
Shuttling of Rydberg ions for fast entangling operations

J. Vogel,1, ∗ W. Li,2, 3 A. Mokhberi,1 I. Lesanovsky,2, 3 and F. Schmidt-Kaler1, 4

1QUANTUM, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany
2School of Physics and Astronomy and Centre for the Mathematics and Theoretical

Physics of Quantum Non-equilibrium Systems, Nottingham, NG7 2RD, United Kingdom
3Centre for the Mathematics and Theoretical Physics of Quantum
Non-equilibrium Systems, Nottingham, NG7 2RD, United Kingdom

4Helmholtz-Institut Mainz, 55128 Mainz, Germany
(Dated: July 12, 2019)

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric
polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of
ions that establishes common modes of motion. After laser-initialization of ions to a superposition
of ground- and Rydberg-state, the entanglement operation is driven purely by applying a voltage
pulse that shuttles the ion crystal back and forth. This operation can achieve entanglement on a
sub-µs timescale, more than two orders of magnitude faster than typical gate operations driven by
continuous-wave lasers. Our analysis shows that the fidelity achieved with this protocol can exceed
99.9% with experimentally achievable parameters.

In Rydberg states of an atom a valence electron is ex-
cited to a state with a high principal quantum num-
ber, leading to extraordinary large polarizabilities [1]
and making them extremely susceptible to electric fields.
Such high electric field susceptibility was employed for
electric field sensing [2–4] and quantum information pro-
cessing [5]. For pairs, or arrays of atoms, a mutual elec-
trical dipolar interaction of Rydberg states may lead to a
blockade mechanism, which was proposed for generating
entanglement [6]. Pioneering experiments realized block-
ade driven entanglement with pairs of Rydberg atoms
in optical tweezers [7, 8]. Lately, arrays of Rydberg
atoms [9] or atoms in reconfigurable optical tweezer po-
tentials [10, 11] have been used and allowed for remark-
able progress in quantum simulation [12].

More recently, trapped ions excited to Rydberg states
[13–15] have been investigated for exploring their unique
features. The large electric polarizability has been char-
acterized by spectroscopy and electric field mapping was
exploited to position a single ion precisely inside the elec-
tric trap [13, 16]. Moreover, it has been shown that tran-
sitions to Rydberg states can be driven coherently from
low-lying electronic states [17]. A gate operation to en-
tangle trapped Rydberg ions via a dipole-dipole interac-
tion has been proposed, but requires microwave dressing
of Rydberg states to cancel their polarizability [18, 19].

Here, we propose a scheme for entangling a pair of
trapped ions, where we utilize unique features of this
Coulomb crystals in Rydberg states: the electric polar-
izability and the corresponding energy shift of Rydberg
states by an impulsive electric field. We design electric
field waveforms that kick the two-ion crystal and impose
a state-dependent force on common modes of motion.
The shuttling of the crystal [20, 21] leads to a geometric
phase, which can be controlled using the Rydberg prin-
ciple quantum number n, the trap parameters and the
shape of the kick. This entanglement operation is driven

FIG. 1. Scheme for shuttle-based state-dependent
phase accumulation. Time evolution (from left to right)
of the ion wavepacket in the presence of a fast electric kick
with field-sensitive internal states. Confinement for ion in
Rydberg state ω↑ (red) is modified as compared to electronic
ground state ω↓ (gray). Ion displacement out of its equi-
librium position by fast electric kick (green). Accumulated
state-dependent phase difference (dark red) between Rydberg
state and ground state, here π. Coherent motional excitation
(blue) can be reduced to zero by adapting the pulse.

solely electrically and its duration may be as short as
a few hundred ns, much faster than typical light-driven
gates for ions [22–25] and competing with gate operation
times driven by pulsed laser sources [26]. It resembles
laser-less ion entanglement operations driven by either
static [27] or dynamic magnetic gradients [28–30] on the
spin states of ions, however, driving large electric field
gradients and performing strong electric kicks is an es-
tablished technology in Paul traps.

In the following, we sketch the state-dependent force
for a single kicked ion and fully discuss the case of a
two-ion crystal. We continue with the description of an
entangling operation for a two-ion crystal. Furthermore,
we describe the dominating sources of imperfections and
optimize the shape of the electric kick. We conclude with
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a feasibility study, taking into account typical experimen-
tal parameters.

Spin-dependent electric kick. We consider a sin-
gle ion in a linear Paul trap, where a combination of
radio-frequency and static electric fields generate a three-
dimensional harmonic confinement. We are interested in
the motion of the ion along the trap axis, the axis of
weakest confinement, which is described by a harmonic
oscillator with frequency ω. Exciting an ion to a high-
lying Rydberg state modifies the effective confinement
due to the high polarizability [17] - one may think of
modifying its effective mass - such that the trap frequency
ωα becomes state-dependent, where α = {↑, ↓} denotes
Rydberg state or ground state, respectively. Applying
an electric kick displaces the ion out of its equilibrium
position, introduces contributions from the induced elec-
tric dipole force but also drives the harmonic oscillator
into vibrational excitation. A state-dependent phase is
accumulated, see Fig. 1. The coherently excited motion
can be reduced to the initial state by properly choosing
the pulse amplitude f(t) and pulse duration T . A phase
difference between Rydberg state and ground state is ac-
quired.

Entanglement operation. For two ions we control
the phase of the electronic basis states |αβ〉 = {|↓↓〉, |↓↑〉,
|↑↓〉, |↑↑〉}. The Coulomb interaction between the ions

leads to state-dependent collective frequencies ωαβj with
the mode index j = 1, 2 where αβ denotes the internal
states of both individual ions, either in ground state or
Rydberg state (see suppl. information):
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Rydberg excitations in the ion crystal will affect the elec-
tric potential on neighboring ions, which leads to asym-
metrical vibration around the center-of-mass due to a
difference of effective masses [31]. The potential en-
ergy is expressed in terms of the state-dependent creation
ã†j = (aαβj )† and annihilation ãj = aαβj operators (~ = 1).

Hp =
∑

αβ=↑,↓

 2∑
j=1

ωαβj ã†j ãj + V αβ0

Παβ (2)

V αβ0 depends on the equilibrium positions of the ions,
Παβ = |α〉1 〈α|1 ⊗ |β〉2 〈β|2 is the projection operator.

Fast switching of an additional electric field f(t) kicks
the ions out of their equilibrium positions and drives
the harmonic oscillator. The interaction of the electric

FIG. 2. Case study for controlled phase gate. Coher-
ent motional excitation measured as the number of phonons
(blue) and relative phase accumulation (red) as a function of
gate duration for Rydberg state 64P in 40Ca+. Kick shape is
chosen to minimize residual motional excitation and generate
phase differences of odd multiples of π for state |↑↑〉 as com-
pared to the states |↓↓〉 (dark red, dashed) and |↑↓〉 (orange,
dotdashed, scaled by 0.2) at gate times indicated by arrows.

field with the ion crystal can be described by a state-
dependent kick Fαβj (t) = f(t)lαβj [cos θαβ − (−1)j sin θαβ ]
acting on the vibrational mode with oscillator length

lαβj =
√
~/(2mωαβj ) [32–34]. Specifically, for ion crystals

containing Rydberg excitations, we obtain the driving
Hamiltonian

Hd(t) =
∑
αβ

 2∑
j=1

(Fαβj (t) ãj + h.c.) + f(t) Zαβc

Παβ . (3)

The second term of Eq. (3) is proportional to the crystal
center Zαβc and only affects the phase evolution of ion
crystals with one Rydberg excitation, see suppl. infor-
mation. The analytic time evolution operator UI for the
driven harmonic oscillator is obtained using a Magnus
expansion [35].

UI(t) =
∑
αβ

2∏
j=1

[
D
(
Aαβj (t)

)]

× exp

i 2∑
j=1

ϕαβj (t)− iΦαβe (t)

Παβ (4)

The first term describes coherently generated vibrational
mode excitation Aαβj using the displacement operator

D(Aαβj ) = exp(Aαβj ãj + h.c.). The total phase φαβ :=

ϕαβ1 +ϕαβ2 + Φαβe that is accumulated by each of the four
basis states contains contributions from the vibrational
modes and the crystal center displacement, respectively.
Assuming a constant driving f(t) = f0 for time t ∈ [0, T ],
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we obtain quantities from Eq. (4):
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ϕαβj (f0, ω
αβ
j , T ) = f20

(
lαβj

ωαβj

)2 [
ωαβj T − sin

(
ωαβj T

)]
×
[
cos θαβ − (−1)j sin θαβ

]2
, (6)
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αβ
j , T ) =

(
f0Z

αβ
c + V αβ0

)
T. (7)

The significance of the analytical equations (5-7) is that
the entanglement operation is controlled only by the kick
shape (f0, T ) and the common mode frequencies ωαβj .
Therefore, arbitrary phase rotations and entanglement
generation can be realized. For a controlled phase gate
with two ions, we consider a phase difference φ↑↑−φ↓↓ =
π while φ↓↓ = φ↑↓ = φ↓↑ and no residual excitation in
phonon modes, thus Aαβj = 0.

Case study and experimental feasibility for
40Ca+ ions. In the case study, we consider Rydberg
nP1/2 states with a scalar polarizability P ∝ n7. The

state-dependent trap frequency is ω↑ =

√
(ω↓)

2
+ ∆ω2

with ∆ω2 = −16γ2P/m [19, 36] and ω↓ = 2
√
eγ/m,

where e is the electric unit charge and γ the field gradi-
ent of the Paul trap. The trap frequencies are modified
by the interaction between the highly excited electron
with the core charge of the other ion and the large field
sensitivity of Rydberg ions. Note that the relative fre-
quency differences are ≤ 10−4, such that the excitation
of the center-of-mass modes dominates, with a small ex-
citation of the stretching mode for state |↑↓〉. For each

vibrational mode, Aαβj is periodic and can be minimized

by choosing a gate time τ = 2π/ωαβj , see Fig. 2. Taking

n = 64 and ω↑↑1 = 2π · 0.71 MHz we realize a controlled
phase gate at τ=1.4 µs and 3τ =4.2 µs (indicated by
black arrows) with mitigated coherent excitation in the
center-of-mass mode for state |↑↑〉 and correct relative
phases.

Varying the vibrational frequency by the field gradi-
ent of the Paul trap, the relative phase of π between
states |↑↑〉 and |↑↓〉 is modified, see Fig. 3(a). With a
specific combination of electric kick time and amplitude,
we achieve a phase difference φ↑↑ − φ↓↓ = π, and mini-
mize coherent excitation of modes. Rydberg states with
higher principal quantum number and larger polarizabil-
ity require smaller electric kick amplitude f0 to acomplish
the desired phase evolution.

To characterize the entanglement operation, we
analyze the state fidelity F as the square of
the overlap between a superposition |Ψ(0)〉 =
1/2 [(|↓〉+ |↑〉)⊗ (|↓〉+ |↑〉)], initialized in the motional
ground state and evolved under Eq. (4), with the ideal

FIG. 3. Differential phase and fidelity. (a) Relative phase
between states |↑↑〉 and |↑↓〉, and (b) infidelity dependent on
the field gradient of the Paul trap for different principal quan-
tum numbers of the Rydberg state. For every field gradient
of the Paul trap the electric kick shape is chosen to real-
ize φ↑↑ − φ↓↓ = π (dashed dark red), and minimize residual
phonons.

target state. Fulfilling the phase conditions as indicated
by the vertical dashed lines, the fidelity is limited by
residual phonons due to the chosen electric kick. Opti-
mizing the kick strength, kick duration and the ion con-
finement, a fidelity of 99.9% can be achieved see Fig. 3(b).
For the 36P state the required electric kick strength is
E(t) = ~

e f(t) = 28.75 V/m with a field gradient of the
Paul trap of γ = 1.32 · 106 V/m2 and a vibrational mode

frequency of ω↑↑1 = 2π · 0.57 MHz, experimentally feasi-
ble with trapped Rydberg ions [13, 14]. Thereby, the ion
crystal would be displaced along the trap axis by 10.9µm
for a total operation time of τ = 1.76 µs [20, 21]. The
method comes with the advantage, that effects due to mi-
cromotion are mitigated, as the ion crystal moves along
the trap axis. In principle, one might also employ a com-
bination of axial and radial displacements for the gate,
however, this will require synchronizing the electric kick-
ing and oscillating radio-frequency field for the Paul trap
as experimentally demonstrated in Ref. [37]. The para-
sitic Stark shift from the applied electric field is estimated
to be about four orders of magnitude smaller as compared
to the separation of Rydberg energy levels, thus we do
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FIG. 4. Optimized field kick. (a) Entanglement fidelity
and Rydberg state lifetime-limited fidelity (dashed) as a func-
tion of gate duration for 36P (black) and 64P (red) states of
40Ca+. Here, we assume a lifetime of 65 µs and 370 µs, respec-
tively. Bang-bang control: three consecutive kicks (red square
with yellow contour) improve the fidelity to 99.9% for n = 64
at 60ns operation speed. (b) Comparison of phase space tra-
jectories and (c) field amplitudes for the single constant pulse
(green, scaled by 1.5 · 103) and the waveform composed out
of three kicks (yellow).

not anticipate state mixing and fidelity reduction.

Lifetime limitation and optimized kicks. A sig-
nificant reduction of fidelity will arise from the finite Ryd-
berg state lifetime, about 30µs to 100µs [38], see dashed
lines in Fig. 4(a). Operation times above 1 µs limit the
fidelity to 90% − 99% depending on the Rydberg state.
However, a bang-bang interaction by three consecutive
kicks f(t) = {f0,−f0, f0} at times t = {0, T/4, 3T/4}
leads to a fidelity of 99.9% , see Fig. 4(a-c). We emphasize
the importance of multi-kick sequences, in this example
composed out of three kicks, as compared to the single
constant pulse, see Fig. 4(c). Note, that electric bang-
bang control of single ions has been demonstrated with
up to 10000 phonons and displacement pulses of sub-ns
resolution [39], experimental parameters that even ex-
ceed the requirements for our proposed operation. Aim-
ing for faster operations with higher fidelity, we will ex-
plore more complex phase trajectories of the wavepacket.
The additional benefit of such schemes is a robustness
against imperfections of the driving kick waveform. Such
approaches have been discussed, however, in the context
of the laser-driven Mølmer-Sørensen interaction [40, 41]
and might readily be adapted to our electric scheme. Al-
ternatively optimal control theory may deliver optimized
electric field waveforms [42–44].

Conclusion and outlook. In this work, we proposed
a new scheme for fast entanglement operations based on
electric kicks applied to trapped Rydberg ions in a lin-
ear Paul trap. Crucial to the successful implementation
of this scheme is the high polarizability of nP Rydberg
states that leads to a modification of the ion confinement
and state-dependent vibrational modes. By tuning the
field gradient of the Paul trap and shaping the electric
kick, we optimize the scheme for entanglement opera-
tions of two ions. The parameter values required are well
within regimes accessible by state-of-the-art experiments.

In future we may extend the scheme to linear ion crys-
tals entangling more than two ions, or investigate spin-
spin interactions in two-dimensional ion crystals [45] by
state-dependent electric forces. In this context, we will
study operations at finite temperature of the ion crys-
tal, motional dephasing and heating by electric noise.
The presented scheme may be adapted to the platform
of neutral Rydberg atoms trapped in arrays of optical
tweezers [10, 11, 46]. A set of common motions, analo-
gous to the normal modes of vibration for the ion crystal,
is established by the dipole-dipole interaction. State de-
pendent forces between different Rydberg states can be
implemented by a fast shuttling of the tweezer centers
[47] such that the trapped Rydberg atoms explore the
AC-Stark shift from the tweezer potential, similar as the
ion crystal explores the axial kick via its polarizability.
In the array of Rydberg atoms the emerging collective
energy-shifts may then be exploited to generate entangle-
ment. We believe that experimental and theoretical work
building on our ideas will be of relevance across a broad
set of fields, such as multi-particle quantum systems with
collective spin-motion coupling, quantum simulation and
quantum information.

We thank Rene Gerritsma for comments. This work
was supported by the Deutsche Forschungsgemeinschaft
(DFG) within the SPP 1929 Giant interactions in Ryd-
berg Systems (GiRyd), the European Research Council
under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) [ERC Grant Agreement No.
335266 (ESCQUMA)], within QuantERA by ERyQSenS,
and by the EPSRC [Grant No. EP/R04340X/1]. A. M.
acknowledges funding by Marie-Skodowska-Curie grant
agreement No. 796866 (Rydion). I. L. gratefully ac-
knowledges funding through the Royal Society Wolfson
Research Merit Award.

∗ vogel@uni-mainz.de
[1] T. F. Gallagher, Rydberg Atoms (Cambridge University

Press, Cambridge, 1994).
[2] A. Osterwalder and F. Merkt, Phys. Rev. Lett. 82, 1831

(1999).
[3] A. Facon, E. K. Dietsche, D. Grosso, S. Haroche, J. M.



5

Raimond, M. Brune, and S. Gleyzes, Nature 535, 262
(2016).

[4] M. Penasa, S. Gerlich, T. Rybarczyk, V. Métillon,
M. Brune, J. M. Raimond, S. Haroche, L. Davidovich,
and I. Dotsenko, Phys. Rev. A 94, 022313 (2016).

[5] S. Haroche and J. M. Raimond, Exploring the Quantum:
Atoms, Cavities, and Photons (Oxford Univ. Press, Ox-
ford, 2006).

[6] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté,
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