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Abstract

During a single heartbeat, muscle cells in the heart contract and relax. Under
healthy conditions, the behaviour of these muscle cells is almost identical from
one beat to the next. However, this regular rhythm can be disturbed giving rise
to a variety of cardiac arrhythmias including cardiac alternans. Here, we focus on
so-called microscopic calcium alternans and show how their complex spatial
patterns can be understood with the help of the master stability function. Our
work makes use of the fact that cardiac muscle cells can be conceptualised as a
network of networks, and that calcium alternans correspond to an instability of
the synchronous network state. In particular, we demonstrate how small changes
in the coupling strength between network nodes can give rise to drastically
different activity patterns in the network.
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Introduction
The heart consists of millions of muscle cells called cardiac myocytes [1, 2]. Upon

electrical stimulation, cardiac myocytes first contract and then relax. What we per-

ceive as a heartbeat is the coordinated contractile response of large numbers of

cardiac myocytes, initiated by an electrical signal that travels across the heart mus-

cle. The link between electrical stimulation and contraction lies in the dynamics

of intracellular calcium (Ca2+) [1, 2]. Essentially, electrical excitation leads to a

transient rise of the intracellular Ca2+ concentration, which in turn triggers con-

traction and subsequent relaxation of the cellular contractile machinery. Under

healthy conditions, these cycles of electrical activity and Ca2+ transients remain

almost identical from heartbeat to heartbeat. However, molecular changes can in-

duce irregular patterns [3, 4, 5, 6, 7]. One of the earliest aberrations are so-called

cardiac alternans, where the duration of the electrical signal and the maxima of

the intracellular Ca2+ concentration alternate in a large-small-large-small fashion

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. While cardiac alternans are not

life-threatening per se, they often form precursors to more severe if not fatal car-

diac arrhythmias such as sudden cardiac death. Understanding the emergence and

progression of cardiac alternans has hence been the focus of intense research.

Cardiac myocytes can be conceptualised as a network of networks (see Fig. 1).

Each node in the network corresponds to a so-called calcium release unit (CRU).

The majority of the molecular machinery that shapes the intracellular Ca2+ tran-

sients is located here [1, 21]. CRUs are coupled via Ca2+ diffusion through the

cytosol and the sarcoplasmic reticulum (SR), respectively, forming a large network.
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At the network level, the rhythm of a healthy cardiac myocyte corresponds to a

synchronous network state, while Ca2+ alternans emerge when a synchronous state

loses stability.

In the present study, we investigate the linear stability of the synchronous net-

work state as the strength of Ca2+ diffusion is varied. Due to different intracellular

morphologies and biochemical compositions, Ca2+ generally diffuses more quickly

in the cytosol than in the SR (but see [22] for a different view). While diffusion of

free Ca2+ in the cytosol has been estimated to be 223 µm2s−1 [23], Ca2+ buffers

reduce this value substantially [24, 25]. The strength of Ca2+ diffusion in the SR

has been controversial for more than a decade, and the verdict of whether it is fast

or slow is still out [26, 27, 28, 29].

Our particular interest is in the emergent network patterns just after the onset

of a synchronous instability. This corresponds to recently discovered microscopic

Ca2+ alternans [30]. Here, the global Ca2+ signal, i.e. the Ca2+ response averaged

across an entire cardiac myocyte, looks healthy, while the dynamics of single CRUs is

irregular. This interplay between macroscopic Ca2+ signals that look physiologically

healthy and pathological local Ca2+ signals is interpreted as the earliest onset of

Ca2+ alternans and the first sign that the healthy synchronous network behaviour

has lost stability.

We have recently shown that changing Ca2+ diffusion in a network of CRUs leads

to two kinds of network instabilities [31]. If cytosolic Ca2+ diffusion dominates,

the network undergoes the traditional period doubling bifurcation where each node

follows a period-2 orbit with an alternating pattern of large-small-large peak Ca2+

amplitudes. At the same time, neighbouring CRUs are out-of-phase with one an-

other: when the Ca2+ transient is large at one CRU, the adjacent CRU displays a

small amplitude Ca2+ transient. On the other hand, if luminal Ca2+ diffusion domi-

nates, i.e. Ca2+ diffusion in the SR is faster than in the cytosol, we find a saddle-node

bifurcation at the network level. In this case, each CRU follows a period-1 orbit, but

the peak amplitudes of neighbouring CRUs alternate. This means that the global

Ca2+ signal is almost identical for Ca2+ alternans emerging through either bifurca-

tion, but the local dynamics is distinct. Consequently, microscopic Ca2+ alternans

may possess a much richer pattern space than previously thought.

To further unravel the complexity of microscopic Ca2+ alternans, we here com-

pute the master stability function (MSF) for the network [32]. This approach has

been instrumental in understanding instabilities of synchronous network states and

has recently been generalised to more structured network dynamics such as cluster

states and to the case of nearly-identical oscillators [33, 34, 35, 36, 37, 38]. A key

input for the computation of the MSF is the synchronous network state and its

Jacobian. Since for diffusively coupled nodes, the synchronous network state cor-

responds to the periodic solution of a single CRU, the mathematical tractability

of the MSF significantly depends on the mathematical structure of the ordinary

differential equations (ODEs) that describe the behaviour of a CRU. Traditionally,

the dynamics of CRUs is governed by coupled nonlinear ODEs, which can only be

solved numerically. This precludes any explicit construction of the MSF. To make

progress here, we employ a piecewise linear (PWL) caricature [39] of a well es-

tablished Ca2+ cycling model [10] for a single CRU. This allows for the explicit
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construction of the MSF, which is key for the results presented here. In particular,

we employ the MSF to explain non-intuitive abrupt changes in the patterns of mi-

croscopic Ca2+ alternans. The results from our theory are in excellent agreement

with direct numerical simulations, illustrating the predictive power of our approach

and the benefits of PWL models. Our findings also highlight that Ca2+ diffusion

exerts a different effect on the network dynamics of cardiac myocytes depending on

whether it occurs predominantly in the cytosol or the SR.

Model Description
Figure 1 shows a schematic of 3 nodes in the network. For each node, indexed

by the label µ, we distinguish between 4 different Ca2+ concentrations: the Ca2+

concentration in the subsarcolemmal space (cµs ), the bulk Ca2+ concentration (cµi ),

the Ca2+ concentration in the unrecruited SR (cµu) and the total Ca2+ concentration

(cµj ). The ODEs for a single CRU read as

cµ
u
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<latexit sha1_base64="96kgWcAlRd7cgk7SEkdE4anEyew=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlEsMuCG5cV7APaGCbTSTt0JgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPq73VJxKQrsk5rEcBFhRziLa1UxzOkgkxSLgtB/Mbgq//0ilYnF0r+cJ9QSeRCxkBGsj+Xad+COB9VSKjOUP2UikuW83nKazAFonbkkaUKLj21+jcUxSQSNNOFZq6DqJ9jIsNSOc5rVRqmiCyQxP6NDQCAuqvGyRPUfnRhmjMJbmRRot1N8bGRZKzUVgJoucatUrxP+8YarDlpexKEk1jcjyUJhypGNUFIHGTFKi+dwQTCQzWRGZYomJNnXVTAnu6pfXSe+y6TpN9+6q0W6VdVThFM7gAly4hjbcQge6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH+GklPE=</latexit><latexit sha1_base64="96kgWcAlRd7cgk7SEkdE4anEyew=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlEsMuCG5cV7APaGCbTSTt0JgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPq73VJxKQrsk5rEcBFhRziLa1UxzOkgkxSLgtB/Mbgq//0ilYnF0r+cJ9QSeRCxkBGsj+Xad+COB9VSKjOUP2UikuW83nKazAFonbkkaUKLj21+jcUxSQSNNOFZq6DqJ9jIsNSOc5rVRqmiCyQxP6NDQCAuqvGyRPUfnRhmjMJbmRRot1N8bGRZKzUVgJoucatUrxP+8YarDlpexKEk1jcjyUJhypGNUFIHGTFKi+dwQTCQzWRGZYomJNnXVTAnu6pfXSe+y6TpN9+6q0W6VdVThFM7gAly4hjbcQge6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH+GklPE=</latexit><latexit sha1_base64="96kgWcAlRd7cgk7SEkdE4anEyew=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlEsMuCG5cV7APaGCbTSTt0JgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPq73VJxKQrsk5rEcBFhRziLa1UxzOkgkxSLgtB/Mbgq//0ilYnF0r+cJ9QSeRCxkBGsj+Xad+COB9VSKjOUP2UikuW83nKazAFonbkkaUKLj21+jcUxSQSNNOFZq6DqJ9jIsNSOc5rVRqmiCyQxP6NDQCAuqvGyRPUfnRhmjMJbmRRot1N8bGRZKzUVgJoucatUrxP+8YarDlpexKEk1jcjyUJhypGNUFIHGTFKi+dwQTCQzWRGZYomJNnXVTAnu6pfXSe+y6TpN9+6q0W6VdVThFM7gAly4hjbcQge6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH+GklPE=</latexit><latexit sha1_base64="96kgWcAlRd7cgk7SEkdE4anEyew=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlEsMuCG5cV7APaGCbTSTt0JgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPq73VJxKQrsk5rEcBFhRziLa1UxzOkgkxSLgtB/Mbgq//0ilYnF0r+cJ9QSeRCxkBGsj+Xad+COB9VSKjOUP2UikuW83nKazAFonbkkaUKLj21+jcUxSQSNNOFZq6DqJ9jIsNSOc5rVRqmiCyQxP6NDQCAuqvGyRPUfnRhmjMJbmRRot1N8bGRZKzUVgJoucatUrxP+8YarDlpexKEk1jcjyUJhypGNUFIHGTFKi+dwQTCQzWRGZYomJNnXVTAnu6pfXSe+y6TpN9+6q0W6VdVThFM7gAly4hjbcQge6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH+GklPE=</latexit>

cµ�1
i

<latexit sha1_base64="/CjNgRdR11aaIjMUFw5+b0xo3eg=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigl0W3LisYB/QxDCZTtqhM5MwMxFqCP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTpgwqrTjfFuVldW19Y3qZm1re2d3z94/6Ko4lZh0cMxi2Q+RIowK0tFUM9JPJEE8ZKQXTq4Lv/dApKKxuNPThPgcjQSNKEbaSIF9hAOPIz2WPKP5febx9NzNA7vuNJwZ4DJxS1IHJdqB/eUNY5xyIjRmSKmB6yTaz5DUFDOS17xUkQThCRqRgaECcaL8bJY+h6dGGcIoluYJDWfq740McaWmPDSTRVK16BXif94g1VHTz6hIUk0Enh+KUgZ1DIsq4JBKgjWbGoKwpCYrxGMkEdamsJopwV388jLpXjRcp+HeXtZbzbKOKjgGJ+AMuOAKtMANaIMOwOARPINX8GY9WS/Wu/UxH61Y5c4h+APr8wfJQJVj</latexit><latexit sha1_base64="/CjNgRdR11aaIjMUFw5+b0xo3eg=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigl0W3LisYB/QxDCZTtqhM5MwMxFqCP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTpgwqrTjfFuVldW19Y3qZm1re2d3z94/6Ko4lZh0cMxi2Q+RIowK0tFUM9JPJEE8ZKQXTq4Lv/dApKKxuNPThPgcjQSNKEbaSIF9hAOPIz2WPKP5febx9NzNA7vuNJwZ4DJxS1IHJdqB/eUNY5xyIjRmSKmB6yTaz5DUFDOS17xUkQThCRqRgaECcaL8bJY+h6dGGcIoluYJDWfq740McaWmPDSTRVK16BXif94g1VHTz6hIUk0Enh+KUgZ1DIsq4JBKgjWbGoKwpCYrxGMkEdamsJopwV388jLpXjRcp+HeXtZbzbKOKjgGJ+AMuOAKtMANaIMOwOARPINX8GY9WS/Wu/UxH61Y5c4h+APr8wfJQJVj</latexit><latexit sha1_base64="/CjNgRdR11aaIjMUFw5+b0xo3eg=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigl0W3LisYB/QxDCZTtqhM5MwMxFqCP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTpgwqrTjfFuVldW19Y3qZm1re2d3z94/6Ko4lZh0cMxi2Q+RIowK0tFUM9JPJEE8ZKQXTq4Lv/dApKKxuNPThPgcjQSNKEbaSIF9hAOPIz2WPKP5febx9NzNA7vuNJwZ4DJxS1IHJdqB/eUNY5xyIjRmSKmB6yTaz5DUFDOS17xUkQThCRqRgaECcaL8bJY+h6dGGcIoluYJDWfq740McaWmPDSTRVK16BXif94g1VHTz6hIUk0Enh+KUgZ1DIsq4JBKgjWbGoKwpCYrxGMkEdamsJopwV388jLpXjRcp+HeXtZbzbKOKjgGJ+AMuOAKtMANaIMOwOARPINX8GY9WS/Wu/UxH61Y5c4h+APr8wfJQJVj</latexit><latexit sha1_base64="/CjNgRdR11aaIjMUFw5+b0xo3eg=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigl0W3LisYB/QxDCZTtqhM5MwMxFqCP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTpgwqrTjfFuVldW19Y3qZm1re2d3z94/6Ko4lZh0cMxi2Q+RIowK0tFUM9JPJEE8ZKQXTq4Lv/dApKKxuNPThPgcjQSNKEbaSIF9hAOPIz2WPKP5febx9NzNA7vuNJwZ4DJxS1IHJdqB/eUNY5xyIjRmSKmB6yTaz5DUFDOS17xUkQThCRqRgaECcaL8bJY+h6dGGcIoluYJDWfq740McaWmPDSTRVK16BXif94g1VHTz6hIUk0Enh+KUgZ1DIsq4JBKgjWbGoKwpCYrxGMkEdamsJopwV388jLpXjRcp+HeXtZbzbKOKjgGJ+AMuOAKtMANaIMOwOARPINX8GY9WS/Wu/UxH61Y5c4h+APr8wfJQJVj</latexit>

cµ�1
j

<latexit sha1_base64="+wCanXb6VrG/D9QEh0KsTclh7NI=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lEsMuCG5cV7AOaGCbTSTt2ZhJmJkINwV9x40IRt/6HO//GSZuFth4YOJxzL/fMCRNGlXacb2tpeWV1bb2yUd3c2t7Ztff2OypOJSZtHLNY9kKkCKOCtDXVjPQSSRAPGemG46vC7z4QqWgsbvUkIT5HQ0EjipE2UmAf4sDjSI8kz+7zu8zj6ZmbB3bNqTtTwEXilqQGSrQC+8sbxDjlRGjMkFJ910m0nyGpKWYkr3qpIgnCYzQkfUMF4kT52TR9Dk+MMoBRLM0TGk7V3xsZ4kpNeGgmi6Rq3ivE/7x+qqOGn1GRpJoIPDsUpQzqGBZVwAGVBGs2MQRhSU1WiEdIIqxNYVVTgjv/5UXSOa+7Tt29uag1G2UdFXAEjsEpcMElaIJr0AJtgMEjeAav4M16sl6sd+tjNrpklTsH4A+szx/KzZVk</latexit><latexit sha1_base64="+wCanXb6VrG/D9QEh0KsTclh7NI=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lEsMuCG5cV7AOaGCbTSTt2ZhJmJkINwV9x40IRt/6HO//GSZuFth4YOJxzL/fMCRNGlXacb2tpeWV1bb2yUd3c2t7Ztff2OypOJSZtHLNY9kKkCKOCtDXVjPQSSRAPGemG46vC7z4QqWgsbvUkIT5HQ0EjipE2UmAf4sDjSI8kz+7zu8zj6ZmbB3bNqTtTwEXilqQGSrQC+8sbxDjlRGjMkFJ910m0nyGpKWYkr3qpIgnCYzQkfUMF4kT52TR9Dk+MMoBRLM0TGk7V3xsZ4kpNeGgmi6Rq3ivE/7x+qqOGn1GRpJoIPDsUpQzqGBZVwAGVBGs2MQRhSU1WiEdIIqxNYVVTgjv/5UXSOa+7Tt29uag1G2UdFXAEjsEpcMElaIJr0AJtgMEjeAav4M16sl6sd+tjNrpklTsH4A+szx/KzZVk</latexit><latexit sha1_base64="+wCanXb6VrG/D9QEh0KsTclh7NI=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lEsMuCG5cV7AOaGCbTSTt2ZhJmJkINwV9x40IRt/6HO//GSZuFth4YOJxzL/fMCRNGlXacb2tpeWV1bb2yUd3c2t7Ztff2OypOJSZtHLNY9kKkCKOCtDXVjPQSSRAPGemG46vC7z4QqWgsbvUkIT5HQ0EjipE2UmAf4sDjSI8kz+7zu8zj6ZmbB3bNqTtTwEXilqQGSrQC+8sbxDjlRGjMkFJ910m0nyGpKWYkr3qpIgnCYzQkfUMF4kT52TR9Dk+MMoBRLM0TGk7V3xsZ4kpNeGgmi6Rq3ivE/7x+qqOGn1GRpJoIPDsUpQzqGBZVwAGVBGs2MQRhSU1WiEdIIqxNYVVTgjv/5UXSOa+7Tt29uag1G2UdFXAEjsEpcMElaIJr0AJtgMEjeAav4M16sl6sd+tjNrpklTsH4A+szx/KzZVk</latexit><latexit sha1_base64="+wCanXb6VrG/D9QEh0KsTclh7NI=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lEsMuCG5cV7AOaGCbTSTt2ZhJmJkINwV9x40IRt/6HO//GSZuFth4YOJxzL/fMCRNGlXacb2tpeWV1bb2yUd3c2t7Ztff2OypOJSZtHLNY9kKkCKOCtDXVjPQSSRAPGemG46vC7z4QqWgsbvUkIT5HQ0EjipE2UmAf4sDjSI8kz+7zu8zj6ZmbB3bNqTtTwEXilqQGSrQC+8sbxDjlRGjMkFJ910m0nyGpKWYkr3qpIgnCYzQkfUMF4kT52TR9Dk+MMoBRLM0TGk7V3xsZ4kpNeGgmi6Rq3ivE/7x+qqOGn1GRpJoIPDsUpQzqGBZVwAGVBGs2MQRhSU1WiEdIIqxNYVVTgjv/5UXSOa+7Tt29uag1G2UdFXAEjsEpcMElaIJr0AJtgMEjeAav4M16sl6sd+tjNrpklTsH4A+szx/KzZVk</latexit>

cµ+1
j

<latexit sha1_base64="pFRkNAS1WwfC7/jUm60LVw3tfTY=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0UQhJKIYJcFNy4r2Ac0MUymk3bszCTMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyaMKu0439bS8srq2nplo7q5tb2za+/td1ScSkzaOGax7IVIEUYFaWuqGeklkiAeMtINx1eF330gUtFY3OpJQnyOhoJGFCNtpMA+xIHHkR5Jnt3nd5nH0zM3D+yaU3emgIvELUkNlGgF9pc3iHHKidCYIaX6rpNoP0NSU8xIXvVSRRKEx2hI+oYKxInys2n6HJ4YZQCjWJonNJyqvzcyxJWa8NBMFknVvFeI/3n9VEcNP6MiSTUReHYoShnUMSyqgAMqCdZsYgjCkpqsEI+QRFibwqqmBHf+y4ukc153nbp7c1FrNso6KuAIHINT4IJL0ATXoAXaAINH8AxewZv1ZL1Y79bHbHTJKncOwB9Ynz/HwZVi</latexit><latexit sha1_base64="pFRkNAS1WwfC7/jUm60LVw3tfTY=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0UQhJKIYJcFNy4r2Ac0MUymk3bszCTMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyaMKu0439bS8srq2nplo7q5tb2za+/td1ScSkzaOGax7IVIEUYFaWuqGeklkiAeMtINx1eF330gUtFY3OpJQnyOhoJGFCNtpMA+xIHHkR5Jnt3nd5nH0zM3D+yaU3emgIvELUkNlGgF9pc3iHHKidCYIaX6rpNoP0NSU8xIXvVSRRKEx2hI+oYKxInys2n6HJ4YZQCjWJonNJyqvzcyxJWa8NBMFknVvFeI/3n9VEcNP6MiSTUReHYoShnUMSyqgAMqCdZsYgjCkpqsEI+QRFibwqqmBHf+y4ukc153nbp7c1FrNso6KuAIHINT4IJL0ATXoAXaAINH8AxewZv1ZL1Y79bHbHTJKncOwB9Ynz/HwZVi</latexit><latexit sha1_base64="pFRkNAS1WwfC7/jUm60LVw3tfTY=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0UQhJKIYJcFNy4r2Ac0MUymk3bszCTMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyaMKu0439bS8srq2nplo7q5tb2za+/td1ScSkzaOGax7IVIEUYFaWuqGeklkiAeMtINx1eF330gUtFY3OpJQnyOhoJGFCNtpMA+xIHHkR5Jnt3nd5nH0zM3D+yaU3emgIvELUkNlGgF9pc3iHHKidCYIaX6rpNoP0NSU8xIXvVSRRKEx2hI+oYKxInys2n6HJ4YZQCjWJonNJyqvzcyxJWa8NBMFknVvFeI/3n9VEcNP6MiSTUReHYoShnUMSyqgAMqCdZsYgjCkpqsEI+QRFibwqqmBHf+y4ukc153nbp7c1FrNso6KuAIHINT4IJL0ATXoAXaAINH8AxewZv1ZL1Y79bHbHTJKncOwB9Ynz/HwZVi</latexit><latexit sha1_base64="pFRkNAS1WwfC7/jUm60LVw3tfTY=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0UQhJKIYJcFNy4r2Ac0MUymk3bszCTMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyaMKu0439bS8srq2nplo7q5tb2za+/td1ScSkzaOGax7IVIEUYFaWuqGeklkiAeMtINx1eF330gUtFY3OpJQnyOhoJGFCNtpMA+xIHHkR5Jnt3nd5nH0zM3D+yaU3emgIvELUkNlGgF9pc3iHHKidCYIaX6rpNoP0NSU8xIXvVSRRKEx2hI+oYKxInys2n6HJ4YZQCjWJonNJyqvzcyxJWa8NBMFknVvFeI/3n9VEcNP6MiSTUReHYoShnUMSyqgAMqCdZsYgjCkpqsEI+QRFibwqqmBHf+y4ukc153nbp7c1FrNso6KuAIHINT4IJL0ATXoAXaAINH8AxewZv1ZL1Y79bHbHTJKncOwB9Ynz/HwZVi</latexit>

cµ
j

<latexit sha1_base64="itmE0/02Gc6PNt/hQmvXHHI/1Ig=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdllw47KCfUBTw2Q6acfOJGFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j2pdFaeS0A6JeSz7AVaUs4h2NNOc9hNJsQg47QXT68LvPVKpWBzd6VlChwKPIxYygrWRfLtGfE9gPZEie8jvM0+kuW/XnYYzB1olbknqUKLt21/eKCapoJEmHCs1cJ1EDzMsNSOc5lUvVTTBZIrHdGBohAVVw2yePUdnRhmhMJbmRRrN1d8bGRZKzURgJoucatkrxP+8QarD5jBjUZJqGpHFoTDlSMeoKAKNmKRE85khmEhmsiIywRITbeqqmhLc5S+vku5Fw3Ua7u1lvdUs66jACZzCObhwBS24gTZ0gMATPMMrvFm59WK9Wx+L0TWr3DmGP7A+fwDjL5Ty</latexit><latexit sha1_base64="itmE0/02Gc6PNt/hQmvXHHI/1Ig=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdllw47KCfUBTw2Q6acfOJGFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j2pdFaeS0A6JeSz7AVaUs4h2NNOc9hNJsQg47QXT68LvPVKpWBzd6VlChwKPIxYygrWRfLtGfE9gPZEie8jvM0+kuW/XnYYzB1olbknqUKLt21/eKCapoJEmHCs1cJ1EDzMsNSOc5lUvVTTBZIrHdGBohAVVw2yePUdnRhmhMJbmRRrN1d8bGRZKzURgJoucatkrxP+8QarD5jBjUZJqGpHFoTDlSMeoKAKNmKRE85khmEhmsiIywRITbeqqmhLc5S+vku5Fw3Ua7u1lvdUs66jACZzCObhwBS24gTZ0gMATPMMrvFm59WK9Wx+L0TWr3DmGP7A+fwDjL5Ty</latexit><latexit sha1_base64="itmE0/02Gc6PNt/hQmvXHHI/1Ig=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdllw47KCfUBTw2Q6acfOJGFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j2pdFaeS0A6JeSz7AVaUs4h2NNOc9hNJsQg47QXT68LvPVKpWBzd6VlChwKPIxYygrWRfLtGfE9gPZEie8jvM0+kuW/XnYYzB1olbknqUKLt21/eKCapoJEmHCs1cJ1EDzMsNSOc5lUvVTTBZIrHdGBohAVVw2yePUdnRhmhMJbmRRrN1d8bGRZKzURgJoucatkrxP+8QarD5jBjUZJqGpHFoTDlSMeoKAKNmKRE85khmEhmsiIywRITbeqqmhLc5S+vku5Fw3Ua7u1lvdUs66jACZzCObhwBS24gTZ0gMATPMMrvFm59WK9Wx+L0TWr3DmGP7A+fwDjL5Ty</latexit><latexit sha1_base64="itmE0/02Gc6PNt/hQmvXHHI/1Ig=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdllw47KCfUBTw2Q6acfOJGFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j2pdFaeS0A6JeSz7AVaUs4h2NNOc9hNJsQg47QXT68LvPVKpWBzd6VlChwKPIxYygrWRfLtGfE9gPZEie8jvM0+kuW/XnYYzB1olbknqUKLt21/eKCapoJEmHCs1cJ1EDzMsNSOc5lUvVTTBZIrHdGBohAVVw2yePUdnRhmhMJbmRRrN1d8bGRZKzURgJoucatkrxP+8QarD5jBjUZJqGpHFoTDlSMeoKAKNmKRE85khmEhmsiIywRITbeqqmhLc5S+vku5Fw3Ua7u1lvdUs66jACZzCObhwBS24gTZ0gMATPMMrvFm59WK9Wx+L0TWr3DmGP7A+fwDjL5Ty</latexit>

cµ
s
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Figure 1 Schematic of 3 coupled CRUs with network labels µ− 1, µ and µ+ 1 showing the
regions of the the different Ca2+ concentrations: subsarcolemmal space (cµs ), bulk cytsosol (cµi ),

unrecruited SR (cµu) and total Ca2+ concentration in the SR (cµj ). The orange bidirectional

arrows represent Ca2+ diffusion though the bulk cytosol with time constant τc and through the
SR with time constant τsr, respectively.

dcµs
dt

= βs

[
vi
vs

(
Iµr −

cµs − c
µ
i

τs
− IµCaL

)
+ IµNCX

]
, (1a)

dcµi
dt

= βi

[
cµs − c

µ
i

τs
− Iµup

]
+
∑
ε∈In

cεi − c
µ
i

τc
, (1b)

dcµj
dt

= −Iµr + Iµup +
∑
ε∈In

cεj − c
µ
j

τsr
, (1c)

dcµu
dt

=
cµj − cµu
τa

, (1d)

dIµr
dt

= −gICaLQ (cµu)− Iµr
τr
. (1e)

The last ODE captures the Ca2+ release current from the SR into the subscarolem-

mal space and depends on the Ca2+ concentration in the unrecruited SR, cµu . We

model the currents IµCaL, IµNCX and Iµup as PWL functions, which renders Eq. (1)

a PWL model (see Appendix). For a detailed discussion of Eq. (1) together with

its biological interpretation, we refer the reader to [10, 39]. For the current study,

the key terms are the coupling functions in Eqs. (1b) and (1c), which correspond



Lai et al. Page 4 of 17

to the sums over ε in each ODE. The set In indexes the nearest neighbours of the

µth node. The linear differences in the coupling terms represent a discrete form of

diffusion with time scales τc and τsr in the cytosol and SR, respectively.

For a single node, the PWL nature of Eq. (1) means that there are m switching

manifolds, between which the dynamics can be written as

dxµ

dt
= Aix

µ + f(t) , (2)

where xµ = (cµs , c
µ
i , c

µ
j , c

µ
u , I

µ
r ), Ai ∈ R5×5, i = 1, . . . ,m, is constant and f(t) ∈ R5

collects all explicitly time-dependent functions that describe the electrical activity

in the model. For the analysis presented here, we assume that f is periodic with a

period of Tp. This reflects a common practice in cardiac research whereby cardiac

myocytes are paced by an external stimulus with period Tp while recording the

intracellular Ca2+ concentration, see e.g. [10]. At the network level with N nodes,

Eq. (1) takes the compact form

dx

dt
= Ax+ F (t) + σG⊗Hx , (3)

where x = (x1, x2, . . . , xN ) ∈ R5N , A ∈ R5N×5N and F (t) = 1N ⊗ f(t). Here, ⊗
denotes the standard tensor product and 1N ∈ RN is a column vector containing

only 1s. Note that A is always constant between switching events and is block

diagonal with entries taken from the set of Ai. G ∈ NN×N refers to the graph

Laplacian of the network, and H ∈ R5×5 encodes through which variables the

coupling occurs. For instance, for cytosolic coupling only, H2,2 = 1, while all other

components of H vanish. The overall coupling strength is given by σ, which e.g. in

the case of pure cytosolic coupling is τ−1c .

To ascertain the linear stability of the synchronous network state s(t) where s(t) =

x1(t) = . . . = xN (t), we introduce small network perturbations δx via x̃(t) =

s(t)+δx(t), where x̃(t) corresponds to the perturbed network state. Since we perturb

off the synchronous network state, we can assume that for the majority of time, all

CRUs are described by the same matrix Ai. Therefore, linearising Eq. (3) and

block-diagonalising it with the linear transformation ξ = (P ⊗ I5)−1δx, where P is

the matrix of eigenvectors that diagonalises G and In is the n-dimensional identity

matrix, we obtain

dξ

dt
= [IN ⊗Ai − σΛ⊗H] ξ . (4)

Here Λ is diagonal holding the eigenvalues λi of G, i.e. GP = PΛ. Because both IN
and Λ are diagonal, Eq. (4) is block diagonal in ξµ ∈ R5 via

dξµ

dt
= [Ai − σλµH] ξµ . (5)

In other words, the linear stability problem for the full 5N -dimensional network

can be decomposed into N 5-dimensional problems parametrised by the eigenvalue

λµ. If the Floquet multipliers for the solutions of each ξµ lie in the unit disk, the

synchronous network state is stable, otherwise, synchrony is unstable.
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Because the dynamics is PWL and the vector field is continuous at the switch-

ing manifolds, we can immediately solve Eq. (5) using matrix exponentials. Let ∆

denote the period of the synchronous state, ∆i the time-of-flight during which the

dynamics is governed by Ai, i.e. ∆ =
∑
i ∆i, and ξ(0) some initial perturbation.

Then the perturbation after one period is given by ξµ(∆) = Γ(σλµ)ξµ(0) with

Γ(σλµ) = exp [(AN − σλµH)∆N ] · · · exp [(A1 − σλµH)∆1] . (6)

Since the above derivation holds for any graph Laplacian, it is instructive to

replace σλµ with η ∈ C in Eq. (6), noting that the eigenvalues of the graph Laplacian

are generally complex. The MSF is then the function that maps η to the largest

real part of the Floquet exponents associated with Γ(η). Put differently, if q(η)

is an eigenvalue of Γ(η), then the MSF returns κ(η) = maxq Re {log(q(η)} /∆. If

κ(σλi) < 0 for all λi, then synchrony is stable, otherwise it is unstable. Therefore,

the MSF can be computed independently of the choice of network and then used

to assess linear stability of the synchronous network state for a particular network.

Results
We first compute the MSF for pure cytosolic coupling. In this case, σ−1 = τc,

τ−1sr = 0 and the only non-vanishing component of H is H2,2. Figure 2A shows

the zero-contour of the MSF, where we observe that the MSF is negative inside

the ellipse and positive in the remainder of the complex plane. Hence, if every

σλi falls inside the ellipse, the synchronous network state is stable, otherwise, it

is unstable. Because diffusive coupling is symmetric and the coupling strength is

positive, the eigenvalues λi of the graph Laplacian are real and negative including a

zero eigenvalue. The latter corresponds to the periodic orbit of an uncoupled node,

which entails that a necessary condition for the existence of a stable synchronous

network state is that the periodic orbit of an uncoupled node is linearly stable. By

taking the limit σ → 0, all σλi can be contained within the ellipse, indicating that

the synchronous network state is linearly stable for weak coupling. By increasing the

coupling strength, the eigenvalue with the most negative real part exits the ellipse

on the left, rendering synchrony unstable. The emergent network state is depicted

in Figs. 2B and 2C, which show the peak Ca2+ concentration in the bulk cytosol on

successive pacing periods. The alternations of yellow and blue in each figure indicate

that neighbouring CRUs exhibit alternating values of the Ca2+ amplitudes. When

comparing Figs. 2B and 2C, we find that when the Ca2+ transient is small during

the first pacing period it is larger during the second pacing period, and vice versa.

This pattern of network activity is consistent with the MSF where the critical

eigenvalue qc leaves the ellipse with cos(arg qc) = −1, indicating a period-doubling

bifurcation at the network level. The eigenvector corresponding to the eigenvalue

that has crossed the stability boundary is plotted in Fig. 2D and agrees very well

with the results shown in Figs. 2B and 2C.

We now contrast the results for cytosolic coupling with those for purely luminal

coupling. Here, σ−1 = τsr, τ
−1
c = 0 and the only non-zero component of H is H3,3.

As Fig. 3A illustrates, the topology of the MSF has changed significantly. There

are now two regions of stability in the complex plane separated by a region of
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Figure 2 (A) Zero-contour of the MSF for cytosolic coupling and Tp = 0.9. The MSF is negative
inside the ellipse, labeled by S, and positive outside, denoted by U. The colour represents the
value of cos (arg (q (η))). (B, C) Peak Ca2+ concentration in the bulk on successive beats. (D)
Eigenvector corresponding to the single eigenvalue λk for which η = σλk lies outside the ellipse.
Here, σ = 0.225.

instability. Because instabilities can only occur when eigenvalues q move along the

negative part of the real axis, we can characterise Fig. 3A by taking a cut along

the negative real axis. Figure 3B summarises the resultant regions of stability and

instability for different values of Tp. As we increase Tp, the region of instability

shrinks, up to a point when synchrony is always stable. This is consistent with

experimental findings that show that cardiac myocytes do not undergo instabilities

when stimulated at sufficiently low frequencies. While the network instability for
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Figure 3 (A) Zero-contours of the MSF for luminal coupling and Tp = 0.9. The MSF is negative
in regions denoted by S and positive in regions labeled U. The colour represents the value of
cos (arg (q (η))). (B) Zero values of the MSF for real values of η as pacing periods vary.



Lai et al. Page 7 of 17

pure cytosolic coupling occurs via a period-doubling bifurcation, the colour map in

Fig. 3A reveals that the network loses stability through a saddle-node bifurcation

where the critical eigenvalue leaves the unit disk through +1.

In Fig. 3B, we plotted the stability regions as a function of the general MSF pa-

rameter η and the pacing period Tp. In a practical application, where the network

structure is fixed, it is more natural to examine stability as a function of the cou-

pling strength σ and the the pacing period Tp. Figure 4 provides an illustration of

this. The green line at bottom indicates the critical pacing period when the period-

1 orbit of an isolated CRU goes unstable. For periods faster than this, an isolated

CRU displays Ca2+ alternans, which then feed forward to the network level. Since
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Figure 4 (A) Stability region of the synchronous network state as a function of the luminal

coupling strength σ−1
SR and the pacing period Tp for a network of 4 CRUs. The synchronous state

is unstable in the region labeled U and stable in the region denoted by S. The green line indicates
the pacing period at which the period-1 orbit of a single CRU loses stability. (B) Stability regions
of individual eigenvectors. The corresponding eigenvectors are shown in blue, and the
corresponding eigenvalues are listed. The green line is the same as in (A).

we are interested in how coupling between CRUs induces instabilities, we restrict

our attention to pacing periods above the green line. Note that we plot σ−1sr on the

x-axis, so that weak coupling corresponds to the left part and strong coupling to the

right part of the figure, respectively. For constant Tp, the synchronous network state

is stable for very small and large coupling, while it is unstable for intermediate cou-

pling strengths. For fixed values of σ−1sr , faster pacing periods generally destabilise

solutions, which mirrors experimentally observed behaviour. The most prominent

feature of Fig. 4A is a series of small bumps in the stability line for larger values

of Tp. When we fix Tp and vary σ−1sr we observe that the spatial patterns of the

emergent network solutions vary drastically as we cross from one ‘instability bump’

to the next, see Fig. 5. While for weaker coupling, i.e. smaller values of σ−1sr , the

Ca2+ concentration exhibits a multi-modal distribution with peaks in the corner

on one side and in the middle on the opposite side, respectively (Fig. 5A), stronger

coupling leads to stripes of the intracellular Ca2+ concentration (Fig. 5B)

We can explain these sudden changes in the activity patterns of the intracellular

Ca2+ concentration by starting with Fig. 4B. This figure shows that the central

region of instability seen in Fig. 4A is in fact a superposition of instability regions

associated with different eigenvalues. For illustrative purposes, we computed Fig. 4B

for a network of only 4 nodes. However, the main features of the diagram remain

unchanged as we increase the number of nodes in the network. Since one of the
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Figure 5 Peak values of the bulk Ca2+ concentration during one pacing period for σSR = 3.2
(A), σSR = 4.1 (B) in a 10× 25 network of CRUs at Tp = 1.05.

eigenvalues always vanishes (see above), the three non-trivial eigenvalues are shown.

Associated with each of these is a distinct region of instability. For instance, the

region furthest to the left belongs to λ1, while the region to the right is controlled

by λ3.

To compute these regions, we make use of the MSF as shown in Fig. 3A with

zooms provided in Figs. 6A and 6B. Note that these correspond to a fixed pacing

period and hence map onto one horizontal line in Fig. 4B. Figure 6A shows the case

when the instability is driven by a single eigenvalue, say λk. The corresponding

argument for the MSF, i.e. η = σλk is indicated by the red circle. As we change

σ, η traces the space between the two instability lines. By computing the critical

values of σ such that η intersects with the instability lines, we determine the left and

right boundaries of the instability regions for a fixed eigenvalue in Fig. 4B. Figure

6B illustrates that upon changing σ, a different eigenvalue compared to the one in

Fig. 6A shapes the instability. Note that there is again only one eigenvalue that is

responsible for the instability. This corresponds exactly to the case when we increase

σ in Fig. 4B for larger values of Tp and move from the ‘bump’ for λ1 to the ‘bump’

for λ2. Because each eigenvalue is associated with a specific eigenvector, the abrupt

changes in the emergent network patterns reflect the often considerable variations

among eigenvectors. In Fig. 4B, this can be seen by inspecting the eigenvectors

that correspond to the respective eigenvalues. For a much a larger network, this

is confirmed by comparing the eigenvectors plotted in Fig. 6C and 6D with the

simulation results in Fig. 5. There is excellent agreement between them. In Fig. 6E,

we summarise the mechanism that gives rise to the different Ca2+ activity patterns

in the network. For weak coupling, only one eigenvalue (λ1) drives the instability.

Upon increasing the coupling, both σλ1 and σλ2 move towards the left (recall that

all eigenvalues are negative). Therefore, for some values of σ, synchrony is stable

again. However, a further increase in the coupling strength causes σλ2 to move into

the instability region, giving rise to a different emergent network state compared to

the one for weak coupling.

Figure 3B already suggests that the regions where the MSF is negative strongly

depends on the pacing period Tp. There, we focussed on the negative real axis for

the MSF parameter η since η cannot be complex or positive for diffusive coupling.
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Figure 6 (A,B) Zoom of the MSF for dominant luminal coupling around the the real axis with
values of η = σλk (crosses) superimposed for σSR = 3.2 (A), σSR = 4.1 (B) in a 10× 25 network
of CRUs paced at Tp = 1.05. The value of η for which the MSF is positive is circled in red. (C,D)
Eigenvectors corresponding to the critical values of η in (A) and (B), respectively. (E) Schematic
of how changing the coupling strength σ can give rise to different patterns of the network activity.
See text for details.

For a more detailed view, we now plot the zero-contours of the MSF in the complex

plane as a function of Tp in Fig. 7A. This three-dimensional plot highlights that the

topology of the zero-contour changes significantly as a function of Tp. For larger

pacing periods (Fig. 7B), we find a connected region where the MSF is negative,

which resembles half a bowtie on the right. As we decrease Tp, the narrow part of the

bowtie contracts, until two disconnected regions emerge as exemplified by Fig. 3A.

When we lower Tp even further, the stable central regions contracts along the real

axis, but expands along the imaginary axis (see Fig. 7C). Here, the synchronous
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Figure 7 (A) Zero-contour of the MSF for purely luminal coupling as a function of Tp.
Zero-contour of the MSF for Tp = 1.075s (B) and Tp = 0.55s (C). The MSF is negative in regions
labeled S and positive in regions denoted by U. The colour represents the value of cos (arg (q (η))).

network state can lose stability via a saddle-node bifurcation, indicated by the

yellow colour of one of the stability boundaries. For larger pacing periods as shown

in Fig. 7B, we note that there is a period doubling bifurcation towards the right side

of the central stable region. A similar line exists towards the right of the unstable

region in Fig. 7C. However, in both cases, these period doubling bifurcations occur

for Re(η) > 0, which is not permissible for diffusive coupling.

So far, we have studied purely cytosolic and luminal coupling, respectively. Under

physiologically realistic conditions, however, Ca2+ diffuses through both the cytosol

and the SR. We therefore computed the bifurcation lines in the (τc, τsr) plane. For

this, we replace σH in Eq. (3) with a single matrix H whose entries are all zero

except for H2,2 = τ−1c and H3,3 = τ−1sr . To compute the MSF, we further introduce

the general MSF parameters ηc and ηsr, which run along the axis in Fig. 8. Note
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that we can restrict the values of ηc and ηsr to negative real values since diffusion

does not lead to complex eigenvalues of the graph Laplacian. For the computation

of the MSF, we replace the matrices (Ak − ηH), k = 1, . . . , N , in Eq. (6) with

(A−H(ηc, ηsr)). Here, H(ηc, ηsr) is a matrix whose non-zero elements are H2,2 = ηc

and H3,3 = ηsr. As Fig. 8 shows, the MSF is negative for large ranges of ηc and

ηsr. When luminal coupling is weak, i.e. when the absolute value of ηsr is small, we
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Figure 8 Zero-contour of the MSF in the (ηc, ηsr) plane for Tp = 0.6. Note that both ηc and ηsr
are real since we focus on diffusive couling. The MSF is negative in the region labeled S and
positive in regions denoted by U. The green curve corresponds to saddle-node bifurcations (+1),
while the blue curve refers to period-doubling bifurcations (−1).

only observe a period-doubling bifurcation upon variation of ηc. This is indicated

by the (−1) line. In contrast, when cytosolic coupling is negligible, the network

instability occurs via a saddle-node bifurcation upon variation of ηsr, which we

mark by the (+1) line. These findings illustrate that the network is generally stable

when coupling is balanced, i.e. when ηc and ηsr are of similar magnitude. However,

when one coupling dominates, we find either a period-doubling or a saddle-node

bifurcation.

Discussion
Networks are ubiquitous in biology, and intracellular signalling cascades constitute a

prime example. In the present study, we investigated the Ca2+ dynamics in cardiac

myocytes. On the one hand, this is highly relevant for our general well-being as

disturbances in these networks are associated with numerous pathologies. On the

other hand, Ca2+ signalling in cardiac myocytes exemplifies a network of networks.

Each node in the network corresponds to a CRU, whose dynamics in turn is governed

by its own reaction network. A key aspect is that CRUs are coupled through two

different channels: Ca2+ diffusion in the cytosol and Ca2+ diffusion in the SR.

Our particular interest is in understanding how different coupling strengths shape

the synchronous network state. The reason for this is that loss of synchrony in a

cardiac Ca2+ network is associated with the emergence of cardiac Ca2+ alternans.
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These constitute one of the earliest cardiac arrhythmias and act as precursors to

more severe cardiac abnormalities including sudden cardiac death. Until recently,

Ca2+ alternans could only be observed at an advanced stage, i.e. when the Ca2+

concentration oscillates out-of-phase in mesoscopic parts of a myocyte. However,

improved imaging techniques now allow the recording of microscopic Ca2+ alternans

[30]. Here, the Ca2+ concentration averaged across the cell suggests a healthy cardiac

myocyte, while in fact single CRUs may already display pathological Ca2+ alternans.

From a conceptual point of view, microscopic Ca2+ alternans correspond to the

pattern that emerges when the synchronous network state has just lost stability.

We recently reported that microscopic Ca2+ alternans can emerge via two differ-

ent mechanisms: a traditional period-doubling bifurcation and a novel saddle-node

bifurcation [31]. Strikingly, the emergent network patterns of Ca2+ activity vary

substantially as we move along the stability boundaries. To understand this, we

here computed the MSF for the CRU network.

A comparison of Figs. 2A and 3A reveals that the MSF differs significantly be-

tween purely cytosolic and luminal coupling. While the zero-contour takes on the

shape of an ellipse in the former, there are multiple zero-contours in the latter,

delineating distinct regions where the MSF is negative. This has direct implications

for the stability of the synchronous network state. As Fig. 6 illustrates, we can un-

derstand changes in stability when the MSF parameter σλ moves along the real line.

By increasing σ, the value of σλk becomes more negative for all k. Hence, for purely

cytosolic coupling, once one eigenvalue leads to a value of η outside the ellipse, syn-

chrony is unstable. On the contrary, for luminal coupling, the small region where

the MSF is positive means that increasing σ induces a sequence in which the syn-

chronous network states alternates between stable and unstable. These alternations

are responsible for the ‘stability bumps’ in Fig. 4.

Because each of these bumps are linked to a different eigenvalue — and corre-

spondingly with a different eigenvector — we observe the abrupt changes in the

emergent network activity when the synchronous network state loses stability. Fig-

ure 4B shows the explicit sequence of eigenvectors for a network of 4 nodes. Similar

behaviour is seen in much larger networks, too. Figure 5 illustrates this for a bigger

network. As the network size grows, the pattern space of the eigenvectors becomes

richer, which also means that the patterns that can occur in the network exhibit

more features. The above argument rests on the assumption that eigenvectors are

good predictors of the emergent network state. This is generally true when only one

eigenvector gives rise to the instability as is the case for Figs. 6A and 6B. Then, the

associated eigenvectors (Figs. 6C and 6D) match very well with the results from

direct numerical simulations shown in Fig. 5. Once σλ is positive for more than

one eigenvalue, the direct predictive power of eigenvectors is reduced, as now the

emergent network state is a linear superposition of several eigenvectors, but the

weights are not known a priori.

As our results demonstrate, knowledge of the MSF is key for understanding the

non-intuitive behaviour of the CRU network. Unfortunately, the MSF can often only

be obtained numerically, which can be computationally expensive. We here make

progress in this direction by employing a PWL model for the dynamics of a single

CRU, which allows us to explicitly construct the synchronous network state and
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the map that propagates network perturbations. We can then compute the MSF

in a semi-analytical manner, which makes it possible to produce three-dimensional

visualisations as those depicted in Fig. 7. Based on plots like this, we can infer how

the stability of synchrony in the CRU network varies as the pacing period is altered

(which is a common experimental practice).

Since the computation of the MSF rests on the PWL nature of the CRU model,

it is worth asking how well this approximation describes the dynamics of the full

nonlinear model. As shown in [40], the PWL model captures the core dynamics

of the nonlinear model very well. Of course, there are parameter regimes of the

nonlinear model that cannot be captured with the current parametrisation of the

PWL model used here. For example, the L-type Ca2+ current in the present study

is either zero or takes on a constant non-zero value iCaL. If the nonlinear shape of

the L-type Ca2+ current is central to a study, it requires either the construction of a

piecewise constant L-type Ca2+ current with multiple levels, or one needs to resort

to the nonlinear model. Similar considerations apply to the closure of the L-type

Ca2+ channel. We currently include voltage-dependent inactivation only. However,

Ca2+-dependent inactivation also exists [41, 42]. We can again amend the PWL

model used here with an additional switch for Ca2+-dependent inactivation, or if the

interplay between the timescales of the inactivation processes becomes important,

one might have to consider the nonlinear model. Furthermore, care needs to be

taken when Ca2+ buffers are the focus of attention. The current model treats buffer

contributions as constant, but given the dynamic nature of the intracellular Ca2+

concentration, the fraction of Ca2+-bound buffers changes over time. In this case,

the PWL model cannot be amended and the nonlinear model is the only choice.

In case the PWL model can be tailored to the question at hand, the study in [43]

provides a conceptual blueprint for it. It shows an extension of the classical 3-piece

approximation of the Fitzugh-Nagumo model [44, 45] to investigate canard-like

solutions.

As the focus of this study lies on Ca2+ alternans, we only consider diffusive,

i.e. nearest-neighbour coupling. Consequently, the MSF parameter η is always real

and negative. This only leads to period-doubling or saddle-node bifurcations, re-

spectively, where cos(arg q(η)) = ±1. However, the MSF provides information for

arbitrary values of η and hence arbitrary network topologies. The line colours in

Figs. 3A and 7C show that if η crosses the zero-contour of the MSF at positions dif-

ferent than the real axis, cos(arg q(η)) 6= ±1. This corresponds to a Neimark-Sacker

bifurcation at the network level, and it will be interesting to explore the emergent

network patterns.

In conclusion, a combination of PWL modelling and MSF techniques facilitated

a detailed investigation of microscopic Ca2+ alternans in a network of CRUs. Cru-

cially, our results explain the previously reported abrupt variations in network ac-

tivity as the coupling strength in the network changes [31]. Moreover, our findings

demonstrate that depending on whether Ca2+ diffusion is stronger in the cytosol or

in the SR, different microscopic Ca2+ alternans emerge, with each mode of diffu-

sion giving rise to distinct network patterns of the intracellular Ca2+ concentration.

While these findings may have implications for cardiac health, they also highlight

on a more fundamental level that cell signalling more generally may be usefully

conceptualised as a network of networks.
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Appendix
Here, we provide details of the currents, the load release function and the clamped

voltage used in Eq. (1). For a further discussion, we refer the reader to [39].

The L-type Ca2+ current is given by ICaL = Θ (V − VL) iCaL with the threshold

voltage VL = Vmax − 1 and a constant conductance

iCaL = −iCaPCa
aCaLFγoCao

exp(2aCaL)− 1
, (7)

where aCaL = VmaxF/RT . The current through the NCX is modelled as INaCa =

φ(V )− ψ(V )cµs , where

φ = INaCa
ηqNa3i Cao

(K3
mNa + Na3o)(KmCa + Cao)

, (8)

ψ = INaCa
γNaCaNa3o × 10−3

(K3
mNa + Na3o)(KmCa + Cao)

. (9)

Here, we introduce the piecewise constant function

γNaCa =

0.45 , V > VNaCa ,

4 , V ≤ VNaCa ,
(10)

which switches at a threshold voltage of VNaCa = −50 mV. The function ηq is given

by ηq = 0.0501α2 + 0.3816α + 0.9182 with α = FV/RT . Ca2+ uptake takes the

form Iup = vupc
µ
i . The load-release function Q = Q(cµu) is described by the PWL

function

Q(cµu) = 10−3


0 , 0 ≤ cµu < 50 ,

cµu − 50 , 50 ≤ cµu < 115 ,

kcµu + s , cµu ≥ 115 ,

(11)

where k measures the steep nonlinear dependence of Ca2+ release on the SR Ca2+

concentration, and s is a constant that is chosen such that Q is continuous. We

model the clamped voltage for a pacing period Tp as

V (t) =

V+(t) , kTp ≤ t ≤ (k + x)Tp ,

Vmin , (k + x)Tp ≤ t < (k + 1)Tp ,
(12)

where k ∈ N counts the number of APs and x = ax/(ax + Tp) with ax = 2/3. The

resting potential is given by Vmin = −70mV, and V+(t) captures the shape of the

clamped voltage, given by

V+(t) = Vmin + (Vmax − Vmin)

√
1−

(
t− kTp
xTp

)2

, (13)

for kTp ≤ t ≤ (k + x)Tp, where the maximal AP is given by Vmax = 30mV. Note

that since V is an explicit function of time, all variables that only depend on V
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are explicitly time-dependent. We collect these time-dependent functions in the

function f(t) used in Eq. (2).

Definition Value

T Temperature 308 K

F Faraday’s constant 96.4867 C/mmol

R Gas constant 8.314 J/K mol

Nao External sodium concentration 140 mM

Cao External calcium concentration 1.8 mM

vs/vi Subsarcolemmal/cell volume 0.1

vup Uptake strength 270 µM/s

ĪNaCa Strength of the NaCa exchanger 105 µM/s

KmNa Constant from the 1994 Luo-Rudy model 87.5 mM

KmCa Constant from the 1994 Luo-Rudy model 1.38 mM

PCa Constant from the 1994 Luo-Rudy model 5.4× 10−4 cm/s

iCa Flux constant 11000 µmol/C cm

γo Constant from the 1994 Luo-Rudy model 0.341

g Release current strength 3.5× 104 sparks/µM

k Release slope 11.3 s−1

τr Average spark life time 20 ms

τa Relaxation time of cu to cj 50 ms

τs Submembrane diffusion time constant 10 ms

βs Buffering constant for cs 0.5

βi Buffering constant for ci 0.01

Table 1: Standard parameter values used in the study.

List of abbreviations
Ca2+ calcium

CRU calcium release unit

MSF master stability function

ODE ordinary differential equation

PWL piecewise linear

SR sacroplasmic reticulum
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34. Coombes, S., Lai, Y.M., Şayli, M., Thul, R.: Networks of piecewise linear neural mass models. European

Journal of Applied Mathematics 9, 1–22 (2018)

35. Coombes, S., Thul, R.: Synchrony in networks of coupled non-smooth dynamical systems: Extending the

master stability function. European Journal of Applied Mathematics 27(6), 904–922 (2016)

36. Ladenbauer, J., Lehnert, J., Rankoohi, H., Dahms, T., Schöll, E., Obermayer, K.: Adaptation controls
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