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Abstract. We address the design of decentralized feedback control laws inducing consensus
and prescribed spatial patterns over a singular interacting particle system of Cucker-Smale type.
The control design consists of a feedback term regulating the distance between each agent and pre-
assigned subset of neighbours. Such a design represents a multidimensional extension of existing
control laws for 1d platoon formation control. For the proposed controller we study consensus
emergence, collision-avoidance and formation control features in terms of energy estimates for the
closed-loop system. Numerical experiments in 1, 2 and 3 dimensions assess the different features of
the proposed design.
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1. Introduction. Multi-agent systems (MAS) provide a versatile framework for
modelling different challenges arising in Science and Engineering, such as collective an-
imal and human behaviour [46, 47], dynamic networks [39], and autonomous vehicles
[5], among many others. From a mathematical viewpoint, MAS are often modelled as
large-scale dynamical systems where each agent is represented by a subset of states
which are updated via “physical” interaction rules [27, 25] (attraction, repulsion,
alignment, synchronization etc.), or by means of a control/game framework [34, 29].

In this work, we are concerned with the design of dynamic interactions and ex-
ternal control laws for nonlinear MAS representing the physical motion of a swarm
of agents. Our mathematical modelling is inspired by animal collective dynamics,
where large populations of birds and fish normally exhibit self-organization behaviour
such as flocking, swarming, milling, and alignment. Other remarkable examples are
linked to pedestrian behaviour and to platoons of unmanned aerial vehicles (UAVs).
In particular, we are interested in prescribing nonlinear dynamics for the MAS lead-
ing to self-organized flocking and trajectories with collision-avoidance features, the
latter being a fundamental aspect for a realistic model. The emergence of collision-
less flocking behaviour, understood as a configuration in which agents travel with the
same constant velocity, is already a complex dynamic equilibrium of interest on its
own right. However, a flocking regime does not provide a complete account of the
spatial configuration of the swarm, thus limiting its practical interest for applications,
such as pedestrian modelling and UAV control. Hence, it is desirable to endow the
MAS dynamics with additional forcing terms which can also induce the formation
of a given spatial configuration. In this paper, we propose a dynamical MAS model
including collisionless flocking, together with a control law inducing a given spatial
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configuration. The control action we propose is inspired by the literature concerning
string stability for autonomous vehicles, and consists of a decentralized feedback law
requiring a reduced amount of communication between agents.

Let us briefly review the technical aspects of our work and the related literature.
The starting point for our model is the seminal paper by Cucker and Smale [21],
where the authors propose a nonlinear second-order model for multi-agent flocking
dynamics. This work has been later extended along different directions, including
collision-avoidance features [17, 18, 19, 1, 6, 16], forcing terms and control [20, 24,
8, 7, 3, 28], formation control [40, 41], leadership [22] and mean-field modelling of
large-scale swarms [12, 36, 2, 13, 26, 9]. Starting from a Cucker-Smale type model,
we study collision avoidance in the framework of [10, 11, 35, 31], where singular
interaction kernels have been proposed. Such interaction kernels blow-up whenever
two agents are located at the same position, providing an adequate framework for
the study of collision-less control laws. While these works discuss the emergence of
flocking and collision-avoidance features, we focus on the design of additional external
signals enforcing a given spatial configuration for the swarm of agents.

In order to induce spatial configurations over the swarm, we design a decentral-
ized controller [4, 30], similar to those that have been studied in the context of 1D
vehicle platoons [43, 45]. The control strategy uses a low number of new interactions
with respect to the original Cucker-Smale model, in order to achieve arbitrary spatial
configurations. We extend these ideas to formation control in arbitrary dimensions
and illustrate the 2D and 3D cases with numerical examples. Our main result is
the characterization of the set of initial configurations leading to consensus with a
pre-specified spatial pattern under a given decentralized control law, together with a
certification of collision-avoidance along the trajectory. Up to our knowledge, this is
the first work achieving such a design with Cucker-Smale type dynamics under the ac-
tion of a decentralized external signal. In applications, decentralized control schemes
have a clear economical benefit, but they are not necessarily sacrificing performance,
when compared to more complex solutions [5]. Additionally, in higher dimensions, self
organizing agents and their control take relevance if the extra states are interpreted
as a feature of the agent that is prone to be measured and/or used for synchronization
[38].

The control of MAS, and in particular drone and/or robot swarms is an intensive
research topic (see the recent survey [37]), with applications ranging from spacecraft
formation [14, 41], robot self-organization [23], surveillance [44] and localization [15],
to digital media arts [32]. Along this line, in Section 7 we present different numerical
simulations for planar and spatial formations, mimicking the display of UAV swarms
forming the Olympic Rings symbol, as in the Intel project shown at the opening
ceremony of the XXIII Olympic Winter Games, 2018, in PyeongChang, South Korea
[33]. Full simulation videos can be accessed at https://youtu.be/C7UDGRudsyA.

The rest of the paper is structured as follows. In Section 2 we present our main
system, which is a Cucker-Smale model with singular interactions and a decentralized
feedback control. In Section 3 we introduce a total energy functional E(x, v) for our
system and show that the total energy functional is not increasing in time. Section 4
presents a result concerning the collision-avoidance behaviour of the controlled system,
and Section 5 is devoted to provide a flocking estimate showing the velocity alignment
between individuals as time goes to infinity and the relative positions are uniformly
bounded in time. In Section 6 we show a result regarding the formation control, to
conclude with different numerical experiments in Section 7.

https://youtu.be/C7UDGRudsyA
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2. Problem description. We study the dynamics of an n-particle system in
which the position and velocity of the i−th agent, denoted xi(t) ∈ Rd and vi(t) ∈ Rd
respectively, evolves according to

dxi(t)

dt
= vi(t), i = 1, . . . , n, t > 0,

dvi(t)

dt
=
K

n

n∑
j=1

ψ(rij(t))(vj(t)− vi(t)) +Mui(t),
(2.1)

subject to the initial data

(2.2) (xi(0), vi(0)) =: (x0i , v
0
i ) for i = 1, . . . , n.

Here, rij denotes the Euclidean distance between i and j-th individuals at time t, i.e.,
rij(t) := |xj(t)−xi(t)|, and K and M are nonnegative constants. The first term on the
right hand side of the equation for vi in (2.1) represents a nonlocal velocity alignment
force where the discrepancies between the velocities of the agents are averaged and
weighted by the communication function ψ in such a way that closer individuals have
stronger influence than further ones.

Let us discuss the choice of the interaction kernel ψ(r). In the original Cucker-
Smale model [21], the regular weight function ψ(r) = 1/(1+r2)β/2 is considered with-
out a control term, i.e., the system (2.1) with M = 0. Depending on the exponent β
which determines the short/long-range interaction regimes, conditional/unconditional
flocking estimates were obtained in [21], and later refined in [13, 26]. Inspired by the
recent work [11], here we consider a singular influence function ψ : (0,+∞)→ (0,+∞)
given by

ψ(r) =
1

rα
, α > 0.

In [11], a critical value for the exponent α leading to global regularity of solutions or
finite-time collision between individuals is obtained. More precisely, if α ≥ 1 and the
individuals are placed in different positions initially, then there is no collision between
them when governed by the system (2.1) with M = 0, and this immediately provides
the global existence and uniqueness of solutions to the system (2.1) in the absence of
control. On the other hand, as shown in [42], for α ∈ (0, 1) the particles may collide
and even stick together in a finite time.

The second term on the right hand side of the equation for vi in (2.1) is an external
control signal u := (u1, · · · , un). The design of external control actions acting over
the free dynamics on a prescribed way constitutes a challenging topic on its own right.
In this context, we focus on the design and analysis of a control signal able to induce
a desired spatial configuration for the swarm. For this, we make the following choice:

u1 = −φ(|x1 − x2 − z1|2)(x1 − x2 − z1),

un = φ(|xn−1 − xn − zn−1|2)(xn−1 − xn − zn−1),

ui = φ(|xi−1 − xi − zi−1|2)(xi−1 − xi − zi−1)

− φ(|xi − xi+1 − zi|2)(xi − xi+1 − zi),

for i ∈ {2, · · · , n − 1}, where zi ∈ Rd, i = 1, · · · , n − 1 determines a relative posi-
tioning of the agents based on the desired spatial configuration, and φ(r) is a regular
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communication weight of the form

φ(r) =
1

(1 + r)β
, β > 0.

While the choice for the controller may seem arbitrary, it has two appealing
features. First, the signal is a feedback control, as its computation is based solely on
the current state of the system and predefined parameters. Second, the control signal
is decentralized: its update for a single agent only requires information concerning the
state of a reduced number of individuals (in our case only two predefined agents) rather
than the knowledge of the full swarm state. Overall, the proposed design achieves a
prescribed formation in a robust and economic way. In the following sections, we
carry a thorough analysis and computational validation of the different properties of
the resulting controlled dynamics.

For notational simplicity, we set

‖w‖2 :=

n∑
i=1

|wi|2 and wc :=
1

n

n∑
i=1

wi,

for w = (w1, · · · , wn) ∈ Rdn.

3. Preliminaries: A priori estimates. In this section, we present a priori
estimates of the average quantities and total energy, which will be significantly used
for the flocking estimate.

We first set the total energy functional

E1(v) + E2(x) :=
1

2
‖v‖2 +

M

2

n∑
i=2

∫ |xi−1−xi−zi−1|2

0

φ(r) dr,

and its dissipation rate

D(x, v) :=
K

2n

n∑
i,j=1

ψ(rij)|vi − vj |2.

Lemma 3.1. Let T > 0 and {(xi, vi)}ni=1 be a smooth solution to the system (2.1)
in the time interval [0, T ]. Then we have the explicit from of the averages:

xc(t) = xc(0) + vc(0)t, vc(t) = vc(0),

and the non-increasing total energy estimate:

d

dt
E1(v(t)) +

d

dt
E2(x(t)) +D(x(t), v(t)) = 0,

for 0 ≤ t ≤ T .

Proof. By the definition of the average quantities together with the fact that the
symmetry of the communication weight function ψ and uc = 0, it is simple to get

dxc(t)

dt
= vc(t), and

dvc(t)

dt
= 0.



A CUCKER-SMALE MODEL WITH DECENTRALIZED FORMATION CONTROL 5

We next estimate the kinetic energy. A straightforward computation yields

1

2

d

dt
‖v‖2 =

n∑
i=1

〈
vi,

dvi
dt

〉

=

n∑
i=1

〈
vi,

K

n

n∑
j=1

ψ(rij)(vj − vi) +Mui

〉
=: I1 +MI2,

(3.1)

where 〈·, ·〉 denotes the standard inner product in Rd. Here, by substituting indices i
and j, and using the symmetry of the weight function ψ, I1 can be easily estimated
as

(3.2) I1 = −K
2n

n∑
i,j=1

ψ(rij)|vi − vj |2 = −D(x, v).

For the estimate of I2, we obtain

I2 = 〈u1, v1〉+

n−1∑
i=2

〈ui, vi〉+ 〈un, vn〉

= 〈u1, v1〉+

n−1∑
i=2

φ(|xi−1 − xi − zi−1|2)〈xi−1 − xi − zi−1, vi〉

−
n−1∑
i=2

φ(|xi − xi+1 − zi|2)〈xi − xi+1 − zi, vi〉+ 〈un, vn〉

= 〈u1, v1〉+

n−1∑
i=2

φ(|xi−1 − xi − zi−1|2)〈xi−1 − xi − zi−1, vi〉

−
n∑
i=3

φ(|xi−1 − xi − zi−1|2)〈xi−1 − xi − zi−1, vi−1〉+ 〈un, vn〉

= −
n∑
i=2

φ(|xi−1 − xi − zi−1|2)〈xi−1 − xi − zi−1, vi−1 − vi〉

= −1

2

d

dt

n∑
i=2

∫ |xi−1−xi−zi−1|2

0

φ(r) dr.

(3.3)

Combining the estimates (3.1), (3.2), and (3.3), we conclude the desired result.

Remark 3.2. Since the velocity average is conserved in time, i.e., v′c(t) = 0, the
time derivative of the kinetic energy can be rewritten as

d

dt
E1(v(t)) =

1

4n

d

dt

n∑
i,j=1

|vi(t)− vj(t)|2.

This yields that we can rewrite the total energy estimate appeared in Lemma 3.1 as

d

dt

 1

4n

n∑
i,j=1

|vi(t)− vj(t)|2 + E2(x(t))

+D(x(t), v(t)) = 0.
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Then we obtain the following uniform-in-time estimate:

E(x(t), v(t)) :=
1

4n

n∑
i,j=1

|vi(t)− vj(t)|2 + E2(x(t)) ≤ 1

4n

n∑
i,j=1

|v0i − v0j |2 + E2(x(0)) =: E0.

In particular, we obtain

max
1≤i,j≤n

|vi(t)− vj(t)| ≤

√√√√ n∑
i,j=1

|vi(t)− vj(t)|2 ≤ 2
√
nE0.

Remark 3.3. If vc(0) = 0, then vc(t) ≡ 0 for all t ≥ 0, and this subsequently gives

E1(t) =
1

4n

n∑
i,j=1

|vi(t)− vj(t)|2 for all t ≥ 0.

Without loss of generality, throughout this work, we may assume that vc(0) = 0 and
xc(0) = 0. If necessary, we may consider the translation frame (xi, vi)→ (xi−vct, vi).
This implies

xc(t) = 0 and vc(t) = 0,(3.4)

for all t ≥ 0.

4. Non-collisional behavior: Global regularity. In this section, we study
the non-collisional behavior of the system (2.1) based on the work [11], when α ≥ 1.
This fact together with Cauchy-Lipschitz theory implies the global existence and
uniqueness of smooth solutions to the system (2.1)-(2.2).

Theorem 4.1. Suppose that α ≥ 1 and the initial data x0 satisfy

min
1≤i 6=j≤n

rij(0) > 0.

Then there exists a global smooth solution to the system (2.1)-(2.2) satisfying

min
1≤i6=j≤n

rij(t) > 0 for t ≥ 0.

Remark 4.2. In [17], the repulsive forcing term is added to the original Cucker-
Smale model to avoid collisions between particles. In contrast, we extract a repulsive
forcing effect by taking into account the singular weights in the velocity alignment
force.

Remark 4.3. From the perspective of applications, the existence of a global-in-
time minimal distance between the agents is often desirable. Theorem 4.1 does not
ensure its existence, since the minimum inter particle distance min1≤i 6=j≤n rij(t) can
be equal to zero when T = +∞. To circumvent this issue one may consider the CS
model with an expanded range of singularity ψδ(s) = ψ(s−δ) for s > δ. It was shown
in [11] that the Cucker-Smale model with weight ψδ and singularity α ≥ 2 admits a
global-in-time minimal distance between the particles, min1≤i 6=j≤n rij(t) ≥ δ. System
(2.1) with weight ψδ is expected to exhibit similar behaviour. Evidently, we should
set |zi| > δ for all i in the control signal u, whenever δ > 0.
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Proof of Theorem 4.1. We first fix a time T > 0, and we will show that there is
no collision between particles until that time. Since there are no particles colliding
at the initial time, there exists a t0 ∈ (0, T ] such that the smooth solution uniquely
exists until that time. Let us assume that t0 < T , i.e., t0 is the first time of collision
of any particles. We then set [l] to be the set of all indices j ∈ {1, · · · , n} where the
j-th particle collides with the l-th particle, i.e., rjl(t)→ 0 as t→ t0 for all j ∈ [l] and
rjl(t) ≥ δ > 0 in [0, t0) for all j /∈ [l] and some positive constant δ > 0. Due to our
assumption, |[l]| > 1. We set

‖x‖[l](t) :=

√∑
i,j∈[l]

|xi(t)− xj(t)|2, ‖v‖[l](t) :=

√∑
i,j∈[l]

|vi(t)− vj(t)|2,

and

‖u‖[l](t) :=

√∑
i,j∈[l]

|ui(t)− uj(t)|2.

Note that by definition ‖x‖[l](t)→ 0 as t→ t0−. Our goal is to show that this cannot
happen, thus t0 ≥ T . We now analyze the evolution of ‖x‖[l](t) and ‖v‖[l](t). We can
first easily estimate

(4.1)
d

dt
‖x‖2[l] ≤ 2‖x‖[l]‖v‖[l], i.e.,

∣∣∣∣ ddt‖x‖[l]
∣∣∣∣ ≤ ‖v‖[l].

We now estimate ‖v‖[l](t) as

d

dt
‖v‖2[l] = 2

∑
i,j∈[l]

〈
vi − vj ,

[
K

n

n∑
k=1

ψ(rki)(vk − vi)−
K

n

n∑
k=1

ψ(rkj)(vk − vj)

]〉

+ 2M
∑
i,j∈[l]

〈vi − vj , ui − uj〉

=
2K

n

 ∑
i,j,k∈[l]

+
∑
i,j∈[l]
k/∈[l]

 [ψ(rik)〈vi − vj , vk − vi〉 − ψ(rjk)〈vi − vj , vk − vj〉]

+ 2M
∑
i,j∈[l]

〈vi − vj , ui − uj〉

=: I1 + I2 + I3.

� Estimate of I1: By exchanging the indices i and k, we find

2K

n

∑
i,j,k∈[l]

ψ(rki)〈vi − vj , vk − vi〉

=
K

n

∑
i,j,k∈[l]

ψ(rki)〈vi − vj , vk − vi〉+
K

n

∑
i,j,k∈[l]

ψ(rki)〈vk − vj , vi − vk〉

=
K

n

∑
i,j,k∈[l]

ψ(rki)〈vi − vk, vk − vi〉

= −K|[l]|
n

∑
i,j∈[l]

ψ(|xi − xj |)|vi − vj |2.
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In a similar fashion as the above, we get

− 2

n

n∑
i,j,k∈[l]

ψ(rkj)〈vi − vj , vk − vj〉 = −|[l]|
n

∑
i,j∈[l]

ψ(rij)|vi − vj |2.

This together with the fact that |xi − xj | ≤ ‖x‖[l] for all i, j ∈ [l] yields

I1 ≤ −
2K|[l]|
n

∑
i,j∈[l]

ψ(rij)|vi − vj |2 ≤ −2C1ψ(‖x‖[l])‖v‖2[l],

where C1 := K|[l]|/n.

� Estimate of I2: A straightforward computation gives

I2 =
2K

n

∑
i,j∈[l]
k/∈[l]

ψ(rik)〈vi − vj , vj − vi〉+
2K

n

∑
i,j∈[l]
k/∈[l]

(ψ(rik)− ψ(rjk)) 〈vi − vj , vk − vj〉

= −2K

n

∑
i,j∈[l]
k/∈[l]

ψ(rik)|vi − vj |2 +
2K

n

∑
i,j∈[l]
k/∈[l]

(ψ(rik)− ψ(rjk)) 〈vi − vj , vk − vj〉

≤ 2KLδ
n

∑
i,j∈[l]
k/∈[l]

|〈vi − vj , vk − vj〉||xi − xj |,

where Lδ is the Lipschitz constant of ψ in the interval (δ,∞). On the other hand, it
follows from Remark 3.2 that

max
1≤k,j≤n

|vk − vj | ≤ 2
√
nE0.

Thus we can estimate I2 as

I2 ≤
4K
√
E0Lδ√
n

∑
i,j∈[l]
k/∈[l]

|vi − vj ||xi − xj |

=
4K
√
E0Lδ(n− |[l]|)√

n

∑
i,j∈[l]

|vi − vj ||xi − xj |

≤ 2C2‖v‖[l]‖x‖[l],

where C2 > 0 is given by

C2 :=
2K
√
E0Lδ(n− |[l]|)√

n
.

� Estimate of I3: We first notice that for any i ∈ {1, . . . , n}

|ui| ≤
n∑
k=2

|xk−1 − xk|+
n∑
k=2

|zk−1|

≤
√
n

√√√√ n∑
k=2

|xk−1 − xk|2 +

n∑
k=2

|zk−1|

≤
√
nΓ(x) + |z|`1 ,
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where

Γ(x) :=

√√√√ n∑
i,j=1

|xi − xj |2 and |z|`1 :=

n∑
k=2

|zk−1|.

On the other hand, we get

d

dt
Γ(x(t))2 ≤ 2Γ(x(t))Λ(v(t)) and

d

dt
Γ(x(t)) ≤ Λ(v(t)),

where

Λ(v(t)) :=

√√√√ n∑
i,j=1

|vi(t)− vj(t)|2.

Since Λ(v(t)) ≤ 2
√
nE0 for all t ≥ 0, this yields

Γ(x(t)) ≤ Γ(x(0)) + 2
√
nE0T.

Thus we find

|ui(t)| ≤
√
nΓ(x(t)) + |z|`1 ≤

√
n
(

Γ(x(0)) + 2
√
nE0T

)
+ |z|`1 =: C3 > 0,

and furthermore we obtain

‖u‖[l] ≤
√

2
∑
i,j∈[l]

(|ui|2 + |uj |2) ≤ 2C3|[l]|.

Hence we have

I3 ≤ 2M‖v‖[l]‖u‖[l] ≤ 4C3|[l]|M‖v‖[l] =: 2C4‖v‖[l].

Combining all of the above estimates, we find

d

dt
‖v‖2[l] ≤ −2C1ψ

(
‖x‖[l]

)
‖v‖2[l] + 2C2‖v‖[l]‖x‖[l] + 2C4‖v‖[l].

Since

‖x‖[l](t) ≤ Γ(x(t)) ≤ Γ(x(0)) + 2
√
nE0T,

if we set

C5 := C2

(
Γ(x(0)) + 2

√
nE0T

)
+ C4,

then we get

d

dt
‖v‖2[l] ≤ −2C1ψ

(
‖x‖[l]

)
‖v‖2[l] + 2C5‖v‖[l],

i.e.,

d

dt
‖v‖[l] ≤ −C1ψ

(
‖x‖[l]

)
‖v‖[l] + C5, a.e. on (s, t0)
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with 0 ≤ s < t0. We now apply Gronwall’s inequality on the time interval (s, t0) to
obtain

‖v‖[l](t) ≤ ‖v‖[l](s)e−C1

∫ t
s
ψ(‖x‖[l](τ)) dτ + C5

∫ t

s

e−C1

∫ t
τ
ψ(‖x‖[l](σ)) dσdτ

≤ C5e
−C1

∫ t
s
ψ(‖x‖[l](τ)) dτ + C5

∫ t

s

e−C1

∫ t
τ
ψ(‖x‖[l](σ)) dσdτ,

(4.2)

due to ‖v‖[l](t) ≤ Λ(v(t)) ≤ C3 < C4 < C5. Let us denote by Ψ the primitive of ψ.
Then we find from (4.1) that

∣∣Ψ(‖x‖[l](t))
∣∣ =

∣∣∣∣∫ t

s

d

dt
Ψ(‖x‖[l](τ)) dτ + Ψ(‖x‖[l](s))

∣∣∣∣
=

∣∣∣∣∫ t

s

ψ(‖x‖[l](τ))

(
d

dt
‖x‖[l]

)
(τ) dτ + Ψ(‖x‖[l](s))

∣∣∣∣
≤
∫ t

s

ψ(‖x‖[l](τ))‖v‖[l](τ) dτ + |Ψ(‖x‖[l](s))|.

We now estimate

J(t, s) :=

∫ t

s

ψ(‖x‖[l](τ))‖v‖[l](τ) dτ.

Note that if J is bounded from above by some constant J∗ > 0, then we have

∣∣Ψ(‖x‖[l](t))
∣∣ ≤ J∗ + Ψ(‖x‖[l](s))|.

This leads to a contradiction since the right hand side of the above inequality is
bounded, however

∣∣Ψ(‖x‖[l](t))
∣∣ → +∞ as s < t → t0−, and this gives |[l]| = 0, i.e.,

there is no collision between particles until time T > 0. Thus in the rest of proof, we
show the boundedness of J . For notational simplicity, we set

b(t, s) := exp

(
−C1

∫ t

s

ψ(‖x‖[l](τ)) dτ

)
.

Then it follows from (4.2) that

J(t, s) ≤
∫ t

s

ψ(‖x‖[l](τ))

(
b(τ, s) +

∫ τ

s

b(τ, σ) dσ

)
dτ =: J1(t, s) + J2(t, s).

Note that b(t, s) has the following properties:

∂tb(t, s) = −C1ψ(‖x‖[l](t))b(t, s) and b(t, τ)b(τ, s) = b(t, s) for s ≤ τ ≤ t.
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By using these properties, we estimate Ji(t, s), i = 1, 2 as

J1(t, s) = −C5

C1

∫ t

s

∂τ b(τ, s) dτ = −C5

C1
(b(t, s)− b(s, s)) =

C5

C1
(1− b(t, s)) ≤ C5

C1
,

J2(t, s) = C5

∫ t

s

ψ(‖x‖[l](τ))

∫ τ

s

b(τ, s)

b(σ, s)
dσdτ

= C5

∫ t

s

ψ(‖x‖[l](τ))b(τ, s)

(∫ τ

s

1

b(σ, s)
dσ

)
dτ

= −C5

C1

∫ t

s

∂τ b(τ, s)

(∫ τ

s

1

b(σ, s)
dσ

)
dτ

= −C5

C1
b(t, s)

∫ t

s

1

b(s, σ)
dσ +

C5

C1

∫ t

s

b(τ, s)

b(τ, s)
dτ

≤ C5

C1
(t− s).

Hence we have

J(t, s) ≤ C5

C1
(1 + T ),

and this concludes the proof.

Remark 4.4. It is worthwhile to note that the only property of u that is required
for the proof of Theorem 4.1 is its boundedness in the phase space. Indeed, the main
idea behind the proof is to divide the particles into two groups: a group A of particles
colliding at t0 and a group B of particles that do not collide with particles from
A. Then the interaction within group A is singular and it outweighs any interaction
within B and any interaction between A and B. Similarly, any effect of additional
bounded forces is negligible compared to the singular interaction within A. Then, the
interaction within A, after it outweighs all other influences, is used to prove the lack
of collisions.

5. Flocking behavior. In this section, we provide a rigorous flocking estimate
for the system (2.1). The proof follows a similar idea to the one used for a regular
communication weight ψ. In the regular case, we conclude that ‖v‖2 → 0 from the
fact that ‖v‖2 is integrable on [0,∞). However we may do it only since we know that
‖v‖2 is sufficiently regular, which is ensured by the regularity of ψ. In the case of
singular ψ we need to put some additional effort into proving sufficient, uniform-in-
time, regularity of ‖v‖2. We do it by showing that the derivative of ‖v‖2 is a sum of
an integrable function and a bounded function, which implies that ‖v‖2 is a sum of
an absolutely continuous function and of a Lipschitz continuous function. Therefore,
‖v‖2 is a uniformly continuous function and its integrability ensures that ‖v‖2 → 0
as t→∞.

Theorem 5.1. Suppose that E0 <∞, α ≥ 1, and the initial data x0 satisfy

min
1≤i 6=j≤n

rij(0) > 0.

Then there exists a unique smooth solution to the system (2.1)-(2.2). Furthermore,
we assume that one of the two following hypotheses holds:

(i) β ≤ 1;
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(ii) β > 1 and

(5.1)

n∑
i=2

∫ ∞
|x0
i−1−x0

i−zi−1|2
φ(r) dr >

1

2Mn

n∑
i,j=1

|v0i − v0j |2.

Then we have

sup
0≤t≤∞

max
1≤i,j≤n

rij(t) <∞ and max
1≤i,j≤n

|vi(t)− vj(t)| → 0 as t→∞.

Remark 5.2. For the flocking estimate, we only need conditions for φ like bound-
edness, positivity, and the above assumption (5.1), which is automatically satisfied if
φ integrates to infinity on any interval [c,∞).

Proof of Theorem 5.1. Uniform boundedenss of rij: It follows from Theorem
4.1 that

min
1≤i 6=j≤n

rij(t) > 0 for t ≥ 0

and from Lemma 3.1 that

E2(x(t)) ≤ E0,

i.e.,

(5.2)

n∑
i=2

∫ |xi−1(t)−xi(t)−zi−1|2

|x0
i−1−x0

i−zi−1|2
φ(r) dr ≤ 1

2Mn

n∑
i,j=1

|v0i − v0j |2 for t ≥ 0.

On the other hand, under our main assumptions, we can find some constant dM >
|x0i−1 − x0i − zi−1| such that

(5.3)

n∑
i=2

∫ d2M

|x0
i−1−x0

i−zi−1|2
φ(r) dr =

1

2Mn

n∑
i,j=1

|v0i − v0j |2.

This, together with (5.2) yields

n∑
i=2

∫ d2M

|xi−1(t)−xi(t)−zi−1|2
φ(r) dr ≥ 0,

thus, we get

(5.4) |xi−1(t)− xi(t)− zi−1| ≤ dM for i = 2, . . . , n.

This further implies

|xi − xj | ≤
j−1∑
k=i

|zk|+ (j − i)dM ,

for any 1 ≤ i ≤ j ≤ n. Hence, for t ≥ 0, we have

max
1≤i 6=j≤n

rij(t) ≤ n
(

max
1≤k≤n−1

|zk|+ dM

)
=: C0.
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Subsequently, we obtain

(5.5) ψm := min
s∈[0,C0]

ψ(s) =
1

Cα0
> 0.

Time-asymptotic velocity alignment behavior: It follows from Lemma 3.1 and
Remark 3.2 that

d

dt
E(x(t), v(t)) = −D(x(t), v(t)),

which implies that ∫ ∞
0

D(x(t), v(t)) dt ≤ E0,(5.6)

due to E ≥ 0. Furthermore, we obtain

−D(x, v) ≤ −Kψm
2n

n∑
i,j=1

|vi − vj |2 = −Kψm‖v‖2,(5.7)

thanks to (5.5) and the zero momentum condition (3.4). Thus we get

Kψm

∫ ∞
0

‖v(t)‖2dt ≤
∫ ∞
0

D(x(t), v(t)) dt ≤ E0.(5.8)

This together with the estimate in the proof of Lemma 3.1 and (5.7) gives

1

2

d

dt
‖v‖2 = −D(x, v) +MI2 ≤ −Kψm‖v‖2 +MI2.(5.9)

On the other hand, I2 can be estimated as

|I2| ≤

∣∣∣∣∣
n∑
i=2

φ(|xi−1 − xi − zi−1|2)〈xi−1 − xi − zi−1, vi−1 − vi〉

∣∣∣∣∣
≤ dM

n∑
i=1

|vi−1 − vi| ≤ CdM‖v‖ ≤ CdM
√
E(0),

for some C > 0, due to (5.4) and the energy estimate. Thus I2 is bounded on [0,∞).
Now we come back to (5.9) to see that the derivative of ‖v‖2 is a sum of an integrable
function (−D) due to (5.6) and of a bounded function MI2. Hence we have

‖v(t)‖2 = 2

∫ t

0

(−D(x(s), v(s))) ds︸ ︷︷ ︸
=:f1

+ 2

∫ t

0

MI2(s) ds︸ ︷︷ ︸
=:f2

+‖v(0)‖2,

where f1 is absolutely continuous and f2 is Lipschitz continuous. Both absolutely
continuous and Lipschitz continuous functions are uniformly continuous and thus
‖v‖2 is uniformly continuous. After recalling from (5.8) that ‖v‖2 is also integrable,
we conclude that ‖v‖2 → 0 with t→∞.
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Remark 5.3. It is clear from Theorem 5.1 that

max {0, |zi| − dM} ≤ |xi − xi+1| ≤ |zi|+ dM for i = 1, . . . , n.

Furthermore, we find

rij(t) ≥

∣∣∣∣∣
j−1∑
k=i

zk

∣∣∣∣∣− (j − i)dM for i < j,

i.e.,

min
1≤i<j≤n

rij(t) ≥ min
1≤i<j≤n

∣∣∣∣∣
j−1∑
k=i

zk

∣∣∣∣∣− (n− 1)dM ,

for t ≥ 0.

Remark 5.4. As a direct consequence of Theorem 5.1, we have∣∣∣∣ ddtE2(x(t))

∣∣∣∣ = MI2(t) ≤MCdM‖v(t)‖ → 0 as t→∞.

6. Pattern formation. In this section we prove that if the particles do not
collide asymptotically then they form a pattern induced by the control. We briefly
discuss the problem with asymptotic collisions in Remark 6.3.

We first provide an enhancement of Young’s inequality that will be significantly
used later for the spatial pattern formation estimate.

Lemma 6.1. Let a1, . . . , an−1 be a set of vectors in Rd. Then

−
n−1∑
i=1

|ai|2 +

n−2∑
i=1

〈ai, ai+1〉 ≤ −δn
n−1∑
i=1

|ai|2,

where δ ∈ (0, 1) is a sufficiently small number.

Proof. Let δ > 0 be a small number to be specified later. We take ε1 = 1− δ and
use Young’s inequality with ε1 to obtain

〈a1, a2〉 ≤ (1− δ)|a1|2 +
1

4(1− δ)
|a2|2.

We take εi = 1 − δi − 1/(4εi−1) for i ≥ 2. Then it is easy to prove by induction
that (1 + δi)/2 < εi < 1 − δi provided that δ is sufficiently small (for example
δ = 1/4). Thus, by the recursive definition of εi, for all i = 1, ..., n − 1, we find
0 < εi + 1/(4εi−1) ≤ 1− δn. Hence, by Young’s inequality, we have

n−2∑
i=1

〈ai, ai+1〉 ≤
n−2∑
i=1

εi|ai|2 +
1

4εi
|ai+1|2

= ε1|a1|2 +

n−1∑
i=2

(
εi +

1

4εi−1

)
|ai|2

≤ (1− δn)

n−1∑
i=1

|ai|2.

This provides the desired result.
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We are now in a position to state the asymptotic spatial pattern formation result.

Proposition 6.2. Suppose that the assumptions of Theorem 5.1 are satisfied.
Assume further that

lim inf
t→∞

|xi(t)− xj(t)| > 0,(6.1)

for all i, j ∈ {1, . . . , n}. Then there exists a limit limt→∞ x(t) =: x∞ satisfying

x∞i = x∞i−1 − zi−1 for all i = 2, . . . , n.(6.2)

Proof. For notational simplicity, in the rest of the proof, we denote

φi := φ(|xi − xi+1 − zi|2).

Observe that by assumption (6.1), there exists a minimal distance between particles
ρ > 0 on the time interval [t0,∞) for sufficiently large t0. Thus we have

rij(t) ≥ ρ for all i, j = 1, . . . , n,

for all t ∈ [t0,∞). Consequently, this implies

ψ(rij) ≤ C(ρ) in [t0,∞).

Let us first show that

xi − xi+1 → zi as t→∞,(6.3)

for all i = 1, . . . , n− 1. It follows from the equation for vi in (2.1) that

d

dt

n−1∑
i=1

φi〈xi − xi+1 − zi, vi − vi+1〉

= 2

n−1∑
i=1

φ′i〈xi − xi+1 − zi, vi − vi+1〉2 +

n−1∑
i=1

φi|vi − vi+1|2

+

n−1∑
i=1

φi

〈
xi − xi+1 − zi,

K

n

n∑
j=1

ψ(rij)(vj − vi)−
K

n

n∑
j=1

ψ(r(i+1)j)(vj − vi+1)

〉

+M

n−1∑
i=1

φi〈xi − xi+1 − zi, ui − ui+1〉.

We then estimate each summand on the right-hand side separately. Clearly, we get

n−1∑
i=1

φi|vi − vi+1|2 ≤ 2E1.

Furthermore, by using Young’s inequality with ε > 0, we get

2

n−1∑
i=1

φ′i〈xi − xi+1 − zi, vi − vi+1〉2 ≤ ε
|φ′|2∞
φ(dM )

n−1∑
i=1

φi|xi − xi+1 − zi|2 + C(ε)E1
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and

n−1∑
i=1

φi

〈
xi − xi+1 − zi,

K

n

n∑
j=1

ψ(rij)(vj − vi)−
K

n

n∑
j=1

ψ(r(i+1)j)(vj − vi+1)

〉

≤ ε
n−1∑
i=1

φi|xi − xi+1 − zi|2 + C(ρ, ε)E1,

for any ε > 0. We finally estimate the term including the control u as

n−1∑
i=1

φi〈xi − xi+1 − zi, ui − ui+1〉

= −2φ21|x1 − x2 − z1|2 + 〈φ1(x1 − x2 − z1), φ2(x2 − x3 − z2)〉

+

n−2∑
i=2

φi〈xi − xi+1 − zi,

φi−1(xi−1 − xi − zi−1)− 2φi(xi − xi+1 − zi) + φi+1(xi+1 − xi+2 − zi+1)〉
+ φn−1〈xn−1 − xn − zn−1,

φn−2(xn−2 − xn−1 − zn−2)− 2φn−1(xn−1 − xn − zn−1)〉

= 2

n−2∑
i=1

〈φi(xi − xi+1 − zi), φi+1(xi+1 − xi+2 − zi+1)〉 − 2

n−1∑
i=1

φ2i |xi − xi+1 − zi|2

=: L.

By Lemma 6.1, there exists a positive constant δ > 0 such that

ML ≤ −2Mδn
n−1∑
i=1

φ2i |xi − xi+1 − zi|2 ≤ −
2M

φ(dM )
δn

n−1∑
i=1

φi|xi − xi+1 − zi|2.

Combining the above estimates with suitably chosen ε > 0, we end up with

(6.4)
d

dt

n−1∑
i=1

φi〈xi−xi+1−zi, vi−vi+1〉 ≤ C(ρ)E1−
M

φ(dM )
δn

n−1∑
i=1

φi|xi−xi+1−zi|2.

By (5.8), the kinetic energy E1 is integrable and by the following inequality

n−1∑
i=1

φi|〈xi − xi+1 − zi, vi − vi+1〉| ≤ CdM
√
E0,

for some C > 0 independent of t, the left-hand side of (6.4) is a derivative of a bounded

function. This implies that
∑n−1
i=1 φi|xi − xi+1 − zi|2 is also integrable in [t0,∞), and

thus we conclude that
∑n−1
i=1 |xi − xi+1 − zi|2 → 0 as t → ∞, since it is Lipschitz

continuous. Hence, (6.3) is proved. This, together with the fact that we fixed 0 as
the center of mass (recall (3.4)) and the help of basic linear algebra implies that xi(t)
is convergent with t → ∞, and its limit x∞i satisfies (6.2) for all i = 1, · · · , n. This
completes the proof.

Remark 6.3. It appears that the impossibility of collisions between particles, en-
sured by Theorem 4.1, plays a role in pattern formation and is the reason for the need
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of assumption (6.1). Indeed, if we consider the simplest case of two particles on a line,
with z1 = −1, then, the resulting pattern has to be of the form x∞2 = x∞1 + 1 > x∞1 .
However, if initially x1(0) > x2(0), at some point the particles change order, and
thus collide, which is impossible due to Theorem 4.1. It is also clear intuitively: the
particles are forbidden from colliding and if the control would result in a collision, the
singularity of the communication weight ψ prevails and the pattern cannot be formed.
We numerically investigate this issue, see Figure 7.4 below. The one-dimensional case
is special in the sense that the collisions are unavoidable if the order of the particles
has to be changed. It is however a much more complex question in d ≥ 2. See Figure
7.5 and the corresponding discussion for a particular 2 dimensional case.

A full discussion of the a priori assumption (6.1) is outside the scope of this paper.
In fact, as mentioned above, Theorem 4.1 implies that there is no collision between
particles for all time when α ≥ 1, thus the assumption (6.1) excludes a possible
collision at t = ∞. On the other hand, based on the argument in Theorem 5.1, we
provide a class of initial data leading to a global-in-time minimal distance, which is
strictly positive, between the particles, and thus by Proposition 6.2, to the desired
pattern formation. Such a class of initial data can be roughly described as follows:

(A) If the initial energy E0 and all |x0i−1 − x0i − zi−1|, for i between 2 and n, are

sufficiently small compared to mini<j

∣∣∣∑j−1
k=i zk

∣∣∣, then there exists a positive global-in-

time minimal distance between the particles and the pattern forms.
We provide the above statement explicitly in the case of β ∈ (0, 1).

Corollary 6.4. Let β ∈ (0, 1). Under the assumptions of Theorem 5.1 with the
initial data satisfying for all pairs 1 ≤ i < j ≤ n∣∣∣∣∣

j−1∑
k=i

zk

∣∣∣∣∣
2

>

(
j − i

j + 1− i

)2− 1
1−β

(j + 1− i)(6.5)

×

(
((1− β)C∗0 + 1)

1
1−β − 1 +

j∑
k=i+1

|x0k−1 − x0k − zk−1|2
)

with

C∗0 :=
1

2Mn

n∑
i,j=1

|v0i − v0j |2,

there exists a global-in-time minimal distance between the particles. Therefore the
particles converge asymptotically to a pattern as indicated in Proposition 6.2.

Proof. Applying the triangle inequality to (5.4) we deduce that

rij(t) ≥

∣∣∣∣∣
j−1∑
k=i

zk

∣∣∣∣∣− (j − i)dM for i < j,

and t ≥ 0. It remains to fix 1 ≤ i < j ≤ n and prove that∣∣∣∣∣
j−1∑
k=i

zk

∣∣∣∣∣
2

> (j − i)2d2M .(6.6)
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The starting point is the definition of dM in (5.3), which implies that

(j − i)Φ(d2M ) ≤ C∗0 +

j∑
k=i+1

Φ(|x0k−1 − x0k − zk−1|2),

where Φ is the anti-derivative of φ with Φ(0) = 0, i.e. Φ(s) = 1
1−β (1 + s)1−β −

1
1−β . Note that the anti-derivative Φ is positive, increasing and concave on [0,∞).

Moreover, C∗0 ≥ 0 belongs to the image Φ([0,∞)). Set C∗∗0 := Φ−1(C∗0 ). Then, by
concavity of Φ, we have

Φ

((
j − i

j + 1− i

) 1
1−β

d2M

)
≤ j − i
j + 1− i

Φ(d2M )(6.7)

≤
Φ(C∗∗0 ) +

∑j
k=i+1 Φ(|x0k−1 − x0k − zk−1|2)

j + 1− i

≤ Φ

(
C∗∗0 +

∑j
k=i+1 |x0k−1 − x0k − zk−1|2

j + 1− i

)
.

To see the left-most inequality in (6.7), let us consider the function

fc(s) = cΦ(s)− Φ(c
1

1−β s) for s ≥ 0 and c ∈ (0, 1).

Clearly, fc(0) = 0 and

f ′c(s) = c(1 + s)−β − c
1

1−β (1 + c
1

1−β s)−β .

Moreover, f ′c ≥ 0 is equivalent to

1 + s ≤ c
1
β−

1
(1−β)β (1 + c

1
1−β s),

which is the case, since for β ∈ (0, 1), we have

1

β
− 1

(1− β)β
< 0 and

1

β
− 1

(1− β)β
+

1

1− β
= 0.

Thus, by monotonicity of Φ in (6.7), we have(
j − i

j + 1− i

) 1
1−β

d2M ≤
C∗∗0 +

∑j
k=i+1 |x0k−1 − x0k − zk−1|2

j + 1− i
,

which implies that (6.6) holds, provided that∣∣∣∣∣
j−1∑
k=i

zk

∣∣∣∣∣
2

>

(
j − i

j + 1− i

)2− 1
1−β

(j + 1− i)

(
C∗∗0 +

j∑
k=i+1

|x0k−1 − x0k − zk−1|2
)
.

Recalling that C∗∗0 = Φ−1(C∗0 ) we finish the proof.

Remark 6.5. When β ≥ 1, then the general statement (A) still holds, but the
explicit assumption, similar to (6.5) becomes significantly more convoluted. The main
problem is that the left-most inequality in (6.7) fails and needs to be compensated.
However, a direct calculation leads to a condition similar to (6.5) in the spirit of (A).
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Fig. 7.1. Trajectories and collision detection for a bird-like pattern

7. Numerical experiments. In this section we present simulations for planar
and spatial configurations with the studied model.

Bird-like pattern. We consider a bird-like flocking pattern in the 2 dimensional
space with n = 10 agents. The parameters are chosen as K = 10,M = 50, α = 1.1
and β = 0.5. If we consider the average velocity of the flock, which remains constant,

vc(t) =
1

n

n∑
i=1

vi(t) = vc(0) =

(
vx
vy

)
,

we define the angle θ of travel with respect to the x axis, that is, θ = arctan(vy/vx).
If we chose the desired inter-particle spacings, zi, to be

zi =


−2
(

cos
(
θ − π

9

)
, sin

(
θ − π

9

))
i ≤

⌊n
2

⌋
2
(

cos
(
θ − π

9

)
, sin

(
θ − π

9

))
i >

⌊n
2

⌋ ,
the control should achieve a bird-like pattern in steady state. Figure 7.1 left shows
the trajectories followed by the agents on the x − y plane. Figure 7.1 right shows
the plot of mini,j |xi(t)− xj(t)|. A few particles are initially very close to each other,
but the plot, and its zoomed in view, reveal that no collisions occur. In Figure 7.2
we show the energy decomposition of the system and its dissipation. It can be noted
that the second part of Lemma 3.1 is satisfied.

A single circle. Now, we consider a set of inter-particle alignments zi in the
control term that achieves a circular formation pattern with a single agent at the
center. Figure 7.3 left shows the trajectories for n = 50 agents on the plane, with the
model parameters as in the previous example. The initial conditions are such that
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Fig. 7.2. Energies (left) and dissipation (right) for a bird-like pattern

some agents are close to each other and about to collide. Figure 7.3 right shows the
plot of mini,j |xi(t) − xj(t)| over time, illustrating that the singular influence term
causes collision-avoidance. However, there is at least one pair of agents involved in
near misses in two opportunities.

Collisions in finite time. Here we consider an example to illustrate that, even
when collisions are expected from the initial conditions and desired final formation,
the singular influence prevails and no collision occurs in finite time when α ≥ 1. In
particular, we consider 4 particles in the 1 dimensional space. Their initial positions
and desired final formations are such that in the steady state they must crossover
(and therefore collide). In the following we consider 4 cases: Regular weight ψ(r) =
(1 + r)−α and singular weight ψ(r) = r−α, both with α = {0.5, 1.5}.

Figure 7.4 shows the position of the 4 particles over time for the aforementioned
cases. In particular we chose every parameter as before, except for α, and the initial
conditions xi(0) = 0.5i for i = 1, 2, 3, x4(0) = −1, vi(0) = (−1)ii/4 for i = 1, 2, 3 and
v4(0) = 1. The desired formation is given by the selection zi = −2 for all i, which
should put the agent with position x4(t) ahead of the rest, considering the initial
conditions. It can be noted that the only case where the agents do not collide is for
the singular weight with α = 1.5. In that case, the particles are collapsing together
but never really colliding, since Theorem 5.1 prohibits collisions in finite time.

We provide animations of these cases at https://tinyurl.com/yapwy924.
Degenerate Cases. The previous 1D case can be considered degenerate and it

will be impossible to have a successful pattern acquisition, given the initial conditions
when α ≥ 1. In higher dimensions, as mentioned in Remark 6.3, the situation is
harder to assess. For β = 0.5, α = 1.1, K = 60 and M = 50, we consider 4 agents in
the 2 dimensional space with initial positions given by x1(0) = (−1, 0), x2(0) = (0, 1),

https://tinyurl.com/yapwy924
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x3(0) = (1, 0), and x4(0) = (0,−1), that is, the agents are positioned at the vertices of
a square. We will consider that the agents are initially at rest and the desired spatial



22 Y.-P. CHOI, D. KALISE, J. PESZEK AND A. A. PETERS

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

y

x
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

Fig. 7.5. 4 Particles starting on the vertices of a square and their trajectories. Crosses: Initial
particle positions. Circles: Desired final pattern. Squares: Final particle positions. Black dashed
vectors: Initial accelerations of the particles.

formation is encoded in the selections z1 = (1, 1), z2 = (1,−1) and z3 = (−1,−1).
The control will then try to switch the agents in a diagonal fashion, since vi = (0, 0)
for all i, and we expect that the agents will end up in the positions x∞1 = (1, 0),
x∞2 = (0,−1), x∞3 = (−1, 0), and x∞4 = (0, 1). However, as seen in Figure 7.5 left, the
agents collide in pairs, at the middle points of two sides of the square. Switching the
initial positions of agents 3 and 4, and again forcing them to swap positions diagonally,
we observe that the agents do reach the desired formation.

The key difference resides in the symmetry of the initial accelerations, which in
this case are completely determined by the control (as every agent starts at rest). It
can be easily checked that for the first case u1(0) = u4(0) = −0.5(u2(0) + u3(0)) 6= ~0
and given the symmetry of the initial conditions, the controls and the influence term,
the vectors d(v1(t)+v4(t))/dt and d(v2(t)+v3(t))/dt will remain in the same direction
for all t. We can observe in Figure 7.5 that, due to the symmetry of the acceleration
terms and initial conditions, r12(t) = r34(t) and r13(t) = r24(t) for all t. Additionally,
the symmetry also suggests that x1(t)−x2(t)− z1 = x3(t)−x4(t)− z3 for all t. With
this, the center of mass of the pair of agents with indexes 1 and 4 will stay on the line
that crosses the origin with slope 1. The only option for the agents to try and reach
the desired pattern is for them to collide in pairs somewhere on this line.

On the contrary, in the second case u1(0) + u4(0) = −(u2(0) + u3(0)) = ~0 but
all initial accelerations are different. The centre of mass of agents 1 and 4 travels
along the x axis (and the centre of mass of agents 2 and 3 travels along the y axis),
but since the initial accelerations of these agents force them to different hemispheres,
they can switch positions. The only possibility for collisions would be among particles
that are not switching places, which is avoided by the lack of symmetry in the initial
accelerations.

These particular cases are easily avoided by small perturbations on the initial
conditions, or with selections of the control that take into account the initial config-
uration of the agents. In applications, where sensors and actuators are imperfect, it
is unlikely that these exceptions could occur. However, if velocities are reaching con-
sensus but the agents are still not close to the desired formation, the values zi could
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Fig. 7.6. Snapshots at different times for an Olympic rings pattern

be perturbed slightly in orthogonal or random directions, in order to avoid cases such
as this example. In a similar vein, the presence of more agents or higher dimensions
would also tend to decrease the likeliness of such degenerate cases. Considering the
several different cases that we have experimented with, it seems that condition 6.1 is
satisfied most of the time.

The Olympic Rings at PyeongChang 2018. In Figure 7.6 we present time
snapshots of the trajectories followed by a system of 50 agents in the 3 dimensional
space. The parameters are chosen as before but with the sequence zi selected to
obtain a final spatial pattern that describes the Olympic Rings. At each snapshot we
plot the position of every agent as points and their instantaneous velocities as vectors.
Initially, the agents are located at random positions and satisfying vc(0) = ~0 ∈ R3.
Moreover, we plot the desired final pattern, the Olympic Rings formation, as empty
circles on the plane with the third coordinate equal to 0.

It is possible to observe for some agents that at t = 0.5[s] the magnitudes of their
velocities are greater than their initial ones. This is not, however, inconsistent with
dvc(t)/dt = 0. For t = 5[s] the agents are approaching the plane where the final
formation resides in, although the projection of all of the agents positions on this
plane is not the desired formation yet. At t = 200[s] we observe the desired pattern
with the velocities of the agents vanished almost completely. We invite the reader
to watch a full animation of the trajectories (with some time scaling for brevity) at
https://youtu.be/C7UDGRudsyA.

https://youtu.be/C7UDGRudsyA
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Conclusions and future work. We have presented a decentralized feedback law
for formation control over a singular Cucker-Smale type model. By using a reference
vector between agents, we are able to enforce pattern formations by means of decen-
tralized control action. An energy analysis shows the collision-avoidance feature of the
closed-loop dynamics in dimensions higher than 1. There are different extensions of
the present work we are currently addressing: the design of collision-avoidance control
laws for the non-singular Cucker-Smale model, the study of alternative decentraliza-
tion strategies (e.g. by sparsification of a centralized controller), the stabilization
towards time-dependent reference trajectories, and the understanding of formation
control at a mean-field level.
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