
Fast and Scalable Approaches to Accelerate the
Fuzzy k Nearest Neighbors Classifier for Big Data

Jesus Maillo, Salvador Garcı́a, Julián Luengo,
Francisco Herrera Senior Member, IEEE, and Isaac Triguero Member, IEEE,

Abstract—One of the best-known and most effective methods
in supervised classification is the k nearest neighbors algorithm
(kNN). Several approaches have been proposed to improve its
accuracy, where fuzzy approaches prove to be among the most
successful, highlighting the classical Fuzzy k nearest neighbors
(FkNN). However, these traditional algorithms fail to tackle
the large amounts of data that are available today. There are
multiple alternatives to enable kNN classification in big datasets,
spotlighting the approximate version of kNN called Hybrid Spill
Tree. Nevertheless, the existing proposals of FkNN for big data
problems are not fully scalable, because a high computational
load is required to obtain the same behavior as the original FkNN
algorithm. This work proposes Global Approximate Hybrid Spill
Tree FkNN and Local Hybrid Spill Tree FkNN, two approximate
approaches that speed up runtime without losing quality in
the classification process. The experimentation compares various
FkNN approaches for big data with datasets of up to 11 million
instances. The results show an improvement in runtime and
accuracy over literature algorithms.

Index Terms—Fuzzy sets, k nearest neighbors, Classification,
MapReduce, Apache Spark, Big Data

I. INTRODUCTION

The Fuzzy k Nearest Neighbor algorithm (FkNN) [1] is
developed with the aim of improving and alleviating the main
weakness of the k Nearest Neighbor algorithm (kNN) [2].
This weakness resides in considering all neighbors as equally
important in the classification, making the kNN algorithm
more vulnerable to noise at the class boundaries, leading to a
downgrading of the classification.

In the experimental analysis at [3], the classic algorithm
FkNN stands out as one of the most effective approaches.
FkNN is composed of two stages: class membership degree
and classification. The first stage changes the label of the class
by a vector of membership degree belonging to each class,
according to the closest training instances. To calculate the
nearest instances, it uses a similarity function, usually with a
distance function (Euclidean or Manhattan). The second stage
calculates the kNN with the information of the membership
degree. Thus, it is possible to detect borders with greater
precision, being less affected by noise and improving the kNN
in most classification problems used in many applications such
as medicine [4], spacecraft [5], and many other fields.

J. Maillo, S. Garcı́a, J. Luengo and F. Herrera are with the Department of
Computer Science and Artificial Intelligence, University of Granada, 18071
Granada, Spain (e-mail: {jesusmh, julianlm, salvagl, herrera}@decsai.ugr.es).

I. Triguero is with the Automated Scheduling, Optimisation and Plan-
ning Research Group. School of Computer Science. University of Notting-
ham. Jubilee Campus. Nottingham NG8 1BB, United Kingdom (e-mail:
Isaac.Triguero@nottingham.ac.uk).

Nowadays, FkNN and kNN are used in many areas of
data mining. They are used as data preprocessing techniques
[6] to deal with imperfect data [7] and uncertainty in the
classification process by means of aggregation operators [8].
Studies to improve the FkNN algorithm and its applications
continue to develop in many areas such as convergence [9]
and runtime improvement [10]. There are some recent pro-
posals that enhance quality of the classic FkNN classifier, two
proposals based on evolutionary algorithms [11] and [12] and
one proposal based on parameter independent fuzzy weighted
kNN [13]. Nevertheless, these solutions used to increase the
computational complexity, making the algorithm less scalable
for the application in big data problems. For this reason, we
will focus on the classical FkNN algorithm.

In the big data environment [14], the kNN and FkNN
algorithms have been key to solving different machine learn-
ing problems such as fuzzy-rough based NN classification
[15], time-series forecasting [16] or data preprocessing to
obtain quality data [17]. In this work, we are focused on
standard classification. When handling large datasets the kNN
and FkNN classifiers have problems regarding runtime and
memory consumption. There is an exact proposal of the kNN
algorithm to address big data problems and it is called k
Nearest Neighbor - Iterative Spark (kNN-IS) [18]. In addition
to this exact version, there are also approximate variations
that drastically reduce execution times: Metric-Tree [19] and
Spill-Tree. In [20], the authors studied the Metric-Tree and
Spill-Tree models and proposed the Hybrid Spill-Tree model
[21] (HS). HS is the hybridization of the two models with
the aim of improving the runtime in big data.

Regarding the fuzzy approach, in [22], we investigate the
feasibility of an exact approach to apply FkNN in big data
called Global Exact Fuzzy k Nearest Neighbors (GE-FkNN)
[22]. Even though it is able of scaling up to large datasets,
the runtime of the first stage are considerably high, causing
a bottleneck. Subsequently, the authors of contribution [23]
present a preliminary study on the use of approximate kNN
search to accelerate the execution time and alleviate the
bottleneck.

The objective of this work is to design and develop a
FkNN model capable of handling large datasets accurately
and quickly. To do this, we use the Spark framework and
use HS as the base algorithm due to its balance between
scalability and accuracy that improves previous kNN proposals
in the literature. The proposed algorithm is composed of the
same two stages of classical FkNN: membership degree and

classification. The main difference of the proposed algorithm
can be noted in the first stage, focusing on handling the
bottleneck with two different approaches:

• Local Hybrid Spill Tree FkNN (LHS-FkNN): The local
approach divides the dataset into different parts and
calculates the class membership degree internally in each
partition, without considering other partitions.

• Global Approximate Hybrid Spill Tree (GAHS-FkNN):
The global approach is based on the HS model. It
generates a tree with the instances of the training set and
distributes it among all the computation nodes, consid-
ering all the instances for the calculation of the class
membership degree.

The second stage classifies the unseen samples from the test
set using the class membership degree knowledge calculated
in the first stage. The classification stage is the same for both
models, following a HS based approach and with a workflow
similar to the first stage of GAHS-FkNN. The novelty of the
proposal is the use of approximate kNN searches, presenting
local and global approaches, achieving quality accuracy and
scalability that allows execution with large datasets through the
use of the MapReduce [24] paradigm and the Spark framework
[25].

In order to study the performance of this model, experiments
have been carried out on 8 datasets with up to 11 million
instances and 631 features. The experimental study analyzes
the accuracy and runtime making a comparison with existing
algorithms of the literature.

In addition, we have developed a software package with
FkNN algorithms for big data, making use of in-memory na-
tive operations and distributed computing from Apache Spark.
The developed algorithms can be found in the repository
https://spark-packages.org/package/JMailloH/HS FkNN.

The paper is structured in the following five sections.
Section II introduces the state of the art in the FkNN and
Hybrid Spill-Tree algorithms. Next, Section III details the
proposals of the FkNN algorithm. Section IV describes the
experimental study and Section V includes multiple analyses
of results. The Section VI concludes the document and outlines
future work.

II. PRELIMINARIES

This section provides background knowledge of the FkNN
algorithm (Section II-A), the Hybrid Spill-Tree (Section II-B)
and the big data technologies used (Section II-C).

A. Fuzzy k nearest neighbors and its computational complexity

FkNN needs a pre-computation stage in the training set,
which calculates the class membership degree. Afterwards,
FkNN calculates the nearest neighbors for each unseen in-
stance and decides on the predicted class with the highest
membership degree. A formal notation for the FkNN algorithm
is as follows:

Let TR be a training set and TS a test set, composed
of n and t instances respectively. Each instance xi is a
vector (xi1, xi2, xi3, . . . , xij), where xij is the value of the i-th

instance and j-th feature. For each instance of TR its class ω
is known. However, for TS instances the class is unknown.

FkNN has two stages: class membership degree computation
and classification. The first stage calculates the kNN for each
instance of TR, keeping a scheme leave-one-out selecting the
k instances with a shorter distance. Finally, it calculates the
class membership degree according to the Equation 1. The
result of the first stage is the TR modifying the class label ω,
for a membership vector to each class (ω1, ω2, . . . , ωl) where
l is the number of classes. This new set will be called Fuzzy
Training Set, FTR.

uj(x) =

 0.51 + (nj/kmemb) · 0.49 if j = i

(nj/kmemb) · 0.49 if j 6= i
(1)

For each instance of the TS, the classification stage calcu-
lates its kNN in FTR. Thus, it gets the membership vector
of each neighbor and aggregates this vector by applying the
Equation 2. Finally, the class with a higher membership will
be predicted.

ui(x) =

∑K
j=1 uij(1/|x− xj |2/(m−1))∑K

j=1(1/|x− xj |2/(m−1))
(2)

The first stage of FkNN, which is an extra stage compared
to kNN, causes increased computational complexity and gen-
erates two issues to deal with big data problems:

• Runtime: The complexity of computing kNN for an
instance is O(n · c), where n is the number of instances
of TR and c is the number of features. For more than
one neighbor, it increases to O(n · log(N)). In addition,
FkNN has an extra stage of computation for calculating
the class membership degree.

• Memory consumption: To speed up the calculation, the
TR and TS sets stored in the main memory are required.
However, when both sets are large, the available main
memory is easily exceeded.

To alleviate these difficulties, we worked on the design of
two approximate models based on Hybrid Spill-Tree developed
under the big data technologies of MapReduce and Apache
Spark.

B. Hybrid Spill-Tree: Approximate kNN search

In the search for the nearest neighbor two approaches can
be followed: Exact and Approximate. The exact approach aims
to ensure that the instance identified as closest is actually the
closest. To do this, it needs to calculate the distance to all the
samples in TR and select the one with the lowest distance.
In the big data environment, reducing runtime and increasing
scalability is a very important factor, so the approximate
approach is more relevant. The approximate approach can be
tackled from different perspectives. Due to its high number of
features, the dimensionality reduction [26] is a way to speed
up the calculation of distance. The Locality-sensitive hashing
algorithm [27] is a well-recognized algorithm for reducing

Right Node Left Node

oo

x

x
x

x
x

x

x

x

x

x

x

x

x

(a) Metric-Tree

Right Node Left Node
τ τ

Overlapping Area

oo

x

x
x

x
x

x

x

x

x

x

x

x

x

(b) Spill-Tree

Fig. 1: Partition methodology

dimensionality through hash functions, generating collisions
between similar instances. This requires a previous stage of
computation for the calculation of hash functions, reducing
the scalability of the algorithm. When dealing with not so
many features, but with a large number of instances, tree-
based proposals get the best performance. In [20], the authors
study tree-based approaches, and propose the Hybrid Spill-
Tree algorithm (HS) [21] as the most promising algorithm to
accelerate the search for the kNN.

The HS algorithm is formed of Metric-Tree (MT) with
its precise search and Spill-Tree (SP) with its fast search.
The MT data structure organizes the dataset in a spatial
hierarchy, performing a search that ensures the exact nearest
instance is found. MT is a binary tree whose root includes
the entirety of the samples, and where each child represents
a subset of elements. Figure 1a illustrates how to divide the
elements between the two children, selecting each child as
the furthest possible instance (represented by ©). The mean
distance between the children will be the separation of these
nodes. The tree will have a depth of O(log(N)). In order to
search for the nearest instance, it keeps the candidate with the
shortest distance C and its own distance d. If the distance to
a branch is more than d, prune it and continue the search.
Once there is no branch in the tree with a distance less than
d, the search is finished and C and d are returned. Note that a
backtracking operation is made in the structure to ensure that
C is the nearest, returning exactly the nearest instance.

The SP data structure is a variation of MT , performing
an approximate search to speed up its execution. The main
difference compared to MT consists in sharing instances
between child nodes. Figure 1b shows how data is divided
with the same procedure as MT , allowing a set of duplicate
instances in the child nodes. The overlapping area is dependent
on the τ parameter. When τ is 0, it would be a MT with no
instances shared. If τ is too high, the depth of the tree rises
to infinity because the overlap is high. SP does not backtrack
to ensure that the nearest instance has been found, reducing
execution times. Moreover, due to the overlapping area, it
obtains representative instances of the problem. A common

SP nodes

MT nodes

Fig. 2: Example of Hybrid-spill tree

characteristic of MT and SP is that they perform a depth-first
search, computationally dependent on the number of features.
Thus, when the number of features increases, the runtime is
higher.
HS is proposed with the objective of achieving a balance

between accuracy and runtime. Thus, it merges the MT and
SP models. To build a HS, it starts by building a SP , and
if the number of instances in the overlapping area is less than
the Balance Threshold (BT), it will continue to be a SP .
If repeated instances exceed BT , it is reconstructed as MT .
Figure 2 shows an example of HS, differentiating the MT
nodes from the SP nodes. It is important to highlight the
starting point for the development of this contribution, which
is available in the library developed by the spark-packages
community1.

C. Apache Spark and MapReduce paradigm

The programming paradigm MapReduce [24] will be used
in the development of the algorithm proposed in this paper.
MapReduce aims to process large datasets through the dis-
tribution of data storage and execution through a cluster of
computers.

The MapReduce implementation selected is Apache Spark
[25] [28]. Spark parallelizes the calculation transparently
through a distributed data structure called Resilient Distributed
Datasets (RDD). RDDs allow data structures stored in main

1Hybrid Spill-Tree. https://spark-packages.org/package/saurfang/spark-knn

Training Set
(TR)

With N samples

Key Value

1 <ClassM – Dist> · k

2 <ClassM – Dist> · k

· · · · · ·

N/M <ClassM – Dist> · k

Key Value

1 <ClassM – Dist> · k

2 <ClassM – Dist> · k

· · · · · ·

N/M <ClassM – Dist> · k

Split 1

Key Value

1 <ClassM – Dist> · k

2 <ClassM – Dist> · k

· · · · · ·

N/M <ClassM – Dist> · k

· · ·
· · ·ft1 ft2 · · · ftn ω

Fuzzy Training
Set (FTR)

ft1 ft2 · · · ftn ω1 · · · ωg

TR1

Split 2

TR2

Split M

TRM

MapPartition

Join the
M splits

Calculate Membership

With N samples

Fig. 3: Class membership stage: LHS-FkNN

memory to persist and be reused. Additionally, Spark was
developed to cooperate with the distributed file system of
Hadoop [29] [30] (Hadoop Distributed File System - HDFS).
With this configuration, you gain the benefits provided by
Spark: fault tolerance, data splitting and job communication.

MLlib [31] is the official library of machine learning in
Spark. It incorporates a large number of stadistic techniques
and algorithms in areas such as regression, classification, or
clustering.

III. FAST AND SCALABLE FKNN CLASSIFIERS FOR BIG
DATA

This section presents two approximate and distributed pro-
posals for the FkNN algorithm based on the HS method
to address big data problems implemented in Spark. Two
different approaches are proposed in the class membership
degree stage: local and global. The local approach applies a
divide-and-conquer approach, where each partition does not
know the instances of the other partitions. The global approach
has knowledge of all the instances of the TR and develops
the use of the HS algorithm. Section III-A describes the
local approach, performing the computation on each partition
independently, without knowing information about the other
partitions in the dataset. Section III-B presents the global
approach based on HS, considering the totality of the data
for the calculation of the class membership degree. Section
III-C defines the classification stage, which is the same for
both models and is based on the HS algorithm.

A. LHS-FkNN: Local Hybrid Spill Tree FkNN

The proposed local stage together with the classification
stage is called Local Hybrid Spill Tree FkNN (LHS-FkNN).
Figure 3 shows the class membership stage workflow. To
alleviate the bottleneck, data is partitioned and distributed
among the computation nodes. Subsequently, the membership
to each partition is calculated independently. Finally, the
results of each partition are joined, obtaining as output the
FTR.

Algorithm 1 shows the steps and operations in Spark for
calculating the class membership degree. It begins by reading
the TR from HDFS and divides it into #Maps parts. Subse-
quently, a Spark mapPartition operation is used to calculate the

Algorithm 1 Class membership degree stage - Local
Require: TR, k, #Maps

1: TRS ← repartition(TR, #Maps)
2: FTRS ← mapPartition(computeMembership(TRP , k))
3: FTR ← join(TRPD)
4: return FTR
5:
6: BEGIN computeMembership
7: for y: TRPi do
8: Neighy ← computekNNLocal (models, k, y)
9: membershipy ← computeMembership (Neighy)

10: FTRS ← join(y, membershipy)
11: end for
12: return FTRS
13: END computeMembership

Algorithm 2 Class membership degree stage - Global
Require: TR, TS, k

1: samples ← sample(TR,0, 2%)
2: TopTree ← buildMT(samples)
3: τ ← estimateτ (TopTree)
4: tree ← repartition(TR, TopTree, τ , UE = 70%)
5: model ← (broadcast(TopTree),tree)
6: for y: TR do
7: Neighy ← computekNN (model, k, y)
8: membershipy ← computeMembership (Neighy)
9: resulty ← join(y, membershipy)

10: end for
11: return predictiony

class membership degree for each Training set Split (TRSi)
partition in a distributed manner. The membership calculation
is represented in lines 6-12. For each y instance of each TRSi

partition, kNN is calculated and finally, the class membership
degree is obtained by applying the Equation 1. Once the
membership for each partition is obtained, the results are
joined and form the FTR (Line 3), which will be the input
of the classification stage.

B. GAHS-FkNN: Global Approximate Hybrid Spill Tree FkNN

The global stage together with the classification stage
is called the Global Approximate Hybrid Spill Tree FkNN
(GAHS-FkNN). Figure 4 specifies the workflow of the mem-
bership stage, which follows an approximate scheme based on
HS. This approach aims to alleviate the bottleneck computa-
tion, with consideration of the data globally to obtain quality in
the membership degree. Thus, this approach prioritizes quality
over scalability. As in the local approach, the output from this
stage is the FTR.

Algorithm 2 shows Spark’s instructions for the membership
degree stage with the global approach. Lines 1-5 correspond
to the model creation stage based on HS, and the remaining
lines correspond to the kNN and membership computation.

The model fit phase begins by reading the TR from HDFS.
First, it takes a random subsample to construct a MT as
described in Section II-B (the authors recommend 0.2%). This
MT receives the name of top tree (TT) and is used to estimate
the value of the τ parameter and partition the entire TR. The

Map
ComputeMembership

TR with
Neighbors

Model Fit Phase

Build a MT with a
sample of X%

Model Hybrid
Spill Tree

Membership Phase
FlatMap

searchIndexes

FlatMap
getNeighbors

ZipPartition

topByKey
(Sort Neighbors)

Training Set
(TR)

ft1 ft2 · · · ftn ω

Fuzzy Training
Set (FTR)

ft1 ft2 · · · ftn ω1 · · · ωg

TopTree

Repartition

Fig. 4: Class membership phase: GAHS-FkNN

estimate of τ is the average distance between all the instances.
To speed up this calculation, it is done with the TT instances.

The next step is to split the TR. To do this, the instances
are distributed in the space taking as reference the TT . The
value of τ defines the overlapping area. It starts building a
SP , and checks if the number of instances in the overlapping
area is less than 70%. Otherwise, a MT is reconstructed.
When performing the search, the SP branches perform a faster
search by not backtracking in the tree. However, those built
as MT perform backtracking to ensure the nearest is found.
The construction stage of the model ends up distributing the
TT and the tree associated with the TR.

The membership phase is shown in lines 6-10. For each TR
instance, kNN is calculated following the model generated.
Algorithm 3 describes how to perform the kNN with native
Spark operations. Using a flatMap operation, the indexes of
the nearest instances of TR are computed and obtained. Thus,
the distance to the right and the left nodes is calculated, and it
continues the search of the nearest instance through the node
with a shorter distance. When it reaches a leaf node, it returns
the index of the selected instance.

With the neighbors, the class membership degree vector is
calculated by Equation 1 (Line 8). The result of this phase is
the FTR, and becomes the input of the classification stage.

C. Classification stage

The proposed classification stage receives as input the FTR
calculated in the previous stage, the TS and the value of k.
The TS is usually significantly smaller than FTR, for this
reason, the classification stage has a lower computational cost
than the membership stage. In order to obtain better results

Algorithm 3 Compute kNN
Require: model, k, x

1: Indexes ← x.flatMap (searchIndexes(model.tree))
2: Neighs ← query(model.tree, Indexes, k)
3: return Neighs
4:
5: BEGIN searchIndexes
6: distLeft ← nodeLeft.dist(x)
7: distRight ← nodeRight.dist(x)
8: if node! = LEAF then
9: if distLeft < distRight then

10: searchIndexes(nodeLeft, ID)
11: else
12: searchIndexes(nodeRight, ID + childLeft)
13: end if
14: else
15: return Indexes
16: end if
17: END searchIndexes

FTR with
NeighborsTopTree

Model Fit Phase

Fuzzy Training
Set (FTR)

ft1 ft2 · · · ftn ω1 · · · ωg

Build a MT with a
sample of X%

Model Hybrid
Spill Tree

Repartition

Classification Phase

Test Set (TS)

ft1 ft2 · · · ftn

FlatMap
searchIndexes

FlatMap
getNeighbors

ZipPartition

topByKey
(Sort the Neighbors)

Map Classify

Output

Classification criteria

Fig. 5: Flowchart of the classification phase

in the classification, a global approach is followed, which
considers all the instances for the decision making. However,
it is approximate in nature in order to speed up the runtime
and obtain a higher scalability. Figure 5 shows the HS-based
classification stage workflow. It has two distinct phases: model
fit and classification. In the first the tree is built and the
instances are divided between the computation nodes. In the
second the kNN of FTR is searched for and the predicted
class is returned as output according to the membership degree
vector.

Algorithm 4 shows the native instructions from Spark for
the classification stage. Lines 1-5 correspond to the model fit
phase, and the remaining lines correspond to the classification
stage. Due to the similarity in the data flow with the calculation
stage of class membership degree based on HS, only the

Algorithm 4 Classification Stage
Require: FTR, TS, k

1: samples ← sample(FTR,0.2%)
2: TopTree ← buildMT(samples)
3: τ ← estimateτ (TopTree)
4: tree ← repartition(FTR, TopTree, τ , UE = 70%)
5: model ← (broadcast(TopTree),tree)
6: for x: TS do
7: NeighMembx ← computekNN (model, k, x)
8: predictionx ← computeMembership (NeighMembx)
9: resultx ← join(x, predictionx)

10: end for
11: return predictiony

differences are detailed.
The first difference is in the input datasets. In this case,

FTR and TS will be used. The model fit phase is not affected,
since the input variables are not modified, and the distances
of the instances are maintained. Thus, the model is built with
the same methodology, modifying only the class label of the
TR, by the membership degree vector of the FTR.

The FkNN calculation is the same as that applied in the
HS-based membership calculation stage, which was described
in Algorithm 3. In contrast to the membership calculation, the
kNN calculation returns the membership degree vector instead
of the class label (Line 7). In Line 8, it calculates the predicted
class applying Equation 2, obtaining the predicted class for
each TR instance as the final result.

IV. EXPERIMENTAL SET-UP

This section presents the issues involved in the experimen-
tal framework. It presents the performance measures used
(Section IV-A), the details of the datasets (Section IV-B)
and the algorithms used with their respective parameters
(Section IV-C). Finally, the hardware and software used for
the experimentation phase are specified (Section IV-D).

A. Performance measures

In this work, the efficiency and scalability of the models
will be evaluated using the following metrics:

• Accuracy: The most widely used metric in the literature
[32] [33] will be applied to evaluate the quality of the
classifiers. This metric counts the number of correct
classifications in relation to the total number of instances.
Experimentation will be performed on classification prob-
lems with an appropriate class balance, where accuracy
is a representative measure.

• Runtime: Time consumed in computation, also consider-
ing the readings and network communications by Spark.
In addition, the runtimes will be taken for each one of
the two stages that compose the fuzzy algorithms studied
in order to analyze the time each of them require.

To validate the results of the experiments, we have used
the pairwise non-parametric statistical tests based on Dirichlet
Process called Bayesian Sign test [34]. Bayesian Sign test
calculates a distribution with the differences of the results
obtained from the confrontation of the two algorithms. Thus,

TABLE I: Description of the datasets

Dataset #Examples #Features #ω
Covtype 581,012 54 2

ECBDL14-S 2,063,187 631 2
Epsilon 500,000 2,000 2
Higgs 11,000,000 28 2
Poker 1,025,010 10 10
Susy 5,000,000 18 2

Watch-acc 3,540,962 20 7
Watch-gyr 3,205,431 20 7

TABLE II: Number of instances per map

Dataset TR - #Instances TS - #Instances
64 128 256 64 128 256

Covtype 7,262 3,631 1,816 1,816 908 454
ECBDL14-S 25,790 12,895 6,447 6,448 3,224 1,612

Epsilon 6,250 3,125 1,562 1,562 781 390
Higgs 137,500 68,750 34,375 34,376 17,188 8,594
Poker 12,812 6,406 3,203 3,204 1,602 801
Susy 62,500 31,250 15,625 15,626 7,813 3,906

Watch-acc 44,262 22,131 11,066 11,066 5,533 2,766
Watch-gyr 40,068 20,034 10,017 10,016 5,008 2,504

a triangle is constructed that will determine depending on
the position of the majority of the distribution, if there is
a draw (rope position), victory of the first algorithm (right
position) or victory of the second algorithm (left position). The
statistical test and the graph shown in the experiments have
been generated by the package in R called rNPBST [35].

B. Dataset

For the experimental study, we have selected eight datasets
in a large number of instances. The ECBDL14 dataset is
extracted from the competition [36]. Although it has an imbal-
ance ratio greater than 45, to study the effect of a large number
of features, we selected this dataset. However, in this paper
we do not address the problem of imbalance classification, so
it has been sub-sampled by obtaining an imbalance ratio of
two. The Epsilon dataset has been taken from the LIBSVM
repository [37] and it was artificially created for the Pascal
Large Scale Learning competition [38]. This dataset was
selected to analyze how a high number of features affects
the proposed algorithms. The other six datasets have been
extracted from the UCI repository [39]. The Table I presents
the number of instances, characteristics and classes (#ω).
The cross-validation scheme will be followed in 5 partitions,
composed of 80% training instances and the remaining 20%
test instances.

In the MapReduce schema, the number of instances pro-
cessed in each worker depends on the number of instances of
the dataset and the number of map tasks used in the execution.
The Table II shows the number of instances for TR and TS
according to the number of map tasks.

C. Algorithms and parameters

The experimentation carried out has been compared with
other proposals of FkNN and its crisp analogs. The algorithms
used and their acronyms are presented below:

• Global Exact FkNN (GE-FkNN) [22]: exact model of the
FkNN algorithm to tackle big data problems, obtaining

TABLE III: Accuracy comparison between algorithms

Algorithm k Covtype Epsilon ECBDL14-S Higgs Poker Susy Watch-acc Watch-gyr Average
3 0.9299 0.5545 - - 0.5264 0.7338 0.9330 0.9597 0.5797

GE-FkNN 5 0.9151 0.5452 - - 0.5329 0.7354 0.9069 0.9398 0.5719
7 0.9014 0.5394 - - 0.5371 0.7320 0.8880 0.9254 0.5654
3 0.9360 0.5727 0.7659 0.5954 0.5240 0.7227 0.9216 0.9506 0.7486

L-FkNN 5 0.9268 0.5696 0.7526 0.5984 0.5274 0.7260 0.8935 0.9284 0.7403
7 0.9167 0.5729 0.7455 0.6000 0.5286 0.7253 0.8768 0.9148 0.7351
3 0.9375 0.5808 0.8054 0.5969 0.5237 0.7298 0.9601 0.9808 0.7644

GAHS-FkNN 5 0.9347 0.5897 0.8046 0.6084 0.5368 0.7461 0.9576 0.9790 0.7696
7 0.9313 0.5946 0.8013 0.6163 0.5451 0.7514 0.9558 0.9776 0.7717
3 0.9372 0.5838 0.8034 0.6047 0.5333 0.7298 0.9566 0.9790 0.7660

LHS-FkNN 5 0.9362 0.5957 0.8025 0.6145 0.5446 0.7461 0.9544 0.9779 0.7715
7 0.9338 0.6066 0.7968 0.6214 0.5502 0.7514 0.9530 0.9765 0.7737

the same results as the original FkNN. Its two stages are
global and exact.

• Local FkNN (L-FkNN): developed proposal of the FkNN
algorithm for this contribution. The first stage, which is
responsible for calculating the class membership degree,
is described in Section III-A. The second stage is global
and exact, identical to the used by that GE-FkNN algo-
rithm.

• k Nearest Neighbor - Iterative Spark (kNN-IS) [18]: crisp
kNN’s exact proposal to tackle big data problems, getting
the same results as the original kNN.

• Hybrid Spill-Tree kNN (HS-kNN) [21]: Approximate pro-
posal of crisp kNN for big data. Although approximate,
consider all instances in the search.

The best-known FkNN parameter is the number of neigh-
bors (k) considered in the classification. k may be different
in the membership and classification stages. However, for the
sake of simplicity, it is kept the same in both stages. For all
the algorithms used, values 3, 5 and 7 have been used. In
addition, the experiments on the GAHS-FkNN model and the
LHS-kNN proposal are extended using values of k from 3 to
51. The distributed component adds an extra parameter, the
number of partitions or map operations. In the experiments,
they take values of 64, 128 and 256.

Models based on the HS algorithm need two parameters
to build the model and speed up the search for the nearest
instances. The first is the percentage of instances that will be
taken into account to form the TT , which is then used to divide
and distribute the data. The second is the BT , the admission
percentage of repetition of instances between nodes of the tree
to decide if a ST or a MT is constructed. The study has taken
the optimal values recommended by the authors of HS: TT
equal to 0.2% and BT equal to 70%.

D. Hardware and software used

All experiments have been performed on a cluster composed
of 15 nodes: a master node and 14 computation nodes. All the
nodes have the same configuration:

• Processor: Intel Xeon CPU E5-2620 (2 GHz) x2.
• Cores: 12 threads (6 cores).
• RAM: 64 GB.
• Network: 40 Gb/s Infiniband.
• Cache: 15 MB.

All nodes have the same software set-up:
• Operative System: CentOS 6.5.
• Apache Spark version: 2.2.1.
• Scala version: 2.11.6.
• Hadoop Distributed File System: Version 2.6.0-cdh5.8.0.
With this software and hardware configuration, there is a

maximum of 256 concurrent map tasks available. Thus, there
are approximately 2GB of main memory for each of these map
tasks.

V. ANALYSIS OF RESULTS

In this section, we study the results compiled from different
experimental studies. Specifically, we analyze the following
points:

• First, we establish a comparison between the proposals
and the state-of-the-art FkNN algorithms in terms of
accuracy and runtime. (Section V-A)

• Second, we performed a scalability study on the success-
ful proposals. To do this we will focus on the runtimes.
(Section V-B)

• Third, we extend the two most promising models to
higher values of k by focusing on accuracy. (Section V-C)

• Fourth, we compared the results obtained for each algo-
rithm and dataset against the crisp kNN proposals similar
to the fuzzy models studied. (Section V-D)

A. Accuracy study

The accuracy study starts by showing the results from Table
III, which compares the accuracy between the algorithms in
relation to the number of neighbors (k) and the number of
map operations equal to 128 for all datasets. The best result
for each dataset and the best average result are highlighted
in bold. Those values that could not be executed due to
scalability problems are represented with the symbol “-”, for
the calculation of the mean, they are considered as a zero in
accuracy.

Figure 6 presents the probability distribution of the differ-
ences between the GAHS-FkNN and LHS-FkNN algorithms
obtained with the Bayesian Sign Test.

Figure 7 shows the membership stage and the classification
stage runtimes in seconds, for each dataset, algorithms and
values of k equal to 3, 5 and 7.

Analyzing the table and figures presented, we can observe:

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●
●●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●●

●

●

●●
●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●●

●●
●

●

●

●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●●

●

●

● ●●

●●
●

●

●
●

●

● ●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●

●

●

●

●
●

●●●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●

●

●
●

●
●

●

●
●

●

●●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●●
●

●●

●

●

●

●

●●●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●●

●●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●
●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●

●●

●
●

●●

●
●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●
●● ●

●

●
●

●

●
●

●

● ●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●●●

●

●

●

●

●

●

●●
●
●
●

●●

●

●

●●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●●

●●
●

●●

●

●

●●

●
●

●
●

●
●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●●

●

● ●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●●●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●
●●

●

●

●●●
●

●●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●

●
●●

●
●

●

●●

●
●

●

●
●

●●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

● ●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●●

●

●
●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

● ●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●●●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●●●

●

●
●●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●●
●●●

●
●

●

●

●

●

●●

●
●●
●

●

●

● ●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●●

●

●
●

●●

●●

●

●●

●

●

●

●

●●

●
●●●
●

●

●

●

●

●

●● ●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●●

●
●●●●

●

●●

●

●●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●●●

●●

●

●●●●
●

●

●
●

●

●
● ●

●

●

●

●

●
●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●
●●

●

●
●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●
●

●

●●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●
●

●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●●

●

●●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●●
●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●●
●

●●
●●

●●
●
●●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

● ●●
●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●●

●
●
●
●

●

●

●

● ●
●

●

●●
●

●

●
●
●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●●

●
●

●

●
●
●

●

●

●

●
●

●

●●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●●●

●
●

●●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●

●
●

●
●

●
●

●

●
●

●

●●

●●
●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●●
●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●●

●●● ● ●

●
●

●

●
●

●

●
●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

● ●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●

●

●

●
● ●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

Fig. 6: Heatmap of the Bayesian Sign Test: GAHS-FkNN vs
LHS-FkNN

• The GE-FkNN algorithm finds its scalability limit in its
first stage, not being able to run for the ECBDL14-S and
Higgs datasets.

• Models based on HS (GAHS-FkNN and LHS-FkNN)
achieve better results than models with the exact classifi-
cation stage (GE-FkNN and L-FkNN). This may be due
to the approximate component of the subjascent model
HS, which obtains a noise tolerance of the datasets in the
GAHS-FkNN and LHS-FkNN algorithms, as the exact
component of kNN can lead to a high overfit to the
training set.

• Regarding the influence of the k, the GE-FkNN and
L-FkNN algorithms do not obtain an appreciable im-
provement, with a stagnation of the results in accuracy.
However, the GAHS-FkNN and LHS-FkNN algorithms
display an increase in accuracy. For this reason, the two
most promising algorithms will be studied for higher k
values. In relation to the runtime, it should be noted that
the value of k affects the GE-FkNN and L-FkNN models
to a certain extent, whereas it does not drastically affect
the proposed GAHS-FkNN and LHS-FkNN algorithms.

• Figure 6 shows how the GAHS-FkNN and LHS-FkNN
algorithms are statistically equal in accuracy, although on
average, the LHS-FkNN algorithm is slightly better than
GAHS-FkNN. For this reason, it is important to analyze
the scalability of the models in relation to the number of
map operations used.

B. Scalability study

The scalability study starts by presenting the results from
Figure 8, which compares the runtime of the membership stage
and the runtime of the classification stage in seconds, for each

datasets, with values of k equal to 3, 5 and 7 and number of
maps equal to 64, 128 and 256.

According to the figure shown:
• The GAHS-FkNN algorithm is affected when dealing

with a large number of features. This is due to the
HS structure generating trees with a high depth in their
branches as it has a high number of features, resulting
in higher runtimes. This can be observed in the Epsilon
and ECBDL14-S datasets, where the runtime obtained
by LHS-FkNN are much faster than the runtimes for the
GAHS-FkNN algorithm.

• LHS-FkNN scale depending on the number of maps
thanks to its first local stage, obtaining a performance
associated with the hardware used.

• GAHS-FkNN gets good runtimes without significantly
affecting the hardware used, showing interesting behavior
but limiting the scalability of the model.

• If we focus on the runtime of the classification stage, it is
shared by GAHS-FkNN and LHS-FkNN as both models
follow the same scheme on this stage.

C. Study for higher values of k

According to the results shown, the GE-FkNN and L-FkNN
algorithms show a stagnation in accuracy with the values of
k set to 3, 5 and 7. In addition, the runtime is not drastically
affected by the k. However, the GAHS-FkNN and LHS-FkNN
algorithms keep improving the results. For this reason, this
section extends the values of k up to 51, studying the accuracy
obtained by both algorithms and the 8 datasets, setting the
number of maps to 128.

Figure 9 presents the accuracy obtained for each dataset
with the GAHS-FkNN and LHS-FkNN algorithms, with values
of k between 3 and 51. In order to facilitate the visualization
of the results, two figures are shown due to the differences in
accuracy between the datasets.

According to the figures presented we can observe:
• The results obtained (accuracy) according to the value of
k follow a similar behavior pattern for both algorithms.
Focusing on the datasets, high values of k improve the
accuracy in the Higgs, Poker, Epsilon and Susy datasets.
However, low values of k improve accuracy for Covtype,
Watch-acc, Watch-gyr and ECBDL14-S datasets. This is
a natural behavior for the FkNN algorithm, which occurs
with classical datasets from the literature. Therefore, the
proposed algorithms show the same behavior in large
datasets.

• Comparing GAHS-FkNN and LHS-FkNN in terms of
accuracy, we see that the differences are very low, and
when this difference is accentuated somewhat more in
the Covtype and Epsilon datasets, LHS-FkNN is the clear
winner.

0 2000 4000 6000 8000 10000 12000 14000 16000

3

5

7

3

5

7

3

5

7

L-
Fk

N
N

G
A

H
S-

Fk
N

N
LH

S-
Fk

N
N

ECBDL14-S

0 100 200 300 400 500

3

5

7

3

5

7

3

5

7

3

5

7

G
E-

Fk
N

N
L-

Fk
N

N
G

A
H

S-
Fk

N
N

LH
S-

Fk
N

N

Covtype

0 2000 4000 6000 8000 10000 12000

3

5

7

3

5

7

3

5

7

3

5

7

G
E-

Fk
N

N
L-

Fk
N

N
G

A
H

S-
Fk

N
N

LH
S-

Fk
N

N

Epsilon

0 100 200 300 400 500 600 700 800

3

5

7

3

5

7

3

5

7

3

5

7

G
E-

Fk
N

N
L-

Fk
N

N
G

A
H

S-
Fk

N
N

LH
S-

Fk
N

N

Runtime (in seconds)

Poker

Membership Runtime Clasification Runtime

(a) Datasets: Covtype, Epsion, ECBDL14-S and Poker

0 5000 10000 15000 20000 25000

3

5

7

3

5

7

3

5

7

3

5

7

G
E-

Fk
N

N
L-

Fk
N

N
G

A
H

S-
Fk

N
N

LH
S-

Fk
N

N

Susy

0 2000 4000 6000 8000 10000 12000 14000

3

5

7

3

5

7

3

5

7

3

5

7

G
E-

Fk
N

N
L-

Fk
N

N
G

A
H

S-
Fk

N
N

LH
S-

Fk
N

N

Watch-acc

0 2000 4000 6000 8000 10000 12000 14000

3

5

7

3

5

7

3

5

7

3

5

7

G
E-

Fk
N

N
L-

Fk
N

N
G

A
H

S-
Fk

N
N

LH
S-

Fk
N

N

Runtime (in seconds)

Watch-gyr

Membership Runtime Clasification Runtime

0 5000 10000 15000 20000 25000 30000 35000

3

5

7

3

5

7

3

5

7

L-
Fk

N
N

G
A

H
S-

Fk
N

N
LH

S-
Fk

N
N

Higgs

(b) Datasets: Higgs , Susy, Watch-acc and Watch-gyr

Fig. 7: Runtime comparison between algorithms: GAHS-FkNN, LHS-FkNN, GE-FkNN and L-FkNN

D. Comparison with crisp kNN algorithms

As the inuence of the number of maps has already been
analyzed and not considered significant, this experiment has
been set to 128 maps in order to focus on the comparative
study of crisp vs fuzzy.

Figure 10 shows the total runtime for the algorithms kNN-
IS, HS-kNN, GAHS-FkNN and LHS-kNN. To facilitate the
study of the runtime, it is presented only with the value of k =
5. The results are shown for two figures due to the differences
in the scales of the total runtime of each dataset.

Table IV shows a comparison between the result obtained
by the two proposed algorithms and the two crisp-alternatives,
exploring the values of k 3, 5 and 7.

According to the table and figure presented, it can be seen
that the best results are obtained by the proposed algorithms.
Although HS-kNN improves with respect to the kNN-IS
algorithm, it is always less accurate than the FkNN models,
without the runtime being excessively increased due to the
optimization carried out in the classification stage of the
GAHS-FkNN algorithm. kNN-IS wins in the Epsilon, Watch-
acc and Watch-gyr datasets, possibly because it is a dataset
with clearly differentiated boundaries and low noise, where
the classification problem is simpler than in the other datasets.
Despite this, on average the proposed fuzzy models are clearly
better.

0

10

20

30

40

50

60

70

80

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

Covtype

0

500

1000

1500

2000

2500

3000

3500

4000

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

Higgs

Classification Membership

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

ECBDL14-S

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

Epsilon

(a) Datasets: Covtype, Epsilon, ECBDL14-S and Higgs

0

50

100

150

200

250

300

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

Watch_gyr

Classification Membership

0

50

100

150

200

250

300

350

400

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)
Watch_acc

0

100

200

300

400

500

600

700

800

900

1000

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

Susy

0

10

20

30

40

50

60

70

80

90

100

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

64 128 256 64 128 256

LHS-FkNN GAHS-FkNN

R
u

n
ti

m
e

(i
n

 S
ec

o
n

d
s)

Poker

(b) Datasets: Poker, Susy, Watch-acc and Watch-gyr

Fig. 8: Scalability comparison between GAHS-FkNN and LHS-FkNN

TABLE IV: Crisp vs Fuzzy models: accuracy

Algoritm k Covtype Epsilon ECBDL14-S Higgs Poker Susy Watch-acc Watch-gyr Average
3 0.9371 0.5864 0.7833 0.5454 0.4758 0.6675 0.9647 0.9845 0.7431

kNN-IS 5 0.9367 0.6007 0.7797 0.5458 0.4952 0.6784 0.9613 0.9811 0.747
7 0.9326 0.6110 0.7683 0.5559 0.4937 0.6861 0.9582 0.9788 0.7481
3 0.9308 0.5847 0.8020 0.5885 0.5201 0.7223 0.9542 0.9755 0.7598

HS-kNN 5 0.9232 0.5981 0.8017 0.5936 0.5305 0.7360 0.9478 0.9698 0.7626
7 0.9161 0.6086 0.7986 0.5981 0.5369 0.7431 0.9423 0.9651 0.7636
3 0.9375 0.5808 0.8054 0.5969 0.5237 0.7298 0.9601 0.9808 0.7644

GAHS-FkNN 5 0.9347 0.5897 0.8046 0.6084 0.5368 0.7461 0.9576 0.9790 0.7696
7 0.9313 0.5946 0.8013 0.6163 0.5451 0.7514 0.9558 0.9776 0.7717
3 0.9372 0.5838 0.8034 0.6047 0.5333 0.7331 0.9566 0.9790 0.7664

LHS-FkNN 5 0.9362 0.5957 0.8025 0.6145 0.5446 0.7446 0.9544 0.9779 0.7713
7 0.9338 0.6066 0.7968 0.6214 0.5502 0.7480 0.9530 0.9765 0.7733

3 5 7 9 11 21 31 41 51

0,75

0,80

0,85

0,90

0,95

Value of k

A
cc

u
ra

cy

GAHS-FkNN | Covtype LSH-FkNN | Covtype GAHS-FkNN | Watch_acc LSH-FkNN | Watch_acc

GAHS-FkNN | Watch_gyr LSH-FkNN | Watch_gyr GAHS-FkNN | ECBDL14-S LSH-FkNN | ECBDL14-S

(a) Datasets: Covtype, ECBDL14-S, Watch-acc and Watch-gyr

3 5 7 9 11 21 31 41 51

0,50

0,55

0,60

0,65

0,70

0,75

Value of k
A

cc
u

ra
cy

GAHS-FkNN | Epsilon LHS-FkNN | Epsilon GAHS-FkNN | Higgs LSH-FkNN | Higgs

GAHS-FkNN | Poker LSH-FkNN | Poker GAHS-FkNN | Susy LSH-FkNN | Susy

(b) Datasets: Epsilon, Higgs, Poker and Susy

Fig. 9: Accuracy comparison with higher values of k: GAHS-FkNN vs LHS-kNN

1
1

2

2
3 4
7

3
9 1

2
4

3
3 1
0

2

8
4

2
2

7
4

1
3

1

1
1

1

1
6

4

1
2

5
1

8
2

6
8 7
5

8
7

2

7
5

6
5 7
0

0

500

1000

1500

2000

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

C O V T Y P E P O K E R S U S Y W A T C H - A C C W A T C H - G Y R

TO
TA

L
R

U
N

TI
M

E
(I

N
 S

EC
O

N
D

S)

4
7

3
9

1
2

3
6

3

2
4

3
9

2
8

6
7

4

2
6

0
8

1
2

4
1

4

2
7

8
7

1
3

4
4

6

6
5

1

6
2

9

7
9

6

0

5000

10000

15000

20000

25000

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-F

K
N

N

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

K
N

N
-I

S

H
S

-K
N

N

G
A

H
S

-F
K

N
N

L
H

S
-K

N
N

E P S I L O N E C B D L 1 4 - S H I G G S

TO
TA

L
R

U
N

TI
M

E
(I

N
 S

EC
O

N
D

S)

Fig. 10: Total Runtime comparison between Crisp and Fuzzy models

VI. CONCLUSIONS AND FURTHER WORK

In this paper, two MapReduce approaches have been pro-
posed to speed up the FkNN algorithm in Big Data problems.
Because of the design and use of big data technologies, it is
possible to execute with very large datasets. In order to study
any possible improvements, the proposed model has also been
compared with Fuzzy and Crisp versions of the literature. The
GAHS-FkNN and LHS-FkNN algorithms achieve statistically
equal results in terms of accuracy. On the one hand, the LHS-
FkNN algorithm demonstrates very high scalability depending
on the hardware facilities available, as well as high accuracy
results. On the other hand, the GAHS-FkNN algorithm is less
dependent on hardware resources but is more affected by a
high number of features.

Thus, the use of LHS-FkNN is recommended when we
have powerful hardware according to the problem we want
to address, and if the number of features is high. The use of
GAHS-FkNN is recommended when the number of features
is not too high and we have hardware limitations.

A library has been generated with the algorithms used in
this study and is available in the spark-packages platform at
https://spark-packages.org/package/JMailloH/HS FkNN.

As future work, we aim to tackle the class imbalanced
problem through evolutionary undersampling techniques [40],
capable of handling large datasets.

ACKNOWLEDGMENTS

This contribution has been supported by the Spanish Na-
tional Research Project TIN2017-89517-P. J. Maillo hold a
FPU scholarship from the Spanish Ministry of Education.

REFERENCES

[1] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor
algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol.
SMC-15, no. 4, pp. 580–585, July 1985.

[2] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[3] J. Derrac, S. Garcı́a, and F. Herrera, “Fuzzy nearest neighbor algorithms:
Taxonomy, experimental analysis and prospects,” Information Sciences,
vol. 260, pp. 98 – 119, 2014.

[4] Z. Cai, J. Gu, C. Wen, D. Zhao, C. Huang, H. Huang, C. Tong, J. Li, and
H. Chen, “An intelligent parkinsons disease diagnostic system based on
a chaotic bacterial foraging optimization enhanced fuzzy knn approach,”
Computational and Mathematical Methods in Medicine, vol. 2018, p. 24,
2018.

[5] J. Qin, L. Wang, and R. Huang, “Research on fault diagnosis method of
spacecraft solar array based on f-knn algorithm,” in 2017 Prognostics
and System Health Management Conference (PHM-Harbin), July 2017,
pp. 1–4.

[6] S. Garcı́a, J. Luengo, and F. Herrera, Data preprocessing in data mining.
Springer, 2015.

[7] J. M. Cadenas, M. C. Garrido, R. Martı́nez, E. Muñoz, and P. P.
Bonissone, “A fuzzy k-nearest neighbor classifier to deal with imperfect
data,” Soft Computing, vol. 22, no. 10, pp. 3313–3330, May 2018.

[8] S. Ezghari, A. Zahi, and K. Zenkouar, “A new nearest neighbor classi-
fication method based on fuzzy set theory and aggregation operators,”
Expert Systems with Applications, vol. 80, pp. 58 – 74, 2017.

[9] I. Banerjee, S. S. Mullick, and S. Das, “On convergence of the class
membership estimator in fuzzy k-nearest neighbor classifier,” IEEE
Transactions on Fuzzy Systems, pp. 1–1, 2018.

[10] H. Nikdel, Y. Forghani, and S. Mohammad Hosein Moattar, “Increasing
the speed of fuzzy k-nearest neighbours algorithm,” Expert Systems,
vol. 35, no. 3, p. e12254, 2018.

[11] J. Derrac, F. Chiclana, S. Garcı́a, and F. Herrera, “Evolutionary fuzzy
k-nearest neighbors algorithm using interval-valued fuzzy sets,” Infor-
mation Sciences, vol. 329, pp. 144 – 163, 2016.

[12] P. H. Kassani, A. B. J. Teoh, and E. Kim, “Evolutionary-modified fuzzy
nearest-neighbor rule for pattern classification,” Expert Systems with
Applications, vol. 88, pp. 258 – 269, 2017.

[13] N. Biswas, S. Chakraborty, S. S. Mullick, and S. Das, “A parame-
ter independent fuzzy weighted k-nearest neighbor classifier,” Pattern
Recognition Letters, vol. 101, pp. 80 – 87, 2018.

[14] S. John Walker, Big data: A revolution that will transform how we live,
work, and think. Taylor & Francis, 2014.

[15] O. U. Lenz, D. Peralta, and C. Cornelis, “A scalable approach to fuzzy
rough nearest neighbour classification with ordered weighted averaging
operators,” in International Joint Conference on Rough Sets, June, June
2019.

[16] R. Talavera-Llames, R. Pérez-Chacón, A. Troncoso, and F. Martı́nez-
Álvarez, “Big data time series forecasting based on nearest neighbours
distributed computing with spark,” Knowledge-Based Systems, vol. 161,
pp. 12–25, 2018.

[17] I. Triguero, D. Garcı́a-Gil, J. Maillo, J. Luengo, S. Garcı́a, and F. Her-
rera, “Transforming big data into smart data: An insight on the use
of the k-nearest neighbors algorithm to obtain quality data,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 9, no. 2, p. e1289, 2019.

[18] J. Maillo, S. Ramı́rez, I. Triguero, and F. Herrera, “kNN-IS: an iterative
spark-based design of the k-Nearest Neighbors classifier for big data,”
Knowledge-Based Systems, vol. 117, no. Supplement C, pp. 3 – 15,
2017, volume, Variety and Velocity in Data Science.

[19] J. K. Uhlmann, “Satisfying general proximity / similarity queries with
metric trees,” Information Processing Letters, vol. 40, no. 4, pp. 175 –
179, 1991.

[20] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation
of practical approximate nearest neighbor algorithms,” in Advances in
neural information processing systems, 2005, pp. 825–832.

[21] T. Liu, C. J. Rosenberg, and H. A. Rowley, “Performing a parallel
nearest-neighbor matching operation using a parallel hybrid spill tree,”
Jan. 6 2009, uS Patent 7,475,071.

[22] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, and I. Triguero, “Exact
fuzzy k-nearest neighbor classification for big datasets,” in 2017 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), July 2017,
pp. 1–6.

[23] J. Maillo, J. Luengo, S. Garca, F. Herrera, and I. Triguero, “A prelim-
inary study on hybrid spill-tree fuzzy k-nearest neighbors for big data
classification,” in 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), July 2018, pp. 1–8.

[24] J. Dean and S. Ghemawat, “Mapreduce: A flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 1–14.

[26] S. Dutta and A. K. Ghosh, “On some transformations of high dimension,
low sample size data for nearest neighbor classification,” Machine
Learning, vol. 102, no. 1, pp. 57–83, Jan 2016.

[27] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” in 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), Oct 2006,
pp. 459–468.

[28] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning spark:
lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

[29] T. White, Hadoop: The Definitive Guide, 3rd ed. O’Reilly Media, Inc.,
2012.

[30] “Apache Hadoop Project,” Accessed on Dec. 2018. [online]. [Online].
Available: http://hadoop.apache.org/

[31] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Machine learning in
apache spark,” Journal of Machine Learning Research, vol. 17, no. 34,
pp. 1–7, 2016.

[32] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[33] E. Alpaydin, Introduction to Machine Learning, 3rd ed. The MIT Press,
2014.

[34] A. Benavoli, G. Corani, J. Demšar, and M. Zaffalon, “Time for a change:
a tutorial for comparing multiple classifiers through bayesian analysis,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 2653–
2688, 2017.

[35] J. Carrasco, S. Garcı́a, M. del Mar Rueda, and F. Herrera, “rNPBST:
an r package covering non-parametric and bayesian statistical tests,” in
Hybrid Artificial Intelligent Systems. Springer, 2017, pp. 281–292.

[36] “ECBDL14 dataset: Protein structure prediction and contact map for
the ECBDL2014 big data competition,” 2014. [Online]. Available:
http://cruncher.ncl.ac.uk/bdcomp/

[37] “Epsilon in the LIBSVM website, 2019,” Accessed on May.
2019. [online]. [Online]. Available: http://www.csie.ntu.edu.tw/cjlin/
libsvmtools/datasets/binary.html#epsilon

[38] “Pascal large scale learning challenge,” 2008. [Online]. Available:
http://largescale.ml.tu-berlin.de

[39] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[40] S. Garcı́a and F. Herrera, “Evolutionary undersampling for classifica-
tion with imbalanced datasets: Proposals and taxonomy,” Evolutionary
computation, vol. 17, no. 3, pp. 275–306, 2009.

Jesus Maillo received the B.Sc. and M.Sc. degrees
in computer science from the University of Granada,
Granada, Spain, in 2014 and 2015. He is currently
pursuing the Ph.D. degree in the Department of
Computer Science and Artificial Intelligence in the
University of Granada.

His research interests include data mining, data
preprocessing and big data.

Salvador Garcı́a received the B.S. and Ph.D. de-
grees in Computer Science from the University of
Granada, Granada, Spain, in 2004 and 2008, re-
spectively. He is currently an Associate Professor in
the Department of Computer Science and Artificial
Intelligence, University of Granada, Granada, Spain.
Dr. Garcı́a has published more than 90 papers in
international journals (more than 60 in Q1), h-
index 44, over 60 papers in international conference
proceedings (data from Web of Science). He has
organized several special sessions and workshops

related to data preprocessing and evolutionary learning in conferences such as
Hybrid Intelligent Systems, Intelligent Systems Design and Applications and
International Joint-Conference of Neural Networks. He has been associated
with the international program committees and organizing committees of
several regular international conferences including IEEE CEC, ICPR, ICDM,
IJCAI, etc.

As edited activities, he is an associate editor of Information Fusion
(Elsevier), Swarm and Evolutionary Computation (Elsevier) and AI Com-
munications (IOS Press) journals. He is a co-author of the books entitled
Data Preprocessing in Data Mining and Learning from Imbalanced Data
Sets published by Springer. His research interests include data science, data
preprocessing, Big Data, evolutionary learning, Deep Learning, metaheuristics
and biometrics.

Dr. Garcı́a has been given some awards and honors for his personal work or
for his publications in and conferences, such as IFSA-EUSFLAT 2015 Best
Application Paper Award and IDEAL 2015 Best Paper Award. He belongs
to the list of the Highly Cited Researchers in the area of Computer Sciences
(2014-2018): http://highlycited.com/ (Clarivate Analytics).

Julián Luengo received the M.S. degree in com-
puter science and the Ph.D. from the University
of Granada, Granada, Spain, in 2006 and 2011
respectively.

He currently acts as an Associate Professor in
the Department of Computer Science and Artificial
Intelligence at the University of Granada, Spain. His
research interests include machine learning and data
mining, data preparation in knowledge discovery
and data mining, missing values, noisy data, data
complexity and fuzzy systems.

Dr. Luengo has been given some awards and honors for his personal work
or for his publications in and conferences, such as IFSA-EUSFLAT 2009 Best
Student Paper Award. He belongs to the list of the Highly Cited Researchers
in the area of Computer Sciences (2018): http://highlycited.com/ (Clarivate
Analytics).

Francisco Herrera (SM’15) received his M.Sc. in
Mathematics in 1988 and Ph.D. in Mathematics in
1991, both from the University of Granada, Spain.
He is a Professor in the Department of Computer
Science and Artificial Intelligence at the University
of Granada and Director of the Andalusian Research
Institute in Data Science and Computational Intelli-
gence (DaSCI). He’s an academician at the Spanish
Royal Academy of Engineering.

He has been the supervisor of 45 Ph.D. students.
He has published more than 400 journal papers,

receiving more than 73000 citations (Scholar Google, H-index 135). He has
been selected as a Highly Cited Researcher http://highlycited.com/ (in the
fields of Computer Science and Engineering, respectively, 2014 to present,
Clarivate Analytics).

He currently acts as Editor in Chief of the international journal ”Information
Fusion” (Elsevier). He acts as editorial member of a dozen of journals.

He received the several honors and awards, among others: ECCAI Fellow
2009, IFSA Fellow 2013, 2010 Spanish National Award on Computer Science
ARITMEL to the ”Spanish Engineer on Computer Science”, International
Cajastur ”Mamdani” Prize for Soft Computing (Fourth Edition, 2010), IEEE
Transactions on Fuzzy System Outstanding 2008 and 2012 Paper, 2011 Lotfi
A. Zadeh Prize Best paper Award (IFSA Association), 2013 AEPIA Award to
a scientific career in Artificial Intelligence, 2014 XV Andaluca Research Prize
Maimnides, 2017 Andaluca Medal (by the regional government of Andaluca),
2018 Granada: Science and Innovation City award.

His current research interests include among others, Computational In-
telligence (including fuzzy modeling, computing with words, evolutionary
algorithms and deep learning), information fusion and decision making, and
data science (including data preprocessing, prediction and big data).

Isaac Triguero received his M.Sc. and Ph.D. de-
grees in Computer Science from the University of
Granada, Granada, Spain, in 2009 and 2014, re-
spectively. He is currently an Assistant Professor
of Data Science at the University of Nottingham
since June 2016. His work is mostly concerned with
the research of novel methodologies for big data
analytics. Dr Triguero has published more than 65
international publications in the fields of Big Data,
Machine Learning and Optimisation (H-index=22
and more than 1900 citations on Google Scholar).

He is a Section Editor-in-Chief of the Machine Learning and Knowledge
Extraction journal, and an associate editor of the Big Data and Cognitive
Computing journal, and the IEEE Access journal. He has acted as Program
Co-Chair of the IEEE Conference on Smart Data (2016), the IEEE Conference
on Big Data Science and Engineering (2017), and the IEEE International
Congress on Big Data (2018). Dr Triguero is currently leading a Knowledge
Transfer Partnership project funded by Innovative UK and the energy provider
E.ON that investigates Smart Metering data.

