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Abstract

Given a Hopf algebraH , we study modules and bimodules over an algebra A that carry
an H-action, as well as their morphisms and connections. Bimodules naturally arise when
considering noncommutative analogues of tensor bundles. For quasitriangular Hopf alge-
bras and bimodules with an extra quasi-commutativity property we induce connections on
the tensor product over A of two bimodules from connections on the individual bimodules.
This construction applies to arbitrary connections, i.e. not necessarily H-equivariant ones,
and further extends to the tensor algebra generated by a bimodule and its dual. Exam-
ples of these noncommutative structures arise in deformation quantization via Drinfeld
twists of the commutative differential geometry of a smooth manifold, where the Hopf
algebra H is the universal enveloping algebra of vector fields (or a finitely generated Hopf
subalgebra).

We extend the Drinfeld twist deformation theory of modules and algebras to mor-
phisms and connections that are not necessarily H-equivariant. The theory canonically
lifts to the tensor product structure.
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1 Introduction

Powerful methods for studying deformations of an algebra A are available if this algebra
carries a representation of a group (or Hopf algebra H). In this case one can first consider a
deformation of the group in a quantum group (or of the Hopf algebra H in a deformed Hopf
algebra), and then use the group (or Hopf algebra) action in order to induce a deformation
of the algebra A.

Noncommutative manifolds, i.e. noncommutative deformations of the algebra of functions
on a manifold, are frequently constructed along this line, correspondingly quantum groups
and Hopf algebras play a fundamental role in this field. Deformation via Drinfeld twists is
an example [Dri83, Dri89, GZ98]. Here a twist element F ∈ H ⊗H of the Hopf algebra H
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induces a new Hopf algebra HF and a deformed algebra A⋆. If the algebra A is commutative
and H is co-commutative (like the universal enveloping algebra of a Lie algebra), then the
commutation relations in the twist deformed algebra A⋆ are determined by the triangular
R-matrix R = F−1

21 F , and A⋆ is an example of a quasi-commutative algebra. The algebra A⋆

is typically noncommutative, i.e. it is a quantization of A.
This research area benefits from the interplay of different approaches. Let us consider for

example quantum groups: They are studied as noncommutative algebras of “functions on a
noncommutative group” [FRT89], but also as quasitriangular Hopf algebras [Dri85] together
with their associated categories of representations [Res89, Dri89]. They also originated and
provided new methods in deformation quantization (see [Tak89] for an introduction).

Noncommutative differential geometry

Hopf algebra actions also play a central role in the study of the differential geometry of
noncommutative manifolds (the differential calculus on quantum groups [Wor89] is a leading
example).

The algebraic structures underlying noncommutative differential geometry are quite rich.
If A is the noncommutative analogue of the algebra of functions on a manifold M , modules
over A are then the noncommutative analogues of (modules of sections of) vector bundles
over M . An analogue of the fibre-wise tensor product of vector bundles is achieved restricting
to the subclass of A-bimodules (compatible left and right A-modules) and considering their
tensor product over A. A notable example of an A-bimodule is that of one-forms. When the
algebra A carries a representation of a Hopf algebra H, we study H

AM-modules, which are
left H-modules and also left A-modules in a compatible way. These are the noncommutative
analogues of vector bundles with a lift of the H-action from functions on the base manifold
to sections. A-bimodules compatible with the H-action, i.e. H

AMA-modules, form a tensor
algebra over A.

Noncommutative differential geometry is the study of maps between modules and bimod-
ules, like the exterior derivative, connections and their curvatures. In particular, A-linear
maps (left or right) are relevant because, as in the commutative case, the curvature of a
connection is an A-linear map and also the difference between two connections is an A-linear
map. This latter property is the affine space structure of connections.

When all modules carry an H-action it would seem natural to consider also H-equivariant
maps. On the contrary, a main theme in this work is the study of the general structure
of non H-equivariant homomorphisms, connections and curvatures. This case, for example,
arises when one considers the Levi-Civita connection of a Riemannian manifold and studies
deformations of the manifold that are not isometric (i.e. when the Hopf algebra H is not
related to the Lie algebra of Killing vector fields). More in general if the connection is a
dynamical field, like in gauge and gravity theories, it is not equivariant under the H-action.
When homomorphisms are not H-equivariant then they are H-covariant, i.e. they transform
under the H-adjoint action. This is the canonical lift to linear and (left or right) A-linear
maps of theH-action on the H

AMA-modules. Thus, linear and A-linear maps between H
AMA-

modules form also an H-module and their deformation can be studied via deformation of the
Hopf algebra H.

We study the Drinfeld twist deformation theory of modules and algebras in this noncom-
mutative differential geometric context. We develop in particular a theory of connections and
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of their twist deformations.
Connections in noncommutative geometry have been introduced in the mid eighties [Con85]

and then investigated further since the mid nineties [Mou94, DVM96, Mad00, DV01]. On
right (or left) A-modules there is a well-established notion of connection, however, these con-
nections present issues when considered on A-bimodules. In fact, two A-bimodules can be
tensored into another A-bimodule but there is no corresponding operation on connections
such that connections on the individual A-bimodules induce a connection on the tensor prod-
uct A-bimodule. One way out is to restrict to a subclass of connections that have extra
properties [Mou94, DVM96, Mad00, DV01], in particular their curvature turns out to be
both left and right A-linear. An alternative route we advocate is to restrict to a subclass of
A-bimodules with extra properties, so that the usual connections on right (or left) A-modules
induce connections on tensor product modules.

Our results on the theory of connections on H
AMA-modules and their twist deformation

can be organized according to the extra properties we demand: i) We study the deformation of
connections on right A-modules and the dual theory on left A-modules. Connections form an
affine space and deformation is an affine space isomorphism. It does not preserve flatness: flat
connections are deformed in non flat ones and vice versa. ii) The study of H-covariant (not
necessarily H-equivariant) homomorphisms on tensor products of H

AMA-modules requires a
quasitriangular Hopf algebra H. We first study a tensor product of linear maps compatible
with the H-action and then show that there is a canonical way to twist deform this tensor
product. iii) If furthermore the algebra A and the A-bimodules are quasi-commutative, i.e.,
if they are compatible with the braiding structure of the quasitriangular Hopf algebra H, the
tensor product of linear maps induces a tensor product over A of right A-linear maps and
we develop a theory of connections on tensor product modules. Arbitrary connections on the
individual A-bimodules induce a connection on the tensor product A-bimodule. There is also
a canonical extension of a connection on an A-bimodule to the tensor algebra generated by
the A-bimodule and its dual. In the special case of H-equivariant connections we recover the
usual notion of bimodule connections [Mou94, DVM96, Mad00, DV01]. An early account of
our results appeared in the PhD thesis [Sch11a] and the proceedings articles [Sch11b, Asc12].

In the present work we have been led by the example of deformation quantization of
commutative manifolds. In this case A = C∞(M)[[h]] (the algebra of formal power series
in h with coefficients in C∞(M)) and we canonically have the Lie algebra of derivations of
A and the associated Hopf algebra H = UΞ[[h]], where UΞ is the universal enveloping al-
gebra of vector fields on M . Vector fields and one-forms are canonically H

AMA-modules,
the H-action on these modules being via the Lie derivative. The twist deformation of these
modules and of the Lie derivative and inner derivative homomorphisms has been studied in
[A+05, ADMW06] in order to formulate a noncommutative gravity theory, see [A+09] for a
pedagogical introduction. It is deforming arbitrary connections on the tensor algebra of vec-
tor bundles over commutative manifolds that we are led to the general theory of connections
on quasi-commutative bimodules presented in this paper. The deformation of commutative
differential geometry in the more general framework of cochain twists, leading also to a nonas-
sociative geometry, but considering only H-equivariant connections and homomorphisms, has
been studied in [BM10].

In the wide class of examples obtained via twist deformation of commutative differential
geometries the Hopf algebra H is always triangular. A caveat is here in order: It can be
that there are no nontrivial examples of truly quasitriangular Hopf algebras acting on quasi-
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commutative algebras and bimodules. If this is the case, then the theory of connections we
present is only suitable for triangular Hopf algebras and the proofs of the theorems in this
paper have the advantage of singling out the specific passages where triangularity (in the form
of quasi-commutativity) is needed.

Categorical aspects of twist deformation

The categorical aspects underlying Drinfeld twist theory emerge also in the study of homo-
morphisms and connections. It is useful to formulate some of our findings in this language.

Let us consider the category rep
H
eqv of representations of the Hopf algebra H. The ob-

jects in rep
H
eqv are H-modules, the morphisms are H-equivariant maps between H-modules

and their composition is the usual composition ◦. The tensor product of representations
structures rep

H
eqv as a monoidal category,

(
rep

H
eqv,⊗

)
. Given a twist F of the Hopf algebra

H, one can deform H into the Hopf algebra HF and consider the corresponding monoidal
category

(
rep

HF

eqv ,⊗⋆

)
of representations of HF . The objects in rep

HF

eqv are HF -modules, the

morphisms are HF -equivariant maps between HF -modules and their composition is the usual
composition ◦. It follows from Drinfeld’s work [Dri89] that the two categories

(
rep

H
eqv,⊗

)
and(

rep
HF

eqv ,⊗⋆

)
are equivalent as monoidal categories. Following [Dri89], Giaquinto and Zhang

[GZ98] studied the twist deformation of the category
(
H
AM ,AHom

eqv, ◦
)
. In this category

the objects are H
AM-modules (i.e. modules that are both left H-modules and left A-modules

in a compatible way), the morphisms are H-equivariant and left A-linear maps and their
composition is the usual composition ◦. They proved that the categories

(
H
AM ,AHom

eqv, ◦
)

and
(
HF

A⋆M ,A⋆Hom
eqv, ◦

)
are equivalent.

Led by the structures required in noncommutative differential geometry we investigate
the category

(
H
AM ,AHom, ◦

)
where now morphisms are not H-equivariant but just left

A-linear maps. In this case the twist does not only deform the Hopf algebra H, the al-
gebra A and the modules, but also the morphisms. We show that this twist deformation
gives an equivalence of categories. However, this equivalence is not between the deformed
category

(
HF

A⋆M ,A⋆Hom, ◦
)
(with morphisms left A⋆-linear maps) and the initial category(

H
AM ,AHom, ◦

)
, but between

(
HF

A⋆M ,A⋆Hom, ◦
)
and the category

(
H
AM ,AHom, ◦⋆

)
ob-

tained from
(
H
AM ,AHom, ◦

)
by deforming just the composition law of morphisms. If we

restrict to H-equivariant morphisms we recover the results of [GZ98]. A similar equivalence
is found when we consider the category with objects HMA-modules (or H

AMA-modules) and
morphisms right A-linear maps.

For quasitriangular Hopf algebras H we also study the category rep
H . The objects in

rep
H are H-modules, the morphisms linear maps (not necessarily H-equivariant) between

H-modules and their composition is the usual composition ◦. This category is an “almost
monoidal” category because the tensor product on morphisms that we consider (i.e. the one
compatible with the lift of the H-action from the tensor product of modules to the tensor
product of morphisms) spoils the bifunctor properties of the tensor product (it is a bifunctor
up to braiding). We show that twist deformation is however compatible with this tensor
structure. Also the category with objects given by quasi-commutative H

AMA-modules and
morphisms given by right A-linear maps (and usual composition ◦) is an “almost monoidal”
category. Here too we show that twist deformation is compatible with this tensor structure.
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Outline

We clarify the structure of the paper by outlining its content. In Section 2 we settle our
notation and we recall elementary Hopf algebra notions. In Section 3 we first introduce Hopf
algebra twists and review how they induce deformations of algebras that are also H-modules
(i.e. H-module algebras). Then we study algebras that transform under an H-adjoint action,
like the algebra of linear maps of an H-module. The twist deformation of such an algebra
leads to a deformed algebra that is isomorphic to the original one and we begin with the
detailed study of this isomorphism, that we denote by DF .

Section 4 is devoted to the deformation of endomorphisms and homomorphisms between
modules that carry both an H and an A-module structure, i.e. HMA-modules (like e.g. the
module of one-forms on a manifold). As already said, we do not restrict ourselves to H-
equivariant maps between these modules. We first just consider linear maps (this is propaedeu-
tical and will be needed for the study of connections), then we consider A-linear ones. Due
to the isomorphism DF between the deformed algebra of endomorphisms of a module and
the algebra of endomorphisms of the deformed module, there is a canonical way to deform
right A-linear endomorphisms (right A-linear maps) on HMA-modules into right A⋆-linear

ones on HF
MA⋆-modules. Similarly, also the deformation of homomorphisms between two

modules is canonical. In categorical language we have constructed a deformation functor that
maps HMA-modules to HF

MA⋆-modules, and that has a nontrivial action, given by DF , on
the corresponding right A-module homomorphisms. This functor implies that the category
of HMA-modules with right A-linear maps as morphisms and with a twist deformed compo-
sition law is equivalent to that of HF

MA⋆-modules with right A⋆-linear maps as morphisms
and with the usual composition law.

In this section we also consider the deformation of H
AM-modules and of left A-linear

homomorphisms (left A-linear maps). The dual V ′ of a right A-module V is a left A-module,
and we show that dualizing a deformed module is equivalent to deforming the dual module.
This result will be needed later in order to study connections on dual modules and their
deformation.

In Section 5 we study tensor products of modules and of homomorphisms, as well as
their deformation. A tensor product of linear maps is a linear map on the tensor product of
the original modules. We require H-covariance of this construction, i.e. that it transforms
according to the H-adjoint action, like the original linear maps. This is achieved if the Hopf
algebra is quasitriangular, in fact it is lifting the braiding of modules to linear maps (via
an adjoint action) that the tensor product of linear maps is obtained. Twist deformation of
homomorphisms is compatible with this tensor product, hence again there is a canonical way
to deform tensor products of homomorphisms. Otherwise stated, the deformation functor
is compatible with the tensor product structure. We would actually have an equivalence of
monoidal categories if the tensor product between linear maps would structure the category
of H-modules as a monoidal category. This is, however, only almost the case, since the tensor
product is a bifunctor up to a braiding.

In the second part of this section we finally consider leftH-moduleA-bimodules, i.e. HAMA-
modules. We focus on the subclass of quasi-commutative ones, i.e. of those A-bimodules com-
patible with the braiding structure of the quasitriangular Hopf algebra H. Correspondingly
right A-linear homomorphisms (right A-linear maps) inherit a braided left A-linearity prop-
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erty. The tensor product structure we have studied before induces a tensor product structure
over A. In particular, the tensor product of two right A-linear maps is again a right A-linear
map on the tensor product module (over A). The deformation is also induced canonically
on tensor products of quasi-commutative A-bimodules and of their right A-linear homomor-
phisms. Otherwise stated, the deformation functor is compatible with the tensor product
structure over A.

We conclude the section by recalling that the universalR-matrix of a quasitriangular Hopf
algebra H is an example of twist of H. If we use it in order to twist deform quasi-commutative
A-bimodules and their right A-linear homomorphisms, we obtain an isomorphism between left
and right A-linear homomorphisms.

In Section 6 we consider a differential calculus over the algebra A (a differential graded
algebra over A) and connections on right A-modules. These are in particular linear maps
between modules, and carry an affine space structure with respect to right A-module homo-
morphisms. We then deform the differential calculus and the connections. Using the results
of the previous sections we obtain an affine space isomorphism between connections on right
A-modules and deformed connections on right A⋆-modules. When the Hopf algebra is quasitri-
angular, and we restrict ourselves to quasi-commutative A-bimodules, arbitrary connections
on A-bimodules can be summed to give a connection on the tensor product module (over
A) of the initial A-bimodules. This operation is again compatible with twist deformation,
in fact we show that the sum of deformed connections equals the deformation of the sum of
connections.

Finally we study connections on dual modules. A connection on a right A-module induces
a connection on the dual left A-module (and there is an affine space isomorphism between
the affine spaces of connections on a right A-module and of connections on the dual left A-
module). Again deformation and dualization are compatible. The dual construction can be
applied to connections with right Leibniz rule on quasi-commutative A-bimodules to obtain
connections with left Leibniz rule on the dual A-bimodules. These can be mapped into right
Leibniz rule connections by extending the left to right isomorphism of homomorphisms that
we have constructed with the R-matrix in the end of Section 5. In this way, from a connection
on a quasi-commutative A-bimodule we induce a connection on the tensor algebra (over A)
generated by this A-bimodule and its dual.

In Section 7 we deform the curvature of a connection and notice that it is different from
the curvature of the deformed connection. In particular, flat connections are not deformed
into flat connections. Similarly we calculate the curvature of the sum of connections and find
that it differs in general from the sum of the curvatures of the original connections.

2 Preliminaries and notation on modules, algebras and Hopf
algebras

In this section we fix the notation and recall some basic facts about Hopf algebras and their
modules. In deformation quantization the field of complex numbers C is replaced by the ring
C[[h]] of formal power series (in an indeterminate, say h) with coefficients in C. In order to
cover also this example we shall consider modules and algebras over a commutative ring K

with unit element 1 ∈ K.
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A K-module is an abelian group V together with a map K× V → V , (λ, v) 7→ λv, such
that for all λ, λ̃ ∈ K and v, ṽ ∈ V ,

(λ̃λ)v = λ̃(λv) , λ(v + ṽ) = λv + λṽ , (λ+ λ̃)v = λv + λ̃v , 1v = v . (2.1)

A K-module homomorphism (or K-linear map) between two K-modules V and W is a
homomorphism P : V →W of abelian groups that satisfies, for all v ∈ V and λ ∈ K, P (λv) =
λP (v). The K-module of all K-linear maps between V and W is denoted HomK(V,W ).

An algebra is a K-module A together with a K-linear map µ : A ⊗ A → A (product),
where ⊗ is the tensor product over K. We denote by a ⊗ b the image of (a, b) under the
canonical K-bilinear map A × A → A ⊗ A and write for the product µ(a ⊗ b) = a b. The
algebra A is called associative if, for all a, b, c ∈ A, (a b) c = a (b c). It is called unital

if there exists a unit element 1 ∈ A satisfying 1 a = a 1 = a, for all a ∈ A. An algebra

homomorphism between two algebras A and B is a K-linear map ϕ : A→ B, such that for
all a, ã ∈ A, ϕ(a ã) = ϕ(a)ϕ(ã). If A and B are unital, then ϕ is also required to preserve
the unit, i.e. ϕ(1) = 1. In the following, algebras will always be associative and unital if not
otherwise stated.

Definition 2.1. A Hopf algebra is an algebra H together with two algebra homomorphisms
∆ : H → H ⊗H (coproduct), ε : H → K (counit) and a K-linear map S : H → H (antipode)
satisfying, for all ξ ∈ H,

(∆ ⊗ id)∆(ξ) = (id ⊗∆)∆(ξ) , (coassociativity) (2.2a)

(ε⊗ id)∆(ξ) = (id ⊗ ε)∆(ξ) = ξ , (2.2b)

µ
(
(S ⊗ id)∆(ξ)

)
= µ

(
(id⊗ S)∆(ξ)

)
= ε(ξ)1 . (2.2c)

The product in the algebra H ⊗H is defined by, for all ξ, ζ, ξ̃, ζ̃ ∈ H,

(ξ ⊗ ζ) (ξ̃ ⊗ ζ̃) = (ξ ξ̃)⊗ (ζ ζ̃) . (2.3)

It is useful to introduce a compact notation (Sweedler’s notation) for the coproduct, for all
ξ ∈ H, ∆(ξ) = ξ1 ⊗ ξ2 (sum understood). The Hopf algebra properties (2.2) in this notation
read

(ξ1)1 ⊗ (ξ1)2 ⊗ ξ2 = ξ1 ⊗ (ξ2)1 ⊗ (ξ2)2 =: ξ1 ⊗ ξ2 ⊗ ξ3 , (2.4a)

ε(ξ1)ξ2 = ξ1ε(ξ2) = ξ , (2.4b)

S(ξ1) ξ2 = ξ1 S(ξ2) = ε(ξ)1 . (2.4c)

Likewise we denote the three times iterated application of the coproduct on ξ by ξ1⊗ξ2⊗ξ3⊗ξ4.
It can be shown that the antipode of a Hopf algebra is unique and satisfies S(ξ ζ) = S(ζ)S(ξ)
(antimultiplicative property), S(1) = 1, S(ξ1)⊗S(ξ2) = S(ξ)2⊗S(ξ)1 and ε(S(ξ)) = ε(ξ), for
all ξ, ζ ∈ H.

Definition 2.2. Let A be an algebra. A left A-module (or AM-module) is a K-module V
together with a K-linear map · : A⊗ V → V satisfying, for all a, b ∈ A and v ∈ V ,

(a b) · v = a · (b · v) , 1 · v = v . (2.5)
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The map · : A⊗ V → V is called an action of A on V or a representation of A on V .
A K-linear map P : V → W between two AM-modules V and W is an AM-module

homomorphism (or left A-linear map) if, for all a ∈ A and v ∈ V , P (a · v) = a ·P (v). We
denote the K-module of all left A-linear maps between V and W by AHom(V,W ).

Similarly a right A-module (or MA-module) is a K-module V together with a K-linear
map · : V ⊗A→ V satisfying, for all a, b ∈ A and v ∈ V ,

v · (a b) = (v · a) · b , v · 1 = v . (2.6)

A K-linear map P : V → W between two MA-modules V and W is an MA-module

homomorphism (or right A-linear map) if, for all a ∈ A and v ∈ V , P (v · a) = P (v) · a.
We denote the K-module of all right A-linear maps between V and W by HomA(V,W ).

A left and a right module structure on V are compatible if left and right actions commute.

Definition 2.3. Let A and B be algebras. An (A,B)-bimodule (or AMB-module) is a left
A-module and a right B-module V satisfying the compatibility condition, for all a ∈ A, b ∈ B
and v ∈ V ,

(a · v) · b = a · (v · b) . (2.7)

In case of B = A we call V an A-bimodule (or AMA-module).
A K-linear map P : V → W between two AMB-modules V and W is an AMB-module

homomorphism if it is left A-linear and right B-linear.

The algebra A can itself be a module over another algebra H. If H is further a Hopf
algebra we have the notion of an H-module algebra, expressing covariance of A under H.

Definition 2.4. Let H be a Hopf algebra. A left H-module algebra (or HA-algebra) is
an algebra A which is also a left H-module (we denote the H-action by ⊲), such that for all
ξ ∈ H and a, b ∈ A,

ξ ⊲ (a b) = (ξ1 ⊲ a) (ξ2 ⊲ b) , ξ ⊲ 1 = ε(ξ) 1 . (2.8)

An HA-algebra homomorphism between two HA -algebras A and B is an algebra ho-
momorphism ϕ : A → B that intertwines between the left action of H on A and the left
action of H on B, for all ξ ∈ H, a ∈ A, ϕ(ξ ⊲ a) = ξ ⊲ ϕ(a). This property is also called
H-equivariance of the algebra homomorphism ϕ.

We can now consider AMB-modules V , where A,B are HA -algebras and V is also a left
H-module. Compatibility between the Hopf algebra structure of H and the (A,B)-bimodule
structure of V leads to the following covariance requirement.

Definition 2.5. Let H be a Hopf algebra and A,B be HA -algebras. A left H-module

(A,B)-bimodule (or H
AMB-module) is an AMB-module V which is also a left H-module,

such that for all ξ ∈ H, a ∈ A, b ∈ B and v ∈ V ,

ξ ⊲ (a · v) = (ξ1 ⊲ a) · (ξ2 ⊲ v) , (2.9a)

ξ ⊲ (v · b) = (ξ1 ⊲ v) · (ξ2 ⊲ b) . (2.9b)
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In case of B = A we say that V is a left H-module A-bimodule (or H
AMA-module).

An algebra E is a left H-module (A,B)-bimodule algebra (or H
AAB-algebra), if E

as a module is an H
AMB-module and if E is also an HA -algebra.

H
AM-modules and HMB-modules are defined similarly to H

AMB-modules, where (2.9) is
restricted to (2.9a) or (2.9b), respectively. For a coherent notation we shall call leftH-modules
(where H is a Hopf algebra) also HM-modules.

We can consider different classes of maps between H
AMB-modules. The first option is

to consider maps that are compatible with all module structures, i.e. H
AMB-module homo-

morphisms. Let V,W be H
AMB-modules, then a map P : V → W is an H

AMB-module
homomorphisms if it is an H-equivariant map (or HM-module homomorphism), for all ξ ∈ H
and v ∈ V , P (ξ⊲v) = ξ⊲P (v), and if it is also a left A-linear map and a right B-linear map. A
second option, as motivated in the introduction, is to consider maps that are only compatible
with the left A-module structure or the right B-module structure, i.e. left A-linear maps and
right B-linear maps. A third option is to consider just K-linear maps.

Example 2.6. Consider the universal enveloping algebra UΞ associated with the Lie algebra
of vector fields Ξ on a smooth manifold M . This is the tensor algebra (over R) generated by
the elements of Ξ and the unit element 1 modulo the left and right ideal generated by the
elements uv − vu − [u, v], for all u, v ∈ Ξ. UΞ has a natural Hopf algebra structure; on the
generators u ∈ Ξ and the unit element 1 we define

∆(u) = u⊗ 1 + 1⊗ u , ∆(1) = 1⊗ 1 ,

ε(u) = 0 , ε(1) = 1 , (2.10)

S(u) = −u , S(1) = 1 ,

and extend ∆ and ε as algebra homomorphisms and S as an antialgebra homomorphism to
all UΞ.

Let V be the vector space of one-forms Ω (vector fields Ξ) on M , and A = C∞(M) be
the algebra of smooth functions on M . Ω (Ξ) is a C∞(M)MC∞(M)-module (the right module
structure equals the left module structure because C∞(M) is a commutative algebra).

C∞(M) is a UΞA -algebra; the first of property (2.8) for ξ a vector field is just the Leibniz
rule. Employing the Lie derivative, we also have that Ω (Ξ) is a UΞ

C∞(M)MC∞(M)-module.
Another example is obtained by considering smooth complex valued functions on M , and

similarly vector fields and one-forms over the field C rather than R.

3 Hopf algebra twists and deformations

We first review some well-known results on deformations of a Hopf algebra and its modules
by Drinfeld twists. We then introduce a deformation isomorphism which will be of utmost
importance in the study of deformations of module homomorphisms and connections.
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3.1 Twist deformation preliminaries

Definition 3.1. Let H be a Hopf algebra. A twist F is an element F ∈ H ⊗ H that is
invertible and that satisfies

F12(∆⊗ id)F = F23(id⊗∆)F , ( 2-cocycle property) (3.1a)

(ε⊗ id)F = 1 = (id ⊗ ε)F , (normalization property) (3.1b)

where F12 = F ⊗ 1 and F23 = 1⊗F .

We shall frequently use the notation (sum over α understood)

F = f α ⊗ f α , F−1 = f
α
⊗ f α , (3.2)

where f α, f α, f
α
, f α are elements in H.

In order to get familiar with this notation we rewrite (3.1a), (3.1b) and the inverse of
(3.1a),

((∆⊗ id)F−1)F−1
12 = ((id ⊗∆)F−1)F−1

23 , (3.3)

using the notation (3.2). Explicitly,

f βf α
1
⊗ f βf

α
2
⊗ f α = f α ⊗ f βf α1 ⊗ f βf α2 , (3.4a)

ε(f α)f α = 1 = f αε(f α) , (3.4b)

f
α

1
f
β
⊗ f

α

2
f β ⊗ f α = f

α
⊗ f α1 f

β
⊗ f α2 f β . (3.4c)

We next recall how a twist F induces a deformation of the Hopf algebra H into a Hopf algebra
HF , and of all its HM-modules into HF

M-modules. In particular HA -algebras are deformed
into HF

A -algebras, and commutative ones are typically deformed into noncommutative ones.
In this respect F induces a quantization.

Theorem 3.2. The twist F of the Hopf algebra H determines a new Hopf algebra HF , given
by

(H,µ,∆F , SF , ε) . (3.5)

As algebras HF = H and they also have the same counit εF = ε. The coproduct is, for all
ξ ∈ H,

∆F (ξ) = F∆(ξ)F−1 . (3.6)

The antipode is, for all ξ ∈ H,

SF (ξ) = χS(ξ)χ−1 , (3.7)

where

χ := f αS(f α) , χ−1 = S(f
α
)f α . (3.8)

A proof of this theorem can be found in textbooks on Hopf algebras, see e.g. [Maj95],
Theorem 2.3.4.
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Remark 3.3. It is easy to show that the Hopf algebra HF admits the twist F−1, indeed

F−1
12 (∆F ⊗ id)F−1 = F−1

23 (id⊗∆F )F−1 (3.9)

is equivalent to (3.3). From (3.6), (3.7) and (3.8) we see that the Hopf algebra (HF )F
−1

is
canonically isomorphic to H. We say that we twist back HF to H via the twist F−1.

Theorem 3.4. Given a Hopf algebra H, a twist F ∈ H ⊗ H and an HA -algebra A (not

necessarily associative or with unit), then there exists an HF
A -algebra A⋆. The algebra A⋆

has the same K-module structure as A and the action of HF on A⋆ is that of H on A. The
product in A⋆ is defined by, for all a, b ∈ A,

a ⋆ b := µ ◦ F−1 ⊲ (a⊗ b) = (f
α
⊲ a) (f α ⊲ b) . (3.10)

If A has a unit element then A⋆ has the same unit element. If A is associative then A⋆ is an
associative algebra as well.

Proof. We have to prove that the product in A⋆ is compatible with the Hopf algebra structure
on HF , for all a, b ∈ A and ξ ∈ H,

ξ ⊲ (a ⋆ b) = ξ ⊲
(
µ ◦ F−1 ⊲ (a⊗ b)

)

= µ ◦∆(ξ) ⊲ ◦F−1 ⊲ (a⊗ b)

= µ ◦ (∆(ξ)F−1) ⊲ (a⊗ b)

= µ ◦ F−1 ⊲ ◦∆F (ξ) ⊲ (a⊗ b)

= (ξ1F ⊲ a) ⋆ (ξ2F ⊲ b) , (3.11)

where we used the notation ∆F (ξ) = ξ1F ⊗ ξ2F .
If A has a unit element 1, then 1 ⋆ a = a ⋆ 1 = a follows from the normalization property

(3.1b) of the twist F . If A is an associative algebra we also have to prove associativity of the
new product, for all a, b, c ∈ A,

(a ⋆ b) ⋆ c = f
α
⊲
(
(f

β
⊲ a)(f β ⊲ b)

)
(f α ⊲ c)

= (f
α
⊲ a) f α ⊲

(
(f

β
⊲ b)(f β ⊲ c)

)
= a ⋆ (b ⋆ c) , (3.12)

where we used the twist cocycle property (3.1a) in the notation adopted in (3.4c).

Theorem 3.5. In the hypotheses of Theorem 3.4, given another HA -algebra B and an H
AMB-

module V , then there exists an HF

A⋆MB⋆-module V⋆. The module V⋆ has the same K-module
structure as V and the left action of HF on V⋆ is that of H on V . The A⋆ and B⋆ action on
V⋆ are respectively defined by, for all a ∈ A, b ∈ B and v ∈ V ,

a ⋆ v = · ◦ F−1 ⊲ (a⊗ v) = (f
α
⊲ a) · (f α ⊲ v) , (3.13a)

v ⋆ b = · ◦ F−1 ⊲ (v ⊗ b) = (f
α
⊲ v) · (f α ⊲ b) . (3.13b)

If V = E is further an H
AAB-algebra, then E⋆ is an HF

A⋆AB⋆-algebra, where the product in
the algebra E⋆ is given in Theorem 3.4.
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Proof. We give a sketch of the proof. Left A⋆-module property:

(a ⋆ b) ⋆ v = f
α
⊲
(
(f

β
⊲ a)(f β ⊲ b)

)
· (f α ⊲ v) = (f

α
⊲ a) · f α ⊲

(
(f

β
⊲ b) · (f β ⊲ v)

)

= a ⋆ (b ⋆ v) . (3.14)

The right B⋆-module and (A⋆, B⋆)-bimodule properties are similarly proven.
Compatibility between the left HF and the left A⋆-action:

ξ ⊲ (a ⋆ v) = · ◦
(
∆(ξ)F−1

)
⊲ (a⊗ v) = · ◦ F−1 ⊲ ◦∆F (ξ) ⊲ (a⊗ v)

= (ξ1F ⊲ a) ⋆ (ξ2F ⊲ v) . (3.15)

Compatibility between the left HF and the right B⋆-action is similarly shown. In case V = E
is an H

AAB-algebra, then E⋆ is an HF

A⋆AB⋆-algebra because of Theorem 3.4.

As in Theorem 3.5 we can deform H
AM-modules and HMB -modules into HF

A⋆M-modules
and HF

MB⋆-modules by restricting (3.13) to (3.13a) or (3.13b), respectively. We can also

(trivially) deform HM-modules into HF
M-modules.

Example 3.6. Consider Ug[[h]], the universal enveloping algebra over C[[h]] of a Lie algebra
g. Twists F ∈ Ug ⊗ Ug [[h]] are (up to equivalence) in one to one correspondence with
skew-symmetric elements r ∈ g⊗ g satisfying the classical Yang-Baxter equation [Dri83].

Let F be a twist of (a Hopf subalgebra Ug[[h]] of) UΞ[[h]], the universal enveloping
algebra of vector fields on a smooth manifold M . Then the UΞ[[h]]A -algebra A = C∞(M)[[h]]
of smooth function over M with values in C[[h]] and the UΞ[[h]]

AMA-modules of one-forms Ω
and of vector fields Ξ can be deformed into the noncommutative ones A⋆, Ω⋆ and Ξ⋆. Also the
UΞ[[h]]A -algebras of tensor fields (T,⊗), of exterior forms (Ω•,∧) and the Lie algebra of vector
fields (Ξ, [ , ]) can be deformed into the noncommutative algebras (T,⊗⋆), (Ω

•,∧⋆) and the
quantum Lie algebra (Ξ, [ , ]⋆). These deformations lead to a noncommutative gravity theory
[ADMW06].

Remark 3.7. The examples presented are in the context of formal deformation quantization.
However, if one considers sufficiently regular actions of a group G, rather than actions of its Lie
algebra g, then abelian Drinfeld twists (i.e. Drinfeld twists associated to an abelian Lie algebra
g) induce ⋆-products that can be implemented non-formally and produce deformations A⋆ of
C∗-algebras [Rie93]. This construction has further been generalized to the case of nonabelian
Drinfeld twists associated to solvable Lie algebras g (with extra structure) [BG11].

Disregarding the topological aspects, the (non-formal) noncommutative algebras of polyno-
mial functions on multiparametric quantum groups associated with (abelian) Drinfeld twists
were introduced in [Res90]. Their differential geometry and that of their homogeneous spaces
was studied in [AC96] (and references therein).

Non-formal noncommutative geometries à la Connes related to (abelian) Drinfeld twists
are, besides the noncommutative torus, the noncommutative spheres [CL01] and further non-
commutative manifolds (so-called isospectral deformations) considered in [CL01, CDV02].
This was clarified in [Var01, Sit01, CDV02, AB02].

3.2 The deformation isomorphism DF

Given an algebra A and an algebra homomorphism ρ : H → A we can consider the adjoint
action on the algebra A, for all ξ ∈ H and P ∈ A, ξ ◮ P := ρ(ξ1)Pρ(S(ξ2)). We denote adjoint
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actions by the symbol ◮ in order to stress that these actions are induced from “fundamental”
actions (in this case the left and right actions ρ(ξ)P and Pρ(ξ) of the algebra H on A). In this
subsection we show that twist deformation of the algebra A according to Theorem 3.4 and
using the H-adjoint action ◮, gives an algebra A⋆ that is isomorphic to A. This feature has
been observed for the special case of the Hopf algebra H in [GM94] and it has been further
exploited in [ADMW06] (see also [A+09] Section 8.2.3.1). It has been considered in the more
general case of H-adjoint actions induced by an algebra homomorphism ρ : H → A in [Fio10]
and [KM11].

In Theorem 3.8 and Theorem 3.9 we consider the algebra isomorphismDF : A⋆ → A under
slightly more general assumptions than the existence of an algebra homomorphism ρ : H → A.
In Theorem 3.10 we clarify that the algebra isomorphism DF : A⋆ → A preserves the HF

A -
algebra structures of A⋆ and of A. We also show that DF has a categorical interpretation.

Theorem 3.8. Let A be an HA -algebra (not necessarily associative or with unit; the H-action
is denoted by ◮) and also a right module with respect to the algebra (H,µ) (the right action
of (H,µ) on A is simply denoted by juxtaposition), with the compatibility conditions, for all
P,Q ∈ A and ξ, ζ ∈ H,

(PQ)ξ = P (Qξ) , (3.16a)

(Pξ)Q = P (ξ1 ◮ Q)ξ2 , (3.16b)

ξ ◮ (Pζ) = (ξ1 ◮ P )(ξ2 ◮ ζ) , (3.16c)

where ξ ◮ ζ = ξ1ζS(ξ2) is the adjoint action of H on H. In this case A and A⋆ are isomorphic
as algebras.

Proof. As we shall explain in the text below, this theorem is equivalent to Theorem 3.9.
Therefore the proof follows from the proof of Theorem 3.9.

Notice that A in the hypotheses above is a left module with respect to the algebra (H,µ)
by defining, for all ξ ∈ H and P ∈ A,

ξP := (ξ1 ◮ P ) ξ2 . (3.17)

Condition (3.16c) implies that A is an (H,µ)-bimodule

ξ(Pζ) = (ξ1 ◮ (Pζ))ξ2 = ((ξ1 ◮ P )(ξ2 ◮ ζ))ξ3 = (ξ1 ◮ P ) ξ2ζS(ξ3)ξ4 = (ξP )ζ . (3.18)

The Hopf algebra action ◮ on A is just the adjoint action with respect to this bimodule
structure:

ξ ◮ P = ξ1PS(ξ2) . (3.19)

Condition (3.16b) then simply reads

(Pξ)Q = P (ξQ) (3.20)

and together with (3.16a) and the HA -algebra property ξ ◮ (PQ) = (ξ1 ◮ P )(ξ2 ◮ Q) we
obtain

ξ(PQ) = (ξP )Q . (3.21)

In case A is unital with 1 ∈ A we also find, for all ξ ∈ H,

ξ 1 = (ξ1 ◮ 1)ξ2 = 1 ε(ξ1)ξ2 = 1 ξ . (3.22)
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Vice versa, if A is an algebra and an (H,µ)-bimodule satisfying (3.16a), (3.20) and (3.21)
(as well as (3.22) if A is unital), then ξ ◮ P := ξ1PS(ξ2) defines an

HA -algebra structure on
A that satisfies (3.16b) and (3.16c).

Hence, Theorem 3.8 equivalently reads

Theorem 3.9. Consider a Hopf algebra H and an (H,µ)-bimodule A that is also an algebra
(not necessarily associative or with unit). If, for all ξ ∈ H and P,Q ∈ A, the “generalized
associativity” conditions

(PQ)ξ = P (Qξ) , (Pξ)Q = P (ξQ) , ξ(PQ) = (ξP )Q , (3.23)

and in case A is unital, with 1 ∈ A, also the condition

ξ 1 = 1 ξ , (3.24)

hold true, then the adjoint action (3.19) structures A as an HA -algebra. Given a twist F of
the Hopf algebra H, the twist deformed algebra A⋆ is isomorphic (as an algebra) to A via the
map

DF : A⋆ → A , P 7→ DF (P ) := (f
α
◮ P ) f α = f

α

1PS(f
α

2 )f α . (3.25)

Proof. DF is obviously a K-linear map. It is also an algebra homomorphism, for all P,Q ∈ A,

DF (P ⋆ Q) = DF

(
(f

β
◮ P )(f β ◮ Q)

)

=
(
f
α
◮

(
(f

β
◮ P )(f β ◮ Q)

))
f α

= (f
α

1
f
β
◮ P ) (f

α

2
f β ◮ Q) f α

= (f
α
◮ P ) (f α1 f

β
◮ Q) f α2 f β

= (f
α
◮ P ) f α (f

β
◮ Q) f β

= DF (P )DF (Q) , (3.26)

where in the fourth line we used (3.4c) and in the fifth line we used that

(f α1 f
β
◮ Q) f α2 = f α1 (f

β
◮ Q) S(f α2) f α3

= f α1 (f
β
◮ Q) ε(f α2) = f α (f

β
◮ Q) . (3.27)

In order to show that DF is invertible we simplify (3.25) using (3.4) as follows

DF (P ) = f
α
1PS(f

α
2 )f α = f

α
f γPS(f α1 f

β
f γ)f α2 f β

= f
α
f γPS(f γ)S(f

β
)ε(f α)f β = f γPS(f γ)χ

−1 , (3.28)

where χ−1 = S(f
α
)f α. Therefore, DF is invertible and we have, for all P ∈ A,

DF
−1(P ) = f

α
PχS(f α) , (3.29)

where χ = f βS(f β).
Finally, if A is unital, DF maps the unit of A⋆ to the unit of A because of the normalization

property of the twist (ε⊗ id)F−1 = 1.
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We introduce the triple notation
(
A, µ,◮

)
in order to explicitly write the product and the

H-action of an HA -algebra A. Then the HF
A -algebra A⋆ is described by the triple

(
A, µ⋆,◮

)
.

In the hypotheses of Theorem 3.9, the Hopf algebra property (2.4c) immediately implies

that the algebra A has an HF
A -algebra structure given by the HF -adjoint action, for all

ξ ∈ HF and P ∈ A,
ξ ◮F P := ξ1F P SF (ξ2F ) . (3.30)

We denote this HF
A -algebra by

(
A, µ,◮F

)
. We have the following

Theorem 3.10. The algebra isomorphism DF : A⋆ → A of Theorem 3.9 is also an isomor-
phism between the HF

A -algebras
(
A, µ⋆,◮

)
and

(
A, µ,◮F

)
, i.e. DF intertwines between the

HF -actions ◮ and ◮F , for all ξ ∈ HF and P ∈ A,

DF (ξ ◮ P ) = ξ ◮F DF (P ) . (3.31)

Proof. Using (3.28) we obtain, for all ξ ∈ HF and P ∈ A⋆,

DF (ξ ◮ P ) = f β(ξ ◮ P )S(f β)χ
−1 = f βξ1PS(ξ2)S(f β)χ

−1 = f βξ1f
γ
f δPS(f βξ2f γf δ)χ

−1

= ξ1F f
δPS(f δ)χ

−1χS(ξ2F )χ
−1 = ξ1FDF (P )SF (ξ2F )

= ξ ◮F DF (P ) , (3.32)

where in the third equality we inserted 1⊗ 1 = F−1F .

Remark 3.11. We have discussed in Remark 3.3 that HF admits the twist F−1 leading
to (HF )F

−1
= H. The associated deformation isomorphism DF−1 is exactly DF

−1 given in
(3.29). This can be shown by using (3.28) and a short calculation, for all P ∈ A,

DF−1(P ) = (f β ◮F P )f β = f
β
PSF (f β)χ

−1
F = f

β
PχS(f β)χ

−1χ = DF
−1(P ) , (3.33)

where we also have used that χ−1
F = SF (f β)f β = χ.

Example 3.12. Given an HA -algebra A (not necessarily associative or with unit) we consider
the crossed product (or smash product) algebra A⋊H. By definition the underlyingK-module
structure is A⊗H and the product is given by (a⊗ ξ)(b⊗ ζ) = a(ξ1 ⊲ b)⊗ ξ2ζ, that we simply
rewrite as

aξ bζ = a(ξ1 ⊲ b)ξ2ζ . (3.34)

The algebra A⋊H is an HA -algebra with the action ξ ◮ (aζ) := (ξ1 ⊲ a)(ξ2 ◮ ζ). The right
(H,µ)-module structure is given by (aξ)ζ = a(ξζ) and the compatibility conditions (3.16)
hold true. Hence the hypotheses of Theorem 3.8 are satisfied.

Corollary 3.13. Deformation of an HA -algebra A is the restriction to A of the deformed
algebra (A⋊H)⋆ that is isomorphic to A⋊H because of Theorem 3.8.

If M is a smooth manifold, A = C∞(M) and H = UΞ is the universal enveloping algebra
of vector fields on M , then A⋊H is the algebra of differential operators. Up to considering
the extension of these algebras to the ring C[[h]], we have that the map DF : A→ DF (A) ⊂
A⋊ UΞ realizes a quantization of A in terms of differential operators [A+05, Wes07].
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Example 3.14. Given an algebra A that admits an algebra homomorphism ρ : H → A, then
the hypotheses of Theorem 3.9 immediately hold. Just define the (H,µ)-bimodule structure
of A by, for all ξ ∈ H,P ∈ A, ξP := ρ(ξ)P and Pξ := Pρ(ξ). A particular case is when
A = H and we consider the identity homomorphism. Then we recover the (Hopf algebra)
isomorphism D : H⋆ → HF discussed in [ADMW06].

Example 3.15. Given a Hopf algebra H and an HM-module V we consider the algebra
EndK(V ) of K-linear maps (K-module homomorphisms) from V to V . Since H is a Hopf
algebra the left action of H on V lifts to a left action of H on EndK(V ), defined by, for all
P ∈ EndK(V ) and ξ ∈ H,

ξ ◮ P := ξ1 ⊲ ◦P ◦ S(ξ2) ⊲ , (3.35)

where ◦ denotes the usual composition of morphisms and ξ⊲ ∈ EndK(V ) is the endomorphism
v 7→ ξ ⊲ v. The algebra EndK(V ) is thus an HA -algebra, and we denote it also by the
triple

(
EndK(V ), ◦,◮

)
in order to explicitly refer to the product and the H-action. The

algebra homomorphism H → EndK(V ), ξ 7→ ξ⊲ implies (see Example 3.14) the isomorphism
DF : EndK(V )⋆ → EndK(V ). The composition law in EndK(V )⋆ is given by the ⋆-composition
P ◦⋆ Q := (f

α
◮ P ) ◦ (f α ◮ Q), for all P,Q ∈ EndK(V )⋆. Because of Theorem 3.10

we further obtain that DF is an HF
A -algebra isomorphism between

(
EndK(V ), ◦⋆,◮

)
and(

EndK(V ), ◦,◮F

)
.

Notice that since as algebras HF = H, the deformed HF
M-module V⋆ of Theorem 3.5

(with trivial algebras A = B = K) is equal to the HM-module V and henceforth we can

identify the HF
A -algebras

(
EndK(V ), ◦,◮F

)
and

(
EndK(V⋆), ◦,◮F

)
. Thus, DF is also an

isomorphism between the HF
A -algebras

(
EndK(V ), ◦⋆,◮

)
and

(
EndK(V⋆), ◦,◮F

)
.

Categorical point of view

We provide a generalization of Example 3.15. Instead of studying a fixed HM-module V ,
let us consider the category rep

H of representations of H. An object in rep
H is an HM-

module V and a morphism between two objects V,W in rep
H is a K-linear map P : V →W ,

i.e. P ∈ HomK(V,W ). Notice that we do not assume the map P to be H-equivariant. The
composition of morphisms is the usual composition ◦. Given a twist F ∈ H ⊗ H of the
Hopf algebra H we can consider the category rep

H
⋆. The objects and morphisms in rep

H
⋆

are the same as the objects and morphisms in rep
H , but the composition is given by the

⋆-composition ◦⋆, where the H-action on morphisms is given by the H-adjoint action ◮ (cf.
(3.35)), canonically obtained lifting the source and target H-actions.

Theorem 3.16. Let H be a Hopf algebra with twist F ∈ H⊗H. Then there is a functor from
rep

H
⋆ to rep

H that is the identity on objects, and associates to any morphism P : V → W
the morphism

DF (P ) : V →W , v 7→ DF (P )(v) = (f
α
◮ P )(f α ⊲ v) = f

α

1 ⊲
(
P
(
S(f

α

2 )f α ⊲ v
))

. (3.36)

Furthermore, the categories rep
H

⋆ and rep
H are equivalent.

Proof. DF (P ) = (f
α
◮ P ) ◦ f α⊲ is obviously a K-linear map. We also have that DF (idV ) =

(f
α

◮ idV ) ◦ f α⊲ = idV , because of the normalization condition (3.1b) of the twist. In
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order to show that DF preserves composition of morphisms, i.e. that for any two composable
morphisms P and Q in rep

H
⋆ we have DF (P ◦⋆ Q) = DF (P ) ◦DF (Q), we repeat the same

passages as in the proof of Theorem 3.9.
This functor has a left and right inverse given by the functor that is the identity on objects

and that to any morphism P : V →W in rep
H associates the morphism DF−1(P ) = D−1

F (P ) :
V → W in rep

H
⋆ (cf. Remark 3.11). Hence the two categories are equivalent.

In the end of Example 3.15 we have identified the HF
A -algebras

(
EndK(V ), ◦,◮F

)
and(

EndK(V⋆), ◦,◮F

)
. Here we can similarly identify the category rep

H with the category rep
HF

of HF
M-modules with K-linear maps as morphisms. Indeed any HM-module V can be seen

as an HF
M-module (denoted V⋆). It follows that DF provides an equivalence between the

categories repH ⋆ and rep
HF

. In particular, any morphism P : V →W in rep
H

⋆ is mapped to
a morphism DF (P ) : V⋆ → W⋆ in rep

HF
.

4 Module homomorphisms

Let A,B be two HA -algebras and V,W be two H
AMB-modules. In this section we study the

properties of K-linear maps HomK(V,W ) and right B-linear maps HomB(V,W ), and their
deformations. The H-action on the modules V and W lifts to an H-adjoint action on these
maps; in general this adjoint action is nontrivial because the maps are not H-equivariant.
To any map P : V → W we associate a deformed map DF (P ) : V⋆ → W⋆, where the

deformed HF

A⋆MB⋆-modules V⋆ and W⋆ are obtained according to Theorem 3.5. We show
that this correspondence is a bijection between K-linear maps (i.e. between HomK(V,W )
and HomK(V⋆,W⋆)), and also between right B-linear and right B⋆-linear maps (i.e. between
HomB(V,W ) and HomB⋆(V⋆,W⋆)).

We further clarify the algebraic structures preserved by DF . In particular we extend the
result obtained in Example 3.15 where DF was shown to be an isomorphism between the
HF

A -algebras
(
EndK(V ), ◦⋆,◮

)
and

(
EndK(V⋆), ◦,◮F

)
.

Finally, for later use, we consider a mirror construction that deforms left A-linear maps
of H

AMB-modules into left A⋆-linear maps of HF

A⋆MB⋆-modules. We conclude with a cate-
gorical description of the results obtained.

4.1 Deformation of endomorphisms

In this subsection we study the algebras EndK(V ) and EndB(V ) of endomorphisms of an
H
AMB-module V , where A and B are HA -algebras. In particular we focus on the canonical

A-bimodule structure of EndK(V ) and EndB(V ) induced by the HA -algebra homomorphism
l : A → EndK(V ) (see Proposition 4.1). This structure will also be relevant in the next
subsection, where we discuss homomorphisms between different H

AMB-modules V,W .
The behaviour of the endomorphism algebras EndK(V ) and EndB(V ) under twist de-

formation is studied. There are two equivalent deformations of EndB(V ): The EndB(V )⋆
deformation is obtained by considering endomorphisms as elements of the algebra EndB(V ).
The EndB⋆(V⋆) deformation is obtained by considering them as right B-linear maps on V and
deforming the module V . The equivalence of the two deformations is provided by the map
DF from right B-linear to right B⋆-linear endomorphisms.
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Proposition 4.1. Let A be an HA -algebra and V be an H
AM-module. Then the algebra

EndK(V ) of K-linear maps from V to V is an H
AAA-algebra with the H-adjoint action, for

all ξ ∈ H and P ∈ EndK(V ),

ξ ◮ P := ξ1 ⊲ ◦P ◦ S(ξ2) ⊲ , (4.1)

and the A-bimodule structure given by, for all a ∈ A and P ∈ EndK(V ),

a · P := la ◦ P , (4.2a)

P · a := P ◦ la , (4.2b)

where, for all v ∈ V , la(v) := a · v.

If B is another HA -algebra and V is also an H
AMB-module, then the subalgebra EndB(V ) ⊂

EndK(V ) of right B-linear endomorphisms of V , (i.e. P ∈ EndB(V ) if, for all v ∈ V and
b ∈ B, P (v · b) = P (v) · b) is an H

AAA-subalgebra with H and A actions given in (4.1) and
(4.2), respectively.

Proof. EndK(V ) is a left A-module, for all a, ã ∈ A and P ∈ EndK(V ),

a · (ã · P ) = la ◦ lã ◦ P = la ã ◦ P = (a ã) · P . (4.3)

Similarly, we have that EndK(V ) is a right A-module. It is a bimodule because (la ◦P ) ◦ lã =
la ◦ (P ◦ lã).

It is straightforward to check that EndK(V ) is an HA -algebra, for all ξ, ζ ∈ H and P,Q ∈
EndK(V ),

ξ ◮ (ζ ◮ P ) = (ξζ) ◮ P , ξ ◮ idV = ε(ξ) idV , (4.4a)

and
ξ ◮ (P ◦Q) = (ξ1 ◮ P ) ◦ (ξ2 ◮ Q) . (4.4b)

We now prove that the algebra homomorphism l : A → EndK(V ) given by a 7→ la is also an
HA -algebra homomorphism, i.e. for all a ∈ A and ξ ∈ H, lξ⊲a = ξ ◮ la. Indeed, for all v ∈ V ,

(ξ ◮ la)(v) = ξ1 ⊲ (la(S(ξ2) ⊲ v)) = ξ1 ⊲ (a · (S(ξ2) ⊲ v))

= ξ1 ⊲ a · (ξ2S(ξ3) ⊲ v) = (ξ ⊲ a) · v = lξ⊲a(v) . (4.5)

Compatibility between the H-module structure and the A-bimodule structure, i.e. for all ξ ∈
H, a ∈ A and P ∈ EndK(V ), ξ ◮ (a ·P ) = (ξ1⊲a) ·(ξ2 ◮ P ) and ξ ◮ (P ·a) = (ξ1 ◮ P ) ·(ξ2 ⊲a),
follows from (4.4b) and (4.5).

Finally let V be an H
AMB-module, then V is in particular an (A,B)-bimodule (i.e. for

all a ∈ A, b ∈ B and v ∈ V , we have a · (v · b) = (a · v) · b), hence la ∈ EndB(V ). Therefore,
a · P ∈ EndB(V ) and P · a ∈ EndB(V ) if P ∈ EndB(V ). Furthermore, for all ξ ∈ H and
P ∈ EndB(V ) we have ξ ◮ P ∈ EndB(V ), indeed, for all b ∈ B and v ∈ V ,

(ξ ◮ P )(v · b) = ξ1 ⊲
(
P
(
(S(ξ3) ⊲ v) · (S(ξ2) ⊲ b)

))

=
(
ξ1 ⊲

(
P (S(ξ4) ⊲ v)

))
·
(
ξ2 ⊲

(
S(ξ3) ⊲ b

))

= (ξ ◮ P )(v) · b . (4.6)
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Let H be a Hopf algebra with twist F ∈ H ⊗ H. Let also A,B be two HA -algebras
and V an H

AMB-module, so that EndK(V ) and EndB(V ) are H
AAA-algebras. In order to

explicitly write the product, module structure and H-action of these H
AAA-algebras we use

the quadruples
(
EndK(V ), ◦, ·,◮

)
and

(
EndB(V ), ◦, ·,◮

)
.

We have two deformations of the endomorphisms EndK(V ) and EndB(V ): The first option,

EndK(V )⋆ and EndB(V )⋆, is to consider the
HF

A⋆AA⋆-algebras obtained by applying Theorem
3.5 to EndK(V ) and EndB(V ). It is characterized by a deformed composition law and a
deformed module structure, for all P,Q ∈ EndK(V )⋆ and a ∈ A⋆,

P ◦⋆ Q := (f
α
◮ P ) ◦ (f α ◮ Q) , a ⋆ P := la ◦⋆ P , P ⋆ a := P ◦⋆ la . (4.7)

In the quadruple notation these HF

A⋆AA⋆-algebras are denoted by
(
EndK(V ), ◦⋆, ⋆,◮

)
and(

EndB(V ), ◦⋆, ⋆,◮
)
. The second option is simply to consider the K-linear or right B⋆-linear

endomorphisms of the deformed HF

A⋆MB⋆ -module V⋆. From Proposition 4.1 we know that
EndK(V⋆) and EndB⋆(V⋆) are HF

A⋆AA⋆-algebras, where the product is the usual composi-

tion. The A⋆-bimodule structure is induced by the HF
A -algebra homomorphism l⋆ : A⋆ →

EndK(V⋆) given by, for all a ∈ A⋆ and all v ∈ V⋆, l
⋆
a(v) := a ⋆ v. It explicitly reads, for all

a ∈ A⋆ and P⋆ ∈ EndK(V⋆),

a · P⋆ := l⋆a ◦ P⋆ , P⋆ · a := P⋆ ◦ l
⋆
a . (4.8)

The HF -action is the HF -adjoint action given by, for all ξ ∈ HF and P⋆ ∈ EndK(V⋆),

ξ ◮F P⋆ := ξ1F ⊲ ◦P⋆ ◦ S
F (ξ2F ) ⊲ . (4.9)

In the quadruple notation these HF

A⋆AA⋆-algebras are denoted by
(
EndK(V⋆), ◦, ·,◮F

)
and(

EndB⋆(V⋆), ◦, ·,◮F

)
.

Theorem 4.2. Let H be a Hopf algebra with twist F ∈ H ⊗ H, and let A,B be two HA -
algebras and V be an H

AMB-module. The map

DF : EndK(V )⋆ −→ EndK(V⋆)

P 7−→ DF (P ) := (f
α
◮ P ) ◦ f α ⊲ (4.10)

is an HF

A⋆AA⋆-algebra isomorphism between
(
EndK(V ), ◦⋆, ⋆,◮

)
and

(
EndK(V⋆), ◦, ·,◮F

)
. It

restricts to an HF

A⋆AA⋆-algebra isomorphism

DF : EndB(V )⋆ −→ EndB⋆(V⋆) (4.11)

between
(
EndB(V ), ◦⋆, ⋆,◮

)
and

(
EndB⋆(V⋆), ◦, ·,◮F

)
.

Proof. The HF
A -algebra isomorphism (4.10) is given by the isomorphism DF : EndK(V )⋆ →

EndK(V ) discussed in Example 3.15.

The map DF is an HF

A⋆AA⋆-algebra isomorphism because (cf. Theorem 3.9, and recall the
bimodule structures (4.7) and (4.8)) DF (a⋆P ) = DF (la◦⋆P ) = DF (la)◦DF (P ), DF (P ⋆a) =
DF (P ) ◦DF (la) and DF (la) = l⋆a. The last property follows from a short calculation

DF (la)(v) = (f
α
◮ la)(f α ⊲ v) = lf α⊲a(f α ⊲ v) = a ⋆ v = l⋆a(v) . (4.12)
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In order to prove that DF restricts to an isomorphism between the HF

A⋆AA⋆-subalgebras
EndB(V )⋆ and EndB⋆(V⋆) we show that for all P ∈ EndB(V ) we have DF (P ) ∈ EndB⋆(V⋆),
and that for all P⋆ ∈ EndB⋆(V⋆) we have D−1

F (P⋆) ∈ EndB(V ). Because of Remark 3.11 it is
sufficient to prove the first statement, since the second follows from twisting back with F−1.
The proof is short, for all P ∈ EndB(V ), v ∈ V and b ∈ B,

DF (P )(v ⋆ b) = (f
α
◮ P )(f α1 f

β
⊲ v · f α2 f β ⊲ b)

= (f
α
1 f

β
◮ P )(f

α
2 f β ⊲ v) · (f α ⊲ b)

= f
α
⊲
(
DF (P )(v)

)
· (f α ⊲ b) = DF (P )(v) ⋆ b , (4.13)

where in the second line we used the twist cocycle property (3.4c) and the fact that ξ ◮ P ∈
EndB(V ), for all ξ ∈ H and P ∈ EndB(V ).

We call DF (P ) : V⋆ → V⋆ the deformation of the endomorphism P : V → V because
P is a map between undeformed modules and can be seen as an element of the undeformed
H
AAA-algebra EndK(V ). From this viewpoint DF : EndK(V )→ EndK(V⋆) is a bijection from

(the H
AAA-algebra) EndK(V ) to (the HF

A⋆AA⋆-algebra) EndK(V⋆). Actually, since EndK(V )
and EndK(V⋆) are K-modules, it is an isomorphism of K-modules.

Left A-linear endomorphisms

We have so far studied the deformations of the algebra EndB(V ) of right B-linear endomor-
phisms, but we could as well have studied the deformations of the algebra AEnd(V ) of left
A-linear endomorphisms of the H

AMB-module V . These deformations are obtained by a
“mirror” construction. A key point is that there is an isomorphism AEnd(V ) ≃ EndAop(V op)
between left A-linear endomorphisms of a module V and right Aop-linear endomorphisms of
the opposite module V op, where, as we detail below, Aop has the opposite product of A, and
V op the opposite module structure of V . Then, twist deformation of left A-linear endomor-
phisms in AEnd(V ) can be studied via twist deformation of right Aop-linear endomorphisms
in EndAop(V op).

We recall that given a Hopf algebra H = (H,µ,∆, S, ε) (where with slight abuse of no-
tation we also denoted by H the K-module structure underlying the Hopf algebra H) we
have the Hopf algebras Hcop and Hop if the antipode S is invertible. Explicitly, Hcop =
(H,µ,∆cop, S−1, ε) is the Hopf algebra with the co-opposite coproduct ∆cop defined by, for all
ξ ∈ H, ∆cop(ξ) := ξ1cop ⊗ ξ2cop := ξ2 ⊗ ξ1 , where ∆(ξ) = ξ1 ⊗ ξ2. Hop = (H,µop,∆, S−1, ε) is
the Hopf algebra with the opposite product µop defined by, for all ξ, ζ ∈ H, µop(ξ ⊗ ζ) = ζξ.
Even if the antipode S is not invertible we have the Hopf algebra Hcop

op = (H,µop,∆cop, S, ε).
For a simpler mirror construction we are going to assume invertibility of the antipode in what
follows. Notice that, in particular, quasitriangular Hopf algebras have an invertible antipode.

We observe that for any AM-module V there is an MAop-module V op. As K-modules
V = V op, the algebra Aop is the algebra with opposite product and its right action on V op is
given by v ·op a := a · v. Similarly, for any MA-module V there is an AopM-module V op, and
(V op)op = V .

Moreover, if we have an HA -algebra A then the opposite algebra Aop is an Hcop
A -algebra,

where the Hopf algebra action is unchanged, i.e. Aop is the Hcop
A -algebra

(
A,µop, ⊲

)
. This

easily leads to the following
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Lemma 4.3. Let A,B be two HA -algebras and V be an H
AMB-module. Then Aop, Bop are

Hcop
A -algebras and V op is an Hcop

BopMAop-module, where the Hcop-actions on Aop, Bop, V op

are the same actions as the H-actions on A,B, V . Similarly if E is an H
AAB-algebra, then

Eop is an Hcop

BopAAop-algebra.

Proof. We here show as an illustrative example that the algebra Aop is an Hcop
A -algebra. For

all ξ ∈ H and a, ã ∈ A,

ξ ⊲ (µop(a⊗ ã)) = ξ ⊲ (ã a) = (ξ1 ⊲ ã) (ξ2 ⊲ a) = µop
(
(ξ2 ⊲ a)⊗ (ξ1 ⊲ ã)

)

= µop
(
(ξ1cop ⊲ a)⊗ (ξ2cop ⊲ ã)

)
. (4.14)

The remaining statements are similarly proven.

We apply these observations to the algebra of endomorphisms of the module V and obtain

Proposition 4.4. Let A,B be two HA -algebras and V be an H
AMB-module. Then

(
AEnd(V )

)op
is an H

BAB-algebra, i.e. more explicitly,
(
AEnd(V ), ◦op, ·op,◮cop

)
is an H

BAB-algebra, where
the left H-action, called ◮

cop adjoint action, is given by, for all ξ ∈ H and P ∈ AEnd(V ),

ξ ◮
cop P := ξ2 ⊲ ◦P ◦ S

−1(ξ1) ⊲ . (4.15)

The B-bimodule structure is given by, for all b ∈ B and P ∈ AEnd(V ),

b ·op P = P ◦ rb , P ·op b = rb ◦ P , (4.16)

where for all v ∈ V , rb(v) = v · b.

Proof. The hypothesis implies that Aop, Bop are Hcop
A -algebras and V op is an Hcop

BopMAop-
module. Hence, we have the Hcop

BopABop-algebra
(
EndAop(V op), ◦, ·,◮cop

)
, where the Hcop-

adjoint action is ξ ◮
cop P = ξ1cop ⊲ ◦P ◦ S

cop(ξ2cop)⊲ and the Bop-actions are

P · b = P ◦ lB
op

b = P ◦ rb , b · P = lB
op

b ◦ P = rb ◦ P , (4.17)

where by definition lB
op

: Bop → EndAop(V op), with lB
op

b (v) = b·opv = v ·b. Because of Lemma
4.3 we equivalently have the opposite H

BAB-algebra
(
EndAop(V op), ◦op, ·op,◮cop

)
. The thesis

holds because there is a canonical K-module isomorphism

EndAop(V op) ≃ AEnd(V ) (4.18)

given by the identity map. Indeed, if P ∈ EndAop(V op) then, for all a ∈ A and v ∈ V ,

P (a · v) = P (v ·op a) = P (v) ·op a = a · P (v) , (4.19)

hence P ∈ AEnd(V ), and vice versa. Thus,
(
AEnd(V ), ◦op, ·op,◮cop

)
is an H

BAB-algebra.

The appearance in Proposition 4.4 of the opposite composition product P ◦op Q = Q ◦ P
is naturally explained letting the left A-linear endomorphism P act from the right to the left,

(v)
←−
P := P (v). Then we have

(
(v)
←−
P
)←−
Q = Q

(
P (v)

)
=

(
Q◦P

)
(v) =

(
P ◦opQ

)
(v) = (v)

←−−−−−
P ◦op Q.

We now use the isomorphism AEnd(V ) ≃ EndAop(V op) between left A-linear and right
Aop-linear endomorphisms in order to construct a deformation map P 7→ Dcop

F (P ) from left

22



A-linear to left A⋆-linear endomorphisms. The map Dcop
F is induced from a deformation map

of right Aop-linear endomorphism that is constructed following Theorem 4.2.
LetH be a Hopf algebra with twist F ∈ H⊗H. Let also A,B be two HA -algebras and V an

H
AMB-module, so that

(
AEnd(V )

)op
is an H

BAB-algebra, it reads
(
AEnd(V ), ◦op, ·op,◮cop

)
.

Then the canonical constructions of Theorem 3.4 and of Theorem 3.5 lead to the deformed
HF

A -algebras A⋆, B⋆, the deformed HF

A⋆MB⋆-module V⋆ and the deformed HF

B⋆AB⋆-algebra(
AEnd(V )

)op
⋆
. This latter one explicitly reads

(
AEnd(V ), (◦op)⋆, (·

op)⋆,◮
cop

)
, where (◦op)⋆

and (·op)⋆ are the ⋆-products constructed from ◦op and the twist F (respectively ·op and the
twist F). For example, for P,Q ∈ AEnd(V ), P (◦op)⋆Q = (f

α
◮

cop P ) ◦op (f α ◮
cop Q).

Another deformation of
(
AEnd(V )

)op
is achieved by applying the construction of Propo-

sition 4.4 to the deformed HF
A -algebras A⋆, B⋆ and the deformed HF

A⋆MB⋆-module V⋆. We
thus obtain the HF

B⋆AB⋆-algebra
(
A⋆End(V⋆)

)op
, or more explicitly

(
A⋆End(V⋆), ◦

op, ·op,◮F
cop

)
.

Notice in particular that the B⋆-bimodule structure is given by, for all b ∈ B⋆ and P⋆ ∈

A⋆End(V⋆),
b ·op P⋆ = P⋆ ◦ r

⋆
b , P⋆ ·

op b = r⋆b ◦ P⋆ , (4.20)

where, for all v ∈ V⋆, r
⋆
b (v) = v ⋆ b.

Theorem 4.5. Let H be a Hopf algebra with twist F ∈ H ⊗ H, and let A,B be two HA -
algebras and V be an H

AMB-module. The map

Dcop
F :

(
AEnd(V )

)op
⋆
−→

(
A⋆End(V⋆)

)op

P 7−→ Dcop
F (P ) := (f α ◮

cop P ) ◦ f
α
⊲ (4.21)

is an HF

B⋆AB⋆-algebra isomorphism between the two deformations of left A-linear endomor-
phisms

(
AEnd(V ), (◦op)⋆, (·

op)⋆,◮
cop

)
and

(
A⋆End(V⋆), ◦

op, ·op,◮F
cop

)
.

Proof. From Lemma 4.3 we have the Hcop
A -algebras Aop, Bop and the Hcop

BopMAop-module
V op. Now notice that if F is a twist of H, then Fcop := F21 is a twist of Hcop. From
Proposition 4.1 and the Theorems 3.4 and 3.5 we then have that

(
EndAop(V op), ◦⋆cop , ⋆

cop,◮cop
)

(4.22a)

and

(
End(Aop)⋆cop ((V

op)⋆cop), ◦, ·,◮
cop

Fcop

)
(4.22b)

are (Hcop)F
cop

(Bop)⋆copA(Bop)⋆cop -algebras. Here we denoted by ⋆cop the ⋆-product given by the
twist Fcop. In (4.22b) the (Bop)⋆cop-bimodule structure is the canonical one obtained from

the (Hcop)F
cop

A -algebra homomorphism l(B
op)⋆cop : (Bop)⋆cop → End(Aop)⋆cop ((V

op)⋆cop). We
use the short notation

(
EndAop(V op)

)
⋆cop

for (4.22a) and End(Aop)
⋆cop

((V op)⋆cop) for (4.22b).

Now Theorem 4.2 implies the (Hcop)F
cop

(Bop)⋆copA(Bop)⋆cop -algebra isomorphism

DFcop :
(
EndAop(V op)

)
⋆cop
−→ End(Aop)

⋆cop
((V op)⋆cop) , DFcop(P ) := (f α ◮

cop P ) ◦ f
α
⊲ .

(4.23)

Observe that

(Aop)⋆cop = (A⋆)
op , (Bop)⋆cop = (B⋆)

op , (V op)⋆cop = (V⋆)
op , (4.24a)
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as well as

(Hcop)F
cop

= (HF )cop , ◮
cop

Fcop = ◮F
cop . (4.24b)

It follows that if we consider an H
AAB-algebra E, so that Eop is an Hcop

BopAAop-algebra, then

the (Hcop)F
cop

(Bop)⋆copA(Aop)⋆cop -algebra (Eop)⋆cop is equal to the (HF )cop
(B⋆)opA(A⋆)op-algebra

(E⋆)
op. Using this and the canonical isomorphism EndAop(V op) ≃ AEnd(V ) we find

(
EndAop(V op)

)
⋆cop
≃

(
AEnd(V )

)
⋆cop

=
((

AEnd(V )
)op) op

⋆
. (4.25a)

We also have that

End(Aop)⋆cop ((V
op)⋆cop) = End(A⋆)op((V⋆)

op) ≃ A⋆End(V⋆) . (4.25b)

The bimodule structures in the first equality in (4.25b) are identified via the identifica-
tion of the maps l(B

op)⋆cop : (Bop)⋆cop → End(Aop)⋆cop ((V
op)⋆cop) and l(B⋆)op : (B⋆)

op →
End(A⋆)op((V⋆)

op).
The proof of the theorem follows by noting that the isomorphism defined in (4.23) canon-

ically induces on the opposites of the modules in (4.25) the HF

B⋆AB⋆-algebra isomorphism
Dcop

F defined in (4.21).

We call Dcop
F (P ) : V⋆ → V⋆ the left deformation of the endomorphism P : V → V .

4.2 Deformation of homomorphisms

Let H be a Hopf algebra, A,B be two HA -algebras and V be an H
AM-module. Then, as

seen in the previous subsection, EndK(V ) is an HA -algebra, where the H-action is given by
the H-adjoint action ◮. The algebra structure trivially implies an H

EndK(V )AEndK(V )-algebra

structure on EndK(V ). Now because of the HA -algebra homomorphism l : A → EndK(V )
(cf. proof of Proposition 4.1) we have that EndK(V ) is an H

AAA-algebra.
We here consider the K-module HomK(V,W ) of K-linear maps from the H

AM-module
V to the H

AM-module W . In this case we immediately have an H
EndK(V )MEndK(W )-module

structure on HomK(V,W ). Also here the H-action is given by the H-adjoint action ◮. Be-
cause of the HA -algebra homomorphisms l : A → EndK(V ) and l : A → EndK(W ) we
similarly obtain an H

AMA-module structure on HomK(V,W ), explicitly
(
HomK(V,W ), ·,◮

)
.

Furthermore, similarly to Proposition 4.1, we have that if V,W are H
AMB-modules, then the

K-submodule HomB(V,W ) of right B-linear homomorphisms forms an H
AMA-submodule of

HomK(V,W ). The H
AMA-module structure of HomB(V,W ) in the case B = A will be a key

ingredient in order to study tensor products over A of homomorphisms, see Section 5.4.

Remark 4.6. We later also encounter the situation where V is only an HMB-module while
W is an H

AMB-module. In this case we similarly have that HomK(V,W ),HomB(V,W ) are
H
AM-modules, and HomK(W,V ),HomB(W,V ) are HMA-modules.

The results of the previous subsection concerning the deformation of endomorphisms gen-
eralize to the case of homomorphisms. We present only the main theorems and omit the
proofs that are easily obtained following the corresponding ones for endomorphisms.
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Theorem 4.7. Let H be a Hopf algebra with twist F ∈ H ⊗ H, and let A,B be two HA -
algebras and V,W be two H

AMB-modules. The map

DF : HomK(V,W )⋆ −→ HomK(V⋆,W⋆)

P 7−→ DF (P ) := (f
α
◮ P ) ◦ f α ⊲ (4.26)

is an HF

A⋆MA⋆-module isomorphism between
(
HomK(V,W ), ⋆,◮

)
and

(
HomK(V⋆,W⋆), ·,◮F

)
.

It restricts to an HF

A⋆MA⋆-module isomorphism

DF : HomB(V,W )⋆ −→ HomB⋆(V⋆,W⋆) (4.27)

between
(
HomB(V,W ), ⋆,◮

)
and

(
HomB⋆(V⋆,W⋆), ·,◮F

)
.

We call DF (P ) : V⋆ →W⋆ the deformation of the homomorphism P : V →W .

Left A-linear homomorphisms

Left A-linear homomorphisms
(
AHom(V,W )

)op
, between H

AMB-modules V and W , have an
H
BMB-module structure, explicitly

(
AHom(V,W ), ·op,◮cop

)
, where, for all b ∈ B, ξ ∈ H and

P ∈ AHom(V,W ), ξ ◮
cop P := ξ2 ⊲ ◦P ◦ S

−1(ξ1)⊲ , b ·
op P = P ◦ rb and P ·op b = rb ◦ P .

Up to isomorphism there is just one deformed module of left A-linear homomorphisms.

Theorem 4.8. Let H be a Hopf algebra with twist F ∈ H ⊗ H, and let A,B be two HA -
algebras and V,W be two H

AMB-modules. The map

Dcop
F :

(
AHom(V,W )

)op
⋆
−→

(
A⋆Hom(V⋆,W⋆)

)op

P 7−→ Dcop
F (P ) := (f α ◮

cop P ) ◦ f
α
⊲ (4.28)

is an HF

B⋆MB⋆-module isomorphism between the two deformations of left A-linear homomor-
phisms

(
AHom(V,W ), (·op)⋆,◮

cop
)
and

(
A⋆Hom(V⋆,W⋆), ·

op,◮F
cop

)
.

We call Dcop
F (P ) : V⋆ →W⋆ the left deformation of the homomorphism P : V → W .

Example 4.9. Let A be an HA -algebra and V be an H
AMA-module. The dual module

of V is defined by V ′ := HomA(V,A). Since A can be regarded as an H
AMA-module we

have that V ′ is also an H
AMA-module. Let F ∈ H ⊗ H be a twist of H and consider the

deformed HF
A -algebra A⋆ and the deformed HF

A⋆MA⋆-module V⋆. We have two possible
deformations of the dual module: V ′

⋆ = HomA(V,A)⋆ and V⋆
′ = HomA⋆(V⋆, A⋆). They

both are HF

A⋆MA⋆-modules. Due to Theorem 4.7 there is an HF

A⋆MA⋆-module isomorphism
V ′

⋆ ≃ V⋆
′. In words, dualizing the deformed module is (up to the canonical isomorphism

DF ) equivalent to deforming the dual one. Similar statements hold true for the left A-linear
dual ′V := (AHom(V,A))op and its deformations according to Theorem 4.8.

4.3 Categorical formulation

Developing the results of Theorem 3.16 we provide a categorical formulation of the investi-
gations of the present section. We first define the category

(
H
AMB,HomB, ◦

)
. An object

in
(
H
AMB,HomB, ◦

)
is an H

AMB-module V and a morphism between two objects V,W in
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(
H
AMB,HomB , ◦

)
is a right B-linear map P : V → W , i.e. P ∈ HomB(V,W ). The compo-

sition of morphisms is the usual composition ◦. Given a twist F ∈ H ⊗ H of the Hopf al-
gebra H we then define two other categories,

(
H
AMB,HomB , ◦⋆

)
and

(
HF

A⋆MB⋆ ,HomB⋆ , ◦
)
.

Objects and morphisms in
(
H
AMB ,HomB, ◦⋆

)
are the same as objects and morphisms in(

H
AMB,HomB , ◦

)
, but in this category the composition of morphisms is given by the ⋆-

composition ◦⋆. An object in
(
HF

A⋆MB⋆ ,HomB⋆ , ◦
)
is an HF

A⋆MB⋆-module V⋆ and a mor-

phism between two objects V⋆,W⋆ in
(
HF

A⋆MB⋆ ,HomB⋆ , ◦
)
is a right B⋆-linear map P⋆ :

V⋆ → W⋆, i.e. P⋆ ∈ HomB⋆(V⋆,W⋆). The composition of morphisms is the usual composition
◦.

Theorem 4.10. Let H be a Hopf algebra with twist F ∈ H ⊗ H. Then there is a functor
from

(
H
AMB,HomB , ◦⋆

)
to

(
HF

A⋆MB⋆ ,HomB⋆ , ◦
)
. It maps any H

AMB-module V to the

twist deformed HF

A⋆MB⋆-module V⋆ (cf. Theorem 3.5), and any morphism P ∈ HomB(V,W )
to the morphism DF (P ) ∈ HomB⋆(V⋆,W⋆) (cf. Theorem 4.7).

Furthermore, the categories
(
H
AMB,HomB , ◦⋆

)
and

(
HF

A⋆MB⋆ ,HomB⋆ , ◦
)
are equivalent.

Proof. The proof of this theorem follows similar steps as that of Theorem 3.16.

Left A-linear morphisms

For completeness we state without proof the corresponding theorem for left A-linear maps.
We first define the category

(
H
AMB ,AHom, ◦op

)
. An object in

(
H
AMB,AHom, ◦op

)
is

an H
AMB-module V and a morphism between two objects V,W in

(
H
AMB,AHom, ◦op

)
is a

left A-linear map P : V → W , i.e. P ∈ AHom(V,W ). The composition of morphisms ◦op is
described after Proposition 4.4.

Given a twist F ∈ H ⊗ H of the Hopf algebra H we then define two other categories,(
H
AMB,AHom, (◦op)⋆

)
and

(
HF

A⋆MB⋆ ,A⋆Hom, ◦op
)
. Objects and morphisms in

(
H
AMB,AHom, (◦op)⋆

)

are the same as objects and morphisms in
(
H
AMB,AHom, ◦op

)
, but in this category the com-

position of morphisms is given by (◦op)⋆, i.e. for two composable morphisms P (◦op)⋆Q =

(f
α
◮

cop P ) ◦op (f α ◮
cop Q). An object in

(
HF

A⋆MB⋆ ,A⋆Hom, ◦op
)
is an HF

A⋆MB⋆-module

V⋆ and a morphism between two objects V⋆,W⋆ in
(
HF

A⋆MB⋆ ,A⋆Hom, ◦op
)
is a left A⋆-linear

map P⋆ : V⋆ →W⋆, i.e. P⋆ ∈ A⋆Hom(V⋆,W⋆). The composition of morphisms is ◦op.

Theorem 4.11. Let H be a Hopf algebra with twist F ∈ H ⊗H. Then there is functor from(
H
AMB,AHom, (◦op)⋆

)
to

(
HF

A⋆MB⋆ ,A⋆Hom, ◦op
)
. It maps any H

AMB-module V to the

twist deformed HF

A⋆MB⋆-module V⋆ (cf. Theorem 3.5) and any morphism P ∈ AHom(V,W )
to the morphism Dcop

F (P ) ∈ A⋆Hom(V⋆,W⋆) (cf. Theorem 4.8).

Furthermore, the categories
(
H
AMB,AHom, (◦op)⋆

)
and

(
HF

A⋆MB⋆ ,A⋆Hom, ◦op
)
are equiv-

alent.

Remark 4.12. This is a generalization of the equivalence of categories obtained by Giaquinto
and Zhang [GZ98]. We can recover their equivalence by choosing the algebra B = K to be
trivial and restricting the class of morphisms to H-equivariant (respectively HF -equivariant)
and left A-linear (respectively left A⋆-linear) maps. Then the (◦op)⋆ composition equals
the ◦op composition and the equivalence is between the categories

(
H
AM ,AHom, ◦op

)
and(

HF

A⋆M ,A⋆Hom, ◦op
)
. Notice also that in this case the functor acts trivially on morphisms.
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We remark that the more general equivalence of Theorem 4.11 is not between the original
category

(
H
AMB,AHom, ◦op

)
and

(
HF

A⋆MB⋆ ,A⋆Hom, ◦op
)
, but between the original category

with deformed composition law and the latter one.

5 Tensor product structure and its deformation

Let H be a Hopf algebra. The tensor product V ⊗W of two HM-modules V,W is again an
HM-module. The left H-action is defined using the coproduct, for all ξ ∈ H, v ∈ V and
w ∈W ,

ξ ⊲ (v ⊗ w) := (ξ1 ⊲ v)⊗ (ξ2 ⊲ w) , (5.1)

and extended by K-linearity to all V ⊗W .
We begin this section studying the lift of two K-linear maps P : V → Ṽ , Q : W → W̃

to a tensor product map V ⊗W → Ṽ ⊗ W̃ . The issue is that the construction has to be
compatible with the H-action even if the maps we consider are in general only H-covariant
(not H-equivariant). This requires extra structure on the Hopf algebra H. Indeed, in order to
introduce a tensor product of K-linear maps between HM-modules that is compatible with the
Hopf algebra action we require a braiding isomorphism on tensor products of HM-modules.
We therefore consider quasitriangular Hopf algebras. Next, we study the deformation of the
tensor product of K-linear maps and show that the deformation procedure is canonical.

In a later subsection we focus on the restricted class of quasi-commutative HA -algebras
and H

AMA-modules. The tensor product structure previously studied induces a tensor prod-
uct structure over A. In particular the tensor product of right A-linear maps between quasi-
commutative H

AMA-modules is compatible with the Hopf algebra action and is again a right
A-linear map. Also the deformation of this tensor product is studied and shown to be canon-
ical.

Finally, we consider the deformation map DR, that corresponds to the twist F = R,
where R is the universal R-matrix of the quasitriangular Hopf algebra H. The map DR

provides an isomorphism between right and left A-linear maps on strong quasi-commutative
H
AMA-modules.

5.1 Triangular and quasitriangular Hopf algebras

A cocommutative Hopf algebra is a Hopf algebra where the coproduct is cocommutative,
i.e., for all ξ ∈ H, ∆cop(ξ) = ∆(ξ) or, using Sweedler’s notation, ξ2 ⊗ ξ1 = ξ1 ⊗ ξ2.

Definition 5.1. A quasi-cocommutative Hopf algebra (H,R) is a Hopf algebra H and
an invertible element R ∈ H ⊗H (called universal R-matrix) such that, for all ξ ∈ H,

∆cop(ξ) = R∆(ξ)R−1 . (5.2)

The Hopf algebra is quasitriangular if moreover

(∆⊗ id)R = R13R23 , (id⊗∆)R = R13R12 . (5.3)

The quasitriangular Hopf algebra (H,R) is triangular if

R21 = R
−1 , (5.4)

where R21 = σ(R) ∈ H ⊗H, with σ the transposition map σ(ξ ⊗ ζ) = ζ ⊗ ξ, for all ξ, ζ ∈ H.
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For later use we write the property (5.2) and the inverse of properties (5.3) using Sweedler’s
notation and the notations R = Rα ⊗Rα, R

−1 = R
α
⊗Rα (sum over α understood). For all

ξ ∈ H,

ξ2 ⊗ ξ1 = Rαξ1R
β
⊗Rαξ2Rβ , (5.5a)

R
α
1 ⊗R

α
2 ⊗Rα = R

α
⊗R

β
⊗RβRα , (5.5b)

R
α
⊗Rα1 ⊗Rα2 = R

α
R

β
⊗Rα ⊗Rβ . (5.5c)

The triangular property reads Rα ⊗Rα = R
α
⊗Rα.

From (5.2) (with ξ = Rα) and (5.3) it follows that quasitriangular R-matrices satisfy the
Yang-Baxter equation

R12R13R23 = R23R13R12 . (5.6)

Further standard properties of quasitriangular R-matrices are (see e.g. [Maj95], Lemma 2.1.2)

(ε⊗ id)R = 1 , (id ⊗ ε)R = 1 , (5.7a)

(S ⊗ id)R = R−1 , (id ⊗ S)R−1 = R . (5.7b)

Notice that the properties (5.3), (5.6) and (5.7a) imply that R is a twist element of the Hopf
algebra H. From property (5.2) it then follows that HR = Hcop. The Hopf algebra Hcop is
quasitriangular with R-matrix Rcop = R21.

Given two HM-modules V,W we have the tensor product HM-modules V ⊗W and W ⊗
V (see (5.1)). There is a natural isomorphism, called braiding, between these two tensor
products; it is defined by

τR W,V : W ⊗ V → V ⊗W

w ⊗ v 7→ τR W,V (w ⊗ v) = (R
α
⊲ v)⊗ (Rα ⊲ w) , (5.8a)

τ−1
R W,V : V ⊗W → W ⊗ V

v ⊗ w 7→ τ−1
R W,V (v ⊗ w) = (Rα ⊲ w)⊗ (Rα ⊲ w) . (5.8b)

and extended by K-linearity to all W⊗V (and respectively V ⊗W ). Quasi-cocommutativity of
the coproduct (cf. (5.2)) implies that τR and its inverse τ−1

R (for ease of notation we frequently
omit the module indices) are HM-module isomorphisms, i.e., for all ξ ∈ H, v ∈ V,w ∈ W,
ξ ⊲ (τR(w ⊗ v)) = τR(ξ ⊲ (w ⊗ v)), ξ ⊲ (τ−1

R (v ⊗ w)) = τ−1
R (ξ ⊲ (v ⊗w)), or equivalently

ξ ◮ τR = ε(ξ) τR , ξ ◮ τ−1
R = ε(ξ) τ−1

R . (5.9)

From (5.3) it follows that on the triple tensor product V ⊗W ⊗ Z of HM-modules V,W,Z
we have the braid relations

τR V⊗W,Z = (τR V,Z ⊗ idW ) ◦ (idV ⊗ τR W,Z) , (5.10a)

τR V,W⊗Z = (idW ⊗ τR V,Z) ◦ (τR V,W ⊗ idZ) . (5.10b)

The first one, for example, states that flipping an element z to the left of the element v ⊗ w
is the same as first flipping z to the left of w and then the result to the left of v.
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Example 5.2. The universal enveloping algebra Ug of a Lie algebra g is a cocommutative
Hopf algebra. Every cocommutative Hopf algebra H has a triangular structure given by the
R-matrix R = 1⊗ 1. Let F be a twist of this cocommutative Hopf algebra H, then the Hopf
algebra HF is triangular with R-matrix RF = F21F

−1.
More in general, if (H,R) is a quasitriangular (triangular) Hopf algebra, then (HF ,RF :=

F21RF
−1) is a quasitriangular (triangular) Hopf algebra.

5.2 Tensor product of K-linear maps

Given two K-linear maps P : V → Ṽ and Q : W → W̃ between K-modules, the tensor
product map P ⊗ Q : V ⊗W → Ṽ ⊗ W̃ is the K-linear map defined by, for all v ∈ V and
w ∈W ,

(P ⊗Q)(v ⊗ w) := P (v)⊗Q(w) , (5.11)

and extended to all V ⊗W by K-linearity. If P̃ : Ṽ → V̂ and Q̃ : W̃ → Ŵ are two further
K-linear maps, then we have the composition property

(
P̃ ⊗ Q̃

)
◦
(
P ⊗Q

)
= (P̃ ◦ P )⊗ (Q̃ ◦Q) . (5.12)

Let now H be a Hopf algebra. We consider HM-modules V,W, Ṽ , W̃ and the associated
tensor product HM-modules V ⊗W and Ṽ ⊗W̃ . TheK-modules of K-linear maps HomK(V, Ṽ ),

HomK(W, W̃ ) and HomK(V ⊗W, Ṽ ⊗ W̃ ) are HM-modules with the H-adjoint action. We
study the action of ξ ∈ H on the tensor product map (5.11). Using (5.1) and (5.12) we obtain

ξ ◮ (P ⊗Q) = (ξ1 ⊲ ⊗ξ2⊲ ) ◦ (P ⊗Q) ◦ (S(ξ4) ⊲ ⊗S(ξ3)⊲)

=
(
ξ1 ⊲ ◦P ◦ S(ξ4)⊲

)
⊗

(
ξ2 ⊲ ◦Q ◦ S(ξ3)⊲

)

=
(
ξ1 ⊲ ◦P ◦ S(ξ3)⊲

)
⊗ (ξ2 ◮ Q) . (5.13)

For a non-cocommutative Hopf algebra and K-linear maps Q that are not H-equivariant (i.e.,
ξ ◮ Q 6= ε(ξ)Q) this expression in general differs from (ξ1 ◮ P )⊗ (ξ2 ◮ Q). This shows that
the tensor product of K-linear maps (5.11) is in general incompatible with the HM-module
structure. This incompatibility can be understood as follows: Considering K-linear maps as
acting from left to right, the ordering on the left hand side of (5.11) is P,Q, v,w, while the
ordering on the right hand side is P, v,Q,w, i.e. v and Q do not appear properly ordered in
the definition (5.11). For a quasitriangular Hopf algebra (H,R) this problem can be solved
by defining a new tensor product of K-linear maps.

Definition 5.3. Let (H,R) be a quasitriangular Hopf algebra and V,W, Ṽ , W̃ be HM-
modules. The R-tensor product of K-linear maps is defined by, for all P ∈ HomK(V, Ṽ )

and Q ∈ HomK(W, W̃ ),

P ⊗R Q := (P ◦R
α
⊲ )⊗ (Rα ◮ Q) ∈ HomK(V ⊗W, Ṽ ⊗ W̃ ) , (5.14)

where ⊗ is defined in (5.11).

This definition is related to the H-equivariant maps that appeared in [Maj95], Corollary
9.3.16, and in [Fio10], eq. (38). The tensor product perspective we consider in this paper
leads to further investigations (starting from Theorem 5.4).
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From Definition 5.3 it immediately follows that

P ⊗R Q = (P ⊗ id) ◦ (R
α
⊲ ⊗Rα ◮ Q) = (P ⊗R id) ◦ (id ⊗R Q) . (5.15)

We see that the lift of P ∈ HomK(V, Ṽ ) to HomK(V ⊗ W̃ , Ṽ ⊗ W̃ ) is simply P ⊗R id = P ⊗ id,
while the lift of Q is

id⊗R Q = R
α
⊲ ⊗Rα ◮ Q . (5.16)

Use of the braiding map τR (cf. (5.8a)) allows us to rewrite the lift id⊗RQ acting on V ⊗W
in terms of the lift Q⊗ id acting on W ⊗ V ,

id⊗R Q = R
α
⊲ ⊗ Rα ◮ Q

= R
α
⊲ ⊗

(
Rα1 ⊲ ◦Q ◦ S(Rα2)⊲

)

= R
α
R

β
⊲ ⊗

(
Rα ⊲ ◦Q ◦ S(Rβ)⊲

)

= R
α
Rβ ⊲ ⊗

(
Rα ⊲ ◦Q ◦Rβ⊲

)

= τR ◦ (Q⊗ id) ◦ τ−1
R . (5.17)

We now show that the R-tensor product ⊗R is compatible with the HM-module structure,
that it is associative and that it satisfies a braided composition law.

Theorem 5.4. Let (H,R) be a quasitriangular Hopf algebra and V,W,Z, Ṽ , W̃ , Z̃, V̂ , Ŵ be
HM-modules. The R-tensor product is compatible with the HM-module structure, i.e., for all
ξ ∈ H, P ∈ HomK(V, Ṽ ) and Q ∈ HomK(W, W̃ ),

ξ ◮ (P ⊗R Q) = (ξ1 ◮ P )⊗R (ξ2 ◮ Q) . (5.18a)

Furthermore, the R-tensor product is associative, i.e., for all P ∈ HomK(V, Ṽ ), Q ∈ HomK(W, W̃ )
and T ∈ HomK(Z, Z̃),

(
P ⊗R Q

)
⊗R T = P ⊗R

(
Q⊗R T

)
, (5.18b)

and satisfies the braided composition law, for all P ∈ HomK(V, Ṽ ), Q ∈ HomK(W, W̃ ), P̃ ∈

HomK(Ṽ , V̂ ) and Q̃ ∈ HomK(W̃ , Ŵ ),
(
P̃ ⊗R Q̃

)
◦
(
P ⊗R Q

)
=

(
P̃ ◦ (R

α
◮ P )

)
⊗R

(
(Rα ◮ Q̃) ◦Q

)
. (5.18c)

Proof. From (5.13) we have compatibility between the H-action and the lift P 7→ P ⊗ id, for
all ξ ∈ H,

ξ ◮ (P ⊗ id) = (ξ ◮ P )⊗ id . (5.19)

Compatibility between the H-action and the lift Q 7→ id⊗R Q follows from (5.9) and (5.19),

ξ ◮ (id⊗R Q) = ξ ◮

(
τR ◦ (Q⊗ id) ◦ τ−1

R

)

= τR ◦ ξ ◮ (Q⊗ id) ◦ τ−1
R

= τR ◦
(
(ξ ◮ Q)⊗ id

)
◦ τ−1

R

= id⊗R ξ ◮ Q . (5.20)

Equation (5.18a) then follows from P ⊗R Q = (P ⊗R id) ◦ (id ⊗R Q) and the left H-action
property ξ ◮ (T ◦ Ť ) = ξ1 ◮ T ◦ ξ2 ◮ Ť , that holds for any two composable K-linear maps T
and Ť .
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We now prove (5.18b). The left hand side of (5.18b) can be expanded as follows

(
P ⊗R Q

)
⊗R T =

((
P ⊗R Q

)
◦
(
R

α
1 ⊲ ⊗R

α
2 ⊲

))
⊗

(
Rα ◮ T

)

=
(
P ◦R

β
R

α
1 ⊲

)
⊗

(
(Rβ ◮ Q) ◦R

α
2 ⊲

)
⊗

(
Rα ◮ T

)

=
(
P ◦R

β
R

α
⊲
)
⊗

(
(Rβ ◮ Q) ◦R

γ
⊲
)
⊗

(
RγRα ◮ T

)
, (5.21a)

where in the third line we have used (5.5b). This expression equals the right hand side of
(5.18b), indeed

P ⊗R

(
Q⊗R T

)
=

(
P ◦R

α
⊲
)
⊗

(
Rα1 ◮ Q⊗R Rα2 ◮ T

)

=
(
P ◦R

α
⊲
)
⊗

(
(Rα1 ◮ Q) ◦R

γ
⊲
)
⊗

(
RγRα2 ◮ T

)

=
(
P ◦R

β
R

α
⊲
)
⊗

(
(Rβ ◮ Q) ◦R

γ
⊲
)
⊗

(
RγRα ◮ T

)
, (5.21b)

where in the third line we have used (5.5c).
Finally, we show (5.18c). From (5.15) we have

(
P̃ ⊗R Q̃

)
◦
(
P ⊗R Q

)
= (P̃ ⊗R id) ◦ (id⊗R Q̃) ◦ (P ⊗R id) ◦ (id⊗R Q) , (5.22)

and therefore (5.18c) is proven if

(id⊗R Q̃) ◦ (P ⊗R id) = R
α
◮ (P ⊗R id) ◦ Rα ◮ (id ⊗R Q̃) (5.23)

or equivalently (id⊗R Q̃) ◦ (P ⊗R id) = (R
α
◮ P ⊗R id) ◦ (id⊗R Rα ◮ Q̃) . This last equality

holds true because (use (5.16) and (5.5b)),

(id ⊗R Q̃) ◦ (P ⊗R id) = (R
α
⊲ ⊗Rα ◮ Q̃) ◦ (P ⊗ id)

= (R
α
⊲ ◦P ) ⊗

(
Rα ◮ Q̃

)

=
(
(R

α
1 ◮ P ) ◦R

α
2 ⊲

)
⊗

(
Rα ◮ Q̃

)

=
(
(R

α
◮ P ) ◦R

β
⊲
)
⊗

(
RβRα ◮ Q̃

)

= (R
α
◮ P )⊗R (Rα ◮ Q̃) . (5.24)

Let us now consider the case where V, Ṽ are HM-modules and W, W̃ are HMA-modules,
with A an HA -algebra. Then we can equip V ⊗W (as well as Ṽ ⊗ W̃ ) with a right A-module
structure by defining (v ⊗ w) · a := v ⊗ (w · a), for all v ∈ V , w ∈ W and a ∈ A. This right

A-action is extended by K-linearity to all V ⊗W . Moreover we have that V ⊗W and Ṽ ⊗ W̃
are HMA-modules, where the left H-action is given in (5.1).

Proposition 5.5. Let (H,R) be a quasitriangular Hopf algebra, A be an HA -algebra, V, Ṽ

be two HM-modules and W, W̃ be two HMA-modules. Then we have, for all P ∈ HomK(V, Ṽ )

and Q ∈ HomA(W, W̃ ),

P ⊗R Q ∈ HomA(V ⊗W, Ṽ ⊗ W̃ ) . (5.25)
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Proof. For all a ∈ A, v ∈ V and w ∈W ,

(P ⊗R Q)
(
(v ⊗ w) · a

)
= (P ⊗R Q)

(
v ⊗ (w · a)

)
= P

(
R

α
⊲ v

)
⊗ (Rα ◮ Q)(w · a)

= P
(
R

α
⊲ v

)
⊗ (Rα ◮ Q)(w) · a

=
(
(P ⊗R Q)(v ⊗ w)

)
· a , (5.26)

where in the second line we have used that ξ ◮ Q ∈ HomA(W, W̃ ), for all ξ ∈ H.

5.3 Deformation

We study the twist deformation of tensor products of HM-modules and K-linear maps.

Since as algebras H and HF coincide, we have that any HM-module V is equivalently an
HF

M-module. It is however convenient to distinguish between these two module structures
and hence we denote by V⋆ the K-module V with the HF

M-module structure. This notation
agrees with that of Theorem 3.5 where we deformed an H

AMB-module V into an HF

A⋆MB⋆-
module V⋆ (just consider trivial algebras A = B = K).

Given two HF
M-modules V⋆,W⋆ we denote their tensor product by V⋆⊗⋆W⋆. By definition

V⋆⊗⋆ W⋆ equals V ⊗W as K-module; the HF
M-module structure is canonically given by the

HF -coproduct (cf. (5.1)), for all ξ ∈ HF , v ∈ V⋆ and w ∈W⋆, ξ⊲F (v⊗⋆w) := ξ1F ⊲v⊗⋆ξ2F ⊲w
(and extended by K-linearity to all elements in V⋆ ⊗⋆ W⋆).

We now compare the HF
M-modules V⋆⊗⋆W⋆ and (V ⊗W )⋆; in this latter the HF -action

is just the H-action on V ⊗W , hence it is obtained using the H-coproduct.
It is easy to show that the K-linear map

ϕV,W := F−1⊲ : V⋆ ⊗⋆ W⋆ → (V ⊗W )⋆

v ⊗⋆ w 7→ ϕV,W (v ⊗⋆ w) = (f
α
⊲ v)⊗ (f α ⊲ w) (5.27)

provides an isomorphism between the HF
M-modules V⋆ ⊗⋆ W⋆ and (V ⊗ W )⋆. Indeed it

intertwines between the two HF -actions,

ϕV,W

(
ξ ⊲F (v ⊗⋆ w)

)
= ϕV,W

(
(ξ1F ⊲ v)⊗⋆ (ξ2F ⊲ w)

)
= (ξ1f

α
⊲ v)⊗ (ξ2f α ⊲ w)

= ξ ⊲ ϕV,W (v ⊗⋆ w) . (5.28)

The inverse of ϕV,W is

ϕ−1
V,W := F⊲ : (V ⊗W )⋆ → V⋆ ⊗⋆ W⋆

v ⊗ w 7→ ϕ−1
V,W (v ⊗ w) = (f α ⊲ v)⊗⋆ (f α ⊲ w) . (5.29)

Consider now three HM-modules V,W,Ω. The twist cocycle property (3.4c) immediately

implies the following commutative diagram of HF
M-module isomorphisms

V⋆ ⊗⋆ W⋆ ⊗⋆ Ω⋆

idV⋆⊗RϕW,Ω

��

ϕV,W⊗RidΩ⋆ // (V ⊗W )⋆ ⊗⋆ Ω⋆

ϕ(V ⊗W ),Ω

��

V⋆ ⊗⋆ (W ⊗ Ω)⋆ ϕV,(W⊗Ω)

// (V ⊗W ⊗ Ω)⋆

(5.30)
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Concerning the tensor product of K-linear maps, on one hand the deformation of P⊗RQ ∈
HomK(V ⊗W, Ṽ ⊗ W̃ ), according to Theorem 4.7, is given by DF (P ⊗R Q) ∈ HomK((V ⊗

W )⋆, (Ṽ ⊗W̃ )⋆). On the other hand, we recall that if (H,R) is a quasitriangular Hopf algebra
with twist F ∈ H ⊗H, then (HF ,RF = F21RF

−1) is a quasitriangular Hopf algebra. We

therefore have the tensor product⊗RF of K-linear maps between HF
M-modules. In particular,

the lift of a K-linear map P⋆ : V⋆ → Ṽ⋆ to the HF
M-module V⋆ ⊗⋆ W⋆ is the K-linear map

P⋆ ⊗RF id := P⋆ ⊗⋆ id that as usual is defined by, for all v ∈ V⋆, w ∈W⋆,

(P⋆ ⊗RF id)(v ⊗⋆ w) := (P⋆ ⊗⋆ id)(v ⊗⋆ w) := P⋆(v)⊗⋆ w . (5.31)

Theorem 5.6. Let (H,R) be a quasitriangular Hopf algebra with twist F ∈ H ⊗ H and

V,W, Ṽ , W̃ be HM-modules. Then for all P ∈ HomK(V, Ṽ ) and Q ∈ HomK(W, W̃ ) the follow-
ing diagram of K-linear maps commutes:

V⋆ ⊗⋆ W⋆

ϕV,W

��

DF (P )⊗
RFDF (Q)

// Ṽ⋆ ⊗⋆ W̃⋆

ϕ
Ṽ ,W̃

��

(V ⊗W )⋆
DF

(
(f

α
◮P )⊗R(f α◮Q)

) // (Ṽ ⊗ W̃ )⋆

(5.32)

i.e.

DF

(
(f

α
◮ P )⊗R (f α ◮ Q)

)
= ϕ

Ṽ ,W̃
◦
(
DF (P )⊗RF DF (Q)

)
◦ ϕ−1

V,W . (5.33)

Proof. Use of (5.15) and compatibility between theH-action and the lifts of P andQ (cf. (5.19)
and (5.20)) shows that (5.33) is equivalent to

DF

(
(P ⊗R id) ◦⋆ (id⊗R Q)

)
= ϕ

Ṽ ,W̃
◦
(
DF (P )⊗RF id

)
◦
(
id⊗RF DF (Q)

)
◦ ϕ−1

V,W . (5.34)

Because of the algebra isomorphism (3.26), see also Theorem 3.16, the thesis (5.33) is equiv-
alent to

DF (P ⊗R id) ◦DF (id ⊗R Q) = ϕ
Ṽ ,W̃
◦
(
DF (P )⊗RF id

)
◦
(
id⊗RF DF (Q)

)
◦ ϕ−1

V,W . (5.35)

The deformation of P ⊗R id = P ⊗ id : V ⊗W̃ → Ṽ ⊗W̃ (and also of Q⊗ id) can be simplified
as follows

DF (P ⊗ id) =
(
(f

α
◮ P ) ◦ f α1⊲

)
⊗ f α2⊲

=
(
(f

α
1 f

β
◮ P ) ◦ f

α
2 f βf

γ⊲
)
⊗ f αf γ⊲

=
(
f
α
⊲ ◦DF (P ) ◦ f γ⊲

)
⊗ f αf γ⊲

= ϕ
Ṽ ,W̃
◦ (DF (P )⊗⋆ id) ◦ ϕ

−1

V,W̃
, (5.36)

where in the second line we inserted on the right id ⊗ id = F−1F⊲ and then used the twist
cocycle property (3.4c). In the last line we used (5.31).

The deformation of

id⊗R Q = τR ◦ (Q⊗ id) ◦ τ−1
R = τR ◦⋆ (Q⊗ id) ◦⋆ τ

−1
R (5.37)
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(where in the last equality we used that τR and τ−1
R are H-equivariant, i.e. ξ ◮ τR = ε(ξ) τR

and ξ ◮ τ−1
R = ε(ξ) τ−1

R , for all ξ ∈ H) is given by

DF (id⊗R Q) = τR ◦ ϕW̃ ,V
◦ (DF (Q)⊗⋆ id) ◦ ϕ

−1
W,V ◦ τ

−1
R

= ϕ
V,W̃
◦ τRF ◦ (DF (Q)⊗⋆ id) ◦ τ

−1
RF ◦ ϕ

−1
V,W , (5.38)

where in the first equality we again used that τR is H-equivariant. In the last equality
we have defined τRF : W̃⋆ ⊗⋆ V⋆ → V⋆ ⊗⋆ W̃⋆ by τRF := ϕ−1

V,W̃
◦ τR ◦ ϕW̃ ,V

and similarly

τ−1
RF : V⋆ ⊗⋆ W⋆ → W⋆ ⊗⋆ V⋆ by τ−1

RF := ϕ−1
W,V ◦ τ

−1
R ◦ ϕV,W .

Equality (5.35) holds because τRF : W⋆ ⊗⋆ V⋆ → V⋆ ⊗⋆ W⋆ defined by τRF := ϕ−1
V,W ◦

τR ◦ϕW,V is easily seen to be the braiding map for the twist deformed tensor product, for all
v ∈ V⋆, w ∈W⋆,

τRF (w ⊗⋆ v) = (R
Fα

⊲ v)⊗⋆ (R
F

α ⊲ w) , (5.39)

so that, as in (5.17), we have, τRF ◦ (DF (Q)⊗⋆ id) ◦ τ
−1
RF = id⊗RF DF (Q).

Remark 5.7. We provide a categorical description of the results in subsections 5.2 and 5.3,
and show that, because of commutativity of the diagrams (5.30) and (5.32), the equivalence

of the categories rep
H

⋆ and rep
HF

proven after Theorem 3.16 extends to the tensor product
structures that can be considered on these categories.

We recall that an object in rep
H is an HM-module V and a morphism between two objects

V,W in rep
H is a K-linear map P ∈ HomK(V,W ) (not necessarily H-equivariant). Let us

consider the association ⊗R : repH × rep
H → rep

H given on objects (V,W ) by the tensor
product V ⊗W and on morphisms (P,Q) by the R-tensor product of K-linear maps P ⊗R Q
(cf. Definition 5.3). Because of the braided composition law (5.18c) this is not a bifunctor. We
say that it is “almost” a bifunctor and refer to (repH ,⊗R) as an “almost monoidal” category.

We similarly have the “almost monoidal” category (repH
F
,⊗RF ), where the association

⊗RF : repH
F
× rep

HF
→ rep

HF
is defined on objects (V⋆,W⋆) by V⋆⊗⋆W⋆ and on morphisms

(P⋆, Q⋆) by P⋆ ⊗RF Q⋆. Notice that K-linear maps between HF
M-modules are denoted with

a ⋆-index, like P⋆ : V⋆ → W⋆, because they carry the HF -adjoint action, rather than the
H-adjoint action carried by K-linear maps between HM-modules P : V → W . This adjoint
action enters the definition of the tensor product morphism P⋆ ⊗RF Q⋆.

We also consider the “almost monoidal” category (repH ⋆,⊗R⋆), where the association
⊗R⋆ : repH ⋆ × rep

H
⋆ → rep

H
⋆ is defined on objects (V,W ) by V ⊗W and on morphisms

(P,Q) by P⊗R⋆Q = (f
α
◮ P )⊗R(f α ◮ Q) (the braided composition law reads as (5.18c) with

composition of morphisms given by the ⋆-composition ◦⋆, and tensor product of morphisms
given by ⊗R⋆).

The equivalence of the categories repH ⋆ and rep
HF

shown after Theorem 3.16 extends to an
equivalence of (repH ⋆,⊗R⋆) and (repH

F
,⊗RF ) as “almost monoidal” categories. Indeed, the

collection of maps ϕV,W : V⋆⊗⋆W⋆ → (V ⊗W )⋆ provides a natural isomorphism between the
“almost bifunctors” ⊗RF and ⊗R⋆ . This is so because the ϕV,W maps satisfy the commutative
diagrams (5.30) and (5.32).

Notice that when we restrict to H-equivariant morphisms, the R-tensor product reduces
to the usual tensor product (5.11) and the “almost monoidal” category

(
rep

H ,⊗R) restricts
to the monoidal category

(
rep

H
eqv,⊗). In this case we recover the results of Drinfeld [Dri89]

on the equivalence of the monoidal categories
(
rep

H
eqv,⊗) and

(
rep

HF

eqv ,⊗⋆).

34



5.4 Quasi-commutative algebras and bimodules (tensor product over A)

Let A be an HA -algebra and consider an HMA-module V and an H
AMA-module W . We have

that V ⊗W is an HMA-module, where the module structure is given by, for all ξ ∈ H, v ∈
V,w ∈W,a ∈ A, ξ ⊲ (v ⊗ w) = (ξ1 ⊲ v)⊗ (ξ2 ⊲ w) and (v ⊗ w) · a = v ⊗ (w · a).

We now consider V ⊗A W , i.e., the tensor product over A of V and W . We recall that it
can be defined as the quotient of the K-module V ⊗W via the K-submodule NV,W generated
by the elements v ·a⊗w−v⊗a ·w, for all a ∈ A, v ∈ V,w ∈W . The image of v⊗w under the
canonical projection π : V ⊗W → V ⊗AW is denoted by v⊗Aw. Since the K-submoduleNV,W

is also an HMA-submodule of V ⊗W , an HMA-module structure on V ⊗A W is canonically
induced from the one on V ⊗W . Explicitly we have, for all ξ ∈ H, v ∈ V,w ∈ W,a ∈ A,
ξ ⊲ (v ⊗A w) = (ξ1 ⊲ v)⊗A (ξ2 ⊲ w) and (v ⊗A w) · a = v ⊗A (w · a).

Given two right A-linear maps P ∈ HomA(V, Ṽ ), Q ∈ HomA(W, W̃ ), where V, Ṽ are two
HMA-modules and W, W̃ are two H

AMA-modules, following Proposition 5.5 we can construct
the R-tensor product P ⊗RQ ∈ HomA(V ⊗W, Ṽ ⊗W̃ ). We study if P ⊗RQ induces a map in

HomA(V ⊗AW, Ṽ ⊗A W̃ ). In other words, we study if the R-tensor product of K-linear maps
induces an R-tensor product between right A-linear maps that is compatible with the tensor
product of modules over A. This requires a quasi-commutative structure on H

AMA-modules.

Definition 5.8. Let (H,R) be a quasitriangular Hopf algebra. Then an HA -algebra A is
called quasi-commutative if, for all a, ã ∈ A,

a ã = (R
α
⊲ ã)(Rα ⊲ a) . (5.40)

In this case, an H
AMA-module V is called quasi-commutative if, for all a ∈ A, v ∈ V ,

v · a = (R
α
⊲ a) · (Rα ⊲ v) . (5.41)

It is not difficult to prove that every H
AM-module V , with A being a quasi-commutative

HA -algebra, is a quasi-commutative H
AMA-module with the right A-action defined by (5.41).

The quasi-commutativity conditions (5.40) and (5.41) are equivalent to

ã a = (Rα ⊲ a)(Rα ⊲ ã) , a · v = (Rα ⊲ v) · (Rα ⊲ a) . (5.42)

In the algebra case we can therefore use both R−1 and R21 (being the inverses of the two
quasitriangular structures R and R−1

21 on H) to commute products of algebra elements. This
suggests the following definition for the case of modules.

Definition 5.9. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra and V be a quasi-commutative H

AMA-module. We say that V is strong quasi-

commutative if in addition, for all a ∈ A, v ∈ V ,

v · a = (Rα ⊲ a) · (Rα ⊲ v) . (5.43)

Equivalently, V is strong quasi-commutative if it is quasi-commutative with respect to both
quasitriangular structures R and R−1

21 on H.
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Example 5.10. The universal enveloping algebra Ug of a Lie algebra g is a cocommutative
Hopf algebra. Every cocommutative Hopf algebra H has a triangular structure given by the
R-matrix R = 1⊗ 1. Let F be a twist of this cocommutative Hopf algebra H, then the Hopf
algebra HF is triangular with R-matrix RF = F21F

−1.
Commutative UgA -algebras A and commutative Ug

AMA-modules V are (strong) quasi-
commutative, and so are their twist deformations. In particular, the modules and algebras of
noncommutative gravity [ADMW06] are (strong) quasi-commutative.

Example 5.11. The twist deformation HF of any quasitriangular (triangular) Hopf algebra
(H,R) is quasitriangular (triangular) with R-matrix RF = F21RF

−1.

If A is a quasi-commutative HA -algebra, then A⋆ is a quasi-commutative HF
A -algebra. If

V is a (strong) quasi-commutative H
AMA-module, then V⋆ is a (strong) quasi-commutative

HF

A⋆MA⋆-module.
For a triangular Hopf algebra we have R = R−1

21 . Thus, every quasi-commutative H
AMA-

module is automatically strong quasi-commutative.

Remark 5.12. We presently do not have a nontrivial example of a proper quasitriangular
(i.e. not triangular) Hopf algebra H which has a quasi-commutative HA -algebra.

Tensor products over A of (strong) quasi-commutative H
AMA-modules are again (strong)

quasi-commutative H
AMA-modules.

Proposition 5.13. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra and V,W be two quasi-commutative H

AMA-modules. Then V ⊗A W is a quasi-
commutative H

AMA-module.
If moreover V and W are strong quasi-commutative H

AMA-modules, then V ⊗AW is also
a strong quasi-commutative H

AMA-module.

Proof. We show quasi-commutativity of V ⊗A W . For all v ∈ V,w ∈W,a ∈ A,

v ⊗A w · a = v ⊗A (R
α
⊲ a) · (Rα ⊲ w) = (R

β
R

α
⊲ a) · (Rβ ⊲ v)⊗A (Rα ⊲ w)

= (R
β
⊲ a) · (Rβ ⊲ (v ⊗A w)) . (5.44)

The strong quasi-commutativity of V ⊗A W , in case of V and W strong quasi-commutative,
is proven by considering the equation above with the alternative R-matrix R−1

21 .

Proposition 5.14. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra and V,W be two quasi-commutative H

AMA-modules. Then HomA(V,W ) and(
AHom(V,W )

)op
are quasi-commutative H

AMA-modules.

If moreover V and W are strong quasi-commutative H
AMA-modules, then so are HomA(V,W )

and
(
AHom(V,W )

)op
.

Proof. Recall that the A-bimodule structure of HomA(V,W ) is defined by, for all a ∈ A,P ∈
HomA(V,W ), P ·a = P ◦la and a·P = la◦P . We prove that for A, V andW quasi-commutative

P · a = (R
α
⊲ a) · (Rα ◮ P ) . (5.45)

36



Indeed, for all v ∈ V we have

(P · a)(v) = P (a · v) = P ((Rα ⊲ v) · (Rα ⊲ a)) = P (Rα ⊲ v) · (Rα ⊲ a)

= (R
β
Rα ⊲ a) · Rβ ⊲ (P (Rα ⊲ v))

= (R
β
R

α
⊲ a) · Rβ ⊲ (P (S(Rα) ⊲ v))

= (R
α
⊲ a) · Rα1 ⊲ (P (S(Rα2) ⊲ v))

= (R
α
⊲ a) · (Rα ◮ P )(v) , (5.46)

where in the second equality we used that a · v = (Rα ⊲ v) · (Rα ⊲ a), which is equivalent to
(5.41). Then we have used the R-matrix properties (5.5c) and (5.7b). Quasi-commutativity
of the H

AMA-module
(
AHom(V,W )

)op
is similarly proven.

The strong quasi-commutativity ofHomA(V,W ) and
(
AHom(V,W )

)op
in the case of strong

quasi-commutative H
AMA-modules V and W is similarly proven considering the alternative

R-matrix R−1
21 .

Remark 5.15. A particular case is when V = W , then EndA(V ) is a quasi-commutative
H
AMA-module. However the H

AAA-algebra structure of EndA(V ) is in general not quasi-
commutative. Similarly (AEnd(V ))op is quasi-commutative as an H

AMA-module but in gen-
eral not as an H

AAA-algebra.

Theorem 5.16. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative HA -

algebra, V, Ṽ be two HMA-modules and W, W̃ be two quasi-commutative H
AMA-modules. For

all P ∈ HomA(V, Ṽ ) and Q ∈ HomA(W, W̃ ) the map P ⊗RQ ∈ HomA(V ⊗W, Ṽ ⊗W̃ ) induces

a well-defined right A-linear map (denoted by the same symbol) P ⊗RQ : V ⊗AW → Ṽ ⊗A W̃
on the quotient modules. Explicitly we have, for all v ∈ V and w ∈W ,

P ⊗R Q(v ⊗A w) = P
(
R

α
⊲ v

)
⊗A

(
Rα ◮ Q

)
(w) . (5.47)

Proof. Remember that the HMA-module V ⊗A W was defined as the quotient of the HMA-
module V ⊗W via the HMA-submodule NV,W generated by the elements v · a⊗w− v⊗ a ·w,

for all a ∈ A, v ∈ V,w ∈ W . The map P ⊗R Q : V ⊗W → Ṽ ⊗ W̃ induces a well-defined
map on the quotient modules V ⊗A W = V ⊗W/NV,W and Ṽ ⊗A W̃ = Ṽ ⊗ W̃/N

Ṽ ,W̃
, if the

image of NV,W under P ⊗R Q lies in N
Ṽ ,W̃

, i.e. P ⊗R Q
(
NV,W

)
⊆ N

Ṽ ,W̃
. This is indeed the

case because, for all v ∈ V , w ∈W and a ∈ A,

P ⊗R Q(v · a⊗ w − v ⊗ a · w)

= P (R
α
1 ⊲ v · R

α
2 ⊲ a)⊗ (Rα ◮ Q)(w) − P (R

α
⊲ v)⊗ (Rα ◮ Q)(a · w)

= P (R
α
⊲ v) ·R

β
⊲ a⊗ (RβRα ◮ Q)(w)− P (R

α
⊲ v)⊗R

β
⊲ a · (RβRα ◮ Q)(w)

∈ N
Ṽ ,W̃

, (5.48)

where in the last equality we used Proposition 5.14. The right A-linearity of the map P ⊗RQ :
V ⊗A W → Ṽ ⊗A W̃ follows from Proposition 5.5 and the fact that V ⊗A W (and Ṽ ⊗A W̃ )

are equipped with the right A-module structure canonically induced from V ⊗W (and Ṽ ⊗W̃
respectively).

Theorem 5.16 immediately implies that the following definition is well-given.
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Definition 5.17. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, V, Ṽ be two HMA-modules andW, W̃ be two quasi-commutative H

AMA-modules.
The R-tensor product of right A-linear maps is defined by the K-bilinear map

⊗R : HomA(V, Ṽ )×HomA(W, W̃ ) −→ HomA(V ⊗A W, Ṽ ⊗A W̃ )

(P,Q) 7−→ P ⊗R Q , (5.49)

where P ⊗R Q is explicitly given in (5.47).

Theorem 5.18. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative HA -

algebra, V, Ṽ , V̂ be HMA-modules and W,Z, W̃ , Z̃, Ŵ be quasi-commutative H
AMA-modules.

The R-tensor product of Definition 5.17 is compatible with the HM-module structure, i.e., for
all ξ ∈ H, P ∈ HomA(V, Ṽ ) and Q ∈ HomA(W, W̃ ),

ξ ◮ (P ⊗R Q) = (ξ1 ◮ P )⊗R (ξ2 ◮ Q) . (5.50a)

Furthermore, the R-tensor product is associative, i.e., for all P ∈ HomA(V, Ṽ ), Q ∈ HomA(W, W̃ )
and T ∈ HomA(Z, Z̃),

(
P ⊗R Q

)
⊗R T = P ⊗R

(
Q⊗R T

)
, (5.50b)

and satisfies the braided composition law, for all P ∈ HomA(V, Ṽ ), Q ∈ HomA(W, W̃ ), P̃ ∈

HomA(Ṽ , V̂ ) and Q̃ ∈ HomA(W̃ , Ŵ ),

(
P̃ ⊗R Q̃

)
◦
(
P ⊗R Q

)
=

(
P̃ ◦ (R

α
◮ P )

)
⊗R

(
(Rα ◮ Q̃) ◦Q

)
. (5.50c)

Proof. These properties follow immediately from Theorem 5.4 because all maps in the present
theorem are canonically induced from the maps in Theorem 5.4. Alternatively, one can repeat
the calculations in the proof of Theorem 5.4 using the explicit expression (5.47) and acting
on generating elements v ⊗A w ∈ V ⊗A W or v ⊗A w ⊗A z ∈ V ⊗A W ⊗A Z.

5.5 Deformation

We study the twist deformation of the tensor product over A of HMA-modules with H
AMA-

modules, and of right A-linear maps P ⊗RQ. Given HMA-modules V, Ṽ and H
AMA-modules

W, W̃ , Theorem 3.5 implies that we have the twist deformed HF
MA⋆-modules V⋆, Ṽ⋆ and the

twist deformed HF

A⋆MA⋆-modules W⋆, W̃⋆, with A⋆ being the twist deformed HF
A -algebra.

We can therefore consider V⋆ ⊗A⋆ W⋆, that is the quotient of the K-module V⋆ ⊗⋆ W⋆ via the
K-submodule N ⋆

V⋆,W⋆
generated by the elements v ⋆ a ⊗⋆ w − v ⊗⋆ a ⋆ w, for all a ∈ A⋆, v ∈

V⋆, w ∈W⋆. The image of v ⊗⋆ w under the canonical projection π⋆ : V⋆ ⊗⋆ W⋆ → V⋆ ⊗A⋆ W⋆

is denoted by v ⊗A⋆ w. Since the K-submodule N ⋆
V⋆,W⋆

is also an HF
MA⋆-submodule, an

HF
MA⋆-module structure on V⋆ ⊗A⋆ W⋆ is canonically induced from the one on V⋆ ⊗⋆ W⋆.

Explicitly we have, for all ξ ∈ HF , a ∈ A⋆, v ∈ V⋆, w ∈W⋆, (v ⊗A⋆ w) ⋆ a = v ⊗A⋆ (w ⋆ a) and
ξ ⊲F (v ⊗A⋆ w) = (ξ1F ⊲ v)⊗A⋆ (ξ2F ⊲ w).

Lemma 5.19. Let A be an HA -algebra, V be an HMA-module and W be an H
AMA-module.

The K-linear map ϕV,W = F−1⊲ : V⋆ ⊗⋆ W⋆ → (V ⊗W )⋆ defined in (5.27) is in this case an
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HF
MA⋆-module isomorphism and induces a map on the quotients according to the following

commutative diagram:

V⋆ ⊗⋆ W⋆

ϕV,W

��

π⋆ // V⋆ ⊗A⋆ W⋆

ϕV⋆,W⋆

��

(V ⊗W )⋆ π
// (V ⊗A W )⋆

(5.51)

Explicitly,

ϕV⋆,W⋆ = F−1⊲ : V⋆ ⊗A⋆ W⋆ → (V ⊗A W )⋆

v ⊗A⋆ w 7→ ϕV⋆,W⋆(v ⊗A⋆ w) = (f
α
⊲ v)⊗A (f α ⊲ w) . (5.52)

This map is an isomorphism between the HF
MA⋆-modules V⋆ ⊗A⋆ W⋆ and (V ⊗A W )⋆.

Proof. The map ϕV,W : V⋆ ⊗⋆ W⋆ → (V ⊗W )⋆ was already shown to be an HF
M-module

homomorphism in (5.28). It is an HF
MA⋆-module homomorphism because, for all v ∈ V⋆,

w ∈W⋆ and a ∈ A⋆,

ϕV,W (v ⊗⋆ w ⋆ a) = f
α
⊲ v ⊗ (f α1 f

β
⊲ w) · (f α2 f β ⊲ a)

= f
α
1f

β
⊲ v ⊗ (f α2 f β ⊲ w) · (f α ⊲ a)

= ϕV,W (v ⊗⋆ w) ⋆ a , (5.53)

where we used the twist cocycle property (3.4c). It canonically induces the map ϕV⋆,W⋆ in
(5.51) because it maps N ⋆

V⋆,W⋆
into NV,W , i.e. ϕV,W

(
N ⋆

V⋆,W⋆

)
⊆ NV,W . Indeed, for all v ∈ V ,

w ∈W and a ∈ A,

ϕV,W (v ⋆ a⊗⋆ w − v ⊗⋆ a ⋆ w)

= (f
α

1 f
β
⊲ v) · (f

α

2 f β ⊲ a)⊗ f α ⊲ w − f
α
⊲ v ⊗ (f α1 f

β
⊲ a) · (f α2 f β ⊲ w) ∈ NV,W , (5.54)

because of the twist cocycle property (3.4c). The induced map ϕV⋆,W⋆ is an HF
MA⋆-module

homomorphism because so is ϕV,W , and N ⋆
V⋆,W⋆

, (NV,W )⋆ are HF
MA⋆-submodules. (The

HF
MA⋆-module (NV,W )⋆ is obtained by applying Theorem 3.5 to the HMA-module NV,W .

The corresponding projection DF (π) = π is HF -equivariant and right A⋆-linear.)
Finally, the map (5.52) is obviously invertible with inverse ϕ−1

V⋆,W⋆
:= F⊲.

Remark 5.20. If in the above lemma V is an H
AMA-module, then the map ϕV,W : V⋆⊗⋆W⋆ →

(V ⊗ W )⋆ is an HF

A⋆MA⋆-module isomorphism. Furthermore V⋆ ⊗A⋆ W⋆ is an HF

A⋆MA⋆-
module with left A⋆-module structure explicitly given by, for all a ∈ A⋆, v ∈ V⋆, w ∈ W⋆, a ⋆
(v⊗A⋆ w) = (a ⋆ v)⊗A⋆ w. In this case the induced map ϕV⋆,W⋆ : V⋆ ⊗A⋆ W⋆ → (V ⊗A W )⋆ is

also an HF

A⋆MA⋆-module isomorphism.

Let now A, W and W̃ be also quasi-commutative. Then the commutative diagram (5.32)
induces a commutative diagram on the corresponding quotient modules.
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Theorem 5.21. Let (H,R) be a quasitriangular Hopf algebra with twist F ∈ H ⊗ H, A

be a quasi-commutative HA -algebra, V, Ṽ be two HMA-modules and W, W̃ be two quasi-
commutative H

AMA-modules. Then for all P ∈ HomA(V, Ṽ ) and Q ∈ HomA(W, W̃ ) the
following diagram of right A⋆-module homomorphisms commutes:

V⋆ ⊗A⋆ W⋆

ϕV⋆,W⋆

��

DF (P )⊗
RFDF (Q)

// Ṽ⋆ ⊗A⋆ W̃⋆

ϕ
Ṽ⋆,W̃⋆

��

(V ⊗A W )⋆
DF

(
(f

α
◮P )⊗R(f α◮Q)

) // (Ṽ ⊗A W̃ )⋆

(5.55)

Proof. Theorems 5.16 and 4.7 imply that the horizontal arrows in the diagram are well-
defined right A⋆-module homomorphisms. Lemma 5.19 states that the vertical arrows are
HF

MA⋆-module isomorphisms. The commutativity of the diagram (5.55) follows from the
commutativity of the diagram (5.32) because the maps in (5.55) are all canonically induced
by the maps in (5.32), (cf. (5.51)).

Remark 5.22. Theorem 5.21 can be interpreted as providing an equivalence of categories that
have a tensor product over A structure. Indeed, let us consider the category

(
H
AMA

qc
,HomA, ◦

)
,

where objects are quasi-commutative H
AMA-modules, morphisms are right A-linear maps

and their composition is the usual composition. We equip this category with an “almost
monoidal” structure ⊗R given on objects (V,W ) by the tensor product over A, V ⊗A W ,
and on morphisms (P,Q) by P ⊗R Q. Lemma 5.19 implies that the isomorphisms ϕV⋆,W⋆ :
V⋆ ⊗A⋆ W⋆ → (V ⊗A W )⋆ satisfy a commutative diagram as in (5.30). Then Theorem 5.21
implies that the equivalence of categories found in Theorem 4.10 extends, as in Remark 5.7, to
an equivalence of the corresponding “almost monoidal” categories

(
H
AMA

qc
,HomA, ◦⋆,⊗R⋆

)

and
(
HF

A⋆MA⋆

qc⋆
,HomA⋆ , ◦,⊗RF

)
.

5.6 From right to left A-linear homomorphisms

Left A-linear homomorphisms and endomorphisms of commutative A-bimodules over a com-
mutative algebra A are automatically also right A-linear and vice versa. If the Hopf algebra
(H,R) is quasitriangular, A is a quasi-commutative HA -algebra and the H

AMA-modules are
strong quasi-commutative, we similarly have an isomorphism between right and left A-linear
homomorphisms and endomorphisms. This can be shown by deforming HA -algebras and
H
AMA-modules with the twist F = R.

Lemma 5.23. Let (H,R) be a quasitriangular Hopf algebra with twist F = R, A be a
quasi-commutative HA -algebra and V be a strong quasi-commutative H

AMA-module. Then
HR = Hcop, A⋆R = Aop and V⋆R = V op. Here ⋆R denotes the deformation associated with
the twist F = R.

Proof. The bialgebras HR and Hcop are the same because the R-twisted coproduct is the
coopposite coproduct (cf. (5.2)). Uniqueness of the antipode implies that they are the same
Hopf algebra.

A⋆R = Aop as algebras (and hence as Hcop
A -algebras) because, for all a, ã ∈ A, a ⋆R ã =

(R
α
⊲ a) (Rα ⊲ ã) = ã a = µop(a⊗ ã).
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Similarly V⋆R = V op as Aop-bimodules (and hence as Hcop

AopMAop-modules) because, for
all a ∈ A, v ∈ V ,

a ⋆R v = R
α
(a) ·Rα(v) = v · a = a ·op v , (5.56a)

v ⋆R a = R
α
(v) ·Rα(a) = a · v = v ·op a , (5.56b)

where in the first equality we have used the quasi-commutativity condition (5.41) and in the
second equality the inverse of the strong quasi-commutativity condition (5.43).

Remark 5.24. Lemma 5.23 holds true also if we use the alternative R-matrix R−1
21 as a twist,

i.e. if we use F = R−1
21 .

Theorem 5.25. Let (H,R) be a quasitriangular Hopf algebra with twist F = R, A be a
quasi-commutative HA -algebra and V,W be two strong quasi-commutative H

AMA-modules.
Then there is an isomorphism (that with slight abuse of notation we denote)

DR :
(
EndA(V ) ⋆R

)op
−→

(
AEnd(V )

)op

P 7−→ DR(P ) := (R
α
◮ P ) ◦Rα ⊲ (5.57)

between the H
AAA-algebras

(
EndA(V ), ◦⋆R

op, ⋆R
op,◮

)
and

(
AEnd(V ), ◦op, ·op,◮cop

)
.

Similarly there is an isomorphism (denoted by the same symbol)

DR : HomA(V,W ) −→
(
AHom(V,W )

)op

P 7−→ DR(P ) := (R
α
◮ P ) ◦Rα ⊲ (5.58)

between the H
AMA-modules

(
HomA(V,W ), ·,◮

)
and

(
AHom(V,W ), ·op,◮cop

)
.

Proof. From HR = Hcop we have equality of the corresponding adjoint actions ◮R=◮
cop.

Then from A⋆R = Aop and V⋆R = V op we have EndA⋆R
(V⋆R) = EndAop(V op), i.e., more

explicitly, (EndA⋆R
(V⋆R), ◦, ·,◮R) =

(
EndAop(V op), ◦, ·,◮cop

)
as Hcop

AopAAop-algebras, where
the Aop-bimodule structure is the usual one obtained with the left multiplication map, that in
this case is lA

op
: Aop → EndAop(V op). Recalling the canonical isomorphism EndAop(V op) ≃

AEnd(V ) (cf. (4.18)) we therefore have (EndA⋆R
(V⋆R), ◦, ·,◮R) ≃

(
AEnd(V ), ◦, ·,◮cop

)
. Use

of Lemma 4.3 leads to the H
AAA-algebra isomorphism

(
EndA⋆R

(V⋆R)
)op
≃ (AEnd(V ))op. The

isomorphism DR : EndA(V ) ⋆R → EndA⋆R
(V⋆R) of Theorem 4.2 between the HR

A⋆R
AA⋆R

-

algebras
(
EndA(V ), ◦⋆R , ⋆R,◮

)
and

(
EndA⋆R

(V⋆R), ◦, ·,◮R

)
then induces the H

AAA-algebra
isomorphism

DR :
(
EndA(V ) ⋆R

)op
−→ (AEnd(V ))op (5.59)

between
(
EndA(V ), ◦⋆R

op, ⋆R
op,◮

)
and

(
AEnd(V ), ◦op, ·op,◮cop

)
.

The construction of the isomorphism DR for homomorphisms is similar and leads to an
H
AMA-module isomorphism

DR :
(
HomA(V,W ) ⋆R

)op
−→ (AHom(V,W ))op . (5.60)

We conclude the proof by showing that as H
AMA-modules

(
HomA(V,W ) ⋆R

)op
= HomA(V,W ) . (5.61)
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We apply Lemma 5.23 to the strong quasi-commutative H
AMA-module HomA(V,W ), and ob-

tain HomA(V,W )⋆R = HomA(V,W )op. Therefore,
(
HomA(V,W )⋆R

)op
= HomA(V,W )op op =

HomA(V,W ).

In Theorems 4.7 and 4.8 we defined the deformation mapsDF andDcop
F between homomor-

phisms of HF

A⋆MA⋆-modules (see also the corresponding theorems for endomorphisms). In
Theorem 5.25 with slight abuse of notation we have still denoted by DR the deformation map
that is now between homomorphisms of H

AMA-modules (rather than HR

A⋆R
MA⋆R

-modules).

The right to left isomorphism is compatible with twist deformation.

Theorem 5.26. Let (H,R) be a quasitriangular Hopf algebra with twist F ∈ H ⊗H, A be
a quasi-commutative HA -algebra and V,W be two strong quasi-commutative H

AMA-modules.
Then the following diagram of HF

A⋆MA⋆-module isomorphisms commutes:

HomA(V,W )⋆

DR

��

DF // HomA⋆(V⋆,W⋆)

D
RF

��(
AHom(V,W )

)op
⋆

D
cop
F //

(
A⋆Hom(V⋆,W⋆)

)op

(5.62)

Proof. H-equivariance of DR in (5.58) implies that DR : HomA(V,W )⋆ →
(
AHom(V,W )

)op
⋆

is an HF

A⋆MA⋆-module isomorphism (DR = DF (DR) = Dcop
F (DR)).

Since all maps in the diagram are HF

A⋆MA⋆-module isomorphisms, its commutativity is
proven if we prove the equality DRF = Dcop

F ◦DR ◦D
−1
F as K-linear maps. This immediately

follows from RF = F21RF
−1 and the equality DF ′F = DF ′ ◦DF , where F is a twist of H,

F ′ is a twist of HF , and hence, as it is easily seen, F ′F is a twist of H. We obtain, for all
P ∈ HomA(V,W ),

DF ′F (P ) = (f
α
f ′
β
◮ P ) ◦ f αf

′
β⊲ = DF (f

′β
◮ P ) ◦ f ′β⊲

=
(
f ′
β
◮F DF (P )

)
◦ f ′β⊲ = DF ′(DF (P )) , (5.63)

where we used that DF intertwines between the ◮ and ◮F action.

Example 5.27. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra and V be a strong quasi-commutative H

AMA-module. Then by Theorem 5.25
there is an H

AMA-module isomorphism between the right dual V ′ = HomA(V,A) and the left
dual ′V =

(
AHom(V,A)

)op
.

6 Connections

We review the notion of connections on MA-modules and AM-modules. For HA -algebras
A equipped with a suitable H-covariant differential calculus and HMA-modules (and also
H
AM-modules or H

AMA-modules) we prove that there is a bijective correspondence between
connections on the undeformed and deformed modules. It is an isomorphism between the
undeformed and deformed affine spaces of connections. We then investigate the problem
of constructing connections on tensor products of H

AMA-modules from connections on the
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individual factors. Assuming, as in the study of tensor product module homomorphisms,
quasi-commutativity of the HA -algebras and H

AMA-modules, we define a sum of arbitrary
(i.e. not necessarily H-equivariant) connections which yields a connection on the tensor prod-
uct module. The twist deformation of this sum is investigated in detail. As in the case of
module homomorphisms we can use the twist F = R in order to identify right with left con-
nections on strong quasi-commutative H

AMA-modules. Finally, the construction and twist
deformation of connections on the dual module is studied and shown to be canonical. An
extension of connections to the tensor algebra of a module and its dual is given.

6.1 Connections on right and left modules

We briefly review the notion of a connection on anMA-module orAM-module, see e.g. [Mad00,
DV01] for an introduction.

Definition 6.1. Let A be an algebra. A differential calculus
(
Ω•,∧,d

)
over A (or an N0-

differential graded algebra) is an N0-graded algebra
(
Ω• =

⊕
n≥0Ω

n,∧
)
, where Ω0 = A

has degree zero, together with a K-linear map d : Ω• → Ω• of degree one, satisfying d ◦ d = 0
and the graded Leibniz rule

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)deg(ω) ω ∧ (dω′) , (6.1)

for all ω, ω′ ∈ Ω• with ω of homogeneous degree.

The differential d and the product ∧ give rise to K-linear maps (denoted by the same
symbols) d : Ωn → Ωn+1 and ∧ : Ωn ⊗ Ωm → Ωn+m. Note that in the hypotheses above
the K-modules Ωn are AMA-modules. As in commutative differential geometry we call Ωn

the module of n-forms, notice however that our wedge product ∧ is not necessarily graded
commutative. We also assume that any 1-form θ ∈ Ω := Ω1 can be written as θ =

∑
i aidbi,

with ai, bi ∈ A, i.e. that exact 1-forms generate Ω as an AM-module.

Example 6.2. Let M be a D-dimensional smooth (second countable) manifold and let A =
C∞(M) be the smooth and complex (or real) valued functions on M . The exterior algebra
of differential forms

(
Ω•=

⊕
n≥0 Ω

n,∧
)
is an N0-graded algebra over C (or R), where Ω0 = A

and Ωn = 0, for all n > D. The exterior differential d is a differential on
(
Ω•,∧

)
, leading to

the de Rham differential calculus
(
Ω•,∧,d

)
. In this special case Ω• is graded commutative.

Another example is given by the twist deformed differential calculus
(
Ω•[[h]],∧⋆,d

)
[ADMW06].

There, the algebra
(
Ω•[[h]],∧⋆

)
over K = C[[h]] is graded quasi-commutative, i.e., for all

ω, ω′ ∈ Ω• of homogeneous degree,

ω ∧⋆ ω
′ = (−1)deg(ω) deg(ω′) (R

α
⊲ ω′) ∧⋆ (Rα ⊲ ω) . (6.2)

Definition 6.3. Let A be an algebra and
(
Ω•,∧,d

)
be a differential calculus over A. A

connection on an MA-module V is a K-linear map ∇ : V → V ⊗A Ω, satisfying the right
Leibniz rule, for all v ∈ V and a ∈ A,

∇(v · a) = (∇v) · a+ v ⊗A da . (6.3)
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Similarly, a connection on an AM-module V is a K-linear map ∇ : V → Ω⊗AV , satisfying
the left Leibniz rule, for all v ∈ V and a ∈ A,

∇(a · v) = a · (∇v) + da⊗A v . (6.4)

In case V is an AMA-module we say that a K-linear map ∇ : V → V ⊗A Ω is a right

connection on V if (6.3) is satisfied. Similarly, we say that a K-linear map ∇ : V → Ω⊗A V
is a left connection on V if (6.4) is satisfied.

We denote by ConA(V ) the set of all connections on an MA-module V and by ACon(V )
the set of all connections on an AM-module V . We also denote by ConA(V ) and ACon(V ),
respectively, the set of all right and left connections on an AMA-module V . Note that given
any connection ∇ ∈ ConA(V ) and any right A-linear map P ∈ HomA(V, V ⊗A Ω), then
∇̃ = ∇+ P ∈ ConA(V ) is again a connection. Indeed, for all a ∈ A and v ∈ V ,

∇̃(v · a) = ∇(v · a) + P (v · a) = (∇v) · a+ P (v) · a+ v ⊗A da = (∇̃v) · a+ v ⊗A da . (6.5)

The action ∇ 7→ ∇+ P is free and transitive and hence ConA(V ) is an affine space over the
K-module HomA(V, V ⊗A Ω). Similarly, the space of left connections ACon(V ) is an affine
space over the K-module AHom(V,Ω ⊗A V ).

6.2 Deformation of connections

We now consider differential calculi that are also H-covariant and study the twist deformation
of connections on H

AM-modules and HMA-modules.
Let H be a Hopf algebra and A be an HA -algebra. Let further

(
Ω•,∧,d

)
be a left H-

covariant differential calculus over A, i.e., Ω• is an HA -algebra, the H-action ⊲ is degree
preserving and the differential is H-equivariant, for all ξ ∈ H and ω ∈ Ω•,

ξ ⊲ (dω) = d(ξ ⊲ ω) . (6.6)

Since the H-action is degree preserving, Ωn are H
AMA-modules, for all n ∈ N0.

We now show that a left H-covariant differential calculus can be deformed to yield a left
HF -covariant differential calculus.

Proposition 6.4. Let H be a Hopf algebra with twist F ∈ H ⊗ H, A be an HA -algebra
and

(
Ω•,∧,d

)
be a left H-covariant differential calculus over A. Then

(
Ω•,∧⋆,d

)
is a left

HF -covariant differential calculus over the HF
A -algebra A⋆.

Proof. By Theorem 3.4
(
Ω•,∧⋆

)
is an HF

A -algebra. It is N0-graded and we have (Ω0,∧⋆) =
A⋆. Due to the H-equivariance of the differential, d is also a differential on

(
Ω•,∧⋆

)
.

Notice that due to H-equivariance of the differential d the de Rham complex is invariant
under twist deformation.
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Right modules

Let V be an HMA-module. Since ConA(V ) ⊆ HomK(V, V ⊗AΩ) we can act with theH-adjoint
action ◮ on ∇ ∈ ConA(V ), for all ξ ∈ H,

ξ ◮ ∇ := ξ1 ⊲ ◦∇ ◦ S(ξ2) ⊲ . (6.7)

The element ξ ◮ ∇ ∈ HomK(V, V ⊗A Ω) satisfies, for all v ∈ V and a ∈ A,

(ξ ◮ ∇)(v · a) = ξ1 ⊲
(
∇(S(ξ2)1 ⊲ v · S(ξ2)2 ⊲ a)

)

= ξ1 ⊲
((
∇(S(ξ3) ⊲ v)

)
· (S(ξ2) ⊲ a) + (S(ξ3) ⊲ v)⊗A d(S(ξ2) ⊲ a)

)

=
(
(ξ ◮ ∇)(v)

)
· a+ ε(ξ) v ⊗A da . (6.8)

In particular we see that if ε(ξ) = 0 then ξ ◮ ∇ ∈ HomA(V, V ⊗A Ω), while if ε(ξ) = 1 then
ξ ◮ ∇ ∈ ConA(V ).

We now show that given a twist F ∈ H ⊗ H of the Hopf algebra H, then there is an
isomorphism ConA(V ) ≃ ConA⋆(V⋆), between connections on the undeformed HMA-module

V and on the deformed HF
MA⋆-module V⋆.

We first observe that by composing any K-linear map V⋆ → (V ⊗A Ω)⋆ with the HF
MA⋆-

module isomorphism

ϕ−1 : (V ⊗A Ω)⋆ −→ V⋆ ⊗A⋆ Ω⋆ (6.9)

studied in Lemma 5.19 (for a simpler notation we drop the module indices on ϕ) we obtain

the HF
M-module isomorphism (that with abuse of notation we still denote by ϕ−1)

ϕ−1 : HomK(V⋆, (V ⊗A Ω)⋆) −→ HomK(V⋆, V⋆ ⊗A⋆ Ω⋆) . (6.10)

Composition of the deformation map DF : HomK(V, V ⊗A Ω)⋆ −→ HomK(V⋆, (V ⊗A Ω)⋆)

with this isomorphism gives the HF
M-module isomorphism

D̃F := ϕ−1◦DF : HomK(V, V ⊗A Ω)⋆ −→ HomK(V⋆, V⋆ ⊗A⋆ Ω⋆) . (6.11)

Next we define ConA(V )⋆ to be the same set of connections as ConA(V ), but with affine

space structure over the HF
M-module HomA(V, V ⊗A Ω)⋆ rather than over the HM-module

HomA(V, V ⊗A Ω) (we recall that they coincide as K-modules).

Theorem 6.5. Let H be a Hopf algebra with twist F ∈ H ⊗ H, A be an HA -algebra, V
be an HMA-module and

(
Ω•,∧,d

)
be a left H-covariant differential calculus over A. The

HF
M-module isomorphism (6.11) restricts to the HF

M-module isomorphism

D̃F : HomA(V, V ⊗A Ω)⋆ −→ HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆)

P 7−→ ϕ−1 ◦ (f
α
◮ P ) ◦ f α ⊲ (6.12)

and to the affine space isomorphism

D̃F : ConA(V )⋆ −→ ConA⋆(V⋆)

∇ 7−→ ϕ−1 ◦ (f
α
◮ ∇) ◦ f α ⊲ , (6.13)

where ConA(V )⋆ and ConA⋆(V⋆) are respectively affine spaces over the isomorphic HF
M-

modules HomA(V, V ⊗A Ω)⋆ and HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆).

45



Proof. From Lemma 5.19 we know that the map (6.9) is an HF
MA⋆-module isomorphism. It

then follows that the HF
M-module isomorphism ϕ−1 in (6.10) restricts to an HF

M-module
isomorphism (still denoted by ϕ−1),

ϕ−1 : HomA⋆(V⋆, (V ⊗A Ω)⋆) −→ HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆) . (6.14)

Henceforth, as in the case of the isomorphism DF (cf. Theorem 4.2), the isomorphism D̃F in

(6.11) restricts to the HF
M-module isomorphism (still denoted D̃F )

D̃F : HomA(V, V ⊗A Ω)⋆ −→ HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆) . (6.15)

The proof that D̃F in (6.13) maps connections into connections is similar to the proof of
the right A⋆-linearity of the map DF (P ), when P is a right A-linear map (cf. Theorem 4.2):
Let ∇ ∈ ConA(V )⋆, then, for all v ∈ V and a ∈ A,

DF (∇)(v ⋆ a) = (f
α
◮ ∇)

(
(f α1 f

β
⊲ v) · (f α2 f β ⊲ a)

)

=
(
(f

α
◮ ∇)(f α1 f

β
⊲ v)

)
· (f α2 f β ⊲ a) + ε(f

α
) (f α1 f

β
⊲ v)⊗A d(f α2 f β ⊲ a)

=
(
(f

α
1 f

β
◮ ∇)(f

α
2 f β ⊲ v)

)
· (f α ⊲ a) + (f

β
⊲ v)⊗A d(f β ⊲ a)

= DF (∇)(v) ⋆ a+ (f
β
⊲ v)⊗A (f β ⊲ da) . (6.16)

In the second line we have used (6.8), in the third line the twist cocycle property (3.4c) and
in the last line (6.6) and (6.7). Applying ϕ−1 we obtain

D̃F (∇)(v ⋆ a) = D̃F (∇)(v) ⋆ a+ v ⊗A⋆ da . (6.17)

The property D̃−1
F (∇⋆) ∈ ConA(V )⋆, for all ∇⋆ ∈ ConA⋆(V⋆), follows from twisting back HF

and all its modules to the original undeformed structures via the twist F−1.
Finally D̃F is an affine space isomorphism because its K-linearity implies that, for all

∇ ∈ ConA(V )⋆, P ∈ HomA(V, V ⊗A Ω)⋆, D̃F (∇+ P ) = D̃F (∇) + D̃F (P ) ∈ ConA⋆(V⋆).

If we forget the HM-module and HF
M-module structures, the K-modules HomA(V, V ⊗A

Ω) and HomA(V, V ⊗AΩ)⋆ coincide, and henceforth ConA(V ) and ConA(V )⋆ coincide as affine
spaces. Theorem 6.5 then implies the isomorphism ConA(V ) ≃ ConA⋆(V⋆) between the affine
space of connections ConA(V ) over the K-module HomA(V, V ⊗A Ω) and the affine space of
connections ConA⋆(V⋆) over the K-module HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆).

Left modules

As in Theorem 6.5 we have an isomorphism ACon(V ) ≃ A⋆Con(V⋆) between the affine spaces

of connections on an H
AM-module V and on the deformed HF

A⋆M-module V⋆. In this case
we consider the HF

A⋆M-module isomorphism ϕ−1 : (Ω⊗A V )⋆ −→ Ω⋆⊗A⋆ V⋆ and its lift ϕ−1 :(
HomK(V⋆, (Ω ⊗A V )⋆)

)op
−→

(
HomK(V⋆, Ω⋆ ⊗A⋆ V⋆)

)op
. Using also the Dcop

F isomorphism
of Theorem 4.8 and denoting by ACon(V )⋆ the set of connections AConA(V ) when seen as an

affine space over the HF
M-module

(
AHom(V, V ⊗A Ω)

)op
⋆
, rather than over the HM-module(

AHom(V, V ⊗A Ω)
)op

, we obtain
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Theorem 6.6. Let H be a Hopf algebra with twist F ∈ H ⊗H, A be an HA -algebra, V be
an H

AM-module and
(
Ω•,∧,d

)
be a left H-covariant differential calculus over A. Then the

HF
M-module isomorphism

D̃cop
F := ϕ−1◦Dcop

F :
(
HomK(V,Ω ⊗A V )

)op
⋆
−→

(
HomK(V⋆,Ω⋆ ⊗A⋆ V⋆)

)op

P 7−→ ϕ−1 ◦ (f α ◮
cop P ) ◦ f

α
⊲ (6.18)

restricts to the HF
M-module isomorphism

D̃cop
F :

(
AHom(V,Ω⊗A V )

)op
⋆
−→

(
A⋆Hom(V⋆,Ω⋆ ⊗A⋆ V⋆)

)op
(6.19)

and to the affine space isomorphism

D̃cop
F : ACon(V )⋆ −→ A⋆Con(V⋆) , (6.20)

where ACon(V )⋆ and A⋆Con(V⋆) are respectively affine spaces over the isomorphic HF
M-

modules
(
AHom(V,Ω ⊗A V )

)op
⋆
and

(
A⋆Hom(V⋆,Ω⋆ ⊗A⋆ V⋆)

)op
.

Bimodules

Let V be an H
AMA-module, then HomA(V, V ⊗A Ω) and

(
AHom(V,Ω ⊗A V )

)op
are H

AMA-
modules. Consequently, ConA(V )⋆, ConA⋆(V⋆), ACon(V )⋆ and A⋆Con(V⋆) are affine spaces

over the HF

A⋆MA⋆-modules HomA(V, V ⊗A Ω)⋆, HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆),
(
AHom(V,Ω ⊗A

V )
)op

⋆
and

(
A⋆Hom(V⋆,Ω⋆ ⊗A⋆ V⋆)

)op
, respectively. The isomorphisms (6.12) and (6.19) are

HF

A⋆MA⋆-module isomorphisms, and hence D̃F : ConA(V )⋆ → ConA⋆(V⋆) (cf. Theorem 6.5)
and D̃cop

F : ACon(V )⋆ → A⋆Con(V⋆) (cf. Theorem 6.6) are affine space isomorphisms compati-

ble with these extra HF

A⋆MA⋆-module structures.

6.3 Connections on tensor product modules (sum of connections)

We now investigate the extension of connections to tensor product modules. We mention
that this is relevant in the formulation of noncommutative gravity and gauge theories, since
it provides a construction principle for connections on deformed tensor fields in terms of a
fundamental connection on deformed vector fields, and a minimal coupling prescription for
noncommutative fields with different charges.

The other ingredient in order to construct connections on arbitrary covariant and con-
travariant tensor fields is the extension of a connection on a module to the dual module. This
will be discussed later in Subsection 6.5.

Let (H,R) be a quasitriangular Hopf algebra. A left H-covariant differential calculus(
Ω•,∧,d

)
over an HA -algebra A is called graded quasi-commutative if the HA -algebra

Ω• is graded quasi-commutative, i.e., for all ω, ω′ ∈ Ω• of homogeneous degree,

ω ∧ ω′ = (−1)deg(ω) deg(ω
′)(R

α
⊲ ω′) ∧ (Rα ⊲ ω) . (6.21)

Notice that graded quasi-commutativity of the algebra (Ω•,∧) in particular implies quasi-
commutativity of the HA -algebra A and strong quasi-commutativity of the H

AMA-module of
one-forms Ω (and also of all other H

AMA-modules of n-forms Ωn, n ≥ 1).

47



Vice versa, it can be shown that a left H-covariant differential calculus
(
Ω•,∧,d

)
over

a quasi-commutative HA -algebra A is graded quasi-commutative if the H
AMA-module of

one-forms Ω is quasi-commutative and generates Ωn for all n > 1.1

Examples of graded quasi-commutative left H-covariant differential calculi are presented
in Example 6.2.

Lemma 6.7. Let A be a quasi-commutative HA -algebra, W be a quasi-commutative H
AMA-

module and Ω be a strong quasi-commutative H
AMA-module. Then the braiding map τR :

W ⊗ Ω → Ω ⊗W (defined in (5.8a)) canonically induces an H
AMA-module isomorphism on

the quotient (that with slight abuse of notation we still call τR),

τR : W ⊗A Ω −→ Ω⊗A W . (6.22)

Explicitly, for all w ∈W and θ ∈ Ω,

τR(w ⊗A θ) = (R
α
⊲ θ)⊗A (Rα ⊲ w) . (6.23)

We call the isomorphism τR a braiding map because it braids the strong quasi-commutative
H
AMA-module Ω with the quasi-commutative H

AMA-modules V,W ,

τR V⊗AW,Ω = (τR V,Ω ⊗R idW ) ◦ (idV ⊗R τR W,Ω) . (6.24)

Furthermore,
τR V,W⊗AΩ = (idW ⊗R τR V,Ω) ◦ (τR V,W ⊗R idΩ) , (6.25)

if also the H
AMA-module W is strong quasi-commutative.

Proof. Since τR : W⊗Ω→ Ω⊗W satisfies τR
(
NW,Ω

)
⊆ NΩ,W the induced map τR : W⊗AΩ→

Ω ⊗A W is well-defined. Since τR : W ⊗ Ω → Ω ⊗W is an HM-module homomorphism and
NW,Ω ⊂W ⊗Ω, NΩ,W ⊂ Ω⊗W are HM-submodules, also the induced map τR : W ⊗A Ω→
Ω⊗A W is an HM-module homomorphism. It is an H

AMA-module homomorphism as it can
be easily checked using (6.23), quasi-commutativity of W and strong quasi-commutativity of
Ω.

Consider now the map τ−1
R : Ω ⊗A W → W ⊗A Ω, which is canonically induced by

τ−1
R : Ω⊗W →W ⊗Ω. Explicitly, for all w ∈W and θ ∈ Ω, τ−1

R (θ⊗Aw) = (Rα ⊲w)⊗A (Rα ⊲
θ). With a similar argument as above, one shows that τ−1

R is a well-defined H
AMA-module

homomorphism. The easily proven equalities τR ◦ τ
−1
R = idΩ⊗AW and τ−1

R ◦ τR = idW⊗AΩ

show that τR : W ⊗A Ω→ Ω⊗A W is an H
AMA-module isomorphism.

The braiding properties (6.24) and (6.25) can be written with the R-tensor product ⊗R re-
placed by the usual tensor product because all maps are H-equivariant. Then these properties
follow from the R-matrix properties (5.3).

Proposition 6.8. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, W be a quasi-commutative H

AMA-module and
(
Ω•,∧,d

)
be a graded quasi-

commutative left H-covariant differential calculus over A. Then any right connection ∇ ∈

1 Hint: 1) Show that Ω is strong quasi-commutative. 2) Show that (6.21) holds for ω = da and ω′ = db
with a, b ∈ A, then extend the result to arbitrary ω, ω′

∈ Ω. 3) Show that if (6.21) holds for ω,ω′
∈ Ω• with

deg(ω),deg(ω′) ≤ n, then it also holds for ω, ω′
∈ Ω• with deg(ω),deg(ω′) ≤ n+ 1.
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ConA(V ) is also a quasi-left connection in the sense that we have the braided left Leibniz rule,
for all a ∈ A and w ∈W ,

∇(a · w) = (R
α
⊲ a) · (Rα ◮ ∇)(w) + (Rα ⊲ w)⊗A (Rα ⊲ da) . (6.26)

More generally, for all ξ ∈ H, a ∈ A and w ∈W ,

(ξ ◮ ∇)(a · w) = (R
α
⊲ a) · (Rαξ ◮ ∇)(w) + ε(ξ)(Rα ⊲ w)⊗A (Rα ⊲ da) . (6.27)

Proof. For all a ∈ A and w ∈W ,

∇(a · w) = ∇
(
(Rα ⊲ w) · (Rα ⊲ a)

)
= ∇(Rα ⊲ w) · (Rα ⊲ a) +Rα ⊲ w ⊗A d(Rα ⊲ a)

= (R
β
Rα ⊲ a) ·Rβ ⊲ (∇(Rα ⊲ w)) +Rα ⊲ w ⊗A Rα ⊲ da

= (R
β
R

α
⊲ a) ·Rβ ⊲ (∇(S(Rα) ⊲ w)) +Rα ⊲ w ⊗A Rα ⊲ da

= (R
β
⊲ a) · (Rβ ◮ ∇)(w) +Rα ⊲ w ⊗A Rα ⊲ da , (6.28)

where in the second line we have used that the H
AMA-module W ⊗AΩ is quasi-commutative

(since both W and Ω are, cf. Proposition 5.13), and in the third line the property (5.7b) of
the R-matrix.

The more general expression for ξ ◮ ∇ follows from (6.8).

Theorem 6.9. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, W be a quasi-commutative H

AMA-module and
(
Ω•,∧,d

)
be a graded quasi-

commutative left H-covariant differential calculus over A. For any HMA-module V and any
∇V ∈ ConA(V ), ∇W ∈ ConA(W ) we consider the K-linear map ∇V ⊕̂R∇W : V ⊗W →
V ⊗A W ⊗A Ω defined by

∇V ⊕̂R∇W := τ−1
R 23 ◦ π ◦ (∇V ⊗R id) + π ◦ (id⊗R ∇W ) , (6.29)

where the R-tensor product of K-linear maps was defined in (5.14), and where τ−1
R 23 = id⊗R

τ−1
R is the inverse braiding map acting on the second and third entry of the tensor product
V ⊗A Ω⊗A W (the R-tensor product in id⊗R τ−1

R is defined in Theorem 5.16).
This map induces a connection on the quotient module V ⊗A W ,

∇V ⊕R ∇W : V ⊗A W → V ⊗A W ⊗A Ω , (6.30)

defined by, for all v ∈ V,w ∈W , (∇V ⊕R ∇W )(v ⊗A w) := (∇V ⊕̂R∇W )(v ⊗ w), i.e.,

(∇V ⊕R ∇W )(v ⊗A w) = τ−1
R 23

(
∇V (v)⊗A w

)
+ (R

β
⊲ v)⊗A (Rβ ◮ ∇W )(w) , (6.31)

and extended by K-linearity to all V ⊗A W .

Proof. The definition of ∇V ⊕̂R∇W slightly simplifies if we observe that ∇V ⊗R id = ∇V ⊗ id,
id ⊗R τ−1

R = id ⊗ τ−1
R , since id and τ−1

R are H-equivariant. We first prove that the K-linear
map ∇V ⊕R ∇W is well-defined by showing that ker(π) ⊆ ker(∇V ⊕̂R∇W). In order to

49



simplify the notation in the proof we denote both connections ∇V and ∇W by ∇. For all
v ∈ V , w ∈W and a ∈ A,

∇ ⊕̂R∇(v · a⊗ w) = τ−1
R 23

(
∇(v · a)⊗A w

)
+ (R

β
⊲ (v · a))⊗A (Rβ ◮ ∇)(w)

= τ−1
R 23

(
(∇v)⊗A a · w + v ⊗A da⊗A w

)

+ (R
β
⊲ v)⊗A (R

α
⊲ a) · (RαRβ ◮ ∇)(w)

= τ−1
R 23

(
(∇v)⊗A a · w

)
+ (R

α
⊲ v)⊗A (Rα ◮ ∇)(a · w)

= ∇ ⊕̂R∇(v ⊗ a · w) , (6.32)

where in the second line we used the right Leibniz rule (6.3) and the property (5.5b) of the
R-matrix. In the third line we used Proposition 6.8 and the normalization property of the
R-matrix (5.7a).

The K-linear map ∇V ⊕R ∇W defined in (6.30) is a connection because it satisfies the
right Leibniz rule (6.3), for all v ∈ V , w ∈W and a ∈ A,

(∇⊕R ∇)(v ⊗A w · a) = τ−1
R 23

(
(∇v)⊗A w · a

)
+ (R

α
⊲ v)⊗A (Rα ◮ ∇)(w · a)

= (∇⊕R ∇)(v ⊗A w) · a+ ε(Rα) (R
α
⊲ v)⊗A w ⊗A da

= (∇⊕R ∇)(v ⊗A w) · a+ v ⊗A w ⊗A da , (6.33)

where in the second line we have used that τR is an H
AMA-module isomorphism and (6.8),

and in the last line the normalization property of the R-matrix (5.7a).

The sum of connections is compatible with the Hopf algebra action, for all ξ ∈ H,

ξ ◮ (∇V ⊕R ∇W ) = (ξ ◮ ∇V )⊕R (ξ ◮ ∇W ) . (6.34)

This property easily follows recalling property (5.18a) and observing that all the maps in
(6.29), but the connections ∇V and ∇W , are H-equivariant.

We end this subsection showing that the sum of connections is associative.

Theorem 6.10. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, W,Z be two quasi-commutative H

AMA-modules and
(
Ω•,∧,d

)
be a graded quasi-

commutative left H-covariant differential calculus over A. Then for any HMA-module V ,
∇V ∈ ConA(V ), ∇W ∈ ConA(W ) and ∇Z ∈ ConA(Z),

(
∇V ⊕R ∇W

)
⊕R ∇Z = ∇V ⊕R

(
∇W ⊕R ∇Z

)
. (6.35)

Proof. It is convenient to denote by τ−1
R i i+1 = id ⊗ · · · ⊗ τ−1

R ⊗ · · · ⊗ id the inverse braiding
map acting on the i-th and (i + 1)-th entry of a tensor product. The inverse braiding map
exchanging the i-th entry with the (i+ 1)-th and (i+ 2)-th entry is denoted by τ−1

R i (i+1 i+2)

and similarly τ−1
R (i i+1) i+2 is the inverse braiding map exchanging the i-th and (i + 1)-th

entry with the (i+ 2)-th entry. For example, τ−1
R (12)3(a⊗ b⊗ c) = (Rα ⊲ c)⊗Rα ⊲ (a⊗ b) and

τ−1
R 1(23)(a⊗ b⊗ c) = Rα ⊲ (b⊗ c)⊗ (Rα ⊲ a).

Associativity of ⊕R is implied by associativity of ⊕̂R . The latter follows from the as-
sociativity of ⊗R, the H-equivariance of the id, τ−1

R and π maps, the composition property
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(5.18c), the composition of projections property π ◦ (id⊗R π) = π ◦ (π ⊗R id), and the braid
relation (6.24).

We here present a less abstract proof by evaluating (6.35) on V ⊗A W ⊗A Z. Due to
K-linearity it is enough to show associativity on elements v ⊗A w⊗A z ∈ V ⊗A W ⊗A Z. We
denote all connections by ∇ in order to simplify the notation and find

((∇ ⊕R ∇)⊕R ∇)(v ⊗A ⊗w ⊗A z)

= τ−1
R 34

(
(∇⊕R ∇)(v ⊗A w)⊗A z

)
+R

α
⊲ (v ⊗A w)⊗A (Rα ◮ ∇)(z)

= τ−1
R 34

(
τ−1
R 23(∇(v)⊗A w)⊗A z + (R

α
⊲ v)⊗A (Rα ◮ ∇)(w) ⊗A z

)

+ (R
α
⊲ v)⊗A (R

β
⊲ w)⊗A (RβRα ◮ ∇)(z)

= τ−1
R 34

(
τ−1
R 23(∇(v)⊗A w ⊗A z)

)
+ (R

α
⊲ v)⊗A τ−1

R 23

(
(Rα ◮ ∇)(w) ⊗A z

)

+ (R
α
⊲ v)⊗A (R

β
⊲ w)⊗A (RβRα ◮ ∇)(z)

= τ−1
R 2(34)(∇(v) ⊗A w ⊗A z) + (R

α
⊲ v)⊗A (Ra ◮ (∇⊕R ∇))(w ⊗A z)

= (∇⊕R (∇⊕R ∇))(v ⊗A ⊗Aw ⊗A z) , (6.36)

where in the fourth line we used τ−1
R 2(34) = τ−1

R 34 ◦ τ
−1
R 23, which follows from the braid relation

(6.24), and property (6.34).

6.4 Deformation of the sum of connections

We study the deformation of the sum of two connections. We need a preliminary

Lemma 6.11. Let (H,R) be a quasitriangular Hopf algebra with twist F ∈ H ⊗ H, A
be an HA -algebra, V be an HMA-module and W,Ω be two H

AMA-modules. The commu-
tative diagram (5.30) induces the commutative diagram (6.37), where the inner diagonal
map ϕV⋆,W⋆,Ω⋆ : V⋆ ⊗A⋆ W⋆ ⊗A⋆ Ω⋆ → (V ⊗A W ⊗A Ω)⋆, that is defined as the composition

ϕV⋆,W⋆,Ω⋆ := ϕV⋆,(W⊗AΩ)⋆ ◦
(
idV⋆ ⊗RF ϕW⋆,Ω⋆

)
, is an HF

MA⋆-module isomorphism.

Proof. The diagram (6.37) is composed of the commutative trapezia defining the induced
maps ϕ on the quotients. The outer rectangle is the commutative diagram (5.30); its com-
mutativity implies that all subdiagrams of (6.37) are commutative. Since all maps in the

diagram are HF
MA⋆-module homomorphisms, so is ϕV⋆,W⋆,Ω⋆ . Since the ϕ-maps in the outer

rectangle are isomorphisms, so are all the induced ϕ-maps, hence in particular ϕV⋆,W⋆,Ω⋆ .

The deformation of the sum of connections (6.30), DF (∇V ⊕R ∇W ) : (V ⊗A W )⋆ →
(V ⊗A W ⊗A Ω)⋆, where DF is the deformation isomorphism discussed in Theorem 4.7, is by
construction a K-linear map. We show that up to ϕ-isomorphisms it is a connection.

Theorem 6.12. Let (H,R) be a quasitriangular Hopf algebra with twist F ∈ H ⊗H, A be
a quasi-commutative HA -algebra, W be a quasi-commutative H

AMA-module and
(
Ω•,∧,d

)
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V⋆ ⊗⋆ W⋆ ⊗⋆ Ω⋆

ϕV,W⊗
RF

idΩ⋆

��

idV⋆⊗RF
ϕW,Ω

//

π⋆23

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

V⋆ ⊗⋆ (W ⊗ Ω)⋆
π23

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

ϕV,W⊗Ω

��

V⋆ ⊗⋆ (W⋆ ⊗A⋆ Ω⋆)
idV⋆⊗RF

ϕW⋆,Ω⋆
//

π⋆

**❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

V⋆ ⊗⋆ (W ⊗A Ω)⋆
π⋆

tt❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

ϕV,W⊗AΩ

��

V⋆ ⊗A⋆ W⋆ ⊗A⋆ Ω⋆

idV⋆⊗RF
ϕW⋆,Ω⋆

//

ϕV⋆,W⋆⊗RF
idΩ⋆

��
ϕV⋆,W⋆,Ω⋆ ++❱❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

V⋆ ⊗A⋆ (W ⊗A Ω)⋆

ϕV⋆,(W⊗AΩ)⋆

��

(V ⊗A W )⋆ ⊗A⋆ Ω⋆ ϕ(V ⊗AW )⋆,Ω⋆

// (V ⊗A W ⊗A Ω)⋆

(V ⊗W )⋆ ⊗A⋆ Ω⋆

π12

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

(V ⊗ (W ⊗A Ω))⋆

π
jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

(V ⊗W )⋆ ⊗⋆ Ω⋆ ϕV ⊗W,Ω

//

π⋆

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

(V ⊗W ⊗ Ω)⋆

π23

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

(6.37)
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be a graded quasi-commutative left H-covariant differential calculus over A. Then for any
HMA-module V , ∇V ∈ ConA(V ) and ∇W ∈ ConA(W ) the following diagram commutes

V⋆ ⊗A⋆ W⋆

D̃F (∇V )⊕
RF D̃F (∇W )

//

ϕV⋆,W⋆

��

V⋆ ⊗A⋆ W⋆ ⊗A⋆ Ω⋆

ϕV⋆,W⋆,Ω⋆

��

(V ⊗A W )⋆
DF (∇V ⊕R∇W )

// (V ⊗A W ⊗A Ω)⋆

(6.38)

Proof. We recall that the sum of connections ∇V ⊕R ∇W is canonically induced from the
K-linear map ∇V ⊕̂R∇W : V ⊗W → V ⊗AW ⊗AΩ defined in (6.29). We therefore first show
commutativity of the following diagram

V⋆ ⊗⋆ W⋆

D̃F (∇V )⊕̂
RF D̃F (∇W )

//

ϕV,W

��

V⋆ ⊗A⋆ W⋆ ⊗A⋆ Ω⋆

ϕV⋆,W⋆,Ω⋆

��

(V ⊗W )⋆
DF (∇V ⊕̂R∇W )

// (V ⊗A W ⊗A Ω)⋆

(6.39)

To simplify the notation we denote all connections by ∇. Using K-linearity of DF and that
τ−1
R , id and π are H-equivariant, we obtain

DF (∇⊕̂R∇) = DF

(
τ−1
R 23 ◦ π ◦ (∇⊗R id) + π ◦ id⊗R ∇

)

= τ−1
R 23 ◦ π ◦DF (∇⊗R id) + π ◦DF (id⊗R ∇) . (6.40)

Theorem 5.6 and H-equivariance of id implies

DF (∇⊕̂R∇) = τ−1
R 23 ◦ π ◦ ϕV⊗AΩ,W ◦

(
DF (∇)⊗RF id

)
◦ ϕ−1

V,W

+ π ◦ ϕV,W⊗AΩ ◦
(
id⊗RF DF (∇)

)
◦ ϕ−1

V,W

= τ−1
R 23 ◦ π ◦ ϕV⊗AΩ,W ◦ (ϕV⋆,Ω⋆ ⊗RF id) ◦

(
D̃F (∇)⊗RF id

)
◦ ϕ−1

V,W

+ π ◦ ϕV,W⊗AΩ ◦ (id⊗RF ϕW⋆,Ω⋆) ◦
(
id⊗RF D̃F (∇)

)
◦ ϕ−1

V,W

= ϕV⋆,W⋆,Ω⋆ ◦
(
τ−1
RF 23

◦ π⋆ ◦
(
D̃F (∇)⊗RF id

)
+ π⋆ ◦

(
id⊗RF D̃F (∇)

))
◦ ϕ−1

V,W ,

(6.41)

where in the last equality we have used: For the second addend commutativity of the sub-
diagram

V⋆ ⊗⋆ (W⋆ ⊗A⋆ Ω⋆)
idV⋆

⊗
RF

ϕW⋆,Ω⋆ //

π⋆

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

V⋆ ⊗⋆ (W ⊗A Ω)⋆

ϕV,W⊗AΩ

��

V⋆ ⊗A⋆ W⋆ ⊗A⋆ Ω⋆

ϕV⋆,W⋆,Ω⋆ ++❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱

V⋆ ⊗A⋆ (W ⊗A Ω)⋆

(V ⊗A W ) ⋆⊗A⋆Ω⋆ (V ⊗A W ⊗A Ω)⋆

(V ⊗ (W ⊗A Ω))⋆

π

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

53



of the diagram (6.37). For the first addend we have used τ−1
RF 23

= (id ⊗RF ϕ−1
W⋆,Ω⋆

) ◦

τ−1
R 23 ◦ (id ⊗RF ϕΩ⋆,W⋆) (recall (5.39) and the text above (5.39)), ϕV⋆,(W⊗AΩ)⋆ ◦ τ

−1
R 23 =

τ−1
R 23 ◦ ϕV⋆,(Ω⊗AW )⋆ (because of H-equivariance of τ−1

R 23), and ϕV⋆,Ω⋆,W⋆ ◦ π⋆ = π ◦ϕV ⊗AΩ,W ◦(
ϕV⋆,Ω⋆ ⊗RF id

)
. This last equality follows from a similar diagram as in Lemma 6.11. (Hint:

start with the outer diagram drawn in (6.37) and use in the upper left corner the projection
π⋆12 instead of π⋆23 .)

Equation (6.41) shows commutativity of the diagram (6.39). Since the map ϕV,W canon-
ically induces on the quotient V⋆ ⊗A⋆ W⋆ the map ϕV⋆,W⋆ (see (5.51)), and since the map
DF (∇⊕̂R∇) canonically induces on the quotient (V ⊗A W )⋆ the map DF (∇⊕R∇) (in fact,
the actions ◮ and ⊲ present in DF are canonically induced on the quotient), the commutative
diagram (6.39) induces the commutative diagram (6.38).

6.5 From right to left connections

Let (H,R) be a quasitriangular Hopf algebra and A be a quasi-commutative HA -algebra. We
showed in Theorem 5.25 that the mapDR, i.e. the deformation isomorphism with twist F = R,
provides an isomorphism between right and left A-linear maps of strong quasi-commutative
H
AMA-modules. The aim of this subsection is to prove a similar statement for right and left

connections on a strong quasi-commutative H
AMA-module V .

We notice that due to Theorem 5.25 we have an H
AMA-module isomorphism

DR : HomK(V, V ⊗A Ω)→
(
HomK(V, V ⊗A Ω)

)op
, P 7→ DR(P ) = (R

α
◮ P ) ◦Rα⊲ (6.42)

between
(
HomK(V, V ⊗A Ω), ·,◮

)
and

(
HomK(V, V ⊗A Ω), ·op,◮cop

)
, which restricts to an

H
AMA-module isomorphism (denoted by the same symbol)

DR : HomA(V, V ⊗A Ω)→
(
AHom(V, V ⊗A Ω)

)op
. (6.43)

Composing this map with the inverse braiding map τ−1
R : V ⊗AΩ→ Ω⊗AV we obtain another

H
AMA-module isomorphism

D̃R : HomK(V, V ⊗A Ω)→
(
HomK(V,Ω ⊗A V )

)op
, P 7→ D̃R(P ) = τ−1

R ◦DR(P ) , (6.44)

which also restricts to an H
AMA-module isomorphism (denoted by the same symbol)

D̃R : HomA(V, V ⊗A Ω)→
(
AHom(V,Ω⊗A V )

)op
. (6.45)

Theorem 6.13. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, V be a strong quasi-commutative H

AMA-module and
(
Ω•,∧,d

)
be a graded quasi-

commutative left H-covariant differential calculus over A. Then the H
AMA-module isomor-

phism (6.44) restricts to the affine space isomorphism

D̃R : ConA(V )→ ACon(V ) , ∇ 7→ D̃R(∇) = τ−1
R ◦ (R

α
◮ ∇) ◦Rα ⊲ , (6.46)

where ConA(V ) and ACon(V ) are respectively affine spaces over the isomorphic H
AMA-

modules (cf. (6.45)) HomA(V, V ⊗A Ω) and
(
AHom(V,Ω⊗A V )

)op
.
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Proof. By Lemma 5.23 we have A⋆R = Aop, Ω⋆R = Ωop and V⋆R = V op. These equalities and
the equality (6.16) (see Theorem 6.5) imply, for all ∇ ∈ ConA(V ), a ∈ A and v ∈ V ,

DR(∇)(a · v) = DR(∇)(v ⋆R a) = DR(∇)(v) ⋆R a+ (R
α
⊲ v)⊗A (Rα ⊲ da)

= a ·DR(∇)(v) + (R
α
⊲ v)⊗A (Rα ⊲ da) . (6.47)

Applying the H
AMA-module isomorphism τ−1

R we find

D̃R(∇)(a · v) = a · D̃R(∇)(v) + da⊗A v . (6.48)

Thus D̃R(∇) ∈ ACon(V ) is a left connection on V . The map D̃R is invertible via

D̃−1
R : ACon(V )→ ConA(V ) , ∇ 7→ D̃−1

R (∇) = τR ◦
(
D−1

R (∇)
)
, (6.49)

where D−1
R (∇) = (Rα

◮
cop ∇) ◦Rα⊲ , recall ◮cop=◮R, and Remark 3.11.

Finally, D̃R is an affine space isomorphism because, for all ∇ ∈ ConA(V ) and P ∈
HomA(V, V ⊗A Ω), D̃R(∇ + P ) = D̃R(∇) + D̃R(P ), where D̃R(P ) ∈

(
AHom(V,Ω ⊗A V )

)op
is the image of the right A-linear map P under the H

AMA-module isomorphism (6.45).

Remark 6.14. Similarly to Theorem 5.26 one can show that the right to left isomorphism
for connections is compatible with twist deformation: Let F ∈ H ⊗ H be a twist of the
quasitriangular Hopf algebra (H,R). Then, due to H-equivariance of the ϕ and τR maps, the

following diagram of isomorphisms of affine spaces over HF

A⋆MA⋆-modules commutes

ConA(V )⋆

D̃R

��

D̃F // ConA⋆(V⋆)

D̃
RF

��

ACon(V )⋆
D̃

cop
F //

A⋆Con(V⋆)

(6.50)

6.6 Connections induced on dual modules

A connection ∇ on a finitely generated and projective MA-module V induces in a canonical
way a connection ∇′ on the dual AM-module V ′ = HomA(V,A). In the beginning of this
subsection we review in detail this construction. It will be needed in the remaining part of
the subsection, when we consider connections ∇ on HMA-modules (and H

AMA-modules), the
associated dual connections ∇′, and their twist deformation.

There are various equivalent definitions of finitely generated and projective modules over
a ring, see e.g. the monograph [Lam99]. For our purposes it is enough to use their convenient
characterization in terms of a pair of dual bases (this is the so-called Dual Basis Lemma).

Lemma 6.15. Let A be an algebra. An MA-module V is finitely generated and projective if
and only if there exists a family of elements {vi ∈ V : i = 1, . . . , n} and right A-linear maps
{v′i ∈ V ′ := HomA(V,A) : i = 1, . . . , n} with n ∈ N, such that for any v ∈ V we have

v =

n∑

i=1

vi · v
′
i(v) . (6.51)
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An AM-module V is finitely generated and projective if and only if there exists a family
of elements {vi ∈ V : i = 1, . . . , n} and left A-linear maps {v′i ∈ V ′ := AHom(V,A) : i =
1, . . . , n} with n ∈ N, such that for any v ∈ V we have

v =

n∑

i=1

v′i(v) · vi . (6.52)

The set {vi, v
′
i : i = 1, . . . , n} is loosely referred to “pair of dual bases” for V , even though

{vi} is just a generating set of V and not necessarily a basis.

The dual V ′ of a finitely generated and projective module V is also finitely generated and
projective, moreover the dual of the dual is canonically identified with the original module
V . We state these properties without proof since they can be found in standard textbooks,
e.g. [Lam99].

Proposition 6.16. Let V be a finitely generated and projective MA-module with a pair of
dual bases {vi, v

′
i : i = 1, . . . , n}. For any v ∈ V let v′′ ∈ V ′′ := AHom(V ′, A) be defined by

v′′(v′) := v′(v), for all v′ ∈ V ′. We have

1. {v′i, v
′′
i : i = 1, . . . , n} is a pair of dual bases for V ′

2. V ′ is a finitely generated and projective AM-module

3. The canonical map V → V ′′ , v 7→ v′′ is an isomorphism of MA-modules

We now show that for finitely generated and projective MA-modules V there is an isomor-
phism HomA(V,Ω) ≃ Ω⊗A V ′. It is this property that allows us to construct connections on
V ′ by a canonical dualization procedure.

Proposition 6.17. Let V be a finitely generated and projective MA-module and let Ω be any

AMA-module. Then there exists an AM-module isomorphism (evaluation map)

ι : Ω⊗A V ′ → HomA(V,Ω) (6.53)

defined by, for all v ∈ V , ω ∈ Ω and v′ ∈ V ′,
(
ι(ω ⊗A v′)

)
(v) := ω · v′(v).

If in addition V is an HMA-module and Ω is an H
AMA-module, then ι is an H

AM-module
isomorphism.

Proof. The map ι is an AM-module homomorphism, for all a ∈ A, ω ∈ Ω, v′ ∈ V ′ and v ∈ V ,
(
ι(a · ω ⊗A v′)

)
(v) = a · ω · v′(v) = a ·

(
ι(ω ⊗A v′)

)
(v) =

(
a · ι(ω ⊗A v′)

)
(v) . (6.54)

Using a pair of dual bases {vi, v
′
i : i = 1, . . . n} for V , we can invert the map ι via

ι−1 : HomA(V,Ω)→ Ω⊗A V ′ , P 7→ ι−1(P ) =

n∑

i=1

P (vi)⊗A v′i . (6.55)

Let now V be an HMA-module and Ω be an H
AMA-module, then V ′, Ω⊗AV

′, HomA(V,Ω)
are H

AM-modules. The isomorphism ι respects the HM-module structure, since for all ξ ∈ H,
ω ∈ Ω, v′ ∈ V ′ and v ∈ V ,

(
ι(ξ ⊲ (ω ⊗A v′))

)
(v) = (ξ1 ⊲ ω) · (ξ2 ◮ v′)(v) = (ξ1 ⊲ ω) ·

(
ξ2 ⊲ v

′(S(ξ3) ⊲ v)
)

= ξ1 ⊲
(
ω · v′(S(ξ2) ⊲ v)

)
=

(
ξ ◮

(
ι(ω ⊗A v′)

))
(v) . (6.56)
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In order to construct the dual connection ∇′ ∈ ACon(V
′) of a connection ∇ ∈ ConA(V ) we

first investigate a certain dualization of K-linear maps and A-linear maps (like the difference of
two connections on V ). Let A be an algebra and let

(
Ω•,∧,d

)
be a differential calculus over A.

Let further V be an MA-module and consider the K-module of K-linear maps HomK(V, V ⊗A

Ω). We can associate to every P ∈ HomK(V, V ⊗A Ω) a PHom ∈ AHom(V ′,HomK(V,Ω)) by
defining, for all v′ ∈ V ′ and v ∈ V ,

PHom(v′)(v) := −(v′ ⊗ id)P (v) , (6.57a)

i.e.,

PHom(v′) := −∧ ◦(v′ ⊗ id) ◦ P . (6.57b)

In (6.57) v′ ⊗ id : V ⊗A Ω → A ⊗A Ω denotes the right A-linear map defined by, for all
v ∈ V and ω ∈ Ω, (v′ ⊗ id)(v ⊗A ω) = v′(v) ⊗A ω and ∧ : A ⊗A Ω → Ω is the AMA-module
isomorphism induced from the product in Ω•, i.e. ∧(a⊗A ω) = a∧ ω = a · ω. The map PHom

is left A-linear, for all a ∈ A and v′ ∈ V ′,

PHom(a · v′) = −∧ ◦ (a · v′ ⊗ id) ◦ P = − ∧ ◦ la ◦ (v
′ ⊗ id) ◦ P

= − la ◦ ∧ ◦ (v
′ ⊗ id) ◦ P = a · PHom(v′) . (6.58)

The association of PHom to P can be regarded as a K-linear map

Hom : HomK(V, V ⊗A Ω)→
(
AHom(V ′,HomK(V,Ω))

)op
, P 7→ PHom . (6.59)

Furthermore, if P ∈ HomA(V, V ⊗AΩ) then PHom ∈
(
AHom(V ′,HomA(V,Ω))

)op
, since for all

v′ ∈ V ′, all maps in (6.57b) are right A-linear. Thus, (6.59) restricts to a K-linear map

Hom : HomA(V, V ⊗A Ω)→
(
AHom(V ′,HomA(V,Ω))

)op
. (6.60)

We now explain the notation ( )op used in these two last equations. Later we are going to
consider an additional HM-module structure on V and Ω, and hence also on V ′, HomK(V,Ω)
and AHom(V ′,HomK(V,Ω)). There are two different induced HM-module structures on a
K-module of K-linear maps between two HM-modules, they are given by the adjoint actions
◮ and ◮

cop. We denote by
(
AHom(V ′,HomK(V,Ω))

)op
the HM-module with the ◮cop adjoint

action, which is the relevant one for left A-linear maps, cf. Proposition 4.4.
In order to avoid confusion when we later enrich the theory with HM-module structures,

we already write in this part
(
AHom(V ′,HomK(V,Ω))

)op
rather than AHom(V ′,HomK(V,Ω)),

even if as K-modules they coincide.

Notice that for a finitely generated and projective MA-module V we can use the AM-
module isomorphism ι−1 of Proposition 6.17 to define the K-linear map

′ : HomA(V, V ⊗A Ω)→
(
AHom(V ′,Ω ⊗A V ′)

)op
, P 7→ P ′ = ι−1 ◦ PHom . (6.61)

We denoted this map by a prime because, as we will see later, it maps the difference of two
connections on V in the difference of their dual connections on V ′.

Let now ∇ ∈ ConA(V ) ⊂ HomK(V, V ⊗A Ω), then ∇Hom is by construction a left A-linear
map and thus can not be a candidate for a connection on the dual module V ′. This is why
we associate to ∇ ∈ ConA(V ) the K-linear map

∇̂ : V ′ → HomA(V,Ω) , v′ 7→ ∇̂(v′) = d ◦ v′ +∇Hom(v′) . (6.62)
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We observe that, for all v′ ∈ V ′, we have the right A-linearity property of ∇̂(v′), for all a ∈ A
and v ∈ V ,

∇̂(v′)(v · a) = d
(
v′(v · a)

)
− (v′ ⊗ id)∇(v · a)

= d(v′(v)) · a+ v′(v) · da− (v′ ⊗ id)∇(v) · a− (v′ ⊗ id)(v ⊗A da)

=
(
∇̂(v′)(v)

)
· a . (6.63)

Hence we have constructed a map

̂ : ConA(V )→
(
HomK(V

′,HomA(V,Ω))
)op

, ∇ 7→ ∇̂ . (6.64)

With the help of the AM-module isomorphism ι−1 of Proposition 6.17 we also define the map
(with slight abuse of notation we denote it with the same prime symbol used on homomor-
phisms in (6.61))

′ : ConA(V )→
(
HomK(V

′,Ω ⊗A V ′)
)op

, ∇ 7→ ∇′ = ι−1 ◦ ∇̂ . (6.65)

Using (6.55), the map ∇′ acting on an arbitrary v′ ∈ V ′ explicitly reads

∇′(v′) = ι−1
(
∇̂(v′)

)
=

n∑

i=1

(
d(v′(vi))− (v′ ⊗ id)∇(vi)

)
⊗A v′i . (6.66)

We now show that ∇′ is a connection on V ′.

Theorem 6.18. Let V be a finitely generated and projective MA-module and let
(
Ω•,∧,d

)

be a differential calculus over A. The ′ maps in (6.65) and in (6.61) provide an affine space
isomorphism

′ : ConA(V )→ ACon(V
′) , ∇ 7→ ∇′ , (6.67)

where ConA(V ) and ACon(V
′) are affine spaces over the isomorphic K-modules HomA(V, V⊗A

Ω) and
(
AHom(V ′,Ω⊗A V ′)

)op
, respectively.

Proof. We first have to show that, for all ∇ ∈ ConA(V ), ∇′ defined by (6.65) is a connection
on the AM-module V ′. Using (6.66) and left A-linearity of ∇Hom we have, for all a ∈ A and
v′ ∈ V ′,

∇′(a · v′) =
n∑

i=1

(
d(a v′(vi))− a ·

(
(v′ ⊗ id)∇(vi)

))
⊗A v′i

=

n∑

i=1

(
da · v′(vi) + a · d(v′(vi))− a ·

(
(v′ ⊗ id)∇(vi)

))
⊗A v′i

= da⊗A

n∑

i=1

v′′i (v
′) · v′i + a · ∇′(v′)

= da⊗A v′ + a · ∇′(v′) , (6.68)

where in the last two steps we have used also Proposition 6.16.
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Next we show that the ′ maps in (6.67) and (6.61) are an affine space map, for all
∇ ∈ ConA(V ), P ∈ HomA(V, V ⊗A Ω) and v′ ∈ V ′,

(∇ + P )′(v′) = ι−1
(
d ◦ v′ + (∇+ P )Hom(v′)

)

= ι−1
(
d ◦ v′ +∇Hom(v′) + PHom(v′)

)
= (∇′ + P ′)(v′) , (6.69)

where we have used that Hom is K-linear.
Finally, the ′ maps in (6.67) and (6.61) are isomorphisms because the map Hom in (6.59)

is invertible when the MA-module V is finitely generated and projective. Explicitly, for all
T ∈

(
AHom(V ′,HomK(V,Ω))

)op
and v ∈ V , T Hom

−1
(v) = −

∑n
i=1 vi ⊗A T (v′i)(v), where

{vi, v
′
i : i = 1, . . . , n} is a pair of dual bases for V .

Deformation of dual connections

The above detailed preliminary discussion on dual connections is helpful in order to under-
stand their twist deformation. In this case we have a Hopf algebra H that acts on all the
modules encountered in the beginning of this subsection. We study these actions, in particu-
lar the maps Hom , ι, and their composition ′, are H-equivariant. We then twist deform the
modules and consider the corresponding maps Hom⋆ , ι⋆, and their composition ′⋆ . Their prop-
erties imply that deformation and dualization are compatible operations: given a connection
∇, the dual of the twist deformed connection D̃F (∇) is equal to the twist deformation of the
dual connection ∇′.

Let H be a Hopf algebra, A be an HA -algebra, V an HMA-module and (Ω•,∧,d) a left
H-covariant differential calculus over A. We recall that in this case V ⊗A Ω is an HMA-
module and V ′, Ω ⊗A V ′, HomK(V,Ω) are H

AM-modules. Also the modules appearing in
(6.59) are HM-modules, in detail: The H-action on HomK(V, V ⊗A Ω) is given by the H-
adjoint action ◮ (obtained lifting the H-actions ⊲ on V and V ⊗A Ω). The H-action on(
AHom(V ′,HomK(V,Ω))

)op
is the ◮

cop adjoint action, as required by the left A-linearity of
these homomorphisms (cf. Proposition 4.4). It is obtained via a lift of the H-actions on V ′

and HomK(V,Ω), these latter are themselves adjoint actions ◮, obtained lifting the H-actions
⊲ on V and Ω.

Throughout this subsection we assume V to be finitely generated and projective as an
MA-module. As proven in the end of Theorem 6.18, the K-linear map Hom is then invertible.

Lemma 6.19. The K-linear map Hom in (6.59) is an HM-module isomorphism, i.e. for all
P ∈ HomK(V, V ⊗A Ω) and all ξ ∈ H, (ξ ◮ P )Hom = ξ ◮

cop PHom.

Proof. Recalling definition (6.57b) we obtain, for all v′ ∈ V ′

(
ξ ◮

cop PHom
)
(v′) = ξ2 ◮

(
PHom

(
S−1(ξ1) ◮ v′

))

= −ξ2 ◮
(
∧ ◦

(
S−1(ξ1) ◮ v′ ⊗ id

)
◦ P

)

= − ∧ ◦
(
(ξ2S

−1(ξ1)) ◮ v′ ⊗ id
)
◦ ξ3 ◮ P

= − ∧ ◦(v′ ⊗ id) ◦ ξ ◮ P = (ξ ◮ P )Hom . (6.70)

In line three we used that ∧ is H-equivariant.
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Corollary 6.20. Since ι is an H
AM-module isomorphism (cf. Proposition 6.17) it follows

that the ′ map (see (6.61)) is also an HM-module isomorphism.

We now consider a twist F ∈ H ⊗ H and deform the modules relevant in the study of
dual connections. In particular, we have the HF

A⋆M-module isomorphisms DF : V ′
⋆ → V⋆

′

and DF : HomK(V,Ω)⋆,→ HomK(V⋆,Ω⋆) that intertwine between the ◮ actions of HF on
HomK(V,Ω)⋆ and V ′

⋆, and the ◮F actions of HF on V⋆
′ and HomK(V⋆,Ω⋆). These HF -

actions lift (cf. Proposition 4.4) to a◮cop adjoint action ofHF on
(
HomK(V

′
⋆,HomK(V,Ω)⋆)

)op
and to a ◮F

cop adjoint action of HF on
(
HomK(V⋆

′,HomK(V⋆,Ω⋆))
)op

.

The two HF
M-modules

(
HomK(V

′
⋆,HomK(V,Ω)⋆)

)op
and

(
HomK(V⋆

′,HomK(V⋆,Ω⋆))
)op

are isomorphic:

Lemma 6.21. Let H be a Hopf algebra with twist F ∈ H ⊗H, A be an HA -algebra, V be an
HMA-module and Ω be an H

AMA-module. The K-linear map

AdDF
:
(
HomK(V

′
⋆,HomK(V,Ω)⋆)

)op
−→

(
HomK(V⋆

′,HomK(V⋆,Ω⋆))
)op

,

T 7−→ AdDF
(T ) = DF ◦ T ◦D

−1
F , (6.71)

is an HF
M-module isomorphism.

Furthermore, it restricts to an HF
M-module isomorphism

AdDF
:
(
A⋆Hom(V ′

⋆,HomK(V,Ω)⋆)
)op

−→
(
A⋆Hom(V⋆

′,HomK(V⋆,Ω⋆))
)op

. (6.72)

Proof. For all T ∈
(
HomK(V

′
⋆,HomK(V,Ω)⋆)

)op
and ξ ∈ H we have

ξ◮F
cop

(
AdDF

(T )
)
= ξ2F ◮F ◦AdDF

(T ) ◦ SF −1(ξ1F ) ◮F

= ξ2F ◮F ◦DF ◦ T ◦D
−1
F ◦ S

F −1(ξ1F ) ◮F

= DF ◦ ξ2F ◮ ◦T ◦ SF −1(ξ1F ) ◮ ◦D
−1
F

= AdDF

(
ξ◮cop T

)
, (6.73)

where we used that DF intertwines between the ◮ and ◮F adjoint actions, DF ◦ ξ ◮ =
ξ ◮F ◦DF (cf. Theorem 3.10). The map AdDF

is obviously invertible.
Let now T ∈

(
A⋆Hom(V ′

⋆,HomK(V,Ω)⋆)
)op

, i.e. for all a ∈ A⋆ and v′ ∈ V ′
⋆, T (a ⋆ v′) =

a ⋆ T (v′). Then, for all v′⋆ ∈ V⋆
′,

(
AdDF

(T )
)
(a · v′⋆) = DF

(
T
(
D−1

F (a · v′⋆)
))

= DF

(
T
(
a ⋆ D−1

F (v′⋆)
))

= DF

(
a ⋆

(
T
(
D−1

F (v′⋆)
)))

= a ·DF

(
T
(
D−1

F (v′⋆)
))

= a ·
((

AdDF
(T )

)
(v′⋆)

)
, (6.74)

where in the second and fourth equality we used that DF is an HF

A⋆M-module isomorphism.

Remark 6.22. We later consider a slight variation of the map AdDF
, namely the K-linear

map (denoted with abuse of notation also by AdDF
)

AdDF
:
(
HomK(V

′
⋆,Ω⋆ ⊗A⋆ V

′
⋆)
)op

−→
(
HomK(V⋆

′,Ω⋆ ⊗A⋆ V⋆
′)
)op

,

T 7−→ AdDF
(T ) = (id⊗⋆ DF ) ◦ T ◦D

−1
F . (6.75)
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With a similar calculation as in Lemma 6.21 one shows that this map is an HF
M-module

isomorphism and that it restricts to the HF
M-module isomorphism (denoted by the same

symbol)

AdDF
:
(
A⋆Hom(V ′

⋆,Ω⋆ ⊗A⋆ V
′
⋆)
)op

−→
(
A⋆Hom(V⋆

′,Ω⋆ ⊗A⋆ V⋆
′)
)op

. (6.76)

As a first step towards the twist deformation of dual connections we study the map
Hom⋆ between homomorphisms of deformed modules. Let F ∈ H ⊗ H be a twist of
the Hopf algebra H. For all P⋆ ∈ HomK(V⋆, V⋆ ⊗A⋆ Ω⋆) we define the map PHom⋆

⋆ ∈(
A⋆Hom(V⋆

′,HomK(V⋆,Ω⋆))
)op

as in (6.57b) by, for all v′⋆ ∈ V⋆
′,

PHom⋆
⋆ (v′⋆) := − ∧⋆ ◦ (v

′
⋆ ⊗⋆ id) ◦ P⋆ . (6.77)

As in Lemma 6.19 we have an HF
M-module isomorphism

Hom⋆ : HomK(V⋆, V⋆ ⊗A⋆ Ω⋆) −→
(
A⋆Hom(V⋆

′,HomK(V⋆,Ω⋆))
)op

, P⋆ 7−→ PHom⋆
⋆ . (6.78)

We compare this map with the map Hom , that, due to its H-equivariance, can be considered
as the HF

M-module isomorphism

Hom : HomK(V, V ⊗A Ω)⋆ −→
(
AHom(V ′,HomK(V,Ω))

)op
⋆
, P 7−→ PHom . (6.79)

Proposition 6.23. Let F ∈ H ⊗ H be a twist of the Hopf algebra H. Then the following
diagram of HF

M-module isomorphisms commutes:

HomK(V, V ⊗A Ω)⋆

D̃F

��

Hom

//
(
AHom(V ′,HomK(V,Ω))

)op
⋆

D
cop
F

��(
A⋆Hom(V ′

⋆,HomK(V,Ω)⋆)
)op

AdDF

��

HomK(V⋆, V⋆ ⊗A⋆ Ω⋆)
Hom⋆

//
(
A⋆Hom(V⋆

′,HomK(V⋆,Ω⋆))
)op

(6.80)

Proof. We consider any P ∈ HomK(V, V ⊗A Ω)⋆, follow the upper path in the diagram and
act on an arbitrary element v′⋆ ∈ V⋆

′,
(
AdDF

(
Dcop

F (PHom)
))

(v′⋆) = DF

(
Dcop

F (PHom)
(
D−1

F (v′⋆)
))

= DF

(
(f α ◮

cop PHom)
(
f
α
◮ D−1

F (v′⋆)
))

= DF

(
(f α ◮ P )Hom

(
f
α
◮ D−1

F (v′⋆)
))

= −DF

(
∧ ◦

(
(f

α
◮ D−1

F (v′⋆))⊗ id
)
◦ (f α ◮ P )

)

= −DF

(
∧ ◦⋆

(
D−1

F (v′⋆)⊗ id
)
◦⋆ P

)

= − ∧ ◦DF

(
D−1

F (v′⋆)⊗ id
)
◦DF (P )

= − ∧ ◦ϕ ◦
(
v′⋆ ⊗⋆ id

)
◦ ϕ−1 ◦DF (P )

= − ∧⋆ ◦
(
v′⋆ ⊗⋆ id

)
◦ D̃F (P ) . (6.81)
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In the third line we have used Lemma 6.19, in the fourth line (6.57b), in the fifth line that ∧
is H-equivariant and in the sixth line this property and that DF (Q ◦⋆ Q̌) = DF (Q) ◦DF (Q̌),
which holds for arbitrary composable K-linear maps Q and Q̌. Then in line seven we used
Theorem 5.21 and that id is H-equivariant. The last passage follows by noticing that ∧⋆ =
∧ ◦ ϕ and recalling the definition of D̃F (6.11).

We now follow the lower path in the diagram, from (6.77) we immediately obtain (6.81),
and hence commutativity of the diagram.

Remark 6.24. By restricting to right A-linear maps HomA(V, V ⊗A Ω)⋆, we also obtain the

following commutative diagram of HF
M-module isomorphisms:

HomA(V, V ⊗A Ω)⋆

D̃F

��

Hom

//
(
AHom(V ′,HomA(V,Ω))

)op
⋆

D
cop
F

��(
A⋆Hom(V ′

⋆,HomA(V,Ω)⋆)
)op

AdDF

��

HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆)
Hom⋆

//
(
A⋆Hom(V⋆

′,HomA⋆(V⋆,Ω⋆))
)op

(6.82)

We now consider the map

̂⋆ : ConA⋆(V⋆) −→
(
HomK(V⋆

′,HomA⋆(V⋆,Ω⋆))
)op

(6.83)

defined by, for all ∇⋆ ∈ ConA⋆(V⋆) and v′⋆ ∈ V⋆
′,

∇̂⋆
⋆
(v′⋆) := d ◦ v′⋆ +∇

Hom⋆(v′⋆) . (6.84)

The corresponding map ̂ , defined in (6.64), can be seen as a map

̂ : ConA(V )⋆ −→
(
HomK(V

′,HomA(V,Ω))
)op

⋆
, (6.85)

where we recall that ConA(V )⋆ differs from ConA(V ) just because it is seen as an affine space

over the HF
M-module HomA(V, V ⊗AΩ)⋆ rather than over the HM-module HomA(V, V ⊗AΩ).

It is easy to see that the ̂ and ̂ ⋆ maps close a commutative diagram, where the vertical
arrows are given by deformation maps DF , D̃F and Dcop

F .

Corollary 6.25. Let F ∈ H ⊗ H be a twist of the Hopf algebra H. Then the following
diagram commutes:

ConA(V )⋆

D̃F

��

̂ //
(
HomK(V

′,HomA(V,Ω))
)op

⋆

D
cop
F

��(
HomK(V

′
⋆,HomA(V,Ω)⋆)

)op

AdDF

��

ConA⋆(V⋆)
̂

⋆
//
(
HomK(V⋆

′,HomA⋆(V⋆,Ω⋆))
)op

(6.86)
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Proof. From Proposition 6.23 we know that this diagram holds for the second addend in the
̂ and ̂⋆ maps in (6.64) and (6.84). Since the vertical arrows Dcop

F and AdDF
are K-linear

maps, it remains to check the first addend. Use of H-equivariance of the differential d then
implies, for all v′⋆ ∈ V⋆

′,

(
AdDF

(
Dcop

F (∇̂ −∇Hom)
))

(v′⋆) = d ◦ v′⋆ =
( ̂̃
DF (∇)

⋆

−
(
D̃F (∇)

)Hom⋆
)
(v′⋆) . (6.87)

The second step in the study of the deformation of the dual connection ∇′ = ι−1 ◦ ∇̂
of Theorem 6.18 is the study of the relation between the ι map of Proposition 6.17 and
the corresponding one ι⋆ between deformed modules. It is here that finitely generated and
projective modules are needed. We denote by

ι⋆ : Ω⋆ ⊗A⋆ V⋆
′ → HomA⋆(V⋆,Ω⋆) (6.88)

the HF

A⋆M-module isomorphism defined by, for all v ∈ V⋆, ω ∈ Ω⋆, v
′
⋆ ∈ V⋆

′,
(
ι⋆(ω ⊗A⋆

v′⋆)
)
(v) := ω ⋆ v′⋆(v). The maps ι and ι⋆ close a commutative diagram where the vertical

arrows are given by deformation maps DF and ϕ.

Lemma 6.26. Let F ∈ H ⊗H be a twist of the Hopf algebra H. Then the following diagram
of HF

A⋆M-module isomorphisms commutes:

Ω⋆ ⊗A⋆ V⋆
′ ι⋆ //

id⊗⋆D
−1
F

��

HomA⋆(V⋆,Ω⋆)

D−1
F

��

Ω⋆ ⊗A⋆ V
′
⋆

ϕ

��

(Ω⊗A V ′)⋆
ι // (HomA(V,Ω))⋆

(6.89)

Proof. Using the explicit expression for D−1
F (see Remark 3.11), we find, when following the

upper path, for all v ∈ V⋆, ω ∈ Ω⋆ and v′⋆ ∈ V⋆
′,

(
D−1

F

(
ι⋆(ω ⊗A⋆ v

′
⋆)
))

(v) = f
α
⊲
(
ω ⋆ v′⋆

(
χS(f α) ⊲ v

))

= (f
α

1 f
β
⊲ ω) · f

α

2 f β ⊲
(
v′⋆
(
χS(f α) ⊲ v

))

= (f
α
⊲ ω) · f α1 f

β
⊲
(
v′⋆
(
χS(f β)S(f α2) ⊲ v

))

= (f
α
⊲ ω) ·

(
f α ◮ D−1

F (v′⋆)
)
(v) , (6.90)

where in line three we have used the twist cocycle property (3.1a). Following the lower path
we find the same expression, for all v ∈ V⋆, ω ∈ Ω⋆ and v′⋆ ∈ V⋆

′,

ι
(
ϕ
(
ω ⊗A⋆ D

−1
F (v′⋆)

))
(v) = ι

(
(f

α
⊲ ω)⊗A

(
f α ◮ D−1

F (v′⋆)
))

(v)

= (f
α
⊲ ω) ·

(
f α ◮ D−1

F (v′⋆)
)
(v) . (6.91)
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It is convenient to consider the following HM-module isomorphism induced by the H
AM-

module isomorphism ι−1 (and denoted with a slight abuse of notation by the same symbol)

ι−1 :
(
HomK(V

′,HomA(V,Ω))
)op
→

(
HomK(V

′,Ω ⊗A V ′)
)op

, T 7→ ι−1 ◦ T . (6.92)

With this definition the maps ′ in (6.61) and (6.65) are just the compositions ′ = ι−1 ◦ Hom

and ′ = ι−1 ◦ ̂ . Since the map ι−1 is H-equivariant, it can also be seen as an isomorphism
between HF

M-modules, ι−1 :
(
HomK(V

′,HomA(V,Ω))
)op

⋆
→

(
HomK(V

′,Ω⊗A V ′)
)op

⋆
.

Similarly the isomorphism ι⋆ in (6.88) induces the HF
M-module isomorphism

ι−1
⋆ :

(
HomK(V⋆

′,HomA⋆(V⋆,Ω⋆))
)op
→

(
HomK(V⋆

′,Ω⋆ ⊗A⋆ V⋆
′)
)op

, T⋆ 7→ ι−1
⋆ ◦ T⋆ .

(6.93)

Proposition 6.27. Let F ∈ H ⊗ H be a twist of the Hopf algebra H. Then the following
diagram of HF

M-module isomorphisms commutes:

(
HomK(V

′,HomA(V,Ω))
)op

⋆

D
cop
F

��

ι−1

//
(
HomK(V

′,Ω⊗A V ′)
)op

⋆

D̃
cop
F

��(
HomK(V

′
⋆,HomA(V,Ω)⋆)

)op

AdDF

��

(
HomK(V

′
⋆,Ω⋆ ⊗A⋆ V

′
⋆)
)op

AdDF

��(
HomK(V⋆

′,HomA⋆(V⋆,Ω⋆))
)op ι−1

⋆ //
(
HomK(V⋆

′,Ω⋆ ⊗A⋆ V⋆
′)
)op

(6.94)

(where we recall the abuse of notation in the definition of AdDF
in Remark 6.22).

Proof. We consider an arbitrary T ∈
(
HomK(V

′,HomA(V,Ω))
)op

⋆
, follow the upper path in

the diagram and act on an arbitrary v′⋆ ∈ V⋆
′,

AdDF

(
D̃cop

F

(
ι−1(T )

))
(v′⋆) = (id⊗⋆ DF )

(
D̃cop

F

(
ι−1(T )

)(
D−1

F (v′⋆)
))

=
(
(id ⊗⋆ DF ) ◦ ϕ

−1
)((

f α ◮
cop ι−1(T )

)(
f
α
◮ D−1

F (v′⋆)
))

=
(
(id ⊗⋆ DF ) ◦ ϕ

−1 ◦ ι−1
)((

f α ◮
cop T

)(
f
α
◮ D−1

F (v′⋆)
))

=
(
ι−1
⋆ ◦DF

)(
Dcop

F (T )
(
D−1

F (v′⋆)
))

= ι−1
⋆

(
AdDF

(
Dcop

F (T )
))

(v′⋆) , (6.95)

which is exactly the expression we obtain by following the lower path in the diagram. In
line two we have used the definition of D̃cop

F (cf. Theorem 6.6), in line three that ι−1 is H-
equivariant and then (6.92), finally in line four Lemma 6.26 in the form (id⊗⋆DF )◦ϕ

−1◦ι−1 =
ι−1
⋆ ◦DF .

The ′⋆ maps between deformed modules corresponding to the prime maps in (6.65) and
(6.61) (that with a slight abuse of notation are denoted with the same symbol) are defined by

′⋆ : ConA⋆(V⋆)→ A⋆Con(V⋆
′) , ∇⋆ 7→ ∇

′⋆
⋆ = ι−1

⋆ ◦ ∇̂⋆
⋆

(6.96a)
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and

′⋆ : HomA⋆(V⋆, V⋆ ⊗A⋆ Ω⋆)→
(
A⋆Hom(V⋆

′,Ω⋆ ⊗A⋆ V⋆
′)
)op

, P⋆ 7→ P ′⋆
⋆ = ι−1

⋆ ◦ P
Hom⋆
⋆ ,

(6.96b)

or, using the ι−1
⋆ map in (6.93), simply by the compositions ′⋆ = ι−1

⋆ ◦
Hom⋆ and ′⋆ = ι−1

⋆ ◦ ̂ ⋆ .
Theorem 6.18 and Lemma 6.19 imply that these maps constitute an affine space isomor-

phism, where ConA⋆(V⋆) and A⋆Con(V⋆
′) are affine spaces respectively over the HF

M-modules
of right A⋆-linear maps HomA⋆(V⋆, V⋆⊗A⋆ Ω⋆) and of left A⋆-linear maps

(
A⋆Hom(V⋆

′,Ω⋆⊗A⋆

V⋆
′)
)op

.

We can now finally prove the main theorem of this subsection stating that deforming the
dual connection is equivalent to dualizing the deformed connection.

Theorem 6.28. Let H be a Hopf algebra with twist F ∈ H ⊗ H, A be an HA -algebra,
V be a finitely generated and projective HMA-module and

(
Ω•,∧,d

)
be a left H-covariant

differential calculus over A. Then the following diagram of isomorphisms between affine spaces
of connections over HF

M-modules commutes:

ConA(V )⋆
′

//

D̃F

��

ACon(V
′)⋆

D̃
cop
F

��

A⋆Con(V
′
⋆)

AdDF

��

ConA⋆(V⋆)
′⋆

//
A⋆Con(V⋆

′)

(6.97)

Proof. Combining the commutative diagrams of Corollary 6.25 and Proposition 6.27 we ob-
tain commutativity of the above diagram regarded as maps. The commutativity of the dia-
gram regarded as affine space maps follows by combining the diagrams of Remark 6.24 and
Proposition 6.27. The vertical maps are obviously invertible, the horizontal ones are also
isomorphisms (recall Theorem 6.18).

Dual connections on H
AMA-modules

Let us consider the case where V is an H
AMA-module, then all the modules encountered in

this subsection are also H
AMA-modules, we list them: V ′, Ω⊗AV

′, HomK(V,Ω), HomA(V,Ω),
HomK(V, V ⊗A Ω), HomA(V, V ⊗A Ω),

(
HomK(V

′,Ω ⊗A V ′)
)op

,
(
AHom(V ′,Ω ⊗A V ′)

)op
as

well as
(
HomK(V

′,HomK(V,Ω))
)op

and
(
AHom(V ′,HomK(V,Ω))

)op
. For example it follows

from Proposition 4.4 that for all T ∈
(
HomK(V

′,HomK(V,Ω))
)op

and a ∈ A the right A-
module structure is given by T ·op a = ra ◦ T , where r : A → AEnd

(
HomK(V,Ω)

)
and, for

all P ∈ HomK(V,Ω), ra(P ) = P ◦ la. Similarly the left A-module structure is given by
a ·op T = T ◦ ra where now r : A→ AEnd(V

′).
It is now straightforward to prove that in this case the isomorphisms ι in (6.53), Hom in

(6.59) and (6.60), and hence ′ in (6.61) are H
AMA-module isomorphisms. Thus we have

Corollary 6.29. If V is an H
AMA-module, the isomorphism ′ : ConA(V ) → ACon(V

′)
of Theorem 6.18 is an affine space isomorphism, where ConA(V ) and ACon(V

′) are affine
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spaces over the isomorphic H
AMA-modules HomA(V, V ⊗A Ω) and

(
AHom(V ′,Ω ⊗A V ′)

)op
,

respectively.

Similarly, twist deformation of connections on H
AMA-modules leads to Theorem 6.28,

where now all the maps in the commutative diagram are isomorphisms between affine spaces
of connections over HF

A⋆MA⋆-modules. Indeed, all the maps in the commutative diagram
of HF

A⋆MA⋆-modules underlying the diagram in Theorem 6.28 are HF

A⋆MA⋆-module isomor-
phisms. (The map AdDF

is an HF

A⋆MA⋆-module isomorphisms simply because all the other

maps in this commutative diagram are HF

A⋆MA⋆-module isomorphisms).

6.7 Connections on tensor products of modules and dual modules

Combining the results of Corollary 6.29 on dual connections and of Theorem 6.13 on right to
left connections we immediately obtain the following

Corollary 6.30. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, V be a strong quasi-commutative H

AMA-module and (Ω•,∧,d) be a graded quasi-
commutative left H-covariant differential calculus over A. Let further V be finitely generated
and projective as an MA-module and denote by V ′ = HomA(V,A) the dual H

AMA-module of
V . Then there is an affine space isomorphism

ConA(V )
′

//
ACon(V

′)
D̃−1

R // ConA(V
′) , (6.98)

where the sets of right connections ConA(V ) and ConA(V
′) are affine spaces over the iso-

morphic H
AMA-modules HomA(V, V ⊗A Ω) and HomA(V

′, V ′ ⊗A Ω), respectively. Explic-
itly, given a right connection ∇ ∈ ConA(V ) the right connection on the dual module is
D̃−1

R

(
∇′

)
∈ ConA(V

′).

This result allows to induce from a connection on V a connection on the tensor algebra
generated by V and V ′. In other words, given a connection on vector fields (elements of V )
we extend it to a connection on covariant and contravariant tensor fields (elements of the
tensor algebra generated by V and V ′).

Corollary 6.31. In the hypotheses of Corollary 6.30, given a right connection ∇ ∈ ConA(V )
we induce the right connection D̃−1

R

(
∇′

)
∈ ConA(V

′). Sums of the ∇ and D̃−1
R

(
∇′

)
connec-

tions as in Theorem 6.9 allow to extend the connection ∇ to the tensor algebra generated by
V and V ′.

Proof. This construction is unambiguous due to the associativity of the sum of connections,
which is proven in Theorem 6.10.

Remark 6.32. The deformation of the sum of a connection and its dual connection is canon-
ical, in fact we have already shown that sum, dualization and the left to right isomorphism
D̃−1

R are compatible with deformation, hence their composition is also compatible.
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7 Curvature

After reviewing the basic definitions we investigate the behaviour of the curvature of a con-
nection under twist deformation. The twist deformed curvature in general differs from the
curvature of the twist deformed connection, hence flat connections are twisted in non flat
ones and vice versa. We then explicitly calculate the curvature of the sum of two connections,
∇V ⊕R ∇W , and find that it is in general not simply given by the sum of the individual
curvatures.

7.1 Definitions

A connection on an MA-module V extends as usual to a K-linear map from V ⊗A Ω• to
V ⊗A Ω• (cf. (7.3)), where (Ω•,∧,d) is a differential calculus over A. For later purposes we
analyse in subsequent steps this construction. We then define the curvature of a connection.

Lemma 7.1. Let V be an MA-module, (Ω•,∧,d) a differential calculus over the algebra A,
and ∇ ∈ ConA(V ). We define the K-linear map ∇• : V ⊗ Ω• → V ⊗A Ω• by

∇• := (id⊗ ∧) ◦ (∇⊗ id) + π ◦ (id⊗ d) . (7.1)

Here π : V ⊗Ω• → V ⊗AΩ• is the canonical projection and id⊗∧ : (V ⊗AΩ
•)⊗Ω• → V ⊗AΩ•

is the right A-linear map defined by, for all v ∈ V and ω, ω̃ ∈ Ω•,

(id ⊗ ∧)
(
(v ⊗A ω)⊗ ω̃

)
:= (v ⊗A ω) ∧ ω̃ := v ⊗A ω ∧ ω̃ , (7.2)

and extended to all (V ⊗A Ω•)⊗ Ω• by K-linearity.
The map ∇• induces a well-defined map (still denoted by ∇• for ease of notation) on the

quotient, ∇• : V ⊗A Ω• → V ⊗A Ω•. Explicitly, for all v ∈ V and ω ∈ Ω•,

∇•(v ⊗A ω) = ∇v ∧ ω + v ⊗A dω . (7.3)

The map ∇• : V ⊗A Ω• → V ⊗A Ω• satisfies, for all v ∈ V , a ∈ A and ω ∈ Ω• of
homogeneous degree,

∇•
(
(v ⊗A ω)a

)
=

(
∇•(v ⊗A ω)

)
a+ (−1)deg(ω) v ⊗A ω ∧ da . (7.4)

Proof. The map (7.1) induces a well-defined map on the quotient, since it annihilates the
submodule NV,Ω• = ker(π), i.e. ∇•

(
NV,Ω•

)
= {0}. Indeed, for all a ∈ A, v ∈ V and ω ∈ Ω•,

∇•(v · a⊗ ω) = ∇(v · a) ∧ ω + v · a⊗A dω

= (∇v) a ∧ ω + v ⊗A da ∧ ω + v · a⊗A dω

= ∇v ∧ aω + v ⊗A (da ∧ ω + adω)

= ∇v ∧ aω + v ⊗A d(aω)

= ∇•(v ⊗ aω) . (7.5)

Property (7.4) hold because, for all v ∈ V , a ∈ A and ω ∈ Ω• of homogeneous degree,

∇•
(
v ⊗A ωa

)
= ∇v ∧ ω a+ v ⊗A d(ω a)

= ∇v ∧ ωa+ v ⊗A

(
(dω) a+ (−1)deg(ω) ω ∧ da

)

=
(
∇•(v ⊗A ω)

)
a+ (−1)deg(ω) v ⊗A ω ∧ da . (7.6)
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Definition 7.2. Let ∇ ∈ ConA(V ). The curvature of ∇ is the K-linear map defined by

R∇ := ∇• ◦ ∇ : V → V ⊗A Ω2 . (7.7)

The curvature is right A-linear, i.e. R∇ ∈ HomA(V, V ⊗A Ω2), indeed, for all a ∈ A and
v ∈ V ,

R∇(v · a) = ∇
•
(
∇(v · a)

)
= ∇•

(
(∇v)a+ v ⊗A da

)

= ∇•
(
∇v

)
a−∇v ∧ da+∇v ∧ da+ v ⊗A dda

= ∇•
(
∇v

)
a = R∇(v) a . (7.8)

7.2 Curvature of deformed connections

Let H be a Hopf algebra with twist F ∈ H ⊗H, A be an HA -algebra, V be an HMA-module
and (Ω•,∧,d) be a left H-covariant differential calculus over A. We denote by HF , A⋆, V⋆

and (Ω•,∧⋆,d) the deformations of H, A, V and (Ω•,∧,d) (obtained applying Theorems 3.2,
3.4, 3.5 and Proposition 6.4, respectively).

Consider an arbitrary connection ∇⋆ ∈ ConA⋆(V⋆), then, following Lemma 7.1, we have
a well-defined extension ∇•⋆

⋆ : V⋆ ⊗A⋆ Ω
•
⋆ → V⋆ ⊗A⋆ Ω

•
⋆. The K-linear map ∇•⋆

⋆ : V⋆ ⊗⋆ Ω
•
⋆ →

V⋆ ⊗A⋆ Ω
•
⋆ is defined by

∇•⋆
⋆ := (id⊗⋆ ∧⋆) ◦ (∇⋆ ⊗⋆ id) + π⋆ ◦ (id⊗⋆ d) , (7.9)

where π⋆ : V⋆⊗⋆Ω
•
⋆ → V⋆⊗A⋆Ω

•
⋆ is the canonical projection, and id⊗⋆∧⋆ : (V⋆⊗A⋆Ω

•
⋆)⊗⋆Ω

•
⋆ →

V⋆ ⊗A⋆ Ω
•
⋆ is defined by, for all v ∈ V⋆ and ω, ω̃ ∈ Ω•

⋆,

(id⊗⋆ ∧⋆)
(
(v ⊗A⋆ ω)⊗⋆ ω̃

)
:= (v ⊗A⋆ ω) ∧⋆ ω̃ := v ⊗A⋆ ω ∧⋆ ω̃ . (7.10)

The induced map ∇•⋆
⋆ : V⋆ ⊗A⋆ Ω

•
⋆ → V⋆ ⊗A⋆ Ω

•
⋆ reads explicitly, for all v ∈ V⋆ and ω ∈ Ω•

⋆,
∇•⋆

⋆ (v ⊗A⋆ ω) = (∇⋆v) ∧⋆ ω + v ⊗A⋆ dω.

Lemma 7.3. Let H be a Hopf algebra with twist F ∈ H ⊗ H, A be an HA -algebra, V be
an HMA-module and (Ω•,∧,d) be a left H-covariant differential calculus over A. For any
∇ ∈ ConA(V ) we have the commutative diagram

V⋆ ⊗A⋆ Ω
•
⋆

ϕV⋆,Ω
•
⋆

��

D̃F (∇)
•⋆

// V⋆ ⊗A⋆ Ω
•
⋆

ϕV⋆,Ω
•
⋆

��

(V ⊗A Ω•)⋆
DF (∇•)

// (V ⊗A Ω•)⋆

(7.11)

Proof. H-equivariance of all maps in (7.1), but ∇, implies

DF (∇
•) = DF

(
(id⊗ ∧) ◦ (∇⊗ id) + π ◦ (id⊗ d)

)

= (id⊗ ∧) ◦DF (∇⊗ id) + π ◦ (id⊗ d) . (7.12)
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Theorem 5.6 implies

DF (∇⊗ id) = ϕV⊗AΩ•,Ω• ◦
(
DF (∇)⊗⋆ id

)
◦ ϕ−1

V,Ω•

= ϕV⊗AΩ•,Ω• ◦ (ϕV⋆,Ω•
⋆
⊗⋆ id) ◦

(
D̃F (∇)⊗⋆ id

)
◦ ϕ−1

V,Ω• . (7.13)

The proof follows from the two commutative diagrams

(V⋆ ⊗A⋆ Ω
•
⋆)⊗⋆ Ω

•
⋆

ϕV⋆,Ω
•
⋆
⊗⋆id

��

id⊗⋆ ∧⋆ // V⋆ ⊗A⋆ Ω
•
⋆

ϕV⋆,Ω
•
⋆

��

(V ⊗A Ω•)⋆ ⊗⋆ Ω
•
⋆

ϕV ⊗AΩ•,Ω•

��(
(V ⊗A Ω•)⊗ Ω•

)
⋆ id⊗∧

// (V ⊗A Ω•)⋆

(7.14a)

and

V⋆ ⊗⋆ Ω
•
⋆

ϕV,Ω•

��

id⊗⋆d // V⋆ ⊗⋆ Ω
•
⋆

π⋆ //

ϕV,Ω•

��

V⋆ ⊗A⋆ Ω
•
⋆

ϕV⋆,Ω
•
⋆

��

(V ⊗ Ω•)⋆
id⊗d

// (V ⊗ Ω•)⋆ π
// (V ⊗A Ω•)⋆

(7.14b)

which are a consequence of Theorem 5.6, theH-equivariance of the maps and Lemma 5.19.

The curvature of a connection ∇⋆ ∈ ConA⋆(V⋆) is defined by R∇⋆ := ∇•⋆
⋆ ◦ ∇⋆ ∈

HomA⋆(V⋆, V⋆ ⊗A⋆ Ω2
⋆). Due to the isomorphism ConA(V ) ≃ ConA⋆(V⋆) (cf. Theorem 6.5

and the text after the theorem) any connection ∇⋆ ∈ ConA⋆(V⋆) is the image D̃F (∇) of a
connection ∇ ∈ ConA(V ).

Theorem 7.4. Let H be a Hopf algebra with twist F ∈ H ⊗H, A be an HA -algebra, V be
an HMA-module and (Ω•,∧,d) be a left H-covariant differential calculus over A. Consider
an arbitrary connection D̃F (∇) ∈ ConA⋆(V⋆), (where ∇ ∈ ConA(V )). The curvature of the
deformed connection D̃F (∇) satisfies the identity

R
D̃F (∇)

= ϕ−1
V⋆,Ω2

⋆
◦DF

(
∇• ◦⋆ ∇

)
= D̃F

(
∇• ◦⋆ ∇

)
. (7.15)

Proof. The proof follows from Lemma 7.3 and the property DF (Q ◦⋆ Q̌) = DF (Q) ◦DF (Q̌),
which holds for any two composable K-linear maps Q, Q̌.

Notice that the deformed curvature D̃F (R∇) = D̃F (∇
• ◦ ∇) differs from the curvature of

the deformed connection R
D̃F (∇) = D̃F (∇

• ◦⋆ ∇). The right hand side of this latter equality

can be recognized as the deformation of the curvature of the connection ∇ seen as an element
of the affine space ConA(V )⋆ (rather than ConA(V )). Indeed, in this case ∇ ∈ ConA(V )⋆ can
be seen as a morphism in the category rep

H
⋆, which is characterized by the ⋆-composition ◦⋆.

The difference between D̃F (R∇) and R
D̃F (∇)

immediately leads to the following corollary

on flat connections.
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Corollary 7.5. In the hypotheses of Theorem 7.4, consider an arbitrary connection D̃F (∇) ∈
ConA⋆(V⋆), (where ∇ ∈ ConA(V )). Then the connection D̃F (∇) is flat (i.e. R

D̃F (∇)
= 0) if

and only if ∇• ◦⋆ ∇ = 0. In general, the deformation of a flat connection ∇ ∈ ConA(V )
(i.e. R∇ = 0) is not flat (i.e. R

D̃F (∇) 6= 0). Notice, however, that in the case the flat

connection ∇ ∈ ConA(V ) is additionally H-equivariant, then the deformed connection D̃F (∇)
is also flat.

The study of the cohomology of flat deformed connections could lead to new cohomology
invariants or interesting combinations of undeformed ones.

7.3 Curvature of the sum of connections

We conclude this section by calculating the curvature of the sum of two connections. Let
(H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative HA -algebra, W be
a quasi-commutative H

AMA-module and
(
Ω•,∧,d

)
be a graded quasi-commutative left H-

covariant differential calculus over A. For an arbitrary HMA-module V and arbitrary connec-
tions ∇V ∈ ConA(V ), ∇W ∈ ConA(W ), the sum of connections ∇V ⊕R∇W ∈ ConA(V ⊗AW )
is given by (cf. Theorem 6.9), for all v ∈ V and w ∈W ,

(∇V ⊕R ∇W )(v ⊗A w) = τ−1
R 23

(
∇V (v)⊗A w

)
+ (R

β
⊲ v)⊗A (Rβ ◮ ∇W )(w) . (7.16)

We use the following formal notation

∇V ⊕R ∇W = τ−1
R 23 ◦ (∇V ⊗R idW ) + idV ⊗R ∇W , (7.17)

which is understood to give (7.16) when acting on generating elements v⊗Aw. Here all maps
are considered to act on the tensor product over A (this is why there are no projections in
this expression), and the notation is formal in the sense that the individual terms in (7.17)
are not well-defined maps on V ⊗A W , but only their sum is. The reason for introducing
this compact notation is that it simplifies the lengthy calculation in Proposition 7.6. The
equations appearing in the proof of this proposition should be understood as holding true
when acting on generating elements v ⊗A w of V ⊗A W .

The canonical extension (7.3) of the connection ∇V ⊕R ∇W reads, for all v ∈ V , w ∈ W
and ω ∈ Ω•,

(∇V ⊕R ∇W )•(v ⊗A w ⊗A ω) =
(
(∇V ⊕R ∇W )(v ⊗A w)

)
∧ ω + v ⊗A w ⊗A dω . (7.18)

Also here we use a formal notation similar to (7.17),

(∇V ⊕R ∇W )• = (idV⊗AW ⊗R ∧) ◦
(
(∇V ⊕R ∇W )⊗R idΩ•

)
+ idV⊗AW ⊗R d . (7.19)

Again, the individual terms in this expression are not well-defined maps on V ⊗A W ⊗A Ω•,
but their sum is.

We express the curvature R∇V ⊕R∇W
in terms of the curvatures R∇V

and R∇W
.

Proposition 7.6. Let (H,R) be a quasitriangular Hopf algebra, A be a quasi-commutative
HA -algebra, W be a quasi-commutative H

AMA-module and
(
Ω•,∧,d

)
be a graded quasi-

commutative left H-covariant differential calculus over A. Then for any HMA-module V
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and arbitrary connections ∇V ∈ ConA(V ), ∇W ∈ ConA(W ), the curvature R∇V ⊕R∇W
∈

HomA(V ⊗A W,V ⊗A W ⊗A Ω2) satisfies the identity

R∇V ⊕R∇W
= τ−1

R 23 ◦ (R∇V
⊗R idW

)
+ idV ⊗R R∇W

+ (idV⊗AW ⊗R ∧) ◦ τ
−1
R 23 ◦

(
∇V ⊗R ∇W − (R

α
◮ ∇V )⊗R (Rα ◮ ∇W )

)
, (7.20)

where R∇V
∈ HomA(V, V ⊗A Ω2) and R∇W

∈ HomA(W,W ⊗A Ω2) are the curvatures of ∇V

and ∇W , respectively. The second line in (7.20) is understood in the same formal notation
as used in (7.17) and (7.19).

Proof. We have to calculate R∇V ⊕R∇W
= (∇V ⊕R ∇W )• ◦ (∇V ⊕R ∇W ). We use idV⊗AW =

idV ⊗R idW = idV ⊗ idW . In order to simplify the notation we drop all module indices on the
identity maps and write idV⊗AW ⊗∧ = id⊗ id⊗∧ = ∧34. We also recall that P ⊗RQ = P ⊗Q,
whenever the map Q is H-equivariant.

Using the notation introduced in (7.17) and (7.19), the curvature is given by the sum of
the following four terms

R∇V ⊕R∇W
=

(
∧34 ◦τ

−1
R 23 ◦ (∇V ⊗ id⊗ id) + id⊗ id⊗ d

)
◦ τ−1

R 23 ◦ (∇V ⊗ id) (7.21a)

+
(
∧34 ◦(id ⊗R ∇W ⊗R id) + id⊗ id⊗ d

)
◦ (id⊗R ∇W ) (7.21b)

+ ∧34 ◦ τ
−1
R 23 ◦ (∇V ⊗ id⊗ id) ◦ (id⊗R ∇W ) (7.21c)

+ ∧34 ◦ (id⊗R ∇W ⊗R id) ◦ τ−1
R 23 ◦ (∇V ⊗ id) . (7.21d)

We now simplify the individual terms in (7.21). For the first term we find

(7.21a) =
(
∧34 ◦τ

−1
R 23 ◦ (∇V ⊗ id⊗ id) ◦ τ−1

R 23 + (id ⊗ id⊗ d) ◦ τ−1
R 23

)
◦ (∇V ⊗ id)

=
(
∧34 ◦τ

−1
R 23 ◦ τ

−1
R 34 ◦ (∇V ⊗ id⊗ id) + τ−1

R 23 ◦ (id⊗ d⊗ id)
)
◦ (∇V ⊗ id)

=
(
∧34 ◦τ

−1
R (23)4 ◦ (∇V ⊗ id⊗ id) + τ−1

R 23 ◦ (id⊗ d⊗ id)
)
◦ (∇V ⊗ id)

= τ−1
R 23 ◦

(
∧23 ◦(∇V ⊗ id⊗ id) + id⊗ d⊗ id

)
◦ (∇V ⊗ id)

= τ−1
R 23 ◦

((
(∧23 ◦ (∇V ⊗ id) + id⊗ d) ◦ ∇V

)
⊗ id

)

= τ−1
R 23 ◦ (R∇V

⊗ id) . (7.22)

For the second term we find

(7.21b) =
(
id⊗R

(
∧23 ◦(∇W ⊗ id) + id⊗ d

))
◦ (id⊗R ∇W )

= id⊗R

((
∧23 ◦(∇W ⊗ id) + id⊗ d

)
◦ ∇W

)

= id⊗R R∇W
. (7.23)

The third term simplifies to

(7.21c) = ∧34 ◦ τ
−1
R 23 ◦

(
∇V ⊗R (id⊗ id)

)
◦ (id ⊗R ∇W )

= ∧34 ◦ τ
−1
R 23 ◦

(
∇V ⊗R ∇W

)
, (7.24)
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and the last term to

(7.21d) = ∧34 ◦
(
id⊗R

(
(∇W ⊗ id) ◦ τ−1

R

))
◦ (∇V ⊗ id)

= ∧34 ◦
(
id⊗R

(
τ−1
R 1(23) ◦ (id⊗R ∇W )

))
◦ (∇V ⊗ id)

= ∧34 ◦ τ
−1
R 2(34) ◦

(
id⊗R id⊗R ∇W

)
◦ (∇V ⊗ id)

= ∧34 ◦ τ
−1
R 2(34) ◦

(
(R

α
◮ ∇V )⊗R (Rα ◮ ∇W )

)

= ∧34 ◦ τ
−1
R 34 ◦ τ

−1
R 23 ◦

(
(R

α
◮ ∇V )⊗R (Rα ◮ ∇W )

)

= − ∧34 ◦τ
−1
R 23 ◦

(
(R

α
◮ ∇V )⊗R (Rα ◮ ∇W )

)
. (7.25)

The sum of these four terms gives (7.20).

Remark 7.7. The first line in (7.20) is the sum (of the lift to V ⊗AW ) of the curvatures R∇V

and R∇W
. The curvature R∇V ⊕R∇W

is not simply the sum of R∇V
and R∇W

; the second line
in (7.20) gives an additional contribution due to the non H-equivariance of the connections.
In the special case that either ∇V or ∇W are H-equivariant, the second line in (7.20) vanishes
and the curvature R∇V ⊕R∇W

is simply the sum of the individual curvatures.
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