, the greater variations between

replicates suggest that these E-values are subject to a greater uncertainty, especially in the case

of Cd (Figure S1). This is likely due to a combination of factors including a less precise

determination of isotope enrichment in spiked suspension, and increased error associated with

handling small volumes of the isotope solution.

Expressed in terms of variation in %E-value relative to the total pool of metal in soil, % ZnE in

both soils showed <10% variation across different spike levels tested (Fig S2). Whereas for

%CdE revealed a greater variation. Differences up to 20% in %CdE were found between the

lowest (10% lability) and highest spike level assayed (30% lability) for both soils. This suggests

that optimisation of spike level can substantially improve the accuracy in %E determinations

in some cases. It is not clear why %CdE is more sensitive to spike levels than Zn but this could

be associated with overall lower total and labile concentrations.



Figure S1. Zinc and Cd E-values for two soils (S1 and S8) as a function of the added isotopic

tracer. The dashed horizontal line represents the mean of E-values (n=8).

Adding the isotopic tracer in an amount more than 4% of the total labile metal overestimated

E-value determination. In the case of Cd, there was a 72 and 40% deviation from the average

measured E-value for S1 and S8 respectively, while in the case of Zn 8 and 12% deviation for

S1 and S8 respectively. This suggests that the soil equilibrium might have been disrupted

and/or there was an acidification effect caused by over-spiking the isotopic tracer. In general,

the lowest standard deviations were obtained when using an amount of the spike equivalent to

1–5% of E-value (Fig.S2). These findings suggest that there is a stable range of isotopic

enrichment where the error bars suggest no variation with spike level. This is broadly in



agreement with (Nolan et al., 2004) who reported less than 5% uncertainty in E-value

determination when the isotope were added in an amount equivalent to 5% of the E-value.

Figure S2. Zinc and Cd % E-values for two soils (S1 and S8) as a function of the added isotopic

tracer. The dashed horizontal line represents the mean of % E-values (n=8). Error bars represent

% CV between three replicates.



Figure S3. Uncertainty in determining E-value for Cd and Zn as a function of isotopic tracer

addition

Reference:

Nolan, A.L., Ma, Y., Lombi, E., McLaughlin, M.J., 2004. Measurement of labile Cu in soil
using stable isotope dilution and isotope ratio analysis by ICP-MS. Anal. Bioanal.
Chem. 380, 789–797. https://doi.org/10.1007/s00216-004-2816-6


