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Summary

Electronic circular dichroism (CD) spectroscopy is an important tool for the elucidation of biomolecular

structure. This review describes the latest progress and developments in experimental and theoretical studies

of proteins using CD spectroscopy, including time-resolved measurements, oriented CD, and state-of-the-

art experiments using polarised UV light from high-energy synchrotron radiation. Statistical and machine

learning methods for the analysis of experimental spectra are surveyed. Computational methods employed to

predict CD spectra from structure include ab initio quantum chemistry techniques, time-dependent density

functional theory and exciton theory. We describe recent computations using exciton theory, where we

outline the importance of electronic-vibrational coupling and the influence of electrostatics of the protein

environment on the electronic transitions in the chromophores responsible for CD signals in the near-UV.

Improvements in the accuracy of the computational approaches should allow more quantitative studies

applying a combination of experimental data and modelling to a variety of interesting questions.

Keywords exciton, quantum, electrostatic potential, electronic excited states, aromatic, structure pre-

diction.
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1 Fundamentals of the phenomenon of electronic circular dichro-

ism (CD)

CD is the differential absorption of left- and right-handed circularly polarised light. An elliptically polarised

light wave results when a linearly polarised light wave passes through an optically active chiral compound.

The magnitude of the effect is given by

φ =
π

λ(ηl − ηr)
(1)

where φ is the ellipticity (in radians) of the emerging light wave and ηl and ηr are, respectively, the absorption

indices of the left- and right-handed circularly polarised light at wavelength λ. When the ellipticity is plotted

as a function of wavelength, a curve results with a maximum corresponding to the wavelength of zero angle

in the optical rotatory dispersion (ORD). Optical rotation is rotation of the plane of polarised light to lie

along the major axis of the ellipse. Optical isomers give CD curves which are identical except that in one

case the effect is positive (i.e. φ is positive throughout) whereas for the other isomer the effect is negative.

The ellipticity [Θ] (with units deg cm2 dmol−1) of the emerging light is the ratio of the minor over the major

axis of the ellipse. CD is used to characterise optically active molecules that possess a chiral centre, for

example the Cα carbon atom in the amino acid alanine. Alanine has two optically active stereoisomers or

enantiomers: d-alanine and l-alanine. Prefix d refers to Latin dexter and prefix l to Latin laevus and they

reflect the right- and left-handedness of the chemical structures. The optical activities for l- and d-alanine

are, respectively, dextrorotary (rotates the plane of polarised light to the right), prefix (+), and levorotary

(rotates the plane to the left), prefix (−). The (R)/(S) notation for stereoisomers is similar, where prefix

(R) refers to Latin rectus (right, proper, or straight) and prefix (S) to Latin sinister (left). (R)/(S) naming

follows the Cahn-Ingold-Prelog rules. Optical electronic transitions within a chiral compound give rise to

the differential absorption and these electronic transitions are discussed for proteinaceous systems in the

sections that follow.

CD in the far-UV is used to characterise protein secondary structure, where the chromophore is the

peptidic bond. CD in the near-UV can give insight into a protein’s tertiary structure. CD in these wavelength

ranges can be used to study temporal changes in local and non-local structure. A protein’s primary structure

is the sequence of its amino acids and its secondary structure is the spatial arrangement of the amino acids.

An α-helix has hydrogen bonds between residues i and i+4 in the same strand; a β-sheet has hydrogen

bonds between residues in neighbouring strands; and a random coil has an irregular arrangement of amino

acids. Secondary structural elements have distinct far-UV CD spectra. The tertiary structure of a protein
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is its three-dimensional structure, which helps to give a protein its function.

The application of CD spectroscopy to investigate protein structure followed on from ORD studies of

polypeptides and proteins in the early to mid 20th century. The ORD and CD studies were brought about

by advances in instrumental techniques and the increasing availability of ORD and CD spectrometers. A

modern and practical approach to designing an experimental study of proteins using CD spectroscopy has

been outlined by Kelly et al.1 The authors suggest that after the explosion in structural biology studies in

the 1980s - and subsequent deposition of highly-resolved X-ray crystal and structures in the Protein Data

Bank (PDB) - CD spectroscopy studies gained momentum due to the technique’s ability to study proteins

in solution, i.e. closer to their native environment.

2 Far-ultraviolet CD

Far-UV CD is concerned with the spectral region over the wavelength range 160 to 240 nm. This range is of

particular interest because singlet electronic transitions in the backbone peptide bond of a protein occur at

190 and 220 nm (the amide chromophore N−C=O). The transition at 220 nm is from the lone pair on oxygen

to a π∗ anti-bonding orbital (nπ∗ transition) and the transition at 190 nm is from a non-bonding π orbital

to the π∗ orbital (πnbπ
∗ transition). These two transitions mix in the chiral environment of a protein and

result in distinct spectra for each secondary structural element present within the protein. Exciton splitting

of the πnbπ
∗ transition gives rise to the positive peak at 190 nm and the negative peak at 208 nm in the

CD spectrum for an α-helix alongside a negative peak at 220 nm due to the nπ∗ transition. The electronic

transitions at 208 nm and 190 nm are polarised parallel and perpendicular, respectively, to the helix axis in

α-helical structures. Characteristic CD spectra for other secondary structural motifs are also observed: a

β-sheet has a positive peak around 195 nm and a negative peak around 215 nm; a protein with no dominant

secondary structure (a random coil) has a negative peak around 200 nm. Figure 1 displays illustrative CD

spectra for three proteins which have dominant secondary structures of an α-helix, a β-sheet and a random

coil. Characteristic CD spectra for additional secondary structural motifs can also be observed, for example,

a type I β-turn.1
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2.1 Exciton theory and the matrix method

Theory

An exciton can be defined as an electron combined with a hole in a crystalline solid. A hole is an unoccupied

vacancy in an electronic energy level and behaves as if it were a positive electronic charge with positive mass.

In the exciton, the electron has sufficient energy to be in an excited state and is bound to the positive hole

by electrostatic attraction. The exciton can migrate through the solid and eventually the electron and hole

recombine with emission of a photon. The ‘matrix method’ is a theoretical approach based on exciton theory

to calculate the ORD and CD of polypeptides, where the first matrix method computations were carried out

by Woody and Tinoco2 and by Bayley, Nielsen and Schellman.3 Here the exciton is an electron-hole pair

describing an electronic excited state of the backbone peptide bond of the biomolecule.

The matrix method considers a protein to comprise M chromophores with each chromophore possessing a

set of characteristic electronic transitions. For a protein the number of backbone peptide-bond chromophores

is the number of amino acids minus one. The interaction of the chromophores and their electronic transitions

gives a series of delocalised electronic transitions (and corresponding intensities, i.e., rotational strengths) for

the protein as a whole. The interaction of the isolated chromophores is described by the Coulombic interaction

of charge densities associated with each electronic transition. The charge densities can be approximated by

sets of point charges that reproduce either the electrostatic potentials arising from ab initio densities or by

the appropriate electric transition dipole moment associated with each electronic transition.

The matrix method considers the total wave function Ψk for a state k of a protein as a linear combination

of singly-excited basis functions Φia

Ψk =

M∑
i

ni∑
a

ckiaΦia (2)

where a is an excited state on chromphore i, ni is the number of transitions on a group and ckia is an expansion

coefficient. Each singly-excited basis function is a product of M monomer wave functions

Φia = φ10 · · ·φia · · ·φj0 · · ·φM0 (3)

where the first and second subscripts denote, respectively, the chromophore and the electronic state. For

example, wave function φia is a transition from the ground state to excited state a on monomer i. The
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Hamiltonian operator Ĥ for the protein may then be defined as

Ĥ =

M∑
i=1

Ĥi +

M−1∑
i=1

M∑
j=i+1

V̂ij (4)

where Ĥi is the Hamiltonian for chromophore i and V̂ij is the operator for the interaction between monomers

i and j. The diagonal elements of the Hamiltonian matrix are the excitation energies of the electronically

excited states; the off-diagonal elements, Vij , arise from interactions between groups or from interactions

between excitations on the same group. An off-diagonal element typically has the form

Vi0a;j0b =

∫ ∫
ρi0a(ri)ρj0b(rj)

4πε0rij
dridrj (5)

where ρi0a(ri) and ρj0b(rj) are transition electron densities on, respectively, chromophores i and j, ε0 is the

permittivity of free space, and rij is the distance between the two chromophores. The densities in equation

5 may be represented by point charges, thereby replacing the double integral in equation 5 with a sum over

the discrete charges as follows

Vi0a;j0b =

Ns∑
s=1

Nt∑
t=1

qsqt
rst

(6)

where qs and qt are, respectively, point charges on monomers i and j with the number of charges in each set

given by Ns and Nt. Diagonalisation of the Hamiltonian matrix, equation 4, yields the transition energies

(the eigenvalues) of the composite system and the configuration (mixing) coefficients (the eigenvectors) that

describe the contributions of the excited states of individual chromophores to the interacting system. For

each delocalised transition, the rotational strength may be computed from the following expression,4 derived

from the Rosenfeld equation,5 which involves the imaginary part (denoted by Im) of the scalar product of

the electric and magnetic transition dipole moments ~µ and ~m.

R0k = Im(〈Ψ0| µ̂ |Ψk〉 〈Ψk| m̂ |Ψ0〉) (7)

Equation 7 is origin-independent only for electric moments in the dipole velocity representation; the current

implementation of the matrix method employs the dipole length representation, and following Goux and

Hooker,6 the origin-independent chiral strength is calculated as

c0k =
α

3
Re(〈Ψ0| p̂ |Ψk〉 〈Ψk| L̂ |Ψ0〉) (8)
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where Re denotes the real part of the scalar product, α is the fine structure constant, ~p0k is the linear

momentum, and ~Lk0 is the angular momentum moment. The latter quantities are obtained from the electric

and magnetic transition moment vectors of the individual chromophores. The unitary transformation that

diagonalised the Hamiltonian is used to transform the linear and angular momentum moment vectors before

application of equation 8. The resulting chiral strength is then readily converted to rotational strength.6

Finally, a CD spectrum is obtained by centering a band function, such as a Gaussian or a Lorentzian curve,

around the rotational strengths calculated for the specific transition energies.

An example matrix method computation

As an example of a matrix method computation, consider the nπ∗ (220 nm) and πnbπ
∗ (190 nm) electronic

transitions in a diamide with dihedral angles φ = −48° and ψ = −57° (i.e. an α-helical conformation, see

Figure 2). The (symmetric) Hamiltonian matrix for the diamide (with just the lower triangle shown for

clarity) is expressed as

Ĥ =



E1
nπ∗ · · ·

V 11
nπ∗πnbπ∗ E1

πnbπ∗ · ·

V 12
nπ∗nπ∗ V 21

nπ∗πnbπ∗ E2
nπ∗ ·

V 12
nπ∗πnbπ∗ V 12

πnbπ∗πnbπ∗ V 22
nπ∗πnbπ∗ E2

πnbπ∗


(9)

where E1 and E2 are the transition energies of the monomer excited states; matrix elements V 12 and V 21

represent interactions between transitions in different amides; and V 11 and V 22 mix excited states within a

single amide group. Diagonalisation of the Hamiltonian matrix, equation 9, yields eigenvalues that are the

energies of the transitions of the diamide, and eigenvectors that give the contribution of the excited states of

individual amides to the delocalised excited states of the diamide. The unitary transformation that diago-

nalised the Hamiltonian is used to transform the electric and magnetic transition moments of the individual

amides. Then equation 8 is employed to compute the chiral strength. Finally, the rotational strength is

calculated. The computed rotational strengths for the four transitions in the diamide have Gaussian func-

tions of full-width half-maximum (FWHM) 12.5 nm fitted to generate the predicted CD spectrum shown in

Figure 3. The parameters in the matrix method that describe the peptide backbone nπ∗ and πnbπ
∗ singlet

transitions at 220 and 193 nm, respectively, are derived from ab initio calculations on N -methylacetamide

(NMA).7
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Mechanisms that contribute to CD

The contribution of a chromophore to a CD spectrum results from the rotational strength generated by

three mechanisms. i) The one-electron mechanism involves two transitions within the same chromophore

and is also known as intra-chromophore mixing. ii) The µ-µ mechanism is the coupling between electric

transition dipole moments of two transitions on different chromophores. iii) The µ-m mechanism is the

coupling between electric and magnetic transition moments of two different chromophores.8 The last two

mechanisms are called inter-chromophore mixing or a coupled oscillator type of mechanism.

2.2 Recent experimental studies

2.2.1 Time-resolved measurements

The amplitude of the CD signal is several orders of magnitude lower than the absorption of the achiral

background. This difference in intensity makes CD measurements challenging and sensitive. CD measure-

ments require a stable light source and a low noise detector. The latest CD commercial setups usually use

deuterium lamps or Xenon flash lamps that provide radiation of sufficient intensity down to ∼160 nm. Below

this value, poor stability and the low intensity of the source preclude reliable CD measurements. The main

use of CD spectroscopy in the UV range is related to protein structure determination. However, the low

stability and the low intensity of the available light sources make time-resolved measurements complicated

in the far-UV range. The following part details the development of the time-resolved CD setups, from the

birth of the method to the latest breakthroughs.

The first time-resolved CD techniques appeared in 1974.9,10 Researchers recorded, with millisecond

temporal resolution, transient CD of photolysis processes in proteins and biomolecular interactions. The

UV probe beam was generated by a mercury arc or a Xenon flash lamp, filtered with an interference filter

and polarised alternately circularly left and right (50 kHz) by a quartz modulator. The CD signal was

determined from the variation of intensity of the probe beam after passing through the sample. These first

monochromatic techniques paved the way for time-resolved CD spectroscopy and allowed the first studies of

biomolecular dynamics. The technique was improved to reach 300 µs temporal resolution and coupled to a

T-jump to study the relaxation of protein conformation after an increase in temperature.11 The first stopped-

flow CD study of protein secondary structure was carried out by Luchins and Beychook.12 Akiyama and

co-workers coupled a commercial CD spectrometer based on the same principle with a mixing microfluidic

cell to obtain CD spectra sequentially with 400 µs time resolution.13 A significant enhancement of the time
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resolution was made in 1989 using a picosecond pulsed laser.14 The quartz modulator was replaced by a

Pockel’s cell, which circularly polarises the 80 ps pulse of the laser probe. The CD signal was still determined

through a phase sensitive detection. This novel approach was used to study the photo-dissociation of the

CO ligand in carbonmonoxymyoglobin. With this setup, Xie and Simon14 made a breakthrough in CD

spectroscopy, but its spectral range was limited to 280 nm in the UV range and its use was limited for

biological applications.

Hache and co-workers improved this approach, enhancing the alignment of the Pockel’s cell.15 They also

developed a novel technique based on the use of a Babinet–Soleil compensator.16 This approach significantly

enhances the CD measurement, because it removes all the errors arising from polarisation artefacts, and

can achieve sub-picosecond temporal resolution. They demonstrated the strength of their method in the

deep-UV range (>225 nm) with the measurement of binaphthol spectra and following the photo-dissociation

of carbonmonoxymyoglobin.17

Kliger’s group developed18 a time-resolved CD setup able to access a spectral range down to 195 nm.

It is still today the only setup built with commercial devices that reaches that wavelength. They first

proposed a novel method, based on the measurement of the ellipticity change of a highly eccentric elliptically

polarised light after passing through a dichroic sample. They also demonstrated the reliability of this new

approach measuring the CD change of the photo-dissociation of the CO ligand in carbonmonoxymyoglobin

with a 300 ns time resolution. The method has been extended later to higher energy19 and higher time

resolutions (∼10 ns).20 Oppermann et al.21 have developed the first time-resolved femtosecond CD setup

that incorporates shot-to-shot broadband detection in the deep-UV region with artifact-free measurement of

static and transient CD spectra with a sensitivity below 2×10−5 optical density (OD). The setup represents

a significant advancement in the field of time-resolved chiral spectroscopy and has the potential to give

important new insights into the structural dynamics of biologically relevant chromophores in the UV region.

2.2.2 Orientated CD

Oriented circular dichroism (OCD) is a method that can determine the conformation and the orientation

of membrane-active peptides in oriented membrane systems. OCD relies on the phenomenology predicted

by Moffitt’s theory,22 that the electric transition dipole moments of the πnbπ
∗ electronic transition in back-

bone amide bonds in helical polypeptides are polarised either parallel or perpendicular to the helix axis.23

This πnbπ
∗ transition splits into three energy levels by exciton splitting, where each resultant energy level

possesses a corresponding dipole moment. One of these transitions is polarised parallel while two are po-
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larised perpendicular with respect to the helical axis. A membrane-bound α-helical peptide can be arranged

in a surface-bound S-state, a tilted T-state, and an inserted I-state. The transition dipole moment for

the parallel-polarised “fingerprint” band at 208 nm interacts with the electric field vector, which oscillates

perpendicular to the propagation direction of light. This results in distinct spectra for each of the three

states of the membrane-bound α-helical peptide when the incident circularly polarised light is normal to the

membrane surface. An S-state, lying flat on a membrane surface, has an intense negative band around 208

nm due to the electric field strongly interacting with the parallel-polarised transition (where the transition

dipole is aligned with the electric field). A T-state has a less intense band around 208 nm and for an I-state

the band around 208 nm vanishes due to the helix (and transition dipole) being aligned perpendicular to the

electric field.24 Bürck et al.25 have given an overview of amphiphilic peptides, hydrophobic transmembrane

helical systems and nonhelical peptides investigated using OCD.

2.3 Recent computational studies

The Protein Circular Dichroism Data Bank (PCDDB),26 established in 2009, operates as an online public

repository for archiving CD spectroscopic data and associated bioinformatics and experimental metadata.

The resource has been put to various uses, including to help develop new computational methods, some of

which are outlined in the following sections.

2.3.1 Exciton, theoretical and quantum chemical approaches

A key early theoretical study of the far- and near-UV CD spectrum of bovine pancreatic trypsin inhibitor

(BPTI), by Manning and Woody,27 considered the contribution of aromatic side chains to its CD spectrum.

BPTI has an unusual far-UV CD spectrum which has made determination of its secondary structure from

its CD spectrum difficult. The protein comprises 58 residues including four Phe and four Tyr residues.

Manning and Woody used the matrix method with parameters describing electronic transitions in the peptide

backbone (four transitions, nπ∗, πnbπ
∗, πbπ

∗ and n′π∗) and ππ∗ transitions in the aromatic side-chains Phe

(four transitions, 1Lb at 260 nm, 1La at 208 nm, 1Bb at 181 nm and 1Ba at 180 nm) and Tyr (four transitions,

1La at 276 nm, 1Lb at 227 nm, 1Bb at 192 nm and 1Ba at 191 nm). The L and B notation for the aromatic

excited states is due to Platt.28 Manning and Woody predicted far-UV CD spectra that were in best

agreement with the experimental spectrum when the four peptide backbone transitions and the four Phe

and four Tyr transitions were included in the matrix method calculations. They concluded that contributions

from aromatic side chains may significantly perturb the far-UV CD spectrum of a protein, and note that in
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BPTI this is due to the low amounts of α-helical structure and the clusters of the aromatic amino acids, in

particular the Tyr21, Phe22, Tyr23, Phe4, and Phe45 cluster.

A detailed theoretical analysis of empirical protein CD data was performed by Micsonai and co-workers29

to improve the estimation of the secondary structure content for β-sheet and mixed α/β containing proteins

from their far-UV CD spectra. This led to the derivation of an algorithm named β-structure selection

(BeStSel), which employs the assumption that the CD spectrum of a protein is a linear combination of

the basis spectra characteristic of the secondary structural elements present in the protein. The BeStSel

algorithm has four characteristic features: (1), the selection of eight secondary structure components for

the residues of the known structures of the reference set by a DSSP30 analysis; (2), a reference set of

protein spectra with known structures was used to optimise the basis spectra sets; (3), to enable secondary

structure determination, basis-spectra sets were calculated on optimised subsets of the reference database by

the linear least-square approximation (subsets of reference proteins and wavelength ranges were optimised

for each secondary structure separately); (4), each optimised basis set is used to determine the secondary

structure of an unknown spectrum. To optimise the basis CD spectra sets (characteristic 2), the authors

used a defined reference set containing 73 spectra based on the SP175 reference dataset31 augmented with

additional examples with spectra of proteins with structural compositions absent or scarce in the SP175 set

(native β2-microglobulin, amyloid fibrils of the K3 fragment of β2-microglobulin, and Alzheimer’s amyloid-β

(1–42) peptide). The BeStSel algorithm reliably distinguished parallel from anti-parallel β-sheets by CD

spectroscopy. The authors showed that the twisting of the β-sheets has a strong influence on the CD

spectrum. By taking into account the twisting angles between β-strands, the BeStSel algorithm improves

secondary structure prediction when compared to previously published algorithms, and specifically for β-

structure–rich proteins and amyloid fibrils. Moreover, the increased information content obtained from the

CD spectra makes protein fold prediction possible down to the topology level, in terms of the CATH protein

structure classification: Class, Architecture, Topology/fold, and Homologous superfamily (CATH).32 BeStSel

is available to access online via a user-friendly web interface.33

Quantum chemical techniques can be applied to the study of CD in the far-UV. Kaminsky and co-

workers34 applied time-dependent density functional theory (TDDFT) (and two other methods) to assess the

dominant factors that contribute to the CD spectrum of an α-helix. They employed a model oligopeptide

Ac-(Ala)N -NH-Me, where N = 1, . . . , 18, to study the dependence on the peptide chain length and the

role of the flexibility of the peptide and its solvent environment. The TDDFT calculations showed that

a characteristic CD spectrum for an α-helix is discernible for peptides with four or five residues, from a
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qualitative agreement with experimental spectra of short α-helices stabilised by metal-histidine binding. A

combined molecular mechanics / quantum mechanics (MM/QM) approach indicated that explicit hydration

and temperature fluctuations of the peptide geometry had a significant influence on the UV absorption and

the CD spectrum. Consequently, a large number of geometries from molecular dynamics (MD) simulations

would be needed for adequate structural averaging in a combined MM/QM approach. The authors found

that the TDDFT-computed CD results were extremely sensitive to the one-electron basis set and the solvent

model employed. This sensitivity was explained in part by the close to perpendicular orientation of the

electric and magnetic transition dipole moments in the geometry of the helix for the dipeptide Ac-Ala-

NH-Me. If the electric and magnetic transition dipoles are perpendicular (i.e. at 90° to one another) the

rotational strength is zero.

The adsorption of polypeptides upon surfaces in solution and their resulting conformational change is

an interesting event which CD spectroscopy can monitor. Adsorption is important as it underpins processes

in materials science, biotechnology and medicine. Meißner and co-workers35 employed MD simulations to

study the conformational change of an α-helical oligopeptide (4DAR5) adsorbing on an anionic amorphous

silica (SiO2) surface. The MD-based simulations employed replica exchange with solute tempering (REST) in

combination with metadynamics (metaD), which enabled the prediction of the helicity loss of the oligopeptide

upon interaction with silica colloids in water and estimation of the CD spectra of the fully adsorbed and

dissolved states. The study used DichroCalc36 to compute the CD spectra for the oligopeptide. There was

remarkably good agreement between the computational predictions of the helicity at 222 nm and experimental

measurements obtained for the 4DAR5 peptide in solution and adsorbed on SiO2 colloids. The modelling also

showed that the assumption of a linear relationship between peptide (fractional) helicity and CD ellipticity is a

correct one, although only for the case of macroscopic conformational states (i.e. an ensemble of biomolecular

structures). This implied that the fractional helicity of a peptide in solution, as deduced from its CD spectra,

should be interpreted as a mean value of a distribution of structures, each with its own - and differing -

structural helicity. Moreover, the authors believe that discrepancies between measured and theoretically

computed CD spectra arise from a lack of statistical averaging over the correct ensemble of biomolecular

structures and not from limitations in the theoretical formalism (or its computational implementation)

underlying CD spectroscopy. This is a view in line with the MM/QM study of Kaminsky and co-workers.34

MD simulations were also employed by Ianeselli and co-workers37 to study the folding of canine milk

lysozyme protein, which is a 129 residue globular protein with a folding time on the order of seconds. A

scheme to analyse changes in protein tertiary structure was developed whereby the protein configurations
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and the optical spectra were drawn directly from atomistic calculations. Firstly, an enhanced MD technique

was employed (biased Ratchet-and-Pawl MD (rMD)) to elucidate an ensemble of folding trajectories and,

secondly, quantum chemical simulations of the excitonic spectra of long-lived configurations were performed

(using the exciton model with a Hamiltonian for the ππ∗ transitions in aromatic residues Phe, Tyr and

Trp). TDDFT calculations on toluene, p-cresol and 3-methyl-indole furnished parameters to describe the

four ππ∗ transitions for each aromatic residue. The study reproduced all the essential features observed in

the experimental time-resolved CD measurements (in the range 200 to 300 nm), and showed that the CD

signals due to the excitonic coupling of the aromatic residues can be used to reveal extremely small changes

in the tertiary structure of the polypeptide chain. An additional and analogous study37 on the protein colicin

immunity binding Im7 further validated the approach. Both examples demonstrate that the combination of

experimental time-resolved CD spectra with advanced MD path sampling and quantum electronic structure

techniques can provide a powerful approach for the characterisation of protein folding pathways.

A general quantum-mechanical “black-box” approach has been developed by Grimme and co-workers38

to compute UV/Vis and CD spectra for a range of (bio)molecular systems. The sTDA-xTB method39 is

a semi-empirical quantum mechanical scheme, designed to compute electronic absorption and CD spectra

of molecules with more than 1000 atoms and for nearly all chemical species. The approach uses the tight-

binding procedure to simplify the Tamm-Dancoff approximation in the computation of vertical electronic

transition energies and properties. The authors used the sTDA-xTB method to compute the CD spectra

for a small tri-peptide (MeNH-Ala-Gly-Ala-Ac) in seven structural motifs (from folded-helical to unfolded),

and a 20-residue peptide (PDB code 12LY) in an α-helical conformation. The calculated spectra correctly

feature the characteristic bands in the CD spectrum for the secondary structures of α helices, β sheets and

random coils, although the predicted spectrum for 12LY is red-shifted by 0.5 eV (corresponding to ∼25

nm). The sTDA-xTB method was also used to calculate the CD spectra for myoglobin in the far-UV and

for photoactive yellow protein (PYP) in the near-UV and visible region. Myoglobin has around 2500 atoms

and is beyond the scope of standard quantum chemistry techniques. The sTDA-xTB method was used to

compute CD for 100 snapshots taken from an MD trajectory, which was necessary to suppress spurious CD

transitions on flexible side chains that can interfere with the main transitions of the peptide backbone and

which would be present in a single structure approach, whereas they are averaged out by the MD simulation.

The computed CD spectrum shows all characteristic features of the α-helix rich myoglobin (eight α-helices)

and, when red-shifted by 1 eV (∼50 nm), is in very good agreement with the experimental spectrum. PYP

is a small cytosolic photoreceptor, in which the chromophore is a deprotonated 4-hydroxy cinnamic acid
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derivative covalently bound to the apoenzyme via a thioester bond at Cys69. The sTDA-xTB computed

absorption and CD spectrum (after a red shift of 0.5 eV) upon comparison to the experiment are in excellent

agreement. The computed vertical excitation energy for the bright ππ∗ transition (at 3.27 eV) is in accord

with values obtained from higher-level QM methods (TD-DFT and SAC-CI) for fragmented (divide and

conquer) model systems.

In another QM/MM and exciton model study, Gattuso and co-workers40 studied the behaviour of a

model 27 amino acid α-helical peptide in water. CD spectra were computed for 80 MD snapshots, taken at

random, using the exciton model with parameters for the nπ∗ and πnbπ
∗ transitions in the peptide backbone

from TDDFT calculations for each of the QM regions considered, where the remaining polypeptide and

solvent is described at the MM level. They showed that the choice of the QM region (the number of amino

acids included), including different possible hydrogen-bonding patterns, can significantly change the shape

of the final CD spectrum. Of the six fragmentation schemes considered, the most appropriate QM scheme to

study the model peptide was hybrid sets of four amino acids followed by three couples of amino acids, which

describes a complete α-helical turn as represented by a quadruplet followed by three consecutive amino acid

couples. (This scheme, presumably, involves nine TDDFT calculations to evaluate the transition energies

and properties to construct the Hamiltonian for the exciton model). In the same study, Gattuso and co-

workers applied their approach to the conformational change in the 27 amino acid peptide when a retinal-like

photo-switch is covalently linked to the two cysteine residues. In the E conformation of the photo-switch the

peptide is α-helical and when the photo-switch is the Z conformer the peptide adopts an α-hairpin secondary

structure. The approach correctly predicted the reduction in α-helicity of the model peptide upon E to Z

photoisomerisation of the switch (by comparing CD spectra computed for free and Z -derived peptide with

experimental spectra for E - and Z -derived peptide).

2.3.2 Machine learning and statistical approaches

More recent computational approaches to the prediction of protein secondary structure from their CD spec-

tra - and vice versa - have utilised machine learning and informatics-based techniques. Louis-Jeune and

co-workers41 employed theoretically derived spectra as a reference set for accurate CD based predictions of

protein secondary structure. The authors used DichroCalc36 to compute the theoretical CD spectra for a

non-redundant set of structures, representing most proteins in the PDB, and then applied a straightforward

approach to predict secondary structure content using the theoretical CD spectra as a reference set. The-

oretical CD spectra were computed for 16,050 protein chains from the structures selected from the PDB.
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The approach to predict the secondary structure was based on a k-nearest neighbours (k-NN) algorithm (a

standard method in pattern recognition). It was assumed that the CD spectra of two proteins, which have

similar secondary structural content, will also be very similar. The K2D3 method improved the predictions of

secondary structure content over the previous K2D2 method, in particular for the wavelength range between

200 and 240 nm and for β-strand content.

Conversely, a recent empirical-based approach has been developed to generate CD spectra from protein

atomic coordinates.42 The PDB2CD algorithm uses three different descriptors of structure-based information

to generate a protein CD spectrum. The three descriptors are the secondary structure content, the localised

topological features of these secondary structure components, and the overall structural similarity between

the query - or input - structure and the proteins within the basis dataset used. The results from the

application of all three descriptors define proteins in the dataset with similar characteristics to the query

protein. Lastly, the PDB2CD algorithm uses a refinement method to remove proteins from those selected

whose CD spectra could be considered as outliers relative to the rest of the spectra, yielding a set of proteins

with CD spectra that can be used to create the resulting CD spectrum for the input protein. The PDB2CD

approach was cross-validated with the SP175 dataset,31 and tested on an additional 14 proteins. The

approach performed consistently better than the first principles DichroCalc method at replicating known

protein spectra in the far-UV region.

Hall and co-workers43 have developed a machine learning approach, named secondary structure neural

network (SSNN), to predict protein secondary structure for a protein from its CD spectrum for the range

190 to 240 nm. SSNN is a self organising map (SOM) neural network approach that employs a database

of spectra from proteins with known X-ray structures, enabling prediction of secondary structures for new

proteins. SSNN has three sequential units: SSNN1 takes spectra for known proteins (the reference set) and

clusters them into a map; SSNN2 creates a matching secondary structure map; and SSNN3 places unknown

CD spectra on the map and gives them structure vectors to output an estimate of secondary structure

and model spectra. The reference data set used to train SSNN was taken from the CDPro website44 and

is denoted as set CDDATA.48, which contains data on 48 proteins. SSNN offers a slight improvement

over similar and previously developed SOM techniques. A major practical advantage of the above three

approaches (K2D3, PDB2CD and SSNN) - and BeStSel - is that they are readily accessible via web-based

interfaces to enable researchers to upload, straightforwardly, CD spectra (or protein atomic coordinates) to

predict protein secondary structure (or CD spectra).
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3 Near-ultraviolet CD

3.1 Recent experimental studies

3.1.1 Site-directed mutagenesis and tertiary structure

Site-directed mutagenesis is an established technique that has been used to investigate the contribution of

aromatic residues to the near-UV CD spectra of proteins.45,46 Two recent studies have employed near-UV

CD and site-directed mutagenesis to help optimise TAG (3-methyladenine DNA glycosylase I) homology

modelling,47 and to characterise the structural and thermodynamical properties of the L94F mutant of horse

cytochrome c.48

Tomar and Peddinti47 carried out an in silico and experimental study to generate a three dimensional

model structure of the TAG enzyme from pathogenic bacterium Acinetobacter baumannii. Inhibition of the

TAG enzyme is a promising drug design strategy to combat infections caused by A. baumannii growth.

Near-UV CD spectra were measured for TAG and for TAG bound to the inhibitor 3mA. On titration with

the inhibitor 3mA, a significant increase of the positive peaks in the near-UV CD spectrum was observed,

in particular in the 270–285 nm region. From the spectral changes, it was inferred that the local tertiary

structure of Tyr16 in the TAG protein was affected upon substrate binding. The study also employed far-UV

CD to investigate the changes in secondary structure upon substrate binding. Analysis of the ellipticity at

222 nm showed that, after substrate binding, helical content increased in the TAG enzyme. As part of the

in silico modelling, mutagenesis was employed to compute ∆∆G values for a range of point mutants of the

TAG protein binding to the 3mA substrate.

Khan and co-workers48 studied the folding properties of h-cyt c using a range of experimental techniques

(optical and thermal) and MD simulations. The near-UV CD spectra helped to show the effect of mutation

on the tertiary structure of the protein. The wild-type (WT) protein has one Trp, four Phe and four Tyr

residues. The four residues Leu94, Gly6, Phe10 and Tyr97 are involved in a common folding nucleus that

guides cyt c to fold properly.49 The mutation of Leu to Phe at position 94 may perturb the tertiary structure

due to the bulkiness of the Phe side chain. The near-UV CD spectra for the L94F mutant in the native

buffer featured bands at 282 and 289 nm, characteristic of the native protein, but which were less intense

than those for WT h-cyt c. The two characteristic negative peaks at 282 and 289 nm, which arise from

interaction of Trp59 with one heme propionate, are a signature of natively folded mammalian mitochondrial

cytochromes c. The near-UV CD spectrum of the L94F mutant lay in between the spectrum of the native WT

h-cyt c protein and the spectra of the unfolded (denatured) proteins. Hence the near-UV CD measurements
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suggested partial loss of tertiary structure of the WT h-cyt c protein upon L94F mutation.

3.1.2 Time-resolved measurements

Time-resolved CD in the near-UV can be used to study the dynamics of photochemical events. In an ultrafast

time-resolved CD study, Mendonça and co-workers50 investigated the motions of the trans-p-coumaric acid

carbonyl group following the photoexcitation of the R52Q mutant of photoactive yellow protein (PYP) over

a time scale of 10 ps. In the near-UV and upon photo-excitation at 332 nm, the time-resolved CD spectra

(as a function of rotation angle of the carbonyl group) featured a large negative peak that decayed after

approximately 2.1 ps. A quantitative analysis of the CD signals revealed that, upon photo-excitation, the

chromophore underwent a fast (�0.8 ps) and unidirectional flipping motion of its carbonyl group. For the

subset of proteins that did not undergo the photocycle, time-resolved CD provided compelling evidence that

the carbonyl group returned to its initial position, leading to the formation of a nonreactive ground-state

intermediate of trans conformation. The initial ground state is then restored within approximately 3 ps,

which could be due to vibrational relaxation of the chromophore (ground-state intermediate) and restoration

of the initial hydrogen-bond network. A comparative transient study of R52Q and wild-type PYP provided

direct evidence that the absence of Arg52 has no effect on the conformational changes of the chromophore

in the excited state.

3.2 Recent computational studies

3.2.1 Aromatic side chains and vibrational structure

Electronic transitions in the aromatic side chains of the amino acids Phe, Tyr and Trp have been incorporated

into matrix-method exciton computations (to predict CD in the far and near-UV) by using parameters derived

from semi-empirical51 and ab initio calculations.52,53 These established and widely-used aromatic side-chain

parameter sets do not, however, take into account vibrational fine structure. The semi-empirical54 and ab

initio53 parameters (derived from calculations on benzene) do include a set of parameters with an empirical

correction for vibronic coupling in Phe. Electronic transitions to the L states in benzene are symmetry

(dipole) forbidden and are accessible through vibronic coupling.

Recently, Li et al. have described an extension of the exciton approach to include vibrational structure

in the far-UV.55 Vibrational structure is an important, but not the sole, contributor to the bandwidth of

transitions. The approach is exactly analogous for the near-UV,56,57 where Li and Hirst have developed new

parameters for the Phe, Tyr and Trp side chains. For near-UV CD spectra, the main focus of interest is
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the 1Lb and 1La transitions. For Phe and Tyr, the vibrational structure of only the 1Lb excited states was

considered, since their 1La states are located at higher energies, but for Trp 1La is considered. Toluene was

used to represent the aromatic side chain of Phe, p-cresol was used to represent Tyr and 3-methylindole was

used to represent Trp. The vibrational transitions were included by extending the exciton Hamiltonian56

and modifying by scaling (by a normalized Franck–Condon overlap integral) the electric transition dipole

moments and the monopole charges representing the transition charge densities. Interactions between the

vibrational levels of the same chromophore were not considered. The first six to nine transitions in a

vibrational progression were included in the parameters. The new parameters can be accessed via the

DichroCalc web interface.

Karabencheva-Christova and co-workers58 performed MD simulations on wild-type human carbonic an-

hydrase II (HCAII) along with seven of its Trp mutants and computed the CD spectra, using exciton (matrix

method) and TDDFT calculations for comparison with experiment. The study focused on electronic transi-

tions to the aromatic side-chain excited states 1Lb and 1La in the near-UV CD; the higher energy aromatic

transitions (to 1Bb and 1Ba states) were considered to contribute to the far-UV, where they mix with the

large number of peptide backbone transitions. As described for the computational studies in the far-UV that

also employed MD simulations to furnish an ensemble of protein structures (discussed above in section 2.3.1),

the authors sought to understand how the conformational flexibility of the protein influences the interaction

between the chromophores and the CD spectrum as a whole. DichroCalc was used to perform the matrix

method calculations using semi-empirical51 and ab initio7 parameters for the backbone peptide transitions

and ab initio52 parameters for transitions in the aromatic side chains. The TDDFT calculations used a

small subset of the protein atomic coordinates (a restricted structural model): 3-methylindole to describe

each of the seven Trp side chains and phenol to describe each of the eight Tyr side chains; these structures

were capped with hydrogen atoms with the rest of the protein being described by a continuum solvation

model with a dielectric, ε = 4.0. MD simulations were performed for 20 ns for the wild-type protein and its

seven Trp mutants (W5F, W16F, W97C, W123C, W192F, W209F and W245C). CD spectra were calculated

for 40 snapshots along the MD trajectory of each protein. For the wild type, the averaged CD spectrum

calculated by the matrix method over the 40 MD snapshots provided almost a two-fold better agreement to

the experimental one for the main near-UV spectral feature (the negative peak at 270 nm in the experimental

spectrum compared to 263 nm in the averaged spectrum) than using the static X-ray structure alone. The

spectrum computed for the X-ray structure was in better agreement with experiment at wavelengths above

267 nm. The improvement in the former was explained by the MD-based structures facilitating stronger
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interactions and coupling between the L excited states for clusters of Trp and Tyr residues (which are at

different distances and orientated differently than in the static X-ray structure) and the asymmetric field of

the protein influencing coupling between L transitions on the same aromatic side chain. The one electron

effect (where intra-chromophore transitions mix) was predicted to be the mechanism by which Trp residues

generate the strongest CD contributions.

The authors highlight the importance of computing spectra both for MD snapshots and for the X-ray

structure to investigate the underlying coupling mechanisms of the chromophores that give rise to the CD

spectrum. This was further evidenced by comparing MD-snapshot and X-ray-structure computed CD for

the seven Trp mutants with experiment. Three MD-based spectra (W16F, W209F and W245C) had better

agreement with experiment, two X-ray based spectra (W97C and W192F) had better agreement experiment,

with the remaining two MD- and X-ray-based spectra (W5F and W123C) both comparing favourably with

experiment. Differential - or difference - spectra were also computed for the seven mutants. TDDFT was

used to compute CD spectra on restricted model structures of the wild type and its seven mutants. The

calculations showed sensitivity to the structures and were able to distinguish between the wild-type enzyme

and each mutant form. However, they did not reproduce the important spectral features - the positions and

magnitudes of the minima and maxima in the experimental CD spectra. Through an analysis that compared

the TDDFT-predicted CD spectra with spectra from matrix method calculations that only considered the

equivalent seven Trp and eight Tyr residues, it was concluded that, to compute CD spectra reliably, it is of

vital importance to include explicitly the protein environment.

3.2.2 Influence of electrostatics

The aromatic chromophores in the near-UV region are sensitive to environmental electrostatic changes, for

example, the 1La transition of Trp is very sensitive to its surroundings, due to the large dipole moment of this

excited electronic state.59,60 A couple of studies have considered the three mechanisms outlined in section

2.1 to investigate the influence of conformational changes and the effects of the electrostatic interactions on

the near-UV CD spectrum of TEM-1 β-lactamase.61,62 More detailed analysis of aromatic contributions of

individual chromophores examined which of these mechanisms was important.63–66 The electrostatic field

of the ground state of a protein contributes to the one-electron mechanism (or static-field mixing) in the

generation of rotational strength. A computational study of the CD properties of HCAII evaluated the

effects of the protein flexibility on the quality of the calculated spectra,58 but did not consider the vibronic

transitions which can be included in matrix method calculations using new parameters.56 We illustrate these
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aspects using the CD spectrum of BPTI, which has been calculated by Jasim and co-workers.57

Electrostatic potentials of regions around the aromatic residues of BPTI were calculated using APBS67,68

(with the CHARMM force field). For a residue of interest, the atomic charge and radius field parameters

were set to zero in the APBS input for atoms starting at the Cβ carbon atom to the final atom of a side

chain, and a script was used to interpolate the potentials. The experimental near-UV spectrum for BPTI54

is shown in Figure 4 along with spectra computed for the X-ray structure (PDB code: 5PTI) and three of

the NMR (PDB code: 1PIT). This plot is analogous to Figure 1 as presented by Jasim and co-workers.57

The near-UV spectrum computed using the X-ray structure underestimates the magnitude of the CD signal

found in the experimental spectrum. Two NMR models, frames 3 and 5, are in much better agreement with

the experimental spectra, with frame 17 having the least intense negative bands.

To examine the influence of the electrostatic environment and the structure on the predicted near-UV CD

spectra, we consider the interpolated electrostatic potential at the atom centres of Tyr23 in NMR frames 3,

5 and 17 and the X-ray structure. Frames 3 and 5 have marginally different CD spectra and were the closest

to the experimental spectrum. The atom-centred potentials for these two frames are markedly different:

frame 3 has positive values whereas frame 5 has negative values. Frame 17 and the X-ray structure have,

respectively, negative and predominantly positive values (data not shown). Figure 5 displays frames 3 and 5

superimposed on one another. Frame 3 features an arginine residue (Arg1) that has one of its amine groups

(a positively charged side chain) at a distance of 2.7 Å from the hydroxy group on Tyr23. For frame 5 a

methyl group on Arg1 is 5.5 Å from the hydroxy group on Tyr23. This structural difference may give rise

to the difference in electrostatic potential experienced by Tyr23 in frames 3 and 5.

Jasim and co-workers57 examined the contributions that each aromatic side chain makes to the computed

near-UV CD signal of BPTI. For the calculated CD spectrum of frame 3 of the NMR models, the contribution

of Tyr10 and Tyr21 is the largest. Tyr23 at this wavelength shows a more modest contribution. The overall

rotational strength at 279.7 nm is −34.0×10−3 Debye Bohr Magneton (DBM). For frame 17, however, Tyr23

seems important as the rotational strength of this residue cancels out the oppositely-signed contributions

from Tyr10 and Tyr21 which dominated in the rotational strengths for frame 3. For frame 17, the computed

rotational strengths for Tyr10, Tyr21 and Tyr23 at 279.7 nm are 10.8× 10−3, 23.2× 10−3 and −48.0× 10−3

DBM, respectively. The overall rotational strength at 279.7 nm is −12.0×10−3 DBM. The appearance of the

near-UV CD spectrum itself comes from a combination of the rotational strengths of all aromatic residues -

Tyr being the main contributor in this case.

This ranking of Tyr contributions to the CD spectra could help explain why the electrostatic environment
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and the local structure perturbs the electronic transitions on Tyr10, Tyr21 and Tyr23 to a degree that would

affect the spectra, as seen in the computed spectra for NMR frames 3 and 5 compared to frame 17. For

NMR frame 3, Tyr10 is located between Pro9 which is neutral and Thr11 which has a polar side chain and

it is buried in the middle of the protein. While Tyr21 is also buried inside the protein, it is located between

Arg20 with a positive charge and Phe22 with a hydrophobic aromatic side chain. These preliminary findings

suggest that further work should be directed toward analysis of the electrostatic potentials and their effect

on the chromophores.

4 Vacuum-ultraviolet CD

4.1 Recent experimental studies

4.1.1 Synchrotron radiation CD and time-resolved measurements

Vacuum UV spectroscopy is concerned with electronic transitions with energies which fall in the sub 180

nm region of the spectrum. In order to broaden the accessible spectral range, Snyder and Rowe69 and

Sutherland and co-workers70 in 1980 developed CD spectroscopy techniques that use synchrotron radiation.

The light source provided by a beamline in a synchrotron does not have spectral emission limits. It can

be optimized for any energy range between X-rays and infrared. These first setups were built, respectively,

in the Synchrotron Radiation Center (SRC), located in Stoughton, Wisconsin and at the SURF II facility

at the National Bureau of Standards. They were optimized for the VUV range. These developments

demonstrated that the use of synchrotron radiation significantly enhances the signal-to-noise ratio of the

measurement as well as its spectral resolution. In order to produce circularly polarised light, Sutherland

et al. used a photo-elastic modulator that circularly polarises the incoming linearly polarised light. The

polarisation varies alternately from circularly right and circularly left according the stretching direction of

the photo-elastic modulator crystal. The CD signal is determined from the intensity variation measured with

a photomultiplier tube. The analogue signal must be amplified and isolated with electronic devices before

obtaining the final CD amplitude.

Current synchrotron radiation CD (SRCD) experimental stations in synchrotrons around the world still

use the same method. The only difference is that a polariser is usually added before the photo-elastic modula-

tor, to polarise almost perfectly linearly the incoming light. This approach gives good results for steady-state

studies. It allows one to obtain an acceptable signal-to-noise ratio with an integration time below 2 seconds.
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However, because the photo-elastic modulator only works at a specific wavelength with a given setting, it is

necessary to scan the spectral range to obtain a complete spectrum. Thus, a spectrum from 180 nm to 260

nm with a 1 nm increment is recorded in about 2 minutes. The use of synchrotron radiation significantly

enhances the signal to noise ratio and gives access to a wider spectral range, providing structural distinction

inaccessible with typical desktop CD instrumentation. Steady-state SRCD measurements are used in a range

of applications, such as the identification of structural changes of protein synthesised with mutated genes,71

structure determination, study of the impact of the environment on protein structure and the formation

of molecular complexes.72–75 Many recent studies focus on system dynamics. The speed of the processes

studied generally spans between a few nanoseconds to seconds. The acquisition duration of a standard SRCD

setup precludes time-resolved broadband measurements in this time range. For monochromatic measure-

ment, the theoretical time resolution limitation of these setups is linked to the modulator frequency. This

frequency is usually around 50 kHz; so the resolution limitation of monochromatic measurements is about 20

µs. The usual way to follow dynamics with a SRCD setup in a wider spectral range is to use a microfluidic

device and adapt the flow of the sample or to shift the probing beam to probe different moments after the

reaction trigger.76 However, this approach consumes a lot of sample and could have significant bias due to

the heterogeneity of the sample at the measurement spot.

In order to avoid this limitation, Réfrégiers et al. at the DISCO beamline SRCD endstation77 in the

synchrotron SOLEIL investigated whether the natural polarisation of the synchrotron radiation78 can be

used to measure CD. The synchrotron radiation is naturally polarised; the polarisation state of the emitted

photons depends on their propagation direction (Figure 6). Photons propagating in the same plane as the

electrons orbit are linearly polarised, photons located at the vertical edge of the emission cone are circularly

polarised and finally photons emitted between these two planes are elliptically polarised. The polarisation

ellipticity approaches unity as the angle between the plane of the electron orbit and the light emission

direction increases. The polarisation ellipticity also depends of the wavelength of the emitted photons.

Moreover, the direction of the polarisation depends of the emission angle; the polarisation is elliptically right

polarised above the plane of the electron orbit and elliptically left polarised below it. So, the polarisation is

not perfectly circularly polarised in the whole synchrotron radiation beam. However, elliptical polarisation

can be used to determine CD if the left-handed and right-handed probes exhibit the same ellipticity. The

only impact of the imperfect circular polarisation will be the decrease of the amplitude of the signal.

The beam provided by the DISCO beam line is a continuum (120 nm to 600 nm) separated in two parts,

the upper and the lower parts, which have opposite directions of polarisation. The principle of time-resolved
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SRCD is to send this continuum directly through the sample and then measure the intensity of the light

using a spectrograph. The 2D detector of the spectrograph measures simultaneously the intensity of the

probing light from the two parts of the beam at each wavelength in the whole range of interest. Thus, this

setup records the light intensities needed to acquire a CD spectrum in a single measurement.

The temporal resolution of the setup depends of the integration time of the detector. In order to obtain

the CD spectrum, Auvray et al.79 first calibrated the polarisation of the synchrotron radiation beam and

they used clusters of pixels having the same polarisation ellipticity. The initial tests were made on camphor

sulfonic acid enantiomers, to check whether the spectra are balanced and to estimate the signal to noise

ratio of the setup. They proposed two approaches to highlight the capability of the setup. The first aims

to show that using an image intensifier and the temporal distribution of the synchrotron radiation, it is

possible to reach temporal resolutions as short as 82 picoseconds. The second showed the capability of the

setup to record real-time spectra, following the unfolding process of an azo-benzene peptide with a temporal

resolution of 500 µs. They used a UV sensitive camera and the light was integrated over 40 reactions

cycles. The temporal resolution could probably be enhanced, and keep an equivalent signal to noise ratio,

by reducing the exposure time of the camera and increasing the number of cycles.

This new setup is a tool that has great potential for the study of the dynamics of biomolecules or

molecules exhibiting CD in the UV spectral range. The 82 ps resolution might give access to ultra-fast

dynamics occurring during protein folding and unfolding processes. These dynamics can already be studied

with MD simulations, and so it could be possible in the near future to combine theoretical approaches with

time-resolved SRCD data to enhance the accuracy of the models.

4.1.2 Applications of synchrotron radiation CD

In a far-UV SRCD study, Nesgaard and co-workers80 obtained CD spectra of 13 solubilised proteins and

dried protein films to assess the advantage of extending the spectroscopic window (down to the 130 to

160 nm range) weighed against the risk of structural rearrangement of proteins due to altered hydration.

Dry phase samples are required for studies using synchrotron radiation in the VUV region. They were

also concerned with elucidating whether the drying process perturbed the CD spectra to an extent that

prevented a meaningful interpretation of the spectra for dried protein samples. The 13 globular model

proteins comprised three classes of secondary structure: three mainly α, three mixed α-β and seven mainly

β proteins. The observation that the spectral features over the range 170 to 260 nm upon drying for all

structural classes were preserved suggested that the protein films did not undergo significant structural
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changes compared to the solution state proteins. In addition, there was good correspondence between PDB

and CD data to determine the structural class for both solubilised proteins and protein films with the

exception of dry phase transthyretin (a mainly β protein). A principal component analysis of wet and dry

spectra with secondary structure also confirmed that controlled drying does not significantly alter structure.

Drying of the 13 samples expanded the spectroscopic window towards 130 nm in the VUV and revealed new

spectral features in the CD spectra of the proteins (Figure 7). The mainly α-helical proteins (ACBP, α-

lactalbumin, porcine serum albumin) and mixed α-β proteins (S6 ribosomal subunit) featured low wavelength

positive band maxima around 140 to 142 nm; mainly β, sandwich (architecture) proteins (concanavalin A,

thaumatin, transthyretin, TNFN3, TII27) had maxima at 149 to 157 nm; mainly β, other (architecture)

proteins (carbonic anhydrase, jacalin, trypsin) had positive maxima, for instance, at 147 nm for trypsin;

and β-galactosidase had a positive maximum at 166 nm. In addition to the set of 13 proteins, the study

obtained spectra of protein aggregates and fibrils of various types in the wet and dry phase to acquire both

far-UV and VUV-range structural information. For the dry-phase VUV CD spectra: the lysozyme fibrils

featured a positive peak at 145 nm; the α-synuclein fibrils a peak at 151 nm; and the SerADan aggregates a

peak at 148 and 149 nm for a pH of 7.5 and 5.0, respectively. The 13 globular model proteins and the fibril

and aggregate samples were found to have the expected β-rich characteristics in their CD spectra, but with

varying intensities of the low wavelength band compared with the intensity of the positive πnbπ
∗ band at

190 nm; this was most notable for α-synuclein fibrils.

In a study seeking to understand the conformational properties of amyloid fibrils, Matsuo and co-

workers81 employed VUVCD spectroscopy, MD simulations and CD theory to characterise the intermolecular

structures of β2-microglobulin (β2m) core fragments in the amyloid fibrils. They considered six models of

β2m21−29 core fragments ([21NFLNCYVSG29]) for MD simulations from which VUV, far-UV and near-UV

CD was computed (using the matrix method) for 50 snapshot structures taken every 400 ps from the 20 ns

MD trajectories. The CD spectrum of each simulated structure was the average of calculated spectra for

the 50 snapshot structures. The matrix method calculations incorporated parameters for three electronic

transitions in the peptide backbone (nπ∗, πnbπ
∗ and πbπ

∗) and four transitions in the aromatic side chains

of Phe and Tyr (1La, 1La, 1Ba and 1Bb). Charge-transfer transitions were not considered, although the

program employed, PROTPOL,82,83 included contributions of the VUV region to transitions in the acces-

sible UV by considering the contributions of polarizabilities. The six model fragments differed in how the

constituent β-sheets lined up and on how they stacked in either a parallel or antiparallel manner. It was

found that “model 6” (three clusters of “model 2”, two parallel β-sheets stacked in an antiparallel manner
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and connected with disulfide bonds between the cysteine side chains, lined up so their sheet surfaces stack

in an antiparallel manner) was of most interest. Model 6 had a stable β-sheet conformation during the MD

simulation; had the same positions of β-strand structures on the sequence level as found in an FTIR analysis;

exhibited the theoretical spectrum similar to the experimentally observed spectrum in the wavelength range

from the near-UV (300 nm) to the VUV (178 nm) region; and had the three unique interactions between

Phe and Tyr side chains, necessary for explaining the experimentally observed and theoretically calculated

CD spectra. Three characteristics of the experimental CD spectrum for β2m21−29 at pH 8.5, with which

the computed spectra is in good agreement, are a negative peak around 185 nm, a positive peak around 202

nm and negative peak around 248 nm. The results led the authors to propose that the conformations of

β2m21−29 amyloid fibrils consist of parallel β-sheets stacked in an antiparallel fashion, and that the Phe-Tyr

interactions are formed amid the parallel β-sheets.

4.2 Recent computational studies

4.2.1 Charge transfer transitions

Oakley and Hirst84 employed the matrix method to calculate CD spectra for 31 proteins in the far-UV and

in the VUV (that is, over the range 160 to 240 nm). To describe charge-transfer transitions between two

adjacent peptide bonds, they employed parameter sets derived from ab initio calculations on N -acetylglycine-

N ′-methylamide, a diamide species, at various geometries (φ and ψ angles) to describe α-helical and β-sheet

structures. Their calculations significantly improved the accuracy of calculated protein CD spectra between

170 and 190 nm. They also gave the first assignment of an inter-peptide charge-transfer band in a CD

spectrum. The matrix method calculations performed less well at higher energies and did not predict the

positive bands at approximately 160 nm in α-helices and β-sheets. The authors considered the possibility that

these bands are caused by non-nearest-neighbour charge-transfer transitions, such as those across hydrogen

bonds. An alternative suggestion is that the bands at 160 nm could be caused by coupling between charge-

transfer transitions and the high-energy local n′π∗ and πbπ
∗ transitions.

In a related study, Bulheller and co-workers73 calculated the VUV CD spectra of 71 proteins, for which

experimental SRCD spectra and X-ray crystal structures were available (the SP175 reference data set31). CD

spectra were calculated for the 170 to 240 nm region using the matrix method by considering charge-transfer

transitions between two adjacent peptides (four transitions), local peptide transitions (two transitions) and

electronic transitions in the aromatic side chains Phe, Tyr and Trp (four transitions on each). As in the study

by Oakley and Hirst,84 the agreement between calculated and experimental VUV CD spectra was improved
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when charge-transfer transitions were incorporated; this agreement was improved further when side chains

were included. In the majority of the calculated spectra, the inclusion of charge-transfer transitions increased

the negative band around 170 nm considerably, which improved the agreement with experiment. The effects

in the far-UV region are minimal and slightly worsened the correlation with experiment. The positions of

the bands at 190 and 208 nm were not affected for most of the 71 proteins: the CD intensity changes are

minuscule in the far-UV region. In addition, Bulheller and co-workers analysed the influence of the protein

conformation on charge-transfer transitions. The analysis showed that the nπ∗ charge-transfer transitions are

most important in α-helical proteins; in contrast, in β-strand proteins the πnbπ
∗ charge-transfer transition

along the chain in the N- to C-terminus direction is most dominant.

5 Protein dynamics and CD

As discussed in the preceding sections, CD can be used to assess the temporal changes in secondary and

tertiary structure of proteins. In the far-UV the ellipticity at 222 nm, [Θ]222, is routinely used to determine

the α-helical content of a protein and may be measured - or computed (from, e.g., MD snapshots and

matrix method calculations) - over a time period of interest. Figure 1 displays the far-UV CD spectrum of

a predominantly α-helical protein and features an intense negative band at 222 nm, which is absent in the

CD spectrum of a β-sheet or a random coil. The negative ellipticity at 222 nm is due to the nπ∗ transition

in the amide chromophore when it adopts an α-helical geometry (Figure 2). As an example, [Θ]222 was

employed by Meißner and co-workers35 to analyse MD simulations to monitor the conformational change

of an α-helical oligopeptide (4DAR5) adsorbing on an anionic amorphous silica (SiO2) surface (see section

2.3.1). In the near-UV the ellipticity is sensitive to the spatial coupling of the L electronically excited states

(ππ∗ transitions) in the aromatic side chains of Phe, Tyr and Trp residues. As an example, Karabencheva-

Christova and co-workers58 performed MD simulations and CD calculations on HCAII (see section 3.2.1)

to investigate the coupling mechanisms, outlined in section 2.1, that contribute to the near-UV CD for this

protein and the sensitivity of the coupling strengths to the dynamics of the tertiary structure of the protein.

6 Conclusion and outlook

This review has described both experimental and theoretical studies that have highlighted the utility of

modern CD spectroscopy for proteins and its complementarity with other optical and structural techniques.

The theoretical studies, using a range of approximations to compute either CD spectra from protein structure
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or protein structure from CD spectra, have illustrated the need for accurate sampling of the conformational

ensemble of biomolecules and the requirement to account for the influence of the environment in which the

biomolecule and its chromophores reside on the electronic transitions in the chromophoric groups. Work

remains to be done before a fully quantitative and complete first principles model is achieved. Nonetheless,

this review has documented computational approaches that are leading the way toward this ambitious goal.

We hope that readers of this article are encouraged to deploy CD spectroscopy in their experimental studies

(for example, to investigate processes that change local conformation of a protein) and to pursue supportive

molecular modelling studies (for example, to analyse structural snapshots from MD simulations) to help

interpret their CD experiments.
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10 Figures

Figure 1: Illustrative CD spectra for three secondary structures.
CD spectrum for a predominantly α-helical protein (red line), β-sheet protein (green line) and a random coil
protein (blue line).

Figure 2: Diamide in an α-helical conformation.
Molecular structure of the α-helical diamide with dihedral angles φ = −48° and ψ = −57°.

Figure 3: Computed CD spectrum for a diamide in an α-helical conformation.
CD spectrum in the far-UV for an α-helical diamide computed by the matrix method.

Figure 4: Experimental and computed near-UV CD spectra for BPTI.
CD spectrum in the near-UV from experiment (black line) and computed by the matrix method for the
X-ray structure (green line) and three NMR models, frame 3 (blue line), frame 5 (magenta line) and frame
17 (red line).
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Figure 5: Frame 3 (blue) and frame 5 (pink) of the NMR structure of BPTI (PDB code: 1PIT).
Tyr23 is drawn as a liquorice model in each structure and is coloured by electrostatic potential of the
environment calculated at each atom. Arg1 in each structure is also drawn as a liquorice model and is
coloured corresponding to the colour of the Tyr of the same structure. Calculated nearest atom distances
(Å) are shown for each structure. This figure was drawn using PyMOL.

Figure 6: Schematic of synchrotron radiation emission.
The electron bunches (blue dot) emit light while they are radially accelerated when they pass through the
bending magnet. The radiation is elliptically right polarised above the electrons orbit and elliptically left
polarised below it.

Figure 7: Spectral features at low wavelengths correspond to secondary structure.
(A) Mainly α-helical and α-β-proteins. (B) Sandwich architectures. (C) Mainly β-sheet proteins with more
complex architectures. Note that while carbonic anhydrase is classed as α-β, it contains mainly β-sheet.
Adapted with permission from reference 80. Copyright 2008 John Wiley and Sons.
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