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Abstract

We prove a basic error contraction result of an adaptive discontinuous Galerkin method for an elliptic
interface problem. The interface conditions considered model mass transfer of solutes through semi-
permeable membranes and other filtering processes. The adaptive algorithm is based on a residual-
type a posteriori error estimator, with a bulk refinement criterion. The a posteriori error bound is
derived under the assumption that the triangulation is aligned with the interfaces although, crucially,
extremely general curved element shapes are also allowed, resolving the interface geometry exactly. As
a corollary, convergence of the adaptive discontinuous Galerkin method for non-essential Neumann-
and/or Robin-type boundary conditions, posed on general curved boundaries, also follows. Numerical
experiments are also presented.

Keywords: Discontinuous Galerkin method, interface problem, a posteriori error bound, adaptivity,
convergence analysis, a posteriori error analysis on curved domains.

1. Introduction

Initial- and boundary-value problems posed on multi-compartment geometries closed by interface
conditions are abundant in physical and biological modelling as well as in respective (bio-)engineering
applications. A number of finite element-type methods to approximate solutions to such problems,
especially in the context of general, possibly curved, interfaces have been proposed over the years,
such as the unfitted FEM [19], immersed interface methods [24, 25, 29], fictitious domain methods
[3, 5, 6], composite FEM [30], cut-cell techniques [26, 31, 18], and nonconforming and discontinuous
Galerkin FEM in [8, 7]. Many of the above works provide a priori error analysis of the proposed
methods and/or error estimation using adjoint techniques.

An a posteriori error analysis for a fitted discontinuous Galerkin (dG) method for elliptic interface
problems with mass-flux balance interface conditions modelling, e.g., mass transfer of solutes through
semi-permeable membranes, based on residual-type a posteriori error estimators, has been established
in [13]. However, the issue of convergence was not addressed. A key attribute in the analysis presented
in [13] was the ability to use elements with very general curved faces allowing for “fitted” approximation
of essentially arbitrary interface geometries. This is in sharp contrast with various results involving a
posteriori error bounds for finite element methods treating classical interface problems, whereby the
interface geometry is dictated by the mesh skeleton which is typically a piecewise linear (or, at most
polynomial) curve/surface; see, e.g., [32].

Whilst the topic of the convergence analysis of adaptive algorithms for elliptic problems is now
relatively well understood for both conforming and non-conforming methods, see, e.g., [27, 23, 14, 15,
4, 20, 21, 28] for works related in spirit to the developments in the present works, to the best of our
knowledge, no results in the context of elliptic interface problems exist.
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Ω1 Ω2Γtr

Figure 1: The computational domain Ω consisting of two disjoint sub-domains Ω1 and Ω2, separated by the interface
Γtr = Ω̄1 ∩ Ω̄2.

In this work, we continue the study of the adaptive dG method from [13] by proving an error
contraction result for a simple adaptive algorithm in the spirit of [14, 4], subject to the use of a bulk
refinement criterion. The mass-flux balance condition posed over a curved interface, and discretised
using general curved elements, poses a series of new challenges compared to the respective results
of [23, 4]. A discussion of admissible meshes possibly comprising of general curved elements in the
neighbourhood of the interface is also given. We refrain from discussing a respective quasi-optimality
result, as the function-space framework for this class of problems is not entirely settled, to the best of
our knowledge and, therefore, no respective embeddings of such interface-type approximation classes
to standard Sobolev-Besov-type spaces are available. Remarkably, upon restricting the analysis to
one compartment geometry, our result also shows convergence of the fitted adaptive dG method for
(one-compartment) boundary-value problems with non essential boundary conditions of Neumann or
Robin type posed on general piecewise curved geometries.

The remainder of this work is organised as follows. In Sections 2 and 3, the model problem and
the discontinuous Galerkin method along with the admissible curved element shapes, are discussed.
Some necessary approximation, trace, and inverse estimates for general curved elements are presented
in Section 4. In Sections 4.2 and 5, an extension of the conforming-nonconforming recovery operator
from [22] to curvilinear elements, proven in [13] is recalled, along with the upper and lower a posteriori
bounds for the dG method. The contraction result is proven in Section 6. Finally, some numerical
experiments investigating the performance of the a posteriori error bounds are presented in Section 7.

2. Model problem

Let Ω be a bounded open polygonal/polyhedral domain with Lipschitz boundary ∂Ω in Rd, d = 2, 3.
Ω is split into two sub-domains Ω1 and Ω2, such that Ω = Ω1 ∪ Ω2 ∪ Γtr, with Γtr := Ω̄1 ∩ Ω̄2 being
also Lipschitz continuous with bounded curvature, with W̄ ⊂ Rd denoting the closure of a set under
that standard Euclidean distance; see Figure 1 for an illustration. We consider the model problem:

−∆u = f, in Ω1 ∪ Ω2,

u = 0, on ∂Ω,

n1 · ∇u1 = Ctr(u2 − u1)|Ω1 on Ω̄1 ∩ Γtr,

n2 · ∇u2 = Ctr(u1 − u2)|Ω2 on Ω̄2 ∩ Γtr,

(1)

with ui = u|Ω̄i
, i = 1, 2, Ctr > 0 a given interface transmission (e.g., permeability) constant and ni,

i = 1, 2 denoting the respective outward unit normal vectors. This is a simplified model for mass
transfer of a solute through a semi-permeable membrane through osmosis, see eg. [9, 10, 12], but it
is rich enough in highlighting the aforementioned challenges posed for the numerical analysis of this
class of problems. Also, we set H1 := H1(Ω1 ∪ Ω2), and

H1
0 := {v ∈ H1 : v = 0 on ∂Ω}.

Upon integrating by parts on each sub-domain and applying the interface condition, we arrive to (1)
in weak form, reading: find u ∈ H1

0 such that

D (u, v) :=

∫
Ω1∪Ω2

∇u · ∇vdx+

∫
Γtr

CtrJuK · JvKds =

∫
Ω
fvdx, (2)
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for all v ∈ H1
0, where JuK := v1|Kn1 + v2|Kn2 is the jump across the interface.

3. The discontinuous Galerkin method

In this section, we recall from [13] the mesh setting and dG method for problem (2).

3.1. The mesh

Let T = {K} be a locally quasi-uniform subdivision of Ω, possibly containing regular hanging
nodes, with K a generic, possibly curved, simplicial, box-type, or prismatic element. More specifically,
we shall assume that the mesh consists of triangular or quadrilateral elements when d = 2, and of
tetrahedral or prismatic elements with triangular bases when d = 3. We stress that the prismatic
elements considered here are not assumed to have parallel bases, in general.

The mesh skeleton Γ := ∪K∈T ∂K is subdivided into three disjoint subsets Γ = ∂Ω ∪ Γint ∪ Γtr,
where Γint := Γ\(∂Ω ∪ Γtr). We make some further assumptions on the mesh in the vicinity of the
interface Γtr. In particular, we assume that each element K ∈ T such that ∂K ∩ Γtr 6= ∅ has exactly
one whole face E ⊂ Γtr; this implies that each such element has all the vertices of the face E ⊂ Γtr

lying on Γtr. Moreover, we assume that the mesh is constructed in such a way that each element K
is a Lipschitz domain.

We shall assume that curved elements are employed only to resolve the interface geometry, i.e.,
only elements K ∈ T such that ∂K ∩ Γtr 6= ∅ are curved, see Figure 2 for an illustration.

K1
K2

Γtr

ν1

ν2

•

•

Figure 2: Curved elements K1 and K2 (solid lines/curves) from either side of the interface Γtr, resolving the geometry
of Γtr.

Moreover, we assume that no interior point of an element K ∈ T (which we recall is an open
set) can have a non-trivial intersection with the interface Γtr. Furthermore, for simplicity and with no
essential loss of generality, we assume that the set ∂K∩Γtr 6= ∅ is one whole face of K, or one vertex of
K only. Hence, when d = 3, we shall only consider (possibly curved) tetrahedral or prismatic elements
with triangular bases K ∈ T such that ∂K ∩Γtr 6= ∅, so that a unique cut plane passes through the 3
vertices of K lying on Γtr. We collect such interface elements in the local set

T tr := {K ∈ T : measd−1(∂K ∩ Γtr) > 0},

where measr(ω) denotes the r-dimensional Hausdorff measure of a set ω ⊂ Rd; see Figure 2 for an
illustration of such elements. Note that elements having just one vertex on Γtr do not belong to T tr.

Assumption 3.1 We assume that:

a) (star-shapedness) each element K ∈ T tr, having the face E ⊂ Γtr, is star-shaped with respect
to all vertices opposite this face E; note that we have one such vertex when K is simplicial, or
more than one such vertices when K is box-type or prismatic. Furthermore, we assume that
each element K ∈ T tr is also star-shaped with respect to all the midpoints of the edges sharing a
common vertex with the face E ⊂ Γtr and are not (edges of) E ⊂ Γtr itself; we refer to Figure
3 for an illustration for d = 2.

b) (shape-regularity) we have m(x) · n(x) ≥ c|m(x)| uniformly across the mesh, for every vector
m(x) = x − x0, with x ∈ E and x0 any vertex opposite E ∈ Γ, and n(x) the respective unit
outward normal vector to E at x. Moreover, we assume that |m(x)| ∼ hK uniformly.
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Figure 3: Elements K ∈ T tr, are assumed to satisfy Assumption 3.1 a) (left) and b) (right)

Γtr

KK K̃

E Ẽ

Figure 4: A three-dimensional curved element K ∈ T tr (enclosed by the solid lines and curve), its related elements K̃
having the same vertices as K and straight faces (two same faces and the third depicted by a dashed line,) and K (having
two same faces and the third depicted by a dashed-dotted line.) Although it does not belong to Γtr, the face E (enclosed
by the solid lines and curve,) has a curved edge while the related face Ẽ (two same faces and the third depicted by a
dashed line,) is a straight triangle.

Assumption 3.1 b) is trivially satisfied by shape-regular elements K with straight faces. It is a natural,
minimally invasive, condition in view of proving trace estimates, cf. Lemma 4.1 below (see also [1,
Theorem 3.10] and [17, Section 3] for illuminating expositions).

Assumption 3.1 a) can always be fulfilled on sufficiently fine meshes, given that the curvature of
Γtr is bounded. Moreover, crucially, Assumption 3.1 a) allows for mesh refinement via newest vertex
bisection, for it is always possible to subdivide a curved element into two children by drawing a median
line/plane segment without crossing the curved element face.

Definition 3.2 For each K ∈ T tr, we define the simplicial or box-type related element K̃ to be the
element with straight/planar faces having the same vertices as K. Let also K ⊂ K be the largest
sub-element with straight/planar faces and all faces parallel to the faces of the related element K̃.

For two adjacent elements K,K ′ ∈ T tr sharing a common face E ∈ Γint ∪ Γtr, we shall denote
by Ẽ := ∂K̃ ∩ ∂K̃ ′ the related common face of the two (also adjacent) related simplicial or prismatic
elements K̃, K̃ ′.

Notice that in general, K 6= K̃ when ∂K ∩ Γtr is curved; see Figure 4 for an illustration.
Next, we define

Γinttr := {E ∈ Γint : E 6= Ẽ},
i.e., the subset of Γint containing all the faces E ∈ Γint with different related faces Ẽ; see again Figure 4
for an illustration. Notice that E 6= Ẽ is possible only when d = 3.

The above star-shapedness Assumption 3.1 b) effectively imply that the angles between the faces
E ⊂ Γtr and those faces in Γinttr cannot be arbitrarily small and that the Jacobian of the function
parametrising E ⊂ Γtr on a local coordinate system, as defined above is bounded. Satisfying these
assumptions may require a small number of refinements of the elements K ∈ T tr of a given initial
mesh.

3.2. Discontinuous Galerkin method

We define the discontinuous finite element space Sph, subortinate to the mesh T = {K}, by

Sph ≡ S
p
h(T ) = {v ∈ L2(Ω) : v|K ∈ Pp(K),K ∈ T }, (3)
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where Pp(K) denotes the space of polynomials of total degree p on an element K.
For each element face E ⊂ Γint∪Γtr, there are two elements K1 and K2 such that E ⊂ ∂K1∩∂K2.

The outward unit normal vectors on E of ∂K1 and ∂K2 are denoted by nK1 and nK2 , respectively.
For a function v : Ω → R that may be discontinuous across Γ, we set vi = v|Ki , and we define the
jump JvK and the average {v} of v across E by

JvK = v|K1nK1 + v|K2nK2 , {v} =
1

2
(v|K1 + v|K2) . (4)

Similarly, for a vector valued function w, piecewise smooth on T with wi = w|Ki , we define

JwK = w|K1 · nK1 + w|K2 · nK2 , {w} =
1

2
(w|K1 + w|K2) .

When E ⊂ ∂Ω, we set {v} = v, JvK = vn and JwK = w · n with n denoting the outward unit normal
to the boundary ∂Ω.

We introduce the meshsize function h : Ω → R, where h|K = hK , K ∈ T and h = {h} on each
(d − 1)-dimensional open face E ⊂ Γ. We also define hmax := maxx∈Ω h and hmin := minx∈Ω h.
Without loss of generality, we shall assume that hmax remains uniformly bounded throughout this
work, thus, avoiding having estimation constants dependent on max{1, hmax}.

To arrive the interior penalty discontinuous Galerkin method, we multiply (1) by a test function
v ∈ Sph +H1

0 and, integrate over each subdomain, we have.

Dh(uh, vh) = 〈f, vh〉, for all vh ∈ Sph, (5)

where

Dh(uh, vh) :=
∑
K∈T

∫
K
∇uh · ∇vhdx−

∫
Γ\Γtr

({∇uh} · JvhK + {∇vh} · JuhK) ds

+

∫
Γ\Γtr

γ0

h
JuhK · JvhK ds+

∫
Γtr

CtrJuhK · JvhK ds
(6)

here γ0 > 0 is the discontinuity-penalization function (to be defined precisely below,) and Ctr > 0 is
the transmission/permeability coefficient. We note that there is no discontinuity penalization on the
interface. As is standard in this class of interior penalty dG methods, the penalty parameter has to
be chosen large enough in order to ensure the stability of the discontinuous Galerkin discretization;
this is the case also here upon excluding the interface terms, cf., [12].

4. Approximation, trace, and inverse estimates

We recall some polynomial approximation results over curved elements proven in [13], which are
characterized by uniform constants, i.e., constants that are independent on the particular shape of a
curved element K. Here and in what follows, a generic positive constant, independent of the mesh and
problem parameters will be denoted by C > 0 and may take different values at different instances.

4.1. Trace and inverse estimates

Lemma 4.1 Let v ∈ H1(K) and K ∈ T tr. Then, under the above assumptions on the mesh, we have

‖v‖∂K∩Γtr ≤ C
(
h−1
K ‖v‖

2
K + hK‖∇v‖2K

)
, (7)

with C > 0, independent of the shape and size of K and of v.

Lemma 4.2 Let K ∈ T tr and assume that the related element K̃ is such that

cinvC[p
2d|K\K̃| < |K|, (8)
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with cinv > 0 the constant of the inverse estimate ‖v‖2
L∞(K̃)

≤ cinvp
2d|K̃|−1‖v‖2

K̃
, for all v ∈ Pp(K);

C[ is a geometric constant such that, for each v ∈ Pp(K), there exists a simplex K[(v) ⊂ K with
straight/planar faces such that |K| ≤ C[|K[(v)| with ‖v‖L∞(K) = ‖v‖L∞(K[(v)), where the positive
constant C[ is independent of v, hK , and p, but depends on the shape-regularity constant of K. Then,
the following estimate holds

‖v‖2K ≤ θinv(K)‖v‖2
K∩K̃ ,

where θinv(K) := |K|/
(
|K| − cinvC[p2d|K\K̃|

)
.

We refer to [13] for the details and the idea behind this non-standard construction.

Lemma 4.3 Let K ∈ T tr and let K ⊂ K and K̃ as in Definition 3.2 be such that

cinvp
2d|K̃\K| < |K̃|, (9)

for cinv > 0 as in Lemma 4.2. Then, for each v ∈ Pp(K), the following estimate holds

‖v‖2
K̃
≤ ηinv(K)‖v‖2K ,

where ηinv(K) := |K̃|/
(
|K̃| − cinvp2d|K̃\K|

)
.

Lemma 4.4 Let K ∈ T tr such that a whole face of K, say Etr, is contained in Γtr, and is, in general,
curved. Then, for each v ∈ Pp(K), the inverse estimate

‖v‖2Etr
≤ C p2

hK
‖v‖2K ,

with C > 0 constant, independent of v, p, hK and K, but dependent on the shape-regularity constant
of K.

Lemma 4.5 Let K ∈ T tr and let E a face of K, such that E ⊂ ∂K\Γtr. Then, for each v ∈ Pp(K),
the inverse estimate

‖v‖2E ≤ C
p2

hK
‖v‖2K ,

with C > 0 constant, independent of v, p, hK and K, but dependent on the shape-regularity constant
of K.

The two constants θinv and ηinv from, respectively, Lemma 4.2 and Lemma 4.3, completely char-
acterise the curvature of the elements in T tr. As such, the following provide an assumption on the
mesh curvature necessary for our analysis.

Assumption 4.6 We define the positive function θ : L2(Ω1 ∪ Ω2) → R with θ|K := θinv(K), for
K ∈ T tr, θ|K := 1, for K ∈ T \T tr, and θ := {θ} on Γ\Γtr. We also define the positive function
η : L2(Γ\Γtr)→ R with η|E := {ηinv(E)}, for E ∈ Γ\Γtr. We assume that both functions θ and η are
locally quasi-uniform.

4.2. Recovery operator

An important tool for the a posteriori analysis will be a conforming recovery operator in the
spirit of the original construction by [22]. In [13] we have modified this construction to allow for
discontinuous functions across Γtr and for curved elemental faces and edges on Γtr. More specifically,
the following result was proved.

Lemma 4.7 Given the above mesh assumptions, there exists a recovery operator E : Sph → H
1
0, such

that ∑
K∈T

‖∇α(vh − E(vh))‖2K ≤ Cα
∑

E⊂Γ\Γtr

‖
√
θηh1/2−αJvhK‖2E , (10)

for all vh ∈ Sph, Cα > 0, α = 0, 1, independent of vh, θ and h.

When Γtr is not curved, i.e., when the mesh T does not contain any elements with curved faces,
we have θ = 1 = η on Γ\Γtr in (10), thereby retrieving the known bound [22, Theorem 2.2].
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5. A posteriori error bound

The dG bilinear form was shown in [13] to be coercive on Dh on Sph × S
p
h, with respect to the

dG-norm

‖|vh|‖ : =
( ∑
K∈T

‖∇vh‖2K + ‖
√
γ0/hJvhK‖2Γ\Γtr + Ctr‖JvhK‖2Γtr

) 1
2
, (11)

for γ0 ≡ γ0(p) > 0 sufficiently large to be defined precisely below. We note carefully that γ0 depends
only on the polynomial degree p and the shape-regularity of the mesh, through the respective depen-
dence of the inverse estimates from Lemmata 4.4 and 4.5. A posteriori error bounds in the above
dG-norm have been proven in [13] and are recalled below.

We begin by considering an inconsistent extension D̂h : (H1
0 +Sph)× (H1

0 +Sph)→ R of Dh, defined
by

D̂h(w, v) :=
∑
K∈T

∫
K
∇w · ∇v dx−

∫
Γ\Γtr

({Π∇w} · JvK + {Π∇v} · JwK)ds

+

∫
Γ\Γtr

γ0

h
JwK · JvKds+

∫
Γtr

CtrJwK · JvKds.

Observe that we have D̂h(wh, vh) = Dh(wh, vh) for all wh, vh ∈ Sph, and D̂h(w, v) = D(w, v) for all
w, v ∈ H1

0.
The following continuity and coercivity result holds, whose proof is standard.

Lemma 5.1 For each w, v ∈ H1
0 + Sph, we have

D̂h(v, v) ≥ 1

2
‖|v|‖2, (12)

D̂h(w, v) ≤ C‖|w|‖‖|v|‖, (13)

if γ0 := γθη with γ > 0 large enough.

Further we introduce the a posteriori error indicator

Υ :=
( ∑
K∈T

Υ2
K

)1/2
, (14)

with

ΥK :=
(

Υ2
RK

+ Υ2
EK

+ Υ2
JK

+ Υ2
TrK

)1/2
, (15)

comprising of the interior, normal flux, jump and interface residuals

ΥRK
:= ‖h(Πf + ∆uh)‖K , ΥEK

:= ‖
√

hJ∇uhK‖∂K∩Γint ,ΥJK :=
√
γ‖√γ0h

−1/2JuhK‖∂K∩Γ\Γtr ,

ΥTrK :=
2∑
i=1

‖
√

h(CtrJuhK +∇uh) · ni‖∂K∩Γtr ,

where Π : L2(Ω) → Sph denotes the orthogonal L2-projection operator onto the discontinuous finite
element space. We also define the data oscillation term

Θ1 := ‖h(f −Πf)‖,

along its restriction on each K, Θ1,K := ‖h(f −Πf)‖K .

7



Theorem 5.2 (Upper bound) Let u be the solution of (1) and let uh ∈ Sph be its dG approximation
with γ0 as in Lemma 5.1. Then, we have the following a posteriori error bound

‖|u− uh|‖2 ≤ C
(
Υ2 + Θ2

1

)
+ C

∑
K∈T

(
1 + γ−1(1 + hKCtr)

)
Υ2
JK (16)

Theorem 5.3 (Lower bound) Let u be the solution of (1) and let uh ∈ Sph the dG solution given
by (5). Then, for all K ∈ T , we have the following bound

Υ2
RK

+ Υ2
EK
≤ C

∑
K′∈ωK

(θη(K ′))2
(
‖∇(u− uh)‖2K′ + Θ2

1,K′
)
, (17)

where ωK := {K ′ ∈ T : measd−1((∂K ∩ ∂K ′) \ Γtr) 6= 0}. Further, for two elements Ki ∈ T tr sharing
a face E ⊂ Γtr, we have the bound

2∑
i=1

‖
√

h(CtrJuhK +∇uh) · ñi‖2
Ẽi
≤ C

2∑
i=1

(
(θη(Ki))

2
(
‖∇(u− uh)‖2Ki

+ Θ2
1,Ki

)
+ Θ2

2,Ki

)
, (18)

where Ẽi := Ẽ ∩ ∂K̃i, i = 1, 2, represent the related faces Ẽ, signifying that the values of a function
on Ẽi are taken from within K̃i. Also, ñi denote the respective outward normal to Ẽi. Finally,
Θ2,Ki := |K̃i4Ki|h−dKi

‖CtrJuhK+∇uh‖Ẽi
is the interface oscillation term, with P4Q := (P\Q)∪(Q\P )

denoting the symmetric difference between two sets P and Q.

6. Convergence analysis

As in the previous section, throughout the analysis we shall assume that the discontinuity-penalisation
parameter is given in function of the curvature functions θ and η as γ0 := γθη with γ > 0 large enough
in line with Lemma 5.1. We begin by defining

Υ2
T (uh) :=

∑
K∈T

h2
K‖f + ∆uh‖2K +

∑
E∈Γint

hE‖J∇uhK‖2E +
2∑
j=1

‖h1/2 (CtrJuhK +∇uh) · ni‖2Γtr . (19)

The following result generalises to the present setting the respective crucial result in [23].

Lemma 6.1 Let E(uh) ∈ H1
0 be the continuity recovery of uh given in Lemma 4.7. Then, there exists

a constant γmin > 1, depending only on the shape regularity of the triangulations, such that for each
γ ≥ γmin, we have

γ‖√γ0h
−1/2JuhK‖2Γ\Γtr ≤ CΥ2

T (uh), (20)

with γ0 = γθη.

Proof. The dG method gives

A := Dh (uh − E(uh), uh − E(uh)) =

∫
Ω
f (uh − E(uh)) dx−Dh (E(uh), uh − E(uh)) .

Using the continuity of E(uh), the above implies

A =

∫
Ω
f (uh − E(uh)) dx−

∑
K∈T

∫
K
∇uh · ∇ (uh − E(uh)) dx

+
∑
K∈T

∫
K
∇ (uh − E(uh)) · ∇ (uh − E(uh)) dx+

∫
Γ\Γtr

{∇E(uh)} · Juh − E(uh)Kds

+

∫
Γtr

CtrJuh − E(uh)K · Juh − E(uh)Kds−
∫

Γtr

CtrJuhK · Juh − E(uh)K ds.

(21)
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Integration by parts on the second term on the right-hand side of (21) yields

−
∑
K∈T

∫
K
∇uh · ∇ (uh − E(uh)) dx

=
∑
K∈T

∫
K

∆uh (uh − E(uh)) dx−
∫

Γ\Γtr

{∇uh} · Juh − E(uh)Kds−
∫

Γ\Γtr

{uh − E(uh)} · J∇uhK ds

−
2∑
i=1

∫
Γtr

ni · ∇uh,i (uh,i − E(uh,i )) ds,

(22)

using the notation vi := v|Ωi , i = 1, 2 for a function v ∈ H1
0. Combining (21) and (22) gives

|A| ≤ CΥT (uh)
(
‖h−1(uh − E(uh))‖+ ‖h−1/2(uh − E(uh))‖Γ\Γtr

)
+ CΥT (uh)

( 2∑
j=1

‖h−1/2
(
uh − E(uh)|Ωj

)
‖2Γtr

)1/2
+
∑
K∈T

‖∇ (uh − E(uh)) ‖2K

+ Ctr‖Juh − E(uh)K‖2Γtr + ‖(θη/h)1/2JuhK‖Γ\Γtr‖(h/θη)1/2{∇E(uh)−∇uh}‖Γ\Γtr .

Now, applying Lemmas 4.4 and 4.5, along with Lemma 4.7, we arrive at the bound

|A| ≤ CΥT (uh)
∥∥√θηh−1/2JuhK

∥∥
Γ\Γtr + C(1 + Ctr

√
hmax)

∥∥√θηh−1/2JuhK
∥∥2

Γ\Γtr . (23)

Selecting now γ > 0 large enough so that it holds γ
4 ≥ C(1 + Ctr

√
hmax), we have

‖
√
γ0/hJuhK‖2Γ\Γtr ≤

C
√
γ

ΥT (uh)
∥∥√γ0h

−1/2JuhK
∥∥

Γ\Γtr +
1

4

∥∥√γ0h
−1/2JuhK

∥∥2

Γ\Γtr

≤ C

γ
Υ2
T (uh) +

1

2

∥∥√γ0h
−1/2JuhK

∥∥2

Γ\Γtr ,

(24)

and, thus, γ‖√γ0h
−1/2JuhK‖2Γ\Γtr ≤ CΥ2

T (uh), which already implies the result. �

Therefore, under the assumptions of Lemma 6.1, the a posteriori bound from Theorem 5.2 can be
reduced to

‖|u− uh|‖2 ≤ CΥ2
T (uh), (25)

i.e., the penalty term disappears from the estimator. This is crucial in view of proving the estimator
reduction property, since the penalty term involves the mesh-size h with a negative power.

6.1. Adaptive procedure

We consider a sequence {Sm}m∈N0 of fitted dG spaces Sm ≡ Sphm subordinate to a mesh Tm,
constructed satisfying the above assumptions. We shall describe and analyze an adaptive discontinuous
Galerkin method defined by an iteration of the form SOLVE → ESTIMATE → MARK → REFINE, which
will determine {Sm}m∈N automatically.

SOLVE: Given a mesh Tm, the dG approximation um ∈ Sm is computed by solving

Dm (um, vm) = 〈f, vm〉 ∀vm ∈ Sm, (26)

with Dm denoting the discrete bilinear form Dh from (6) with respect to the mesh Tm.
ESTIMATE: For each elementK ∈ Tm, we evaluate the local a posteriori error estimators ΥTm(um,K),

given by

Υ2
Tm(um,K) :=

∑
K∈Tm

h2
K‖f + ∆um‖2K +

∑
E∈∂K∩Γint

m

hE‖J∇umK‖2E

+
2∑
j=1

‖h1/2 (CtrJumK +∇um) · ni‖2∂K∩Γtr
m

;

(27)
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note that, with this notation, we have

Υ2
Tm(um) =

∑
K∈Tm

Υ2
Tm(um,K).

MARK: The third step is based on the, so-called, Dörfler or bulk marking strategy [16], whereby,
given 0 < µ < 1, we find a collection of elements Mm ⊂ Tm such that

µΥ2
Tm(um) ≤ Υ2

Tm (um,Mm) :=
∑

K∈Mm

Υ2
Tm(um,K); (28)

the collection Mm is called the set of marked elements.
REFINE: Finally, the elements and faces that have been marked are subdivided by bisection into

children or, more in general, by at least r ≥ 1 bisections, see below (cf., [16]). This process determines
the new mesh Tm. A crucial challenge for the interface problem compared to the, now standard, proof
of convergence of the above adaptive procedure applied to the single domain problem, is that the
steps MARK and REFINE are required to retain the mesh assumptions above for the elements admitting
curved faces.

In what follows, we shall use a subscript or superscript m to denote quantities related to mesh
Tm. For instance, the penalisation parameter associated to Tm will be denoted by γm0 = γθmηm, cf.
Sections 6 and 5. Note indeed that the penalisation parameter depends on the mesh through the
functions θη measuring how far a given element is from being straight. Instead, we assume that γ > 1
is fixed for all elements and meshes. Similarly ‖| · |‖m denotes the dG-norm corresponding to Tm. We
shall omit the index when no confusion is likely to occur. For the convergence proof, we make the
following (mild) assumption.

Assumption 6.2 Let θm, ηm denote the parameters characterising the curvature of mesh from As-
sumption 4.6. We further require

1 ≤ θmηm ≤ Cγ , (29)

with Cγ > 1 a constant independent of m ∈ N0.

Assumption 6.2 immediately implies the bounds:

γm0 ≤ γCγ and max{ γm0
γm−1

0

,
γm−1

0

γm0
} ≤ Cγ , (30)

where γn0 = γθnηn, n ∈ N0.
Of course, Assumption 6.2 can always be satisfied upon judicious choice of the penalty parameter γ

and, if needed, after a finite number of uniform refinements of the mesh in the vicinity of the interface.
Now, let β1 and β2 be two constants depending only on the initial triangulation and such that

0 < β1 < β2 < 1.

Assumption 6.3 For each element refined at the (m− 1)-st iteration, i.e. for each K ∈ Mm−1, let
RK := {K ′ ∈ Tm : K

′ ⊂ K} be the corresponding patch of elements in the new mesh. It is assumed
that all RK have been obtained from K ∈Mm−1 by at least r refinements and

κ1hK′ ≤ hK ≤ κ2hK′ ,

where κ1 := 2r/dβ1/β2 and κ2 := 2r/dβ2/β1.

For elements T ∈ T \T tr, Assumption 6.3 is known to be satisfied when Tm is constructed from
Tm−1 via a newest vertex bisection technique, see, e.g., [14]; for elements with faces on Γtr, Assumption
6.3 can always be satisfied after a finite number of suitable uniform refinements in the vicinity of the
interface, if needed.

Next, we show an estimator reduction property (cf., [15], Corollary 4.4).
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Lemma 6.4 Let µ and r be, respectively, the parameters determining the bulk marking and the number
of bisections in the adaptive algorithm of Section 6.1. Assuming that δ := 1 − β2

β1
2−r/d < 1 and

0 < µ < 1, we have

Υ2
Tm(um) ≤ (1− δµ

2
)Υ2
Tm−1

(um−1) + (1 +
2

δµ
) max{1, Ctr}

×
( ∑
K∈Tm

‖∇(um − um−1)‖2K + ‖
√
θmηm/hmJum − um−1K‖2Γm\Γtr

m

)
.

(31)

Proof. In what follows mesh dependent quantities without index values refer to Tm. Set vm :=
um − um−1, m ∈ N, for brevity. Using a standard Poincaré-Friedrichs inequality along with Lemma
4.7, we have

‖vm‖2 ≤ 2‖E(vm)‖2 + 2‖vm − E(vm)‖2

≤ C
∑
j=1,2

‖∇E(vm)‖2Ωj
+ C‖

√
θmηmhmJvmK‖2Γm\Γtr

m

≤ C
∑
K∈Tm

(
‖∇vm‖2K + ‖∇(vm − E(vm))‖2K

)
+ C‖

√
θmηmhmJvmK‖2Γm\Γtr

m

≤ C
∑
K∈Tm

‖∇vm‖2K + C‖
√
θmηm/hmJvmK‖2Γm\Γtr

m
.

(32)

Therefore, using Lemma 4.4 and (32), we have∑
K∈Tm

‖hm∆vm‖2K + ‖h1/2
m J∇vmK‖2Γint

m
+
∑
j=1,2

Ctr‖h1/2
m (JvmK +∇vm) · ni‖2Γtr

m

≤ C
∑
K∈Tm

‖∇vm‖2K + CCtr‖vm‖2 ≤ C
∑
K∈Tm

‖∇vm‖2K + CCtr‖
√
θmηm/hmJvmK‖2Γm\Γtr

m
,

(33)

for C > 0 constant depending only on the local geometry of the triangulation.
Using the elementary identity (a+ b)2 ≤ (1 + λ)a2 + (1 + λ−1)b2, for a, b, λ ∈ R, λ > 0, we have∑
K∈Tm

‖hm(f + ∆um)‖2K ≤ (1 + λ)
∑
K∈Tm

‖hm(f + ∆um−1)‖2K + (1 + λ−1)
∑
K∈Tm

‖hm∆vm‖2K , (34)

‖h1/2
m J∇umK‖2Γint

m
≤ (1 + λ)‖h1/2

m J∇um−1K‖2Γint
m

+ (1 + λ−1)‖h1/2
m J∇vmK‖2Γint

m
, (35)

and ∑
j=1,2

‖h1/2
m (JumK +∇um) · ni‖2Γtr

m
≤ (1 + λ)

∑
j=1,2

‖h1/2
m (Jum−1K +∇um−1) · ni‖2Γtr

m

+ (1 + λ−1)
∑
j=1,2

‖h1/2
m (JvmK +∇vm) · ni‖2Γtr

m
.

(36)

Combining (34), (35) and (36), with (33), we deduce

Υ2
Tm(um) ≤ (1 + λ)Υ2

Tm(um−1) + (1 + λ−1)C
( ∑
K∈Tm

‖∇vm‖2K + ‖
√
θmηm/hmJvmK‖2Γm\Γtr

m

)
. (37)

From Assumption 6.3, for all K
′ ∈ RK , we have hK′ ≤

(
β2
β1

)
2−r/dhK and

Υ2
Tm(um−1) = Υ2

Tm−1
(um−1, Tm−1\Mm−1) + Υ2

Tm(um−1, {RK : K ∈Mm−1})

≤ Υ2
Tm−1

(um−1, Tm−1\Mm−1) + 2−1/2Υ2
Tm−1

(um−1,Mm−1)

≤ Υ2
Tm−1

(um−1, Tm−1)− (1− β2

β1
2−r/d)Υ2

Tm−1
(um−1,Mm−1)

≤ (1− δµ)Υ2
Tm−1

(um−1, Tm−1),

(38)

making use of the Dörfler-type marking strategy property (28) in the last step. Substituting (38) into
(37), and selecting λ = δµ/2, the result already follows by noting that

(
1 + δµ

2

)(
1− δµ

)
≤ 1− δµ

2 . �
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6.2. Quasi-orthogonality

We now prove a mesh perturbation result, which we shall use to establish the quasi-orthogonality
in Lemma 6.6 below.

Lemma 6.5 For γ > 1 sufficiently large, we have

D̂m(z, z) ≤ (1 + ε)D̂m−1(z, z)x+
ξγ

ε

∥∥√γm−1
0 /hm−1JzK

∥∥2

Γm−1\Γtr
m−1

, (39)

for all z ∈ Sm−1 + H1
0, and for any 0 < ε < 1, and ξ := Cγ2(r+1)/dβ2/β1, with r ∈ N denoting the

minimum number of refinements of the elements on Γtr required in the transition from Tm−1 to Tm;
here, D̂m ≡ D̂m

h .

Proof. Since Tm is a refinement of Tm−1, we have z ∈ Sm +H1
0 also. Hence,

D̂m(z, z) = D̂m−1 (z, z) + 2

∫
Γm\Γtr

m

{Π∇z} · JzKds− 2

∫
Γm−1\Γtr

m−1

{Π∇z} · JzKds

+ ‖
√
γm0 /hmJzK‖2Γm\Γtr

m
− ‖
√
γm−1

0 /hm−1JzK‖2Γm−1\Γtr
m−1

,

since
‖JzK‖2Γtr

m
= ‖JzK‖2Γtr

m−1
,

∑
K∈Tm

‖∇z‖2 =
∑

K∈Tm−1

‖∇z‖2.

Using standard arguments based on inverse inequalities gives

2

∫
Γm−1\Γtr

m−1

{Π∇z} · JzKds ≤ C
( ∑
K∈Tm−1

‖
√
hm−1/γγ

m−1
0 ∇z‖2K

)1/2
‖
√
γγm−1

0 /hm−1JzK‖Γm−1\Γtr
m−1

≤ ε

2
D̂m−1(z, z) +

γ

2ε
‖
√
γm−1

0 /hm−1JzK‖2Γm−1\Γtr
m−1

,

and, similarly,

2

∫
Γm\Γtr

m

{Π∇z} · JzKds ≤ C
( ∑
K∈Tm

‖
√
hm/γγm0 ∇z‖

2
K

)1/2
‖
√
γγm0 /hmJzK‖Γm\Γtr

m

≤ ε

2
D̂m−1(z, z) +

γ

2ε
‖
√
γm0 /hmJzK‖2Γm\Γtr

m
,

(40)

for γ > 1 sufficiently large. Using (30) and Assumption 6.3, we also have

‖
√
γm0 hm

−1/2JzK‖2Γm\Γtr
m
≤ Cγ2r/dβ2/β1‖

√
γm−1

0 hm−1
−1/2JzK‖2Γm−1\Γtr

m−1
. (41)

Combining the above bounds yields

D̂m(z, z) ≤ (1 + ε)D̂m−1(z, z) + C
∥∥√γm−1

0 /hm−1JzK
∥∥2

Γm−1\Γtr
m−1

,

with C = ( γ2ε − 1) + (1 + γ
2ε)Cγ2r/dβ2/β1, and the assertion follows by noting that Cγ2r/dβ2/β1 > 1.�

Lemma 6.6 Let em := u− um, em−1 := u− um−1 and 0 < ε < 1. Then we have

D̂m(em, em) = (1 + ε)D̂m−1(em−1, em−1) +
C

γ

(
ε−1Υ2

Tm−1
(um−1) + Υ2

Tm(um)
)
− 1

4
‖|um − um−1|‖2m,

(42)

for γ > 1 sufficiently large and for some C > 0 constant, independent of the functions and the
parameters written explicitly in the bound.
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Proof. For brevity, we set udm := um − E(um), m ∈ N. Noting that E(um) − E(um−1) ∈ Sm ∩ H1
0,

Galerkin orthogonality and the symmetry of the bilinear form, along with the identity

em + E(um)− E(um−1) = em−1 + udm−1 − udm,

imply

D̂m(em, em) = D̂m(em + E(um)− E(um−1), em + E(um)− E(um−1))

− D̂m(E(um)− E(um−1), E(um)− E(um−1))

= D̂m(em−1, em−1) + 2D̂m(em−1, u
d
m−1 − udm)

+ D̂m(udm−1 − udm, udm−1 − udm)− D̂m(E(um)− E(um−1), E(um)− E(um−1)).

(43)

The last term on the right hand side of (43) can be bounded as follows

D̂m(E(um)− E(um−1), E(um)− E(um−1))

≥ 1

2
‖|um−1 − um|‖2m +

1

2
‖|E(um)− um + um−1 − E(um−1)|‖2m

−
∣∣∣〈um − um−1, E(um)− um + um−1 − E(um−1)〉

∣∣∣
≥ 1

4
‖|um − um−1|‖2m −

1

2
‖|udm−1 − udm|‖

2

m
.

Using this bound and Lemma 6.5 in (43), together with the continuity and the coercivity of D̂m, gives

D̂m(em, em) ≤ (1 + ε)D̂m−1(em−1, em−1) +
ξγ

ε

∥∥√γm−1
0 /hm−1Jem−1K

∥∥2

Γm−1\Γtr
m−1

,

+ C‖|udm−1 − udm|‖
2

m
− 1

4
‖|um − um−1|‖2m,

for some ε > 0, with C > 1 a constant only depending on the continuity constant in Lemma 5.1.
Finally, using the triangle inequality, in conjunction with Lemma (4.7), under the assumptions of

Lemma 6.1, along wth (30) and Assumption 6.3, we have

‖|udm−1 − udm|‖
2

m
≤ CCγ2r/dγ‖

√
γm−1

0 hm−1
−1/2Jum−1K‖2Γm−1\Γtr

m−1
+ Cγ‖

√
γm0 hm

−1/2JumK‖2Γm\Γtr
m

≤ C

γ

(
Υ2
Tm−1

(um−1) + Υ2
Tm(um)

)
,

and the result readily follows. �

6.3. Contraction property

We are now ready to prove the main theorem of this work.

Theorem 6.7 Let u ∈ H1
0. Then, there exist constants β > 0 and 0 < ρ < 1 depending only on the

shape regularity of the triangulations and on the marking parameter µ, such that

D̂m (em, em) + βΥ2
Tm (um) ≤ ρ

(
D̂m−1 (em−1, em−1) + βΥ2

Tm−1
(um−1)

)
. (44)

Proof. Using Lemmas 6.6 and 6.4, we have

D̂m (em, em) + βΥ2
Tm (um)

≤ (1 + ε) D̂m−1 (em−1, em−1)− 1

4
‖|um − um−1|‖2m +

C

εγ
Υ2
Tm−1

(um−1) +
(C
γ

+ β
)
Υ2
Tm (um)

≤ (1 + ε) D̂m−1 (em−1, em−1)− 1

4
‖|um − um−1|‖2m +

(C
εγ

+ (
C

γ
+ β)(1− δµ

2
)
)

Υ2
Tm−1

(um−1)

+ (1 +
2

δµ
)(
C

γ
+ β) max{1, Ctr}

( ∑
K∈Tm

‖∇(um − um−1)‖2K + ‖
√
θmηm/hmJum − um−1K‖2Γm\Γtr

m

)
,

(45)
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for any ε > 0. If we choose β = 1/(4(1 + 2
δµ) max{1, Ctr}) − C/γ, and γ large enough (to be

defined precisely below), this leads to absorption of the fourth term on the right hand side of (45)
by ‖|um−1 − um|‖m. Also, from (25), we have εD̂m−1 (em−1, em−1) ≤ εΥ2

Tm−1
(um−1). Therefore, for

ε = 4C/(γβδµ) and γ large enough, we deduce

D̂m (em, em) + βΥ2
Tm (um) ≤ D̂m−1 (em−1, em−1) +

(
β(1− δµ

4
) +

C

γ
(1− δµ

2
)
)

Υ2
Tm−1

(um−1) . (46)

and the proof already follows by choosing γ ≥ 4C(1− δµ/2)/(βδµ) so that β > 0. �

The contraction of D̂m (em, em) + βΥ2
Tm (um) as m → ∞ implies that D̂m (em, em) → 0 as m → ∞,

which, in turn, implies ‖|em|‖ → 0 as m→∞. Therefore the above adaptive algorithm converges.

7. Numerical experiments

We shall now illustrate the practical performance of the adaptive algorithm analysed above. All
results shown are obtained with an implementation based on the deal.II finite element library [2].
Here, we present the result of two numerical examples, with γ = 10 and local polynomial degrees equal
to one and two. In all the cases, the starting mesh is the uniform square mesh with 16× 16 elements.
Although not discussed above merely for simplicity of the presentation, it is straightforward to extend
the proposed dG method to problems with non-homogeneous Dirichlet boundary conditions on the
external boundary. Moreover, the examples presented below are concerned with straight interfaces;
for an example with curved interface we refer to [13].

7.1. Example 1

Let Ω = (−1, 1)2 and Ω1 = (−1, 0)× (−1, 1), Ω2 = (0, 1)× (−1, 1), i.e., the interval Γtr = {(x, y) :
x = 0, 0 < y < 1}. The Dirichlet boundary conditions and source term f are determined by the exact
solution

u(x) =


(
4x+ 4x2

)
e(y

2−1)
2

in Ω1;(
−5x3 + 4x+ 1

)
e(y

2−1)
2

in Ω2;

both components are subject to non-homogeneous Dirichlet boundary condition. The solution u is
compatible with the interface condition (1) when Ctr ≡ 4. The numerical solution obtained after few
iterations of the adaptive algorithm presented above is plotted in Figure 5 for p = 1, together with
the respective meshes.

(a) 6th iteration (b) 11th iteration

Figure 5: Example 1. Solution profiles.

The estimator and various norms of the error are plotted in Figure 6 under adaptive mesh refine-
ment. Optimal rates of convergence are observed with respect to the degrees of freedom for both the
estimator and the error measured in the dG-energy (and equivalent) norm(s).
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(a) p = 1. (b) p = 2.

Figure 6: Example 1. Estimator and errors for adaptive mesh refinement for p = 1, 2.

7.2. Example 2

Let Ω = (−1, 1)2\(0, 1)×(−1, 0),subdivided into two subdomains interfacing at x = 0.125. We con-
sider the classical problem with f = 0 and non-homogeneous Dirichlet boundary conditions compatible
to the exact solution

u = r2/3 sin(2θ/3),

with r =
√
x2 + y2, θ = tan−1(y/x), and Ctr ≡ 1.

The purpose of this example is to observe the behaviour of the adaptive procedure based on the
presented a posteriori error estimator, in presence of both a singularity (at the reentrant corner) and
the jump discontinuity at the interface. The numerical solution obtained after six iterations of the
adaptive algorithm is plotted in Figure 7. The refinement near the origin indicates that the error

(a) 6th iteration

Figure 7: Example 2. Solution profile with p = 1.
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estimator is practical and captures both the interface and singularity. The convergence plots reported
in Figure 8 confirm that the estimator converges at the expected rates for both uniform and adaptive
refinements.

(a) p = 1.

(b) p = 2.

Figure 8: Example 2. Estimator and expected convergence rate for adaptive (left) and uniform (right) meshes for p = 1
(above) and p = 2 (below).

8. Conclusions

This work is devoted to the convergence analysis of adaptive discontinuous Galerkin methods for
the numerical approximation of elliptic interface problems involving possibly curved interfaces and
arising in the modelling of mass transfer of solutes through semi-permeable membranes. Adaptive
algorithms were investigated, addressing the derivation of the necessary contraction property which
leads to proof of convergence of standard adaptive procedures.

The mesh design for curved elements is not treated in standard mesh generators. This creates a
number of practical issues, such as the representation of curves at the algorithmic level and, crucially
for us, the refinement of curved elements, which remains largely open. We remark that, for the
convergence result presented in Section 6, we assumed sufficient properties on the curved elements so
that a “good” bisection refinement strategy is available which results to refined meshes with the same
geometric properties for the curved elements. However, in all the numerical tests, we were not able to
find triangulations violating such assumptions in practice.
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This work and the related results presented in [13] provide the basis for further development in the
numerical solution of curved interface problems. The extension of the discontinuous Galerkin method
to essentially arbitrarily-shaped elements, including curved elements not limited to the treatment of
non-essential interface/boundary conditions, has been proposed very recently in [11]. This approach
may be extended to tackle classical transmission/interface problems, see e.g., [19, 7], although the
treatment of curved domains in an a posteriori fashion remains an open problem. Another interesting
generalization of this work is the case of unfitted meshes [19], which are widely accepted as more
practical, especially in the context of temporally moving interfaces.
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