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Abstract
Emerging evidence indicates that molecular aging may follow nonlinear or discon‐
tinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly 
for the noncoding transcriptome, and independent of metabolic and aerobic capaci‐
ties, is unknown. Applying our novel RNA method to quantify tissue coding and long 
noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to 
~60 years in human muscle and brain. In silico analysis demonstrated that this tempo‐
rary linear “signature” was regulated by drugs, which reduce mortality or extend life 
span in model organisms, including 24 inhibitors of the IGF‐1/PI3K/mTOR pathway 
that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin 
in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the 
transcript signature for reactive oxygen species in neurons, confirming that our age 
signature was largely regulated in the “pro‐longevity” direction. Quantitative net‐
work modeling demonstrated that age‐regulated ncRNA equaled the contribution 
of protein‐coding RNA within structures, but tended to have a lower heritability, im‐
plying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, 
and SKAP2 contributed to a network that did not respond to Rapamycin, and was 
associated with “neuron apoptotic processes” in protein–protein interaction analysis 
(FDR = 2.4%). ECSIT links inflammation with the continued age‐related downwards 
trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that 
sustained inhibition of ECSIT may be maladaptive. The present observations link, for 
the first time, model organism longevity programs with the endogenous but tempo‐
rary genome‐wide responses to aging in humans, revealing a pattern that may ulti‐
mately underpin personalized rates of health span.
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1  | INTRODUC TION

Aging is such an important “risk factor” for a number of chronic pa‐
thologies that enabling “healthy aging” represents a logical strategy to 
improve human health (Longo et al., 2015). In model organisms, reg‐
ulators of longevity and health span have been extensively validated 
(De Haes et al., 2014; Schaar et al., 2015); these include inhibition of 
mTOR (Lamming, Ye, Sabatini, & Baur, 2013)—a nutrient and growth 
factor sensing, GTPase regulated protein complex (Pan & Finkel, 2017), 
which regulates “protective” autophagy programs (Yang et al., 2014), 
and strategies down‐regulating mitochondrial components accompa‐
nied by modest increases in reactive oxygen species (ROS) production 
(Arriola Apelo et al., 2016; Lamming et al., 2013). Interestingly, activa‐
tion of the mTOR pathway has been reported in Alzheimer's disease 
(AD; Tramutola et al., 2015) and excessive TORC1 activity may contrib‐
ute to muscle degeneration (Tang et al., 2019). In humans, age‐related 
molecular changes are typically modeled using linear methods, yet in 
shorter‐lived organisms (Hall et al., 2017; Manczak, Jung, Park, Partovi, 

& Reddy, 2005; Rana et al., 2017; Rangaraju et al., 2015; Yang & Hekimi, 
2010) nonlinear molecular responses to age are observed (Rangaraju et 
al., 2015), featuring the aforementioned canonical pathways (Lamming 
et al., 2013; Pan & Finkel, 2017).

Beyond the need to consider different “phases” of molecular 
aging, clinical phenotypes such as aerobic capacity (Koch et al., 
2011) and insulin resistance (Timmons et al., 2018)—highly variable 
environmentally sensitive and inherited traits—potentially interact 
with aging. Quantitatively important biomarkers for health, neither 
parameter has been previously available when modeling the molecu‐
lar features of human aging. Furthermore, no study has utilized tech‐
nology to both measure exon‐specific transcript signals and provide 
robust coverage of tissue long noncoding RNAs (lncRNAs, 50% of 
the human transcriptome; Timmons et al., 2018; Deveson, Hardwick, 
Mercer, & Mattick, 2017). Furthermore, emerging evidence demon‐
strates that lncRNAs can modulate mTOR activity (Chen et al., 2018; 
Li et al., 2016). These factors could combine to explain why exist‐
ing models of human aging do not consistently identify a molecular 

F I G U R E  1  A schematic representation of the study analysis strategy. (a) For the HTA 2.0 or exon arrays, the 25‐mer array probes 
were realigned to the current genome; “single match” probes were GC content‐adjusted and study‐specific expression confirmed (low 
signal/variance filtering) before creating the template for combining probes into a transcript signal (selected from ensembl, ENST, Figure 
S1). (b) Linear modeling for “age” versus RNA was conducted using independent cohorts of human muscle profiles from physiologically 
characterized “healthy” drug‐free humans (n = 330 biopsies for decades third to sixth, n = 247 for decades sixth to ninth). The clinical data 
originate from our studies: Cohort A (Timmons et al., 2018), Cohort B (Phillips et al., 2013), Cohort C (AbouAssi et al., 2015), Cohort D 
(Phillips et al., 2017), Cohort E (Slentz et al., 2016), and Cohort F (Hangelbroek et al., 2016). The pattern of muscle age‐related transcript 
expression was confirmed in human brain (n = 299) and skin (n = 59), relying on published exon array data and our optimized transcript 
detection protocol. (c) An age‐related protein‐coding transcriptome was identified, adjusting for metabolic and aerobic capacity, and this 
provided a robust framework for characterization of the biology of age‐regulated lncRNAs, which are largely of unknown function, using 
network analysis and an age signature for in silico cMAP database drug screening. (d) The results of in silico drug screening were validated 
primary muscle cell studies
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program dominated by the canonical regulators of longevity in non‐
human systems. In the present study, we combine our advanced RNA 
methodology (Figure 1a) with the production of physiological data at 

scale, to model these three interacting phenotypes (Figure 1b). This 
revealed a molecular program in three human tissue types dominated 
by mTOR and ROS signaling, including selective loss of mitochondrial 
complex I gene expression.

2  | RESULTS

2.1 | A linear protein‐coding RNA response to aging 
is switched off by the sixth decade of life

We first examined the protein‐coding transcript responses during 
the first and second 30‐year time spans of adulthood (20–55 years, 
n = 330, Figure 1b), a choice ensuring a similarly large sample for ana‐
lyzing the following 30‐year period. The RNA‐versus‐age relationship 
was adjusted for insulin sensitivity and aerobic capacity (Phillips et 
al., 2017). This identified 1,967 ENSTs consistently age‐related across 
four clinical cohorts (Figure 2a, mean FDR 1.3%, Appendix S1), repre‐
senting 694 protein‐coding genes, of which two‐thirds declined over 
three decades. This adjusted “linear” age‐related signature included 
components of the mTORC1 pathway (LAMTOR5/HBXIP)—a regula‐
tor of protein translation and cellular autophagy (Zoncu, Efeyan, & 
Sabatini, 2011)—and members of the mTORC2 pathway (MAPKAP1; 
mSIN1)—a regulator of apoptosis and substrate metabolism (Liu, Gan, 
et al., 2013). Background bias‐adjusted ontology analysis (Timmons, 
Szkop, & Gallagher, 2015) identified down‐regulated mitochondrial 
complex I (12.8 times enrichment, FDR < 0.01%) and mitochondrial 
translation (9.9 times enrichment, FDR < 0.01%) processes. Using the 
only human brain dataset with this age‐range and exon‐based tran‐
script data (Kang et al., 2011), we examined these 1,967 ENSTs in 
cerebellum, hippocampus, and frontal cortex (18–55 years; n = 116; 
Appendix S2). Despite the more limited sample size, 47% of the age 
genes were regulated in an identical manner to our observations in 
muscle (Appendix S3). Skin, like brain, is of ectodermal origin and re‐
modeling of an exon array dataset (Haustead et al., 2016) found that 
57% of the age genes were regulated in a manner consistent with 
muscle aging (n = 59, drug‐free subjects, Appendix S2). Thus, a linear 
protein‐coding gene expression program, containing model organism 
longevity genes, is identifiable in human tissue aging during the first 
three decades of adulthood (Figure 2a).

Applying the same analysis approach across the subsequent 
three decades (51–86 years, n = 247), it was observed that none of 
the 73,654 protein‐coding ENSTs demonstrated a statistically sig‐
nificant relationship with age in skeletal muscle (the lowest FDR 
was 9%, Figure 2a). Undiagnosed disease could result in stochastic 
gene expression (reducing statistical power), so we modeled only the 
1,967 ENSTs. Five now reached a modest level of statistical signifi‐
cance: MLF1, HEXIM2, TMEM266, MYLK4, and GRSF1 (<10%FDR). 
Critically, on laborious visual inspection, a majority (76%) of the 1,967 
transcripts (507 genes) demonstrated close to a zero correlation co‐
efficient with age beyond the sixth decade (referred to as “Group 2” 
genes, Appendix S1, Figure 2b), while 24% had similar trajectories 
over both periods (“Group 1” transcripts, Figure 2b). The coefficient 
of variation for RNA expression (Figure 2c) for Group 1 did not differ 

F I G U R E  2  Linear modeling and protein‐coding transcript 
expression variation in 577 adult human muscle RNA samples. 
(a) Linear modeling applied over two‐ three‐decade periods of 
adulthood identified a statistically significant gene expression 
program during the first period but not in the second. (b) Two‐thirds 
of the Spearman rank correlation coefficients were negatively 
associated with age during the third to sixth decade of adulthood 
(FDR < 3%). A minority of these were related in a similar, numerical, 
manner to age, from the sixth decade (“Group 1 genes”), while 
the majority (557 from 853) had zero correlation with age 
beyond the sixth decade (“Group 2 genes”). HKG were potential 
neuromuscular “housekeeping genes” identified as demonstrating 
a very low coefficient of variation across age, in both tissues. (c) 
The coefficient of variation for the transcript expression values of 
the age transcripts were calculated for the two age‐regulated gene 
sets and found to be similar and stable across seven decades of 
adulthood. This is evidence that the observed age‐related pattern 
was not due to transcriptional stochasticity (“noise”) but due to the 
active switching‐off of a transcriptional program regulating Group 
2 genes
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from the Group 2, implying specific termination of interaction with 
age for Group 2 genes. For human brain, the only sufficiently sized 
older age‐range exon‐based dataset was from Hardy and colleagues 
(Trabzuni et al., 2011). One hundred and eighty‐three samples from 
the same three brain regions used above, passed quality checks (cer‐
ebellum, hippocampus, and frontal cortex; 49–91  years, Appendix 
S4). Fifty‐two Group 1 age genes were consistently regulated in 
brain and muscle (36% of those detected), while 190 Group 2 age 
genes (64% of those detected) had a consistent relationship with 
age, in muscle and brain (Appendix S4). Thus, a linear gene expres‐
sion program active during the first three decades of adulthood is 
largely “switched off” in human neuromuscular tissue, from the sixth 
decade of life.

2.2 | In vitro and in silico analyses demonstrate 
that the human age signature is regulated by proven 
mediators of model organism longevity

Multiple independent resources were utilized to provide insight into 
the regulators of this human age signature. Reactive oxygen species 
(ROS) are generated in mitochondrial respiratory chain Complex I, 
and down‐regulated Complex I genes were a highly enriched com‐
ponent of Group 2 genes (14.8× enriched, p < 1 × 10−9). Paraquat 
increases superoxide production in vitro (Lenzken et al., 2011), and 
updated analysis of data from neuronal cells treated for 18 hr found 
~60% of the expressed protein‐coding age transcripts (n  =  461) 
were regulated by ROS (vs. ~20% of all transcripts, Appendix S3, 
FDR ≤ 1%). Strikingly, 19 mitochondrial complex I genes were regu‐
lated by Paraquat in the same direction as age, in vivo. Upstream 
analysis, used as previously described (Nakhuda et al., 2016), identi‐
fied RICTOR activation (p < 1 × 10−11, Z‐score = 4.03)—a component 
of mTORC2 required for the function of long‐term memory (Huang 
et al., 2013)—and two synthetic retinoids, ST1926 (p < 1 × 10−4, Z‐
score = 3.0) and CD437 (p < 1 × 10−3, Z‐score = 3.0). In contrast, 
XBP1 was predicted to be upstream but inhibited (p < 1 × 10−4, Z‐
score = −2.38); XBP1 is a transcriptional component of the unfolded 
protein response (Rana et al., 2017).

We used Group 1 and Group 2 age signatures in CMap‐L1000v1 
(https​://clue.io/) to establish whether they matched the RNA sig‐
natures for >8,000 cell line drug‐screening assays (Corsello et al., 

2017). This analysis identified 24 inhibitors of the IGF‐1/PI3K/mTOR 
longevity‐regulating pathway across the nine cell lines, a striking 
observation as only 55 compounds in CMap‐L1000v1 are listed to 
inhibit this pathway (Appendix S5). The 24 inhibitors included rapa‐
mycin, an mTORC1 inhibitor, and Torin2, a direct active site inhibitor 
of mTOR kinase (Liu, Xu, et al., 2013). In addition, five compounds 
which activate IGF‐1/PI3K/mTOR pathway components, opposed 
our age signature (Figure 3a), confirming the bi‐directional relation‐
ship between pathway status and our in vivo signature.

To validate these in silico results from cell lines in terminally 
differentiated cells, we studied mTOR inhibition in human primary 
postmitotic myotubes (n = 32). Treated with IGF1 and amino acids, 
with or without 100 nM rapamycin (4 hr and 24 hr, Figure 3b), the 
coding and lncRNA transcriptome was profiled using the same tech‐
nology as the clinical studies (n = 32). We observed that 106 Group 
2 age genes (46% of the Group 2 genes expressed in vitro) and 21 
of the 83 Group 1 genes were responsive to rapamycin. Hierarchical 
clustering (Figure 3c) indicated that Group 2 age transcript re‐
sponses more closely resembled short‐term rapamycin treatment 
(4 hr, Figure 3c), while Group 1 age transcript responses were more 
closely associated with a 24‐hr rapamycin exposure (Figure S2). In 
contrast, when a large and robust human muscle insulin resistance 
RNA signature (Timmons et al., 2018) was utilized as a control input 
for tissue‐related bias (Timmons et al., 2015), very few compounds 
were significant (Appendix S5).

2.3 | Network and heritability analysis reveals 
potential functions for noncoding RNA

A subset of samples (n = 238, Figure 1 and Table S1) was profiled on 
the latest generation technology, enabling the study of genome‐wide 
lncRNA relationships with age. Our RNA quantification method de‐
tects ~15,000 ncRNAs across brain and muscle (Figures S4 and S5), five 
times more than short‐read RNA‐seq (Deveson et al., 2017; Jaffe et al., 
2014). After accounting for variations in aerobic and metabolic fitness 
in subjects aged 18–51 years (n = 124, Table S1), 239 ncRNA transcripts 
(180 noncoding genes) were age‐related; this included 43 natural an‐
tisenses and 36 long intergenic RNAs (Appendix S6). The relationship 
with age for these ncRNAs was examined in older subjects (Cohort E 
(n = 68, 45–75 years) and Cohort F (n = 46, 65–86 years), Table S1). 

F I G U R E  3  Discovery and validation that the in vivo muscle age signature is largely regulated by the canonical IGF1/PI3K/mTOR 
“longevity‐related” pathway. (a) The protein‐coding age transcripts were used as a signature to match to the CMap‐L1000v1 database of 
>8,000 chemicals profiled in nine distinct cell lines. The maximum possible scores are −100/100 and only 169 drugs (<2%) scored above 
−90/90. The linear age signature matched proven longevity canonical signaling pathway (IGF1–PI3K–mTOR); 24 “inhibitory” compounds 
mimicked the first period of aging, and five compounds activating aspects of the IGF1–PI3K–mTOR pathway opposed the in vivo pattern. 
(b) The relationship between the activity of mTOR pathway and the age transcripts was evaluated in human primary muscle myotubes, 
using rapamycin (100 nM). Relative changes in phosphorylation of mTOR Ser2448 and 4E‐BP1 Thr37/46 following IFG1/amino acid feeding, 
confirming the activity of rapamycin (RAU = relative arbitrary units; for 4E‐BP1). Protein data represent experiments using four independent 
experiments per treatment and time‐point. *p < 0.05, **p < 0.01, ***p < 0.001 versus baseline, respectively. #p < 0.05, ##p < 0.01, 
###p < 0.001 versus time‐matched control group, respectively. (c) RNA was isolated from eight independent experiments (per treatment/
time‐point) and profiled on the HTA 2.0 array (n = 40 arrays). Overlap between primary muscle rapamycin‐regulated transcripts (up/down‐
regulation) and the in vivo age signature (positive/negative correlation) was evaluated at 4 and 24 hr. For Group 2 age transcripts, the pattern 
of expression after 4 hr rapamycin treatment clustered more closely with the in vivo age signature (more likely only mTORC1), while the 
Group 1 genes clustered with the 24‐hr in vitro signature, when activity mTORC2 can also be affected via depletion of TOR kinase

https://clue.io/
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Again, many of ncRNAs no longer linearly correlated with age later in 
life, while interestingly 71 ncRNA transcripts demonstrated a Group 1 
type profile. LncRNA responses were integrated with protein‐coding 
aging transcripts using quantitative network analysis (Song & Zhang, 
2015). We used the largest possible batch of samples (18–67 years, 
n = 185, median age = 43 years), modeling the 840 coding and noncod‐
ing age transcripts, and discovered that the node statistics for lncRNA 
genes equaled those of the protein‐coding genes (as well as subsets 
such as “mitochondrial genes” and “in vitro rapamycin‐responsive” 
genes, Appendix S7). Thus, lncRNAs equally contribute to the network 
structure of the muscle age regulated transcriptome. Numerous lncR‐
NAs were quantitatively co‐regulated with components of the mTOR 
canonical and protein synthesis pathways (Figure 4). For example, the 
mTOR amino acid sensing Ragulator complex gene, LAMTOR5 (Li et al., 
2016), was down‐regulated from the third to sixth decade and densely 
associated with lncRNAs (n = 22). Using blood gene expression data 
from monozygotic twins (Sood et al., 2016), we conducted pilot her‐
itability analyses (Figure 4b, Table S2, and Figure S6). Heritability of 
the age‐related gene expression—estimated from intraclass correla‐
tion analysis using blood RNA—was less for lncRNAs (p = 2.2 × 10−16, 

mean difference: −0.2756 [95% CI: −0.2828, −0.2685]), compared with 
age‐related protein‐coding gene expression. This indicates that altered 
regulation of lncRNAs may better reflect environmental than genetic 
influences during human aging.

3 | DISCUSSION

We find that humans endogenously activate a transcriptional pro‐
gram related to enhanced longevity in model organisms and this 
“switches off” in human muscle and brain around the sixth decade 
of life. There is support for functionally important age “switches” 
in Drosophila, where selective midlife induction of mitochondrial 
fission via over‐expression of the GTPase gene, drp1 (DNM1L in 
humans), extends lifespan (Rana et al., 2017). Modulation of GTP 
and ROS can subsequently impact on aging via mTOR activity and 
mitochondrial redox signaling (Wang, Yang, & Zhang, 2016). Our 
modeling approach was pragmatic, relying on two large groups of 
samples to examine the “early” and “later” phase of human neu‐
romuscular aging. Our signature identified drugs used to treat 

F I G U R E  4  LAMTOR5 and associated lncRNAs. (a) Network structures within the coding/lncRNA transcript expression data were 
evaluated (n = 185, <68 years, FDR < 1% for Spearman correlation; p < 0.01 for module significance and p < 0.01 for network connectivity 
and 10,000 permutations for calculating FDR and connectivity p‐values) and plotted using a Fruchterman–Reingold force‐directed method 
(Song & Zhang, 2015). A network was identified, containing components of the mTOR pathway (LAMTOR5 and LAMTOR2, which decline 
with age). LAMTOR5 was strongly co‐regulated with >22 lncRNA (blue rectangle positively regulated with age; purple rectangle genes 
decline with age), including antisense, lincRNA, and RNA pseudogenes related to the translational machinery. Additional modules included 
mitochondrial, endoplasmic reticulum, and ribonuclear proteins with ncRNA of unknown function closely integrated with these protein‐
coding genes. (b) Intraclass correlations (ICCs) of age‐regulated genes as indicators of heritability plotted for noncoding and protein‐coding 
expression using HTA 2.0 blood RNA profiles obtained from 17 pairs of homozygotic twins (Sood et al., 2016). The heritability estimate was 
greater for protein‐coding genes (p < 0.0001, See Table S2)
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age‐associated diseases (Figure S3b, Appendix S5), for example, 
nitrendipine (Tuomilehto et al., 1999), losartan (Lindholm et al., 
2002), and fluvastatin (Arampatzis et al., 2005)—all of which re‐
duce mortality. Aliper et al assayed for potential anti‐age com‐
pounds using an artificial intelligence (AI) approach (Aliper et al., 
2016), finding HA‐1004 (calcium channel blocker) and Fasudil 
(HA‐1077), both of which regulate our Group 2 age genes. Using 
a similar approach to search for natural mimetics of rapamycin 
they identified Withaferin A (Aliper et al., 2017), and Withaferin 
A was our top‐ranked hit, while another 11 other drugs were com‐
mon to both projects. Together, these observations demonstrate 
that chemicals, which extend longevity (Arriola Apelo et al., 2016; 
Lamming et al., 2013; Lesniewski et al., 2017; Majumder et al., 
2012) or drugs that reduce mortality in human clinical trials, also 
regulate our human age‐related transcriptional signature, suggest‐
ing it could be an endogenous pro‐survival program.

The mitochondrial and Toll pathway protein ECSIT has been hy‐
pothesized to be a disease hub in dementia (Soler‐López, Badiola, 
Zanzoni, & Aloy, 2012) because it reflects a point of interaction for 
inflammation and mitochondrial biology. ECSIT (down‐regulated with 
age) was the top‐ranked hub gene in the age transcriptome (Figure S7 
and Appendix S7). Composed of 209 genes, the ECSIT network in‐
cluded CADM2, UNC13C and ST3GAL3 genes, with variants linked to 
cognition (Pasanen et al., 2018). ECSIT promotes NFκB activity (Wi et 
al., 2014), and in AD experimental models, repression of NFκB activity 
decreases BACE1 activity and both soluble and insoluble Aβ (Paris et 
al., 2010). Loss of ECSIT tempers mitochondrial Complex I assembly 
(Vogel et al., 2007), and modulation of Complex I results in changes 
in mitochondrial ROS production (Yang & Hekimi, 2010). Reactive ox‐
ygen species links mitochondrial function and the unfolded protein 
response (uPR) with aging and AD (Kennedy & Lamming, 2016; Miwa 
et al., 2016), and excess ROS generated in mitochondrial respiratory 
chain complex I (Kennedy & Lamming, 2016; Miwa et al., 2016) can 
cause neuronal death. However, moderate increases in mitochon‐
drial ROS induce pro‐longevity pathways (Heidler, Hartwig, Daniel, & 
Wenzel, 2010; Schaar et al., 2015; Yang & Hekimi, 2010).

Chronic inhibition of ECSIT, perhaps due to excess "inflammation", 
may ultimately compromise Complex I function (Geng et al., 2015; 
Soler‐López et al., 2012; Wi et al., 2014). Earlier non‐linear‐based ap‐
proaches identified a 150‐gene protein‐coding aging signature (Sood 
et al., 2015) including >30 genes subsequently linked to aging or de‐
mentia [See online supplement for citations]. As expected, only a few 
of these genes are present in our linear “age‐switch” model (UNC13C, 
MAPKAP1, SIN3A, PRKAR2A, MAPRE3, PCDH9, MSI2, and SKAP2). 
UNC13C and SKAP2 are particularly interesting as both are regulated 
by exercise training (unlike the majority of Group 1 or 2 age genes, 
Figure S8 and Appendix S8); however, ECSIT–UNC13C–SKAP2 rep‐
resent a core of Group 1 age genes that do not respond to Rapamycin 
treatment in vitro, while protein–protein interaction analysis (Xia, 
Benner, & Hancock, 2014) indicates they can be associated with “neu‐
ron apoptotic processes” (Figure S9, FDR = 2.4%, Appendix S9).

Our RNA data‐processing approach produces a more compre‐
hensive map of the lncRNA transcriptome than short‐read RNA‐seq 

approaches (FigureS 1, S4 and S5). Numerous lncRNAs were quantita‐
tively co‐regulated with mTOR‐related genes, included pseudogenes 
of the protein translation machinery (Figure 4a) which act as de‐
coys for miRNAs and RNA binding proteins (Zheng et al., 2018). 
Five lncRNA neighbors of LAMTOR5 were down‐regulated with 
age and rapamycin treatment (EIF2S2P4, SNORD51, FO681548.1, 
AC046176.1, and BX842559.2, Figure 4a and Appendix S7), while 
AC068338.2 and the U3 snoRNA (from chromosome 1) were up‐
regulated by rapamycin. U3 is upregulated with age until the sixth 
decade of life and is a regulator of 18 s rRNA folding during ribo‐
some biogenesis (Dutca, Gallagher, & Baserga, 2011). In contrast, 
LINC00319 is down‐regulated with age and promotes tumor growth 
via transcriptional silencing (Zhang et al., 2018). Given the emerging 
evidence that lncRNAs help direct mTOR specificity in vitro (Chen 
et al., 2018; Li et al., 2016), this suggests that our age‐regulated ln‐
cRNAs can fine‐tune the regulation of longevity‐related proteins.

In conclusion, we identify a molecular signature active up to 
the sixth decade of human life that largely dissipates thereafter. 
Representing inhibition of mTOR (and other strategies), excessive 
loss of activity might be predicted to impair metabolic homeostasis 
through, among other things, depletion of skeletal mass in gravity‐
sensitive humans. Whether this juxtaposition underpins the mid‐
life switch‐off that we have observed remains to be determined. 
Regulating this age signature perhaps through a combination of al‐
ready existing drugs may provide an achievable and cost‐effective 
means of promoting healthy aging and delaying dementia. On the 
other hand, the natural termination of the signature, by midlife, may 
indicate that it has outlived its usefulness.

4  | E XPERIMENTAL PROCEDURES

Extended data analysis methods are provided online and utilized nu‐
merous informatics resources (Bengtsson, Simpson, Bullard, & Hansen, 
2008; Dai et al., 2005; Gentleman et al., 2004; Wang et al., 2012). All 
clinical studies complied with the 2008 Declaration of Helsinki, and 
RNA profiling was approved by the relevant ethics committees stated 
in each clinical article; all participants provided written informed con‐
sent (AbouAssi et al., 2015; Phillips et al., 2017, 2013; Slentz et al., 2016; 
Timmons et al., 2018). An overview of the analytic steps can be found 
in Figure 1, and the clinical characteristics can be found in Table S1. 
The HTA 2.0 array data have been deposited at GEO (GSE104235 and 
GSE130789) including (n = 32, plus 8 nontreated controls, GSE130789)  
the primary skeletal muscle cell rapamycin study. Our existing 
array data are available at GEO (GSE47969, GSE47881, GSE48278, 
GSE18732, GSE73142). We utilized two human brain public domain 
datasets on exon arrays from GEO (GSE25219 and GSE46706): one 
neuronal cell line data on HTA 2.0 (GSE21450) and one human skin 
dataset (E‐GEOD‐18876), also on exon arrays. Our muscle cell studies  
were carried out as previously reported (Crossland, Timmons, & Atherton,  
2017). We conducted the CMap analysis using a database of ~8,000 
chemical perturbagens (CMap‐L1000v1) to identify chemical compound  
mediators that mimic or oppose the linear age protein‐coding signature 
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(https​://clue.io/; Corsello et al., 2017). Our recently published human 
insulin resistance RNA signature (Timmons et al., 2018) was used as a 
comparator to control for tissue‐related gene expression bias (Timmons 
et al., 2015). We used the R‐package MEGENA (Song & Zhang, 2015) 
to identify network structures (FDR < 1% for Spearman correlation; 
p < 0.01 for module significance, and p < 0.01 for network connec‐
tivity and 10,000 permutations for calculating FDR and connectivity 
p‐values), and network data plots were produced using Fruchterman–
Reingold force‐directed plotting.
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