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Abstract

Emerging evidence indicates that molecular aging may follow nonlinear or discon-
tinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly
for the noncoding transcriptome, and independent of metabolic and aerobic capaci-
ties, is unknown. Applying our novel RNA method to quantify tissue coding and long
noncoding RNA (IncRNA), we identified ~800 transcripts tracking with age up to
~60 years in human muscle and brain. In silico analysis demonstrated that this tempo-
rary linear “signature” was regulated by drugs, which reduce mortality or extend life
span in model organisms, including 24 inhibitors of the IGF-1/PISK/mTOR pathway
that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin
in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the
transcript signature for reactive oxygen species in neurons, confirming that our age
signature was largely regulated in the “pro-longevity” direction. Quantitative net-
work modeling demonstrated that age-regulated ncRNA equaled the contribution
of protein-coding RNA within structures, but tended to have a lower heritability, im-
plying IncRNA may better reflect environmental influences. Genes ECSIT, UNC13,
and SKAP2 contributed to a network that did not respond to Rapamycin, and was
associated with “neuron apoptotic processes” in protein—-protein interaction analysis
(FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards
trajectory of mitochondrial complex | gene expression (FDR < 0.01%), implying that
sustained inhibition of ECSIT may be maladaptive. The present observations link, for
the first time, model organism longevity programs with the endogenous but tempo-
rary genome-wide responses to aging in humans, revealing a pattern that may ulti-

mately underpin personalized rates of health span.
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1 | INTRODUCTION

Aging is such an important “risk factor” for a number of chronic pa-
thologies that enabling “healthy aging” represents a logical strategy to
improve human health (Longo et al., 2015). In model organisms, reg-
ulators of longevity and health span have been extensively validated
(De Haes et al., 2014; Schaar et al., 2015); these include inhibition of
mTOR (Lamming, Ye, Sabatini, & Baur, 2013)—a nutrient and growth
factor sensing, GTPase regulated protein complex (Pan & Finkel, 2017),
which regulates “protective” autophagy programs (Yang et al., 2014),
and strategies down-regulating mitochondrial components accompa-
nied by modest increases in reactive oxygen species (ROS) production
(Arriola Apelo et al., 2016; Lamming et al., 2013). Interestingly, activa-
tion of the mTOR pathway has been reported in Alzheimer's disease
(AD; Tramutola et al., 2015) and excessive TORC1 activity may contrib-
ute to muscle degeneration (Tang et al., 2019). In humans, age-related
molecular changes are typically modeled using linear methods, yet in

shorter-lived organisms (Hall et al., 2017; Manczak, Jung, Park, Partovi,

Muscle Muscle

& Reddy, 2005; Rana et al., 2017; Rangaraju et al., 2015; Yang & Hekimi,
2010) nonlinear molecular responses to age are observed (Rangaraju et
al., 2015), featuring the aforementioned canonical pathways (Lamming
et al., 2013; Pan & Finkel, 2017).

Beyond the need to consider different “phases” of molecular
aging, clinical phenotypes such as aerobic capacity (Koch et al,
2011) and insulin resistance (Timmons et al., 2018)—highly variable
environmentally sensitive and inherited traits—potentially interact
with aging. Quantitatively important biomarkers for health, neither
parameter has been previously available when modeling the molecu-
lar features of human aging. Furthermore, no study has utilized tech-
nology to both measure exon-specific transcript signals and provide
robust coverage of tissue long noncoding RNAs (IncRNAs, 50% of
the human transcriptome; Timmons et al., 2018; Deveson, Hardwick,
Mercer, & Mattick, 2017). Furthermore, emerging evidence demon-
strates that IncRNAs can modulate mTOR activity (Chen et al., 2018;
Li et al., 2016). These factors could combine to explain why exist-
ing models of human aging do not consistently identify a molecular
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FIGURE 1 A schematic representation of the study analysis strategy. (a) For the HTA 2.0 or exon arrays, the 25-mer array probes
were realigned to the current genome; “single match” probes were GC content-adjusted and study-specific expression confirmed (low
signal/variance filtering) before creating the template for combining probes into a transcript signal (selected from ensembl, ENST, Figure
S1). (b) Linear modeling for “age” versus RNA was conducted using independent cohorts of human muscle profiles from physiologically

characterized “healthy” drug-free humans (n = 330 biopsies for decades third to sixth, n = 247 for decades sixth to ninth). The clinical data
originate from our studies: Cohort A (Timmons et al., 2018), Cohort B (Phillips et al., 2013), Cohort C (AbouAssi et al., 2015), Cohort D
(Phillips et al., 2017), Cohort E (Slentz et al., 2016), and Cohort F (Hangelbroek et al., 2016). The pattern of muscle age-related transcript
expression was confirmed in human brain (n = 299) and skin (n = 59), relying on published exon array data and our optimized transcript
detection protocol. (c) An age-related protein-coding transcriptome was identified, adjusting for metabolic and aerobic capacity, and this
provided a robust framework for characterization of the biology of age-regulated IncRNAs, which are largely of unknown function, using
network analysis and an age signature for in silico cMAP database drug screening. (d) The results of in silico drug screening were validated
primary muscle cell studies
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FIGURE 2 Linear modeling and protein-coding transcript
expression variation in 577 adult human muscle RNA samples.

(a) Linear modeling applied over two- three-decade periods of
adulthood identified a statistically significant gene expression
program during the first period but not in the second. (b) Two-thirds
of the Spearman rank correlation coefficients were negatively
associated with age during the third to sixth decade of adulthood
(FDR < 3%). A minority of these were related in a similar, numerical,
manner to age, from the sixth decade (“Group 1 genes”), while

the majority (557 from 853) had zero correlation with age

beyond the sixth decade (“Group 2 genes”). HKG were potential
neuromuscular “housekeeping genes” identified as demonstrating
a very low coefficient of variation across age, in both tissues. (c)
The coefficient of variation for the transcript expression values of
the age transcripts were calculated for the two age-regulated gene
sets and found to be similar and stable across seven decades of
adulthood. This is evidence that the observed age-related pattern
was not due to transcriptional stochasticity (“noise”) but due to the
active switching-off of a transcriptional program regulating Group
2 genes

program dominated by the canonical regulators of longevity in non-
human systems. In the present study, we combine our advanced RNA
methodology (Figure 1a) with the production of physiological data at

Aglng 30f10

scale, to model these three interacting phenotypes (Figure 1b). This
revealed a molecular program in three human tissue types dominated
by mTOR and ROS signaling, including selective loss of mitochondrial

complex | gene expression.

2 | RESULTS

2.1 | Alinear protein-coding RNA response to aging
is switched off by the sixth decade of life

We first examined the protein-coding transcript responses during
the first and second 30-year time spans of adulthood (20-55 years,
n = 330, Figure 1b), a choice ensuring a similarly large sample for ana-
lyzing the following 30-year period. The RNA-versus-age relationship
was adjusted for insulin sensitivity and aerobic capacity (Phillips et
al., 2017). This identified 1,967 ENSTs consistently age-related across
four clinical cohorts (Figure 2a, mean FDR 1.3%, Appendix S1), repre-
senting 694 protein-coding genes, of which two-thirds declined over
three decades. This adjusted “linear” age-related signature included
components of the mTORC1 pathway (LAMTORS5/HBXIP)—a regula-
tor of protein translation and cellular autophagy (Zoncu, Efeyan, &
Sabatini, 2011)—and members of the mTORC2 pathway (MAPKAP1;
mSIN1)—a regulator of apoptosis and substrate metabolism (Liu, Gan,
et al., 2013). Background bias-adjusted ontology analysis (Timmons,
Szkop, & Gallagher, 2015) identified down-regulated mitochondrial
complex | (12.8 times enrichment, FDR < 0.01%) and mitochondrial
translation (9.9 times enrichment, FDR < 0.01%) processes. Using the
only human brain dataset with this age-range and exon-based tran-
script data (Kang et al., 2011), we examined these 1,967 ENSTs in
cerebellum, hippocampus, and frontal cortex (18-55 years; n = 116;
Appendix S2). Despite the more limited sample size, 47% of the age
genes were regulated in an identical manner to our observations in
muscle (Appendix S3). Skin, like brain, is of ectodermal origin and re-
modeling of an exon array dataset (Haustead et al., 2016) found that
57% of the age genes were regulated in a manner consistent with
muscle aging (n = 59, drug-free subjects, Appendix S2). Thus, a linear
protein-coding gene expression program, containing model organism
longevity genes, is identifiable in human tissue aging during the first
three decades of adulthood (Figure 2a).

Applying the same analysis approach across the subsequent
three decades (51-86 years, n = 247), it was observed that none of
the 73,654 protein-coding ENSTs demonstrated a statistically sig-
nificant relationship with age in skeletal muscle (the lowest FDR
was 9%, Figure 2a). Undiagnosed disease could result in stochastic
gene expression (reducing statistical power), so we modeled only the
1,967 ENSTs. Five now reached a modest level of statistical signifi-
cance: MLF1, HEXIM2, TMEM266, MYLK4, and GRSF1 (<10%FDR).
Critically, on laborious visual inspection, a majority (76%) of the 1,967
transcripts (507 genes) demonstrated close to a zero correlation co-
efficient with age beyond the sixth decade (referred to as “Group 2"
genes, Appendix S1, Figure 2b), while 24% had similar trajectories
over both periods (“Group 1" transcripts, Figure 2b). The coefficient
of variation for RNA expression (Figure 2c) for Group 1 did not differ
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from the Group 2, implying specific termination of interaction with
age for Group 2 genes. For human brain, the only sufficiently sized
older age-range exon-based dataset was from Hardy and colleagues
(Trabzuni et al., 2011). One hundred and eighty-three samples from
the same three brain regions used above, passed quality checks (cer-
ebellum, hippocampus, and frontal cortex; 49-91 years, Appendix
S4). Fifty-two Group 1 age genes were consistently regulated in
brain and muscle (36% of those detected), while 190 Group 2 age
genes (64% of those detected) had a consistent relationship with
age, in muscle and brain (Appendix S4). Thus, a linear gene expres-
sion program active during the first three decades of adulthood is
largely “switched off” in human neuromuscular tissue, from the sixth
decade of life.

2.2 | Invitro and in silico analyses demonstrate
that the human age signature is regulated by proven
mediators of model organism longevity

Multiple independent resources were utilized to provide insight into
the regulators of this human age signature. Reactive oxygen species
(ROS) are generated in mitochondrial respiratory chain Complex |,
and down-regulated Complex | genes were a highly enriched com-
ponent of Group 2 genes (14.8x enriched, p < 1 x 10™%). Paraquat
increases superoxide production in vitro (Lenzken et al., 2011), and
updated analysis of data from neuronal cells treated for 18 hr found
~60% of the expressed protein-coding age transcripts (n = 461)
were regulated by ROS (vs. ~20% of all transcripts, Appendix S3,
FDR < 1%). Strikingly, 19 mitochondrial complex | genes were regu-
lated by Paraquat in the same direction as age, in vivo. Upstream
analysis, used as previously described (Nakhuda et al., 2016), identi-
fied RICTOR activation (p < 1 x 10", Z-score = 4.03)—a component
of mTORC2 required for the function of long-term memory (Huang
et al., 2013)—and two synthetic retinoids, ST1926 (p < 1 x 10_4, Z-
score = 3.0) and CD437 (p < 1 x 107%, Z-score = 3.0). In contrast,
XBP1 was predicted to be upstream but inhibited (p < 1 x 1074, Z-
score = -2.38); XBP1 is a transcriptional component of the unfolded
protein response (Rana et al., 2017).

We used Group 1 and Group 2 age signatures in CMap-L1000v1
(https://clue.io/) to establish whether they matched the RNA sig-
natures for >8,000 cell line drug-screening assays (Corsello et al.,

2017). This analysis identified 24 inhibitors of the IGF-1/PI3K/mTOR
longevity-regulating pathway across the nine cell lines, a striking
observation as only 55 compounds in CMap-L1000v1 are listed to
inhibit this pathway (Appendix S5). The 24 inhibitors included rapa-
mycin, an mTORC1 inhibitor, and Torin2, a direct active site inhibitor
of mTOR kinase (Liu, Xu, et al., 2013). In addition, five compounds
which activate IGF-1/PI3K/mTOR pathway components, opposed
our age signature (Figure 3a), confirming the bi-directional relation-
ship between pathway status and our in vivo signature.

To validate these in silico results from cell lines in terminally
differentiated cells, we studied mTOR inhibition in human primary
postmitotic myotubes (n = 32). Treated with IGF1 and amino acids,
with or without 100 nM rapamycin (4 hr and 24 hr, Figure 3b), the
coding and IncRNA transcriptome was profiled using the same tech-
nology as the clinical studies (n = 32). We observed that 106 Group
2 age genes (46% of the Group 2 genes expressed in vitro) and 21
of the 83 Group 1 genes were responsive to rapamycin. Hierarchical
clustering (Figure 3c) indicated that Group 2 age transcript re-
sponses more closely resembled short-term rapamycin treatment
(4 hr, Figure 3c), while Group 1 age transcript responses were more
closely associated with a 24-hr rapamycin exposure (Figure S2). In
contrast, when a large and robust human muscle insulin resistance
RNA signature (Timmons et al., 2018) was utilized as a control input
for tissue-related bias (Timmons et al., 2015), very few compounds
were significant (Appendix S5).

2.3 | Network and heritability analysis reveals
potential functions for noncoding RNA

A subset of samples (n = 238, Figure 1 and Table S1) was profiled on
the latest generation technology, enabling the study of genome-wide
IncRNA relationships with age. Our RNA quantification method de-
tects ~15,000 ncRNAs across brain and muscle (Figures S4 and S5), five
times more than short-read RNA-seq (Deveson et al., 2017; Jaffe et al.,
2014). After accounting for variations in aerobic and metabolic fitness
in subjects aged 18-51 years (n = 124, Table S1), 239 ncRNA transcripts
(180 noncoding genes) were age-related; this included 43 natural an-
tisenses and 36 long intergenic RNAs (Appendix Sé). The relationship
with age for these ncRNAs was examined in older subjects (Cohort E
(n = 68, 45-75 years) and Cohort F (n = 46, 65-86 years), Table S1).

FIGURE 3 Discovery and validation that the in vivo muscle age signature is largely regulated by the canonical IGF1/PI3K/mTOR
“longevity-related” pathway. (a) The protein-coding age transcripts were used as a signature to match to the CMap-L1000v1 database of
>8,000 chemicals profiled in nine distinct cell lines. The maximum possible scores are -100/100 and only 169 drugs (<2%) scored above
-90/90. The linear age signature matched proven longevity canonical signaling pathway (IGF1-PI3K-mTOR); 24 “inhibitory” compounds
mimicked the first period of aging, and five compounds activating aspects of the IGF1-PI3K-mTOR pathway opposed the in vivo pattern.

(b) The relationship between the activity of mTOR pathway and the age transcripts was evaluated in human primary muscle myotubes,

using rapamycin (100 nM). Relative changes in phosphorylation of mTOR Ser2448 and 4E-BP1 Thr37/46 following IFG1/amino acid feeding,
confirming the activity of rapamycin (RAU = relative arbitrary units; for 4E-BP1). Protein data represent experiments using four independent
experiments per treatment and time-point. *p < 0.05, **p < 0.01, ***p < 0.001 versus baseline, respectively. #p < 0.05, ##p < 0.01,

###p < 0.001 versus time-matched control group, respectively. (c) RNA was isolated from eight independent experiments (per treatment/
time-point) and profiled on the HTA 2.0 array (n = 40 arrays). Overlap between primary muscle rapamycin-regulated transcripts (up/down-
regulation) and the in vivo age signature (positive/negative correlation) was evaluated at 4 and 24 hr. For Group 2 age transcripts, the pattern
of expression after 4 hr rapamycin treatment clustered more closely with the in vivo age signature (more likely only mTORC1), while the
Group 1 genes clustered with the 24-hr in vitro signature, when activity mTORC2 can also be affected via depletion of TOR kinase
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evaluated (n = 185, <68 years, FDR < 1% for Spearman correlation; p < 0.01 for module significance and p < 0.01 for network connectivity
and 10,000 permutations for calculating FDR and connectivity p-values) and plotted using a Fruchterman-Reingold force-directed method
(Song & Zhang, 2015). A network was identified, containing components of the mTOR pathway (LAMTORS5 and LAMTOR2, which decline
with age). LAMTORS was strongly co-regulated with >22 IncRNA (blue rectangle positively regulated with age; purple rectangle genes
decline with age), including antisense, lincRNA, and RNA pseudogenes related to the translational machinery. Additional modules included
mitochondrial, endoplasmic reticulum, and ribonuclear proteins with ncRNA of unknown function closely integrated with these protein-
coding genes. (b) Intraclass correlations (ICCs) of age-regulated genes as indicators of heritability plotted for noncoding and protein-coding
expression using HTA 2.0 blood RNA profiles obtained from 17 pairs of homozygotic twins (Sood et al., 2016). The heritability estimate was

greater for protein-coding genes (p < 0.0001, See Table S2)

Again, many of ncRNAs no longer linearly correlated with age later in
life, while interestingly 71 ncRNA transcripts demonstrated a Group 1
type profile. LncRNA responses were integrated with protein-coding
aging transcripts using quantitative network analysis (Song & Zhang,
2015). We used the largest possible batch of samples (18-67 years,
n = 185, median age = 43 years), modeling the 840 coding and noncod-
ing age transcripts, and discovered that the node statistics for IncRNA
genes equaled those of the protein-coding genes (as well as subsets
such as “mitochondrial genes” and “in vitro rapamycin-responsive”
genes, Appendix S7). Thus, IncRNAs equally contribute to the network
structure of the muscle age regulated transcriptome. Numerous IncR-
NAs were quantitatively co-regulated with components of the mTOR
canonical and protein synthesis pathways (Figure 4). For example, the
mTOR amino acid sensing Ragulator complex gene, LAMTORS5 (Li et al.,
2016), was down-regulated from the third to sixth decade and densely
associated with IncRNAs (n = 22). Using blood gene expression data
from monozygotic twins (Sood et al., 2016), we conducted pilot her-
itability analyses (Figure 4b, Table S2, and Figure Sé). Heritability of
the age-related gene expression—estimated from intraclass correla-
tion analysis using blood RNA—was less for INcRNAs (p = 2.2 x 107¢,

mean difference: -0.2756 [95% Cl: -0.2828, -0.2685]), compared with
age-related protein-coding gene expression. This indicates that altered
regulation of IncRNAs may better reflect environmental than genetic

influences during human aging.

3 | DISCUSSION

We find that humans endogenously activate a transcriptional pro-
gram related to enhanced longevity in model organisms and this
“switches off” in human muscle and brain around the sixth decade
of life. There is support for functionally important age “switches”
in Drosophila, where selective midlife induction of mitochondrial
fission via over-expression of the GTPase gene, drpl (DNMI1L in
humans), extends lifespan (Rana et al., 2017). Modulation of GTP
and ROS can subsequently impact on aging via mTOR activity and
mitochondrial redox signaling (Wang, Yang, & Zhang, 2016). Our
modeling approach was pragmatic, relying on two large groups of
samples to examine the “early” and “later” phase of human neu-
romuscular aging. Our signature identified drugs used to treat
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age-associated diseases (Figure S3b, Appendix S5), for example,
nitrendipine (Tuomilehto et al., 1999), losartan (Lindholm et al.,
2002), and fluvastatin (Arampatzis et al., 2005)—all of which re-
duce mortality. Aliper et al assayed for potential anti-age com-
pounds using an artificial intelligence (Al) approach (Aliper et al.,
2016), finding HA-1004 (calcium channel blocker) and Fasudil
(HA-1077), both of which regulate our Group 2 age genes. Using
a similar approach to search for natural mimetics of rapamycin
they identified Withaferin A (Aliper et al., 2017), and Withaferin
A was our top-ranked hit, while another 11 other drugs were com-
mon to both projects. Together, these observations demonstrate
that chemicals, which extend longevity (Arriola Apelo et al., 2016;
Lamming et al.,, 2013; Lesniewski et al., 2017; Majumder et al.,
2012) or drugs that reduce mortality in human clinical trials, also
regulate our human age-related transcriptional signature, suggest-
ing it could be an endogenous pro-survival program.

The mitochondrial and Toll pathway protein ECSIT has been hy-
pothesized to be a disease hub in dementia (Soler-Lépez, Badiola,
Zanzoni, & Aloy, 2012) because it reflects a point of interaction for
inflammation and mitochondrial biology. ECSIT (down-regulated with
age) was the top-ranked hub gene in the age transcriptome (Figure S7
and Appendix S7). Composed of 209 genes, the ECSIT network in-
cluded CADM2, UNC13C and ST3GAL3 genes, with variants linked to
cognition (Pasanen et al., 2018). ECSIT promotes NF«B activity (Wi et
al., 2014), and in AD experimental models, repression of NFkB activity
decreases BACE1 activity and both soluble and insoluble Ap (Paris et
al., 2010). Loss of ECSIT tempers mitochondrial Complex | assembly
(Vogel et al., 2007), and modulation of Complex | results in changes
in mitochondrial ROS production (Yang & Hekimi, 2010). Reactive ox-
ygen species links mitochondrial function and the unfolded protein
response (UPR) with aging and AD (Kennedy & Lamming, 2016; Miwa
et al., 2016), and excess ROS generated in mitochondrial respiratory
chain complex | (Kennedy & Lamming, 2016; Miwa et al., 2016) can
cause neuronal death. However, moderate increases in mitochon-
drial ROS induce pro-longevity pathways (Heidler, Hartwig, Daniel, &
Wenzel, 2010; Schaar et al., 2015; Yang & Hekimi, 2010).

Chronic inhibition of ECSIT, perhaps due to excess "inflammation",
may ultimately compromise Complex | function (Geng et al., 2015;
Soler-Lépez et al., 2012; Wi et al., 2014). Earlier non-linear-based ap-
proaches identified a 150-gene protein-coding aging signature (Sood
et al., 2015) including >30 genes subsequently linked to aging or de-
mentia [See online supplement for citations]. As expected, only a few
of these genes are present in our linear “age-switch” model (UNC13C,
MAPKAP1, SIN3A, PRKAR2A, MAPRE3, PCDH9, MSI2, and SKAP2).
UNC13C and SKAP2 are particularly interesting as both are regulated
by exercise training (unlike the majority of Group 1 or 2 age genes,
Figure S8 and Appendix S8); however, ECSIT-UNC13C-SKAP2 rep-
resent a core of Group 1 age genes that do not respond to Rapamycin
treatment in vitro, while protein-protein interaction analysis (Xia,
Benner, & Hancock, 2014) indicates they can be associated with “neu-
ron apoptotic processes” (Figure S9, FDR = 2.4%, Appendix S9).

Our RNA data-processing approach produces a more compre-
hensive map of the IncRNA transcriptome than short-read RNA-seq
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approaches (FigureS 1,54 and S5). Numerous IncRNAs were quantita-
tively co-regulated with mTOR-related genes, included pseudogenes
of the protein translation machinery (Figure 4a) which act as de-
coys for miRNAs and RNA binding proteins (Zheng et al., 2018).
Five IncRNA neighbors of LAMTORS5 were down-regulated with
age and rapamycin treatment (EIF252P4, SNORD51, FO681548.1,
AC046176.1, and BX842559.2, Figure 4a and Appendix S7), while
AC068338.2 and the U3 snoRNA (from chromosome 1) were up-
regulated by rapamycin. U3 is upregulated with age until the sixth
decade of life and is a regulator of 18 s rRNA folding during ribo-
some biogenesis (Dutca, Gallagher, & Baserga, 2011). In contrast,
LINC00319 is down-regulated with age and promotes tumor growth
via transcriptional silencing (Zhang et al., 2018). Given the emerging
evidence that IncRNAs help direct mTOR specificity in vitro (Chen
et al., 2018; Li et al., 2016), this suggests that our age-regulated In-
cRNAs can fine-tune the regulation of longevity-related proteins.

In conclusion, we identify a molecular signature active up to
the sixth decade of human life that largely dissipates thereafter.
Representing inhibition of mTOR (and other strategies), excessive
loss of activity might be predicted to impair metabolic homeostasis
through, among other things, depletion of skeletal mass in gravity-
sensitive humans. Whether this juxtaposition underpins the mid-
life switch-off that we have observed remains to be determined.
Regulating this age signature perhaps through a combination of al-
ready existing drugs may provide an achievable and cost-effective
means of promoting healthy aging and delaying dementia. On the
other hand, the natural termination of the signature, by midlife, may

indicate that it has outlived its usefulness.

4 | EXPERIMENTAL PROCEDURES

Extended data analysis methods are provided online and utilized nu-
merous informatics resources (Bengtsson, Simpson, Bullard, & Hansen,
2008; Dai et al., 2005; Gentleman et al., 2004; Wang et al., 2012). All
clinical studies complied with the 2008 Declaration of Helsinki, and
RNA profiling was approved by the relevant ethics committees stated
in each clinical article; all participants provided written informed con-
sent (AbouAssi et al., 2015; Phillips et al., 2017, 2013; Slentz et al., 2016;
Timmons et al., 2018). An overview of the analytic steps can be found
in Figure 1, and the clinical characteristics can be found in Table S1.
The HTA 2.0 array data have been deposited at GEO (GSE104235 and
GSE130789) including (n = 32, plus 8 nontreated controls, GSE130789)
the primary skeletal muscle cell rapamycin study. Our existing
array data are available at GEO (GSE47969, GSE47881, GSE48278,
GSE18732, GSE73142). We utilized two human brain public domain
datasets on exon arrays from GEO (GSE25219 and GSE46706): one
neuronal cell line data on HTA 2.0 (GSE21450) and one human skin
dataset (E-GEOD-18876), also on exon arrays. Our muscle cell studies
werecarriedoutaspreviouslyreported(Crossland, Timmons,&Atherton,
2017). We conducted the CMap analysis using a database of ~8,000
chemicalperturbagens(CMap-L1000v1)toidentify chemicalcompound
mediators that mimic or oppose the linear age protein-coding signature
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(https://clue.io/; Corsello et al., 2017). Our recently published human
insulin resistance RNA signature (Timmons et al., 2018) was used as a
comparator to control for tissue-related gene expression bias (Timmons
et al., 2015). We used the R-package MEGENA (Song & Zhang, 2015)
to identify network structures (FDR < 1% for Spearman correlation;
p < 0.01 for module significance, and p < 0.01 for network connec-
tivity and 10,000 permutations for calculating FDR and connectivity
p-values), and network data plots were produced using Fruchterman-

Reingold force-directed plotting.
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