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Abstract 
 
This paper presents a load-based optimization approach for improving the efficiency of a packed bed. The optimization is based on 
splitting the work-cycle of the thermal store into two frequency components: low and high. A packed bed is designed for each one of 
the two profiles. A packed bed can be customised much better for a duty-cycle that contains a narrow range of frequencies.  
The case study presented considers a 24h working-cycle (12h charge / 12h discharge) with a 10 MW peak power and an exergy 
storage requirement of 33.3 MWh (76.3 MWh of heat). A packed bed was optimized for this duty-cycle using a one dimensional 
model that varies the aspect ratio and the rock size. This packed bed is the ‘reference case’ for the study. The aim of the load-based 
optimization is to create a two-bed system that achieves lower exergy losses than the reference case while keeping the overall 
storage capacity constant. 
A sign-preserving filter is used as the signal-splitting tool. Numerous different work-cycle “splits” are explored. Results show that the 
exergy losses of the packed bed can be considerably reduced. The optimum work-cycle split considers a low-frequency packed bed 
that supplies 85% of the storage capacity and a high-frequency packed bed that provides the remaining 15%. The combined losses of 
the two packed beds are 644 kWh, which represents a reduction of 25.5 % in comparison to the exergy losses of the reference case. 
The study demonstrates that the “load-based optimization” allows replacing a packed bed with an equivalent but more efficient 
two-bed system at almost no additional cost.  
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1. Introduction 
 
Energy storage has received considerable attention in recent 

years from both, the industrial and academic communities. It 

is deemed as a feasible and economically attractive solution to 

the grid balancing problem caused by the variability in the 

output of renewable generation [1,2]. Besides being an 

enabler for the further penetration of renewables into the 

grid, energy storage technologies offer users the ability of 

carrying out energy arbitrage [3-4] and, provided it is a 

thermal solution, the possibility of recovering waste heat from 

industrial processes [5]. 

 

Several thermo-mechanical systems for bulk storage of energy 

have been proposed and widely studied [6]. These include 

compressed air energy storage (CAES) [7-9], liquid air energy 

storage (LAES) [10-12] and pumped heat energy storage 

(PHES) [13-15]. All of them are regarded as very promising 

technologies and considerable amounts of research and 

resources have been devoted towards improving their 

performance and cost-effectiveness.  

 

One component that the above systems have in common—

and is key to their operation—is a thermal store.  Packed beds 

of rock are the most commonly used type of thermal storage 

in these systems due to a number of desirable features such 

as: high efficiencies attainable, low cost, simplicity, 

compatibility with different heat transfer fluids (HTF) and 

broad operating temperature range (120-1200 K). Packed 

beds can also be used in concentrated solar power (CSP) 

plants for storing solar heat at times of high irradiation and 

low demand prior to generating electricity or as stand-alone 

components for the recovery of industrial waste heat. 
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Nomenclature Table 

Acronyms 𝛿𝑡 Duration of time step (s) 
CAES Compressed Air Energy Storage 𝛿𝑥 Height of an element of the geometry (m) 
CSP Concentrated Solar Power ΔP Pressure drop (Pa) 

HTF Heat Transfer Fluid 
ΔT Temperature difference between hot and 

cold ends of packed bed (K) 
LAES Liquid Air Energy Storage 𝐷𝑃  Particle diameter (m) 
PHES Pumped Heat Energy Storage ε Void fraction 

PPtS Peak Power to Size ratio f Friction factor 

RMS Root Mean Square h Convection coefficient  (W/m2·K) 
RPtS RMS Power to Size k Thermal conductivity (W/m·K) 
VRE Variable Renewable Energy 𝐾𝐵  Capacity ratio of the signal split 
Sub-indices μ Dynamic viscosity (Pa·s) 
c Container M Mass (kg) 
g Gas Nu Nusselt number 
r Rock  𝑁𝑟𝑢𝑛𝑠 Number of runs carried out by filter 
Symbology 𝜌 Density (kg/m3) 
𝛼 Aspect ratio P Pressure (Pa) 
𝑨 Original working cycle Pr Prandtl number 
A Cross-sectional area (m2) 𝑄𝑎  Heat transferred by advection (J) 
𝑩 Low-frequency part of working cycle 𝑄𝑐𝑜𝑛𝑣 Heat transferred by convection (J) 
B Exergy content (MWh) 𝑄𝐾  Heat transferred by conduction (J) 
𝐵𝑖𝑛  Total exergy input during charge (MWh) R Specific gas constant (J/kg·K) 
𝐵𝑙−𝐸𝑥   Exhaust exergy losses (MWh) Re Reynolds number 
𝐵𝑙−𝐻𝑇 Exergy losses due to heat transfer (MWh) 𝑠𝑟  Surface area of rocks (m2) 
𝐵𝑙−𝑃𝐷 Exergy losses due to pressure drops (MWh) Size Energy storage capacity (MWh) 
𝐵𝑙−𝑆𝐷 Exergy losses due to self-discharge (MWh) t Time (s) 
𝐵𝑜𝑢𝑡  Total exergy output during discharge (MWh) T Temperature (K) 
𝑪 High-frequency part of working cycle 𝜐𝑔 Superficial velocity of flow (m/s) 

𝐶𝑃 Specific heat capacity (J/kg·K) 𝑊𝑚𝑎𝑥  Max. wavelet width used by filter 

 

A packed bed consists of a container filled with a heat storage 

material, such as rock pebbles or small ceramic particles. A 

hot HTF (air, steam, oil) is pumped through the top of the 

container to charge the packed bed. As the hot HTF flows 

downwards, heat is transferred to the rocks. Energy is stored 

in the rocks as a consequence of their temperature change. To 

discharge the packed bed, the direction of the flow is 

reversed. A cold HTF enters the container through the bottom 

side and extracts heat from the rocks as it flows upwards. A 

thermal front (known as a thermocline) moves down and up 

the packed bed as it is charged or discharged. Packed beds can 

be either pressurized or non-pressurized.  The latter 

configuration is commonly preferred due to the lower cost of 

the container; however in most cases a heat exchanger will be 

required somewhere else in the system.  

 

The bulk energy storage systems mentioned above (CAES, 

LAES, PTES) depend on exergy-efficient and cost effective 

thermal stores; therefore, special attention should be paid to 

their design. A vast amount of research has been devoted to 

develop and validate analytical models for characterizing the 

behaviour of packed beds and for simulating their 

performance under different work cycles [16-27]. Additionally, 

numerous authors have carried out parametric studies aimed 

at understanding the effect that different design and 

operational parameters (particle size, void fraction, mass flow 

rates, charging/discharging rates, materials used, etc.) have 

on the performance of the thermal storage units [28-37]. 

 

Notwithstanding, there is still an ample area of opportunity 

for improving the current designs of packed beds. More 

efficient or less expensive packed beds will lead to more cost-

effective large-scale energy storage systems. This paper build 

on work carried out by the University of Nottingham [38-41]. 

The study incorporates the numerical models previously 

developed into a novel optimization approach that focuses on 

the frequency of the duty-cycle of a packed bed with aims at 

reducing its roundtrip exergy losses.  

 
1.1 Objective and justification 
 

The objective of this work is to demonstrate that it is 

possible—in some cases—to achieve a reduction in the total 

exergy losses of a packed bed by splitting its work cycle into 
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two (or more) profiles based on frequency ranges. Each one of 

the smaller work-cycles created is handled by an independent 

packed bed that has beeen expressly designed for it. The 

design of a packed bed can be much better tailored for a work 

cycle that contains a narrower range of frequencies. If a 

packed bed is intended for operating under a high-frequency 

work cycle, it will need very small rocks to maximize the 

surface area and meet the rapid heat transfer requirements of 

the cycle. However this causes an increased pressure drop 

across the height of the packed bed, which represents an 

operational cost. On the other hand if the packed bed will 

operate under a low-frequency cycle, larger rocks can be used 

to minimize the pumping load because a fast-response 

capability is not imperative in this case. 

 

An example that illustrates the effect that the frequency of 

the work-cycle has on the performance of a packed bed is 

given below. Cárdenas et al. [39] carried out a parametric 

study in which a packed bed was optimized for the work-cycle 

shown in Figure 1a. The optimum packed bed designed (called 

“packed bed X”) had roundtrip exergy losses of 0.589 MWh. 

These losses are composed in the following way: 188.7 kWh 

are owed to heat transfer, 166.8 kWh owed to pressure drops, 

201 kWh owed to self- discharge and 33.1 kWh are exhaust 

losses. A better explanation of the meaning of each type of 

exergy loss is given in section 4.1. The packed bed X achieved 

an exergy efficiency of 98.24% while working under the duty-

cycle shown in Figure 1a. 

 

Figure 1b shows a signal that is based on the sine wave from 

Figure 1a but has a considerable amount of noise. This 

peculiar profile was contrived with the specific objective of 

having a signal that is equivalent in many ways to the pure 

sine wave of Figure 1a (peak power, RMS power and energy 

content) but that at the same time has an obvious mix of 

different frequencies. Table 1 provides some of the key 

parameters of both work profiles.  

 

The noisy signal from Figure 1b was used as the working 

profile for packed bed X (which is optimized for Fig.1a). The 

performance observed in this situation is much worse. The 

roundtrip exergy losses of packed bed X increased by ~48% 

reaching a total of 0.873 MWh. The losses are broken down as 

follows: 421.2 kWh due to heat transfer, 144.9 kWh due to 

pressure drops, 306.6 kWh due to self-discharge and 0.227 

kWh owed to exhaust losses.   

 

 
Figure 1. Two equivalent signals used as work-profiles: a) pure sine, 

b) sine with added noise. 

 

Table 1. Comparison of the two signals shown in Figure 1. 

Parameter 
Profile  
Fig. 1a 

Profile  
Fig. 1b 

Peak Power (MW) 10 10 
Mean Power (Half Cycle) 6.3662 6.3610 
RMS Power (MW) 7.071 7.079 
Energy Content (MWh) 76.39 76.332 
Peak Power to Energy Ratio 0.1309 0.1310 
RMS Power to Energy Ratio 0.0926 0.0928 

 

Figure 2 shows the temperature profiles developed by packed 

bed X while operating under the two different working cycles.  

A sharper thermal front is seen when the packed bed operates 

under the noisy signal (Fig 1b). Owing to this (among other 

factors), the temperature of the cold end at the end of the 

charging cycle (12th hour) is not much higher than its nominal 

value. This helps to minimize exhaust losses.  

 

It can also be seen that when the packed bed operates under 

the noisy signal, the temperature of its hot end at the end of 

the discharge period (0th hour) is ~540K, which is much lower 

than the nominal temperature of 823.15 K. This large 

temperature difference causes substantial heat transfer losses 

during the subsequent charging phase because air at 823.15K 

will ingress the packed bed through the hot end and will come 

in contact with rocks at a much lower temperature, which 

destroys exergy.  
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Figure 2. Temperature profiles of 2 different packed beds (X and Y) 

working under different work-cycles. Blue: Packed bed X working 

under sine wave. Green: Packed bed X working under noisy wave. 

Cyan: Packed bed Y working under noisy wave 

 

Using the same model from [39], a packed bed was designed 

and optimized for the ‘noisy’ signal shown in Figure 1b.  This 

packed will be called Y. The design of packed bed Y is 

somewhat different to the design of packed bed X. The aspect 

ratio went from 0.6 to 0.7 and the particle size jumped from 4 

to 6.5 mm. 

 

Packed bed Y has roundtrip exergy losses of 0.865 MWh when 

operating under the work-cycle of Figure 1b. The exergy losses 

consist of: 526.6 kWh of exergy loss due to heat transfer, 

117.2 kWh due to pressure drops, 1.54 kWh due to exhaust 

losses and 220.4 kWh due to self- discharge. Exergy losses due 

to pressure drops are smaller in comparison to those of 

packed bed X because the particle size increased. However, 

using larger rocks reduces the overall heart transfer area and 

causes increased heat transfer losses. Packed bed Y 

experiences reduced self-discharge losses thanks to the 

combined effect of using larger rocks and having a greater 

separation between the hot and cold ends (owing to a larger 

aspect ratio). Figure 2 shows the thermal front of packed bed 

Y at different times different during the work-cycle. 

 

The losses of packed bed X when subjected to the noisy 

profile (0.873 MWh) are higher than when the pure sinusoidal 

cycle is passed through it (0.589 MWh); despite the fact that 

the two work-cycles are very similar to each other. This 

suggests that a mix of different frequencies will affect the 

performance of the packed bed even if the power of the work-

cycle stays the same.  

Furthermore, the losses of packed bed Y, which has been 

optimized for working under the noisy profile (0.865 MWh), 

are only slightly smaller than the losses seen by packed bed X 

when working under the same profile (0.873 MWh).  This 

suggests that if a packed bed is optimized for a work-cycle 

that contains a mix of different frequencies, its design will 

suffer from the compromises that the optimization algorithm 

has to make in order to balance heat transfer characteristics 

and pressure drops. Table 2 summarizes the results of the 

simulations carried out with packed beds X and Y. 

 

Table 2.  Comparison between some design and performance 

parameters of two different packed beds X and Y operating under 

equivalent work-cycles.  

 Packed 
Bed X 

Packed 
Bed X 

Packed 
Bed Y 

Aspect Ratio 0.6 0.6 0.7 
Rock Diameter (mm) 4 4 6.5 
Optimized for work-cycle Fig. 1a Fig. 1a Fig. 1b 
Used for work-cycle Fig. 1a Fig. 1b Fig. 1b 
Heat input (MWh) 76.39 76.332 76.332 
Total exergy input (MWh) 33.559 33.511 33.483 
Exergy input due to heat 
(MWh) 

33.392 33.366 33.366 

Exergy input due to pressure 
(MWh) 

0.167 0.145 0.117 

Exergy recovered (MWh) 32.97 32.638 32.618 
Exergy losses due to heat 
transfer (kWh) 

188.7 421.2 526.6 

Exergy losses due to pressure 
drops (kWh)  

166.8 144.9 117.2 

Exhaust exergy losses (kWh)  33.1 0.227 1.54 
Exergy losses due to self-
discharge (kWh) 

201 306.6 220.4 

Total exergy losses (MWh) 0.589 0.873 0.865 
Exergy efficiency (%) 98.24 97.39 97.41 

 

The foregoing leads to the premise that the efficiency of a 

packed bed could be improved if the work-cycle (𝑨), which 

contains a mix of different frequencies, was split into two 

smaller profiles (𝑩 and 𝑪) with a narrower frequency range. A 

packed bed is then designed and optimized for each of these 

two frequency components. This research paper aims to 

prove that the above is indeed possible. 

 

2. The signal-splitting tool: a sign preserving filter 

 

There are a number of different methods for splitting a signal 

𝑨 into two or more frequency components. One of the most 

commonly used techniques is the Fourier analysis. Figure 3a 

shows the decomposition of a signal 𝑨 using this technique. 

The low-frequency components are grouped in the signal 𝑩 

while signal 𝑪 contains the high-frequency spectrum. It can be 

seen that the signs of the two outputs differ from each other 
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in many points in time (e.g. t=12). This phenomenon is called 

‘counter-flow’. In many applications counter-flow is not a 

problem but in some others—such as the optimization of a 

packed bed—it is highly undesirable. 

 

 
Figure 3. Examples of signal decompositions using: (a) Fourier 

analysis and (b) Sign-Preserving filter. 

 

The packed bed is in discharge mode when 𝑨 is positive and in 

charging mode when 𝑨 is negative. The two smaller packed 

beds used for the signals 𝑩 and 𝑪 work in the same way. 

These two packed beds are expected to work in parallel to 

replicate the operation of the single packed bed working 

under 𝑨. However, there are many instances (e.g. t=4 and 

t=12) in which one packed bed is effectively charging the 

other. Having counter-flow in the system means that instead 

of working together, packed beds 𝑩 and 𝑪 counteract each 

other to produce the desired final effect (replicating 𝑨). 

Passing heat unnecessarily from one store to the other 

increases the overall exergy losses owing to the stacking up of 

inefficiencies.  

 

In addition to that, the counter-flow phenomenon causes the 

total storage capacity of the system to increase with respect 

to the storage capacity of packed bed 𝑨.  The storage capacity 

to service a certain duty is determined by integrating the 

work-cycle (𝑨), which is typically expressed as a power signal. 

The result of the integration is an energy profile that shows 

how the energy accumulated in the packed bed increases or 

decreases throughout the work-cycle’s length. The difference 

between the highest and lowest values of this energy profile 

indicates the minimum storage capacity (𝑠𝑖𝑧𝑒) that the packed 

bed needs in order to handle the duty. 

 

𝑆𝑖𝑧𝑒 = max
0≤𝑡≤𝑇

(∫ 𝐴(𝑡)𝑑𝑡) − min
0≤𝑡≤𝑇

(∫ 𝐴(𝑡)𝑑𝑡) (1) 

 

For example, a packed bed sized for the work-cycle 𝑨 (Fig.3a) 

needs to have an energy storage capacity of 40.783 MWh. The 

storage capacities of the packed beds for 𝑩 and 𝑪 are 

determined to be 38.79 MWh and 8.14 MWh, respectively. It 

is clear that the existing counter-flow caused an increase of 

~15% in the total storage capacity. A larger storage capacity 

requires a larger mass of rocks and consequently represents a 

higher cost. It has been demonstrated that the efficiency of a 

packed bed will improve if the mass of rock increases for the 

same storage duty [39]. Nevertheless, enlarging the thermal 

store to improve its efficiency is the equivalent of “paying 

more to make something better”. The ‘load-based 

optimization’ method presented in this paper seeks to 

improve the efficiency of a packed bed without increasing its 

overall size nor its cost. 

 

None of the existing signal processing tools are capable of 

splitting a signal (work-cycle) without creating some counter-

flow. Therefore they are not suitable for this application. 

Cárdenas et al. [41] developed a “Sign-Preserving-filter” that 

allows separating a discrete time signal 𝑨 into two 

components (𝑩 and 𝑪) without generating the 

aforementioned counter-flow problem. 𝑩 is a mostly low-

frequency signal and 𝑪 is a mostly high-frequency signal. The 

key features of the filter are that the sum of 𝑩 + 𝑪 replicates 

𝑨 exactly and that the signs of 𝑩 and 𝑪 are equal to the sign of 

𝑨 at every time t, as Eqs. (2) and (3) show.  

 

𝐴(𝑡) = 𝐵(𝑡) + 𝐶(𝑡) (2) 

 

𝑠𝑔𝑛(𝐴(𝑡)) = 𝑠𝑔𝑛(𝐵(𝑡)) = 𝑠𝑔𝑛(𝐶(𝑡)) (3) 

 

At the start of the filtering process, the signal 𝑩 is initialized as 

a copy of 𝑨 while signal 𝑪 is set to zero.  The filter works by 
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passing wavelets of different widths throughout the length of 

signal 𝑩. With every pass, some amount of ‘non-smoothness’ 

is subtracted from 𝑩 and stored in 𝑪. The operation of the 

filter is controlled by two user-defined parameters: the 

maximum wavelet width (𝑤𝑚𝑎𝑥) and the number of runs 

(𝑛𝑟𝑢𝑛𝑠).  One run consists of two passes with every odd 

wavelet contained in the range from 𝑤 = 3 to 𝑤 = 𝑤𝑚𝑎𝑥.  

Several runs (𝑛𝑟𝑢𝑛𝑠) can be carried out to produce a smoother 

low-frequency signal 𝑩. 

 

Figure 3b shows an example of a decomposition carried out 

with the sign preserving filter. It can easily be seen that the 

two output signals have the same sign as the original work-

profile at all times. In this case, a packed bed sized for the 

low-frequency signal 𝑩 would have a storage capacity of 

33.607 MWh the packed bed sized for the high-frequency 

signal 𝑪 would only need a capacity of 7.257 MWh. Their 

combined storage capacity adds to 40.864 MWh, which is an 

almost negligible increase (<0.2%) with respect to the capacity 

of the original packed bed 𝑨.  

 

The sign-preserving filter is used in this research work as the 

tool for creating the different work-profiles that need to be 

explored. The mechanics of the operation of the filter will not 

be addressed in any more detail in this paper. A 

comprehensive explanation of the underlying algorithm can 

be found in [41]. The filter has previously been used in a 

similar “load-based” optimization work, which was aimed at 

designing a hybrid battery pack for an electric vehicle [42].  

 

3. Methodology 

 

The work profile (𝑨) used for this study is the noisy sine wave 

previously shown in Figure 1b.  The work-profile 𝑨 can be split 

into a low-frequency component (𝑩) and a high-frequency 

component (𝑪) in many different ways using the sign 

preserving filter. The optimization algorithm will try to find 

the ‘split’ of 𝑨 for which the combined exergy losses of the 

packed beds optimized for the profiles 𝑩 and 𝑪 are 

minimized. If the optimization is successful, these losses will 

be smaller than the losses of the packed bed optimized for 𝑨.  

 

The process followed to find the optimum ‘split’ is shown 

graphically by Figure 4. The starting point is to design and 

optimize a packed bed for the work-cycle 𝑨 using the model 

from [39]. The performance achieved by packed bed 𝑨 sets 

the target for the ‘load-optimization’. 

 
 

Figure 4. Algorithm followed by the ‘load-based’ approach to 

optimize a packed bed for a given work cycle 𝑨 
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The signal 𝑨 is split using the sign-preserving filter. A two-

dimensional search space that contains all the different 

possible ways to split the working profile is created with the 

two control parameters of the filter: 𝑤𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛𝑠. Ideally 

all the ‘splits’ in the 2D search space would be explored; 

however the optimization of a packed bed for a given working 

profile is a computationally expensive task. Therefore 

optimizing a packed bed for the two signals in each of the n 

different splits contained in the 2D space would be unfeasible. 

 

The 2D search space is reduced by selecting a few 

representative splits; subsection 3.1 describes in detail the 

strategy followed. The signals 𝑩 and 𝑪 from the selected 

‘splits’ are used as work-profiles and a packed bed is designed 

and optimized for each one of them.  The signal 𝑩 of one 

‘split’ is fed into a mathematical model that optimizes a 

packed bed for it. The process is repeated to optimize a 

packed bed for signal 𝑪. The combined exergy losses of 

packed beds 𝑩 and 𝑪 constitute the total exergy losses for 

that specific split of 𝑨.  

 

The abovementioned numerical simulation process is 

repeated until all the packed beds for all the ‘splits’ of the 

work-cycle 𝑨 have been modelled. The split that attains the 

lowest combined exergy losses (𝑩+𝑪) is the optimum split. 

These losses should be lower than the exergy losses of the 

reference case, otherwise the optimization has failed. It is 

important to highlight that the success of the ‘load-based’ 

optimization depends largely on the shape of the original 

work-profile (amount and type of noise contained); therefore 

not every work-profile can be optimized with the proposed 

approach. 

 

3.1 Creation of the work-profiles for the frequency 

optimization 

 

A two-dimensional search space is created by carrying out 

filtering operations on the reference profile 𝑨 with all the 

possible combinations of the two parameters of the sign-

preserving filter. The range defined for 𝑤𝑚𝑎𝑥  spans from 3 to 

151 points (odd values only) while 𝑛𝑟𝑢𝑛𝑠  goes from 1 to 100 

runs. With these values 7500 different splits of 𝑨 are created. 

Although the ranges for both control variables may seem 

arbitrarily defined, the space created does contain the 

optimum solution—as it will be demonstrated.  

 

The search space can be reduced by expressing it in terms of a 

‘capacity ratio (𝐾𝐵)’ The capacity ratio is defined as the ratio 

of the storage capacity requirement of signal 𝑩 with respect 

to that of signal 𝑨, as Eq. (4) shows. In this way for example, it 

is possible to indicate that a split created with a 𝑤𝑚𝑎𝑥=55 and 

𝑛𝑟𝑢𝑛𝑠=33 has a 𝐾𝐵  of 0.8, which means that packed bed 𝑩 will 

store 80% of the total energy while packed bed 𝑪 will store 

the remaining 20%.  

 

𝐾𝐵  =  𝑆𝑖𝑧𝑒 (𝑩) 𝑆𝑖𝑧𝑒 (𝑨)⁄  (4) 

 

The first step to reduce the two-dimensional search space is 

to divide the range of possible values of 𝐾𝐵  (0.5≤𝐾𝐵≤1) into 

equally spaced intervals. Subsequently, the space is scanned 

to identify all the splits that fall within a range of ±1.5% of 

each one of the nominal values of 𝐾𝐵  defined. The tolerance 

used is rather flexible but care must be taken to avoid overlap 

between ranges.  

 

The above generates several groups of splits that still cover a 

large area of the two-dimensional space. For example, there 

are 261 different splits that have a capacity ratio in the range 

𝐾𝐵 = 0.8 ± 1.5% and 112 that fall in the range 𝐾𝐵 = 0.6 ±

1.5%. Each group contains a different amount of splits out of 

which one has to be selected. 

 

The RMS-Power-to-Size (RPtS) ratio of the high-frequency 

signal 𝑪 is used as the criterion to choose one split from each 

group. The split that contains the signal 𝑪 with the lowest 

RPtS ratio is selected as the representative split for that 

nominal 𝐾𝐵. The RPtS ratio is an important parameter to 

consider because it has a strong influence on the performance 

of the packed bed. A small energy storage requirement (𝑠𝑖𝑧𝑒) 

translates into reduced packed bed’s dimensions (height and 

diameter). The higher the charging/discharging power is, the 

greater the air flow rate will be. Pumping air at fast rate 

through a container with a small cross-section causes a loss of 

exergy.  

 

Table 3 shows the parameters of the different splits selected 

for each one of the nominal values of 𝐾𝐵.  Figure 5 shows the 

signals 𝑩 and 𝑪 of each one of the splits selected for the 

different capacity ratios. These signals will be used as work-

profiles and a packed bed will be designed and optimized for 

each one of them.  
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Figure 5. Comparison of signals (work-cycles) 𝑩 and 𝑪 for the different capacity ratios 𝐾𝐵

It is not possible to know whether a value of 𝐾𝐵  is good or not 

without having passed the two signals through the 

mathematical model and assessed the performance achieved 

by the two corresponding packed beds. An educated guess—

based on results from [42]—is that the optimum split will have 

a 𝐾𝐵  larger than 0.7. It is reasonable to expect the packed bed 

in charge of the low-frequency part of the load to have a 

much larger storage capacity than the packed bed assigned to 

the high-frequency portion. 

 

It is important to highlight that if a different strategy for 

reducing the search space was used, the final result would not 

differ much from what has been obtained in this study.  
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Table 3. Signal parameters of the selected ‘split’ for each nominal 

value of 𝐾𝐵  

𝑲𝑩 
Nominal 

No. of 
Splits in 

range 

Parameters of Split  
(Selected out of the group) 

𝑾𝒎𝒂𝒙 𝑵𝒓𝒖𝒏𝒔 
𝑲𝑩 

(Real) 
RPtS 

Signal B 
RPtS 

Signal C 

0.99 2 3 83 0.9902 0.0930 0.1324 

0.95 134 7 84 0.9359 0.0943 0.1158 

0.9 977 27 54 0.8865 0.0953 0.1032 

0.85 433 45 54 0.8373 0.0951 0.0934 

0.8 261 51 67 0.7881 0.0949 0.0913 

0.75 192 53 87 0.7415 0.0947 0.0909 

0.7 152 55 96 0.7094 0.0946 0.0910 

0.65 130 63 85 0.6591 0.0944 0.0913 

0.6 112 107 26 0.6079 0.0942 0.0916 

0.55 98 107 32 0.5559 0.0941 0.0919 

0.5 86 105 41 0.5016 0.0939 0.0921 

 

3.2 Mathematical model for designing a packed bed 

 

This section of the paper provides a general overview of the 

mathematical model used to design and optimize a packed 

bed for a given work-cycle. The model was developed for a 

previous study and a more detailed explanation can be found 

in [39]. 

 

The first step of the modelling/optimization process is to 

analyse the work-cycle and determine the storage capacity 

required (see Eq. (1)). This dictates how big the packed bed 

will be. The total mass of rock (𝑚𝑟) that is needed is 

calculated by means of Eq. (5), where Size is the amount of 

heat to be stored, 𝐶𝑝𝑟 is the specific heat capacity of the rocks 

and 𝛥𝑇 is the temperature difference between the hot and 

cold ends of the packed bed. The factor of 1.5 is used to 

improve the efficiency of the store by increasing the mass of 

rock over the absolute minimum required. It was found in [39] 

that a ~50% of additional storage mass provides the best 

benefit from a techno-economic standpoint. The 

temperatures considered for the hot and cold ends of the 

packed bed are 823.15 and 290 K respectively. These are 

typical operating temperatures in CSP plants [43] and high 

temperature A-CAES systems [44]. 

 

𝑚𝑟 =  (1.5 ∙ 𝑆𝑖𝑧𝑒) (𝐶𝑝𝑟 ∙ ∆𝑇)⁄  (5) 

 

After determining the thermal storage mass, a number of 

geometric parameters such as the height, diameter and 

volume of the container are calculated. The simulation 

algorithm explores different combinations of aspect ratio (α) 

and particle size. The optimum design for the packed bed is 

the combination that attains the lowest roundtrip exergy 

losses. 

 

It should be noted that the optimal design found is only an 

optimum for the particular work-cycle that was inputted into 

the model. To find the global optimum, the aforementioned 

process has to be carried out for all the different 𝑩 and 𝑪 

profiles created from the different decompositions of 𝑨 (see 

Fig.5). 

 

The mathematical model is a one-dimensional transient 

model based on a discretised explicit scheme. The following 

features and/or assumptions are worth mentioning: 1) there 

is no temperature gradient in the radial direction, 2) the rock 

particles have a uniform temperature, 3) the packed bed has 

constant geometric properties and 4) radiative heat transfer 

and heat losses to the ambient are neglected.  

 

The physical properties of the rocks are taken from 

experimental data reported by Hartlieb et al. [45]. In the 

temperature range defined, these rocks have an average 

thermal conductivity of 1.58 W/m-K and an average specific 

heat capacity of 0.958 kJ/kg-K.  The physical properties for the 

air were taken from publications by Lemmon et al. [46, 47]. In 

the range of operating temperatures considered, the dynamic 

viscosity, thermal conductivity and specific heat capacity of air 

have average values of 9.115x10-4 mPa, 6.4 mW/m K and 

1.043 kJ/kg-K, respectively.  

 

The mathematical model simulates the charge or discharge of 

the packed bed as it marches through time. In every time-

step, a mass flow of air (𝑚̇𝑔) corresponding to the load at that 

time is calculated. Based on it, the flow characteristics and 

pressure drops inside the packed bed can be determined.   

 

The inlet pressure is calculated iteratively so that the air exits 

the packed bed at ambient pressure. In order to do so, a 

vector of initial guesses for the pressure (𝑃) at each slice (or 

element) of the geometry is created. Based on this vector, the 

density (𝜌𝑔) and velocity (𝜐𝑔) of the air are calculated using 

Eqs. (6) and (7) respectively; in which 𝑅 is the specific gas 

constant of the air, 𝑇𝑔 is the temperature of the air at every 

slice and 𝐴𝑐  is the cross-sectional area of the container.  

 

𝜌𝑔 =   𝑃 ∙ (𝑅 ∙ 𝑇𝑔) −1 (6) 
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𝜐𝑔 =   𝑚̇𝑔 ∙ (𝜌𝑔 ∙ 𝐴𝑐)−1 (7) 

 

The Reynolds number (𝑅𝑒) for flow through a packed bed is 

given by Eq. (8), where μ is the dynamic viscosity of the air 

and 𝐷𝑝 is the diameter of the rocks [48]. 

 

𝑅𝑒 = 𝜌𝑔 ∙ 𝜐𝑔 ∙ 𝐷𝑝 ∙ 𝜇−1 (8) 

 

The pressure drops (∆𝑃) across each of the slices of the 

geometry are calculated by means of Eq. (9) [49], where 𝛿𝑥 is 

the height of the slice, f is a friction factor [50] and ε is the 

void fraction. The friction factor is calculated through Eq. (10), 

which appropriate for the range of 𝑅𝑒 expected [51]. 

 

∆𝑃 =
𝑓 ∙ 𝛿𝑥 ∙ 𝜌𝑔 ∙ 𝜐𝑔

2 ∙ (1 − 𝜀)

2 ∙ 𝐷𝑝 ∙ 𝜀3
 (9) 

 

𝑓 = 258 𝑅𝑒−1 ∙ (1 − 𝜀) + 4.36 ∙ (
0.66𝑅𝑒

1 − 𝜀
)

−0.12

 (10) 

 

The vector of pressures (P) is updated by adding the 

accumulated pressure drops. The iterations are repeated until 

the variation in the vector of pressures is negligible. After this, 

the convective heat transfer coefficient (ℎ) can be calculated 

by means of Eq. (11) where 𝑘𝑔 is the thermal conductivity of 

the air. The Nusselt (Nu) and Prandtl (Pr) numbers are given 

by Eqs. (12) and (13), respectively [52]. 

 

ℎ = 𝑁𝑢 ∙ 𝑘𝑔 ∙ 𝐷𝑃
−1 (11) 

 

𝑁𝑢 = 2.0 + 1.1𝑃𝑟0.33 ∙ [𝑅𝑒 ∙ (1 − 𝜀)]0.6 (12) 

 

𝑃𝑟 = 𝜇 ∙ 𝐶𝑝𝑔 ∙ 𝑘𝑔
−1 (13) 

 

Thermal calculations are expressed in a discretised explicit 

form. The heat transfer model is based, as Figure 6 shows, on 

the energy balance of a slice 𝑖 of the geometry. As it can be 

seen, the change of energy within the air is equal to the net 

heat flow by advection (𝑄𝑎−𝑖𝑛 − 𝑄𝑎−𝑜𝑢𝑡) plus the net heat 

flow by conduction (𝑄𝑘−𝑖𝑛 − 𝑄𝑘−𝑜𝑢𝑡) minus the heat 

transferred by convection to the rocks (𝑄𝑐𝑜𝑛𝑣). This is 

mathematically expressed by Eq. (14), in which the indices 

𝑖 and 𝑗 represent spatial and temporal positions, respectively. 

 

𝜌𝑔𝐶𝑝𝑔𝐴𝑐𝜀𝛿𝑥(𝑇𝑔
(𝑖,𝑗+1)

− 𝑇𝑔
(𝑖,𝑗)

) =… 

… (𝑄𝑎−𝑖𝑛 − 𝑄𝑎−𝑜𝑢𝑡) + (𝑄𝑘−𝑖𝑛 − 𝑄𝑘−𝑜𝑢𝑡) − 𝑄𝑐𝑜𝑛𝑣  
(14) 

 

 
Figure 6. One-dimensional model of packed bed showing interactions 

between air (blue) and rock (brown) elements 

 

The rate of change of the air temperature at time j can be 

expressed by Eq. (15): 

 

𝛿𝑇𝑔

𝛿𝑡
=

𝑄1 + 𝑄2 − 𝑄𝑐𝑜𝑛𝑣

𝜌𝑔𝐶𝑝𝑔𝐴𝑐𝜀𝛿𝑥
 (15) 

 

Where: 

 

𝑄1 =
𝑚𝑔̇ 𝐶𝑝𝑔

2
(𝑇𝑔

(𝑖−1,𝑗)
− 𝑇𝑔

(𝑖+1,𝑗)
) (16) 

 

𝑄2 = 𝑘𝑔𝐴𝑔 (
𝑇𝑔

(𝑖−1,𝑗)
− 2𝑇𝑔

(𝑖,𝑗)
+ 𝑇𝑔

(𝑖+1,𝑗)

𝛿𝑥
) (17) 

 

In a similar fashion, the change of energy in the volume of 

rocks of a slice 𝑖 can be calculated through Eq. (18): 

 

𝑚𝑟𝐶𝑝𝑟(𝑇𝑟
(𝑖,𝑗+1)

− 𝑇𝑟
(𝑖,𝑗)

) = (𝑄𝑘−𝑖𝑛 − 𝑄𝑘−𝑜𝑢𝑡) + 𝑄𝑐𝑜𝑛𝑣  (18) 

 

Rearranging Eq. (18) it is possible to obtain the rate of change 

of the temperature of the rocks, as Eq. (19) shows. This allows 

updating the temperature of the rocks after each time-step.  

 

𝛿𝑇𝑟

𝛿𝑡
=

𝑄3 + ℎ𝑠𝑟(𝑇𝑔
(𝑖,𝑗)

− 𝑇𝑟
(𝑖,𝑗)

) 

𝑚𝑟𝐶𝑝𝑟

 (19) 
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Where: 

𝑄3 = 𝑘𝑟𝐴𝑟 (
𝑇𝑟

(𝑖−1,𝑗)
− 2𝑇𝑟

(𝑖,𝑗)
+ 𝑇𝑟

(𝑖+1,𝑗)

𝛿𝑥
) (20) 

 

The exergy input during the charge and the exergy output 

during the discharge are calculated by means of Eq. (21):  

 

𝐵̇𝑔 = 𝑚𝑔̇ [∫ 𝐶𝑝𝑔𝑑𝑇
𝑇

𝑇0

− 𝑇0 (∫ 𝐶𝑃𝑔

𝑑𝑇

𝑇

𝑇

𝑇0

− 𝑅 ∫
𝑑𝑃

𝑃

𝑃

𝑃0

) ] (21) 

 

Four mechanisms of exergy loss are considered: 1) exergy 

losses due to heat transfer, 2) exhaust losses, 3) exergy losses 

due to pressure drops and 4) exergy losses due to self-

discharge. The exergy losses due to pressure drops (𝐵𝑙−𝑃𝐷 ) 

are calculated from the pressure drops in each slice of the 

geometry by means of Eq. (22): 

 

𝐵𝑙−𝑃𝐷 = ∑ −𝑚̇𝑔 ∙ 𝑇0 ∙ 𝑅 ∙ 𝑙𝑛 (
𝑃(𝑖+1,𝑗)

𝑃(𝑖,𝑗)
)

𝑥

𝑖=1

 (22) 

 

As the packed bed charges up, hot air will start coming out of 

the cold end. This represents a loss of exergy and is referred 

to as “exhaust losses” (𝐵𝑙−𝐸𝑥). These losses can also be 

calculated through Eq. (21). 

 

Exergy losses due to self-discharge (𝐵𝑙−𝑆𝐷) are caused by the 

heat that is conducted down the temperature gradient inside 

the packed bed. These losses are always present. Self-

discharge exergy losses are calculated by means of Eq. (23)  

 

𝐵𝑙−𝑆𝐷 = ∑ 𝑄𝑘𝑔 (
𝑇0

𝑇𝑔
(𝑖+1,𝑗)

−
𝑇0

𝑇𝑔
(𝑖,𝑗)

)

𝑥−1

𝑖=1

+ 𝑄𝑘𝑟 (
𝑇0

𝑇𝑟
(𝑖+1,𝑗)

−
𝑇0

𝑇𝑟
(𝑖,𝑗)

) 

(23) 

 

The exergy losses due to heat transfer (𝐵𝑙−𝐻𝑇) refer to the 

losses caused by the convective heat transfer between air and 

rocks and the losses due to the advective heat transfer 

inherent to the flow of air. Heat transfer losses are in most 

cases the largest contributor to the total exergy losses and can 

be calculated through a simple exergy balance, as Eq. (24) 

shows: 

 

𝐵𝑙−𝐻𝑇 = 𝐵𝑖𝑛 − 𝐵𝑜𝑢𝑡 − ∆𝐵𝑟 − 𝐵𝑙−𝑃𝐷 − 𝐵𝑙−𝐸𝑥 − 𝐵𝑙−𝑆𝐷 (24) 

 

The mathematical model described above was implemented 

in MATLAB. In the program developed, the “time-stepping” is 

controlled by a built-in ordinary differential equation solver 

(ODE15s) which continuously adjusts the size of the time-

steps in order to ensure that a certain user-defined tolerance 

is met. The solver estimates the solution (of one step) and the 

error of the integration using two Runge–Kutta methods with 

different local orders. If the error exceeds the tolerance 

defined, the step size is decreased until the error is below that 

tolerance. If the error is far below that tolerance, the step size 

is increased to save time. For this study we used a tolerance of 

1x10-7. For the work-cycles considered in this work, the 

tolerance defined translates into time-steps much smaller 

than 0.1 second.  

 

4.1 Analysis of the reference case 

 

This section presents the design and optimization of the 

packed bed for the work-cycle 𝑨 (see Fig. 1b). This work-cycle 

comprises a 12-hour charge followed by a 12-hour discharge. 

During the charge, 33.365 MWh of exergy are stored in the 

packed bed. This packed bed is the reference case or ‘target’ 

for the load-based optimization. The combined losses of 

packed beds 𝑩 and 𝑪 should be lower than those of packed 

bed 𝑨. 

 

Figure 7 shows the behaviour of the total exergy losses of the 

packed bed with respect to the rock size. For simplicity, the 

plot only shows the curves for 4 aspect ratios. It can be seen 

that the effect of the rock size is more noticeable on packed 

beds with a small α. When a larger aspect ratio is used, the 

curves become flatter and a wider range of rock sizes yields a 

very similar level of losses.  

 

 
Figure 7. Effect of the aspect ratio and particle size on the total 

exergy losses of packed bed 𝑨. 
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It can also be seen in Figure 7 that the optimum rock size 

increases with α. The cross-sectional area of the container 

grows as the aspect ratio reduces. This minimizes pressure 

drops and allows the optimizer to shift towards smaller 

particle sizes for improving heat transfer.  

 

Figure 8 shows how the breakdown of the total exergy losses 

of packed bed 𝑨 changes as 𝛼 varies. The different designs 

presented in the figure consider the optimum rock size for 

each aspect ratio. It can be seen that for packed beds based 

on small aspect ratios, self-discharge losses are the main 

source of exergy loss. However, these losses stop being a 

problem as α starts to increase and pressure drops start to 

become critical.  

 
Figure 8. Contribution of the different mechanisms of exergy loss to 

the total losses of packed bed 𝑨 

 

It can also be seen in Figure 8 that the packed bed based on 

an α=0.7 achieves the lowest losses. This packed bed uses 

rocks with a diameter of 6.5 mm and incurs in roundtrip 

exergy losses of 0.865 MWh. This translates into an exergy 

efficiency of 97.4 %.  

 

Figure 9a shows how the heat transfer exergy losses vary with 

different aspect ratios and rock sizes. These losses are directly 

proportional to the rock size and have an almost linear 

behaviour regardless of α. Heat transfer losses decrease with 

rock size because smaller particles provide a larger (total) 

contact area between the rocks and the stream of air. For 

reference, any one of the packed beds shown in the graph has 

600 m2 of heat transfer area per m3 of rocks when 10 mm 

rocks are used. This increases to 6000 m2/m3 if the diameter 

of the rocks reduces to 1 mm. The available heat transfer area 

is a function of the total mass and size of the rocks and does 

not depend on the aspect ratio of the packed bed. 

 
 

Figure 9. Behaviour of the different mechanisms of exergy loss with 

respect to changes in aspect ratio and rock size 
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Moreover, Figure 9a shows that heat transfer exergy losses 

are inversely proportional to α.  The aspect ratio dictates the 

separation between the hot and cold ends of a packed bed.  A 

greater height (large α) will lead to a sharper thermal front 

which in turn helps reducing heat transfer exergy losses. 

 

If the thermal front was perfectly straight, the temperature of 

the cold end would remain constant at its nominal value 

throughout the charge of the store. On the other hand, a 

smoothed-out front causes the temperature of the cold end 

to rise. A higher-than-nominal temperature in the cold end at 

the end of the charging period will generate significant heat 

transfer losses during the following discharge period. Air at 

ambient temperature (290 K) will ingress the packed bed 

through its cold end and it will come in contact with rocks at a 

much higher temperature, which destroys exergy.   

 

Furthermore, at the end of the discharge period, the 

temperature of the hot end of a packed bed based on a small 

𝛼 will be considerably below its nominal value due to the 

smoothed-out thermal gradient. This will generate further 

heat transfer losses during the following charging cycle as air 

enters the packed bed through the hot end at the nominal 

charging temperature (823.15 K) and comes into contact with 

rocks at a much lower temperature. 

 

Figure 9b shows the behaviour of the exhaust losses with 

respect to the 𝛼 and particle size used. Exhaust losses are 

directly proportional to the rock size. As aforementioned, the 

total available heat transfer area increases as the particle size 

reduces. Therefore when small rocks are used, a sharper 

thermal front is achieved which causes the air stream to exit 

the packed bed with a smaller amount of exergy left.  

 

Figure 9b also shows that regardless of the rock size, exhaust 

losses reduce as α increases. A longer distance between the 

hot and cold ends of the packed bed helps to achieve a 

sharper thermal front, which as aforementioned, results in the 

air leaving the store at a lower temperature.  

 

Figure 9c shows that the exergy losses due to pressure drops 

increase exponentially as the particle size reduces because the 

air stream faces a higher resistance to flow. It can also be seen 

that regardless of the rock size, larger values of 𝛼 lead to 

much higher pressure losses. This increase in pressure drops is 

owed to two factors: A larger α means a greater bed height 

and a smaller cross sectional area, which causes faster 

velocities and consequently increased pressure losses (see 

Eqs. (7) and (9)). 

Lastly, Figure 9d shows that self–discharge losses increase 

significantly as α reduces. Smaller aspect ratios entail a 

smaller separation between the hot and cold ends and a 

larger cross-section. Both dimensions facilitate the conduction 

of heat down the thermal front. In packed beds based on very 

small values of α, self-discharge losses are the major source of 

exergy loss.  

 

Figure 10 shows the evolution of the thermal front of the 

optimum packed designed for 𝑨. The figure compares the 

results obtained when the geometry is discretized in 200 slices 

(elements) against those obtained when it is divided into 800 

slices. It was found in previous work [38,39] that accurate 

results (for packed beds of similar physical sizes) could be 

obtained using 200 slices in the mathematical model.  It can 

be seen in the figure that the differences between the two 

sets of results (200 vs 800 slices) are almost negligible despite 

having quadruplicated the amount of elements in the 

geometry. It can therefore be concluded that discretizing the 

geometry into 200 elements allows capturing the shape of the 

thermal front, which is the basis for all exergy loss 

calculations. The rest of the optimization work in this study is 

carried out using 200 slices for the spatial discretization of the 

packed beds.  

 

 
Figure 10. Evolution of the thermal front of packed bed optimized for 

work-cycle 𝑨 (α= 7, 6.5mm rocks) 

 

4.2 Results obtained for the low-frequency packed bed (B) 

 

This section is concerned with the design and optimization of 

the packed beds for the different low-frequency profiles (𝑩) 

corresponding to the different work-cycle splits. The profiles 

have been shown in Figure 5.  
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The results of the optimization process for each value of 𝐾𝐵  

are shown in Figure 11. The designs presented for each value 

of α consider the optimum size of rocks for that specific 

geometry. The exergy losses have been normalized with 

respect to the exergy input to allow a direct comparison 

between the different capacity ratios (𝐾𝐵). It should be 

remembered that a larger 𝐾𝐵  has a larger exergy input. 

 

Figure 11 reveals that the exhaust exergy losses are a major 

contributor to the total exergy losses of the packed beds for 

work-cycles with small capacity ratios (𝐾𝐵 ≤ 0.6). In this 

range, exhaust losses account for 34-44% (depending on α) of 

the total exergy losses seen by the different packed beds.  

 

Exhaust exergy losses decrease as the capacity ratio increases 

until the point where they become almost negligible 

(𝐾𝐵=0.99). For any one value of 𝐾𝐵  , exhaust losses reduce as 

α increases because a greater separation between the hot and 

cold ends of the packed bed helps the air to come out of the 

store at a lower temperature. Similarly, for any given value of 

α, exhaust losses decrease as the capacity ratio increases. A 

larger 𝐾𝐵  implies a larger storage capacity which translates 

into a bigger packed bed with a larger separation between its 

ends.  

 

Figure 11 also shows that self-discharge exergy losses have a 

similar behaviour to the exhaust losses. For any value of 𝐾𝐵, 

self-discharge losses reduce as α increases. These losses 

consist mostly on heat being conducted down the thermal 

gradient; thus a taller packed bed will experience reduced (or 

slowed-down) self-discharge losses. For this same reason, self-

discharge losses decrease as the capacity ratio increases. 

 

In some cases, self-discharge exergy losses account for a big 

share of the total losses of the packed bed. For instance in 

designs based on a small aspect ratio (0.2 ≤ 𝛼 ≤ 0.5), self-

discharge losses account for between 30 and 62% of the total 

exergy losses. On the other hand, in designs based on a larger 

aspect ratio (0.8 ≤ 𝛼 ≤ 1.0), self-discharge losses represent 

between 12 and 28% of the total losses of the packed bed. 

 

Exergy losses due to pressure drops are generally speaking, 

the least troublesome form of exergy loss. Figure 11 shows 

that for any capacity ratio, these losses increase as α 

increases. This is owed to the fact that a larger aspect ratio 

entails that the same mass of air is flowing through a smaller 

cross-section and has to travel a longer distance. For any given 

𝐾𝐵, the cross-sections of packed beds with an α=0.6 and an 

α=1.0 are 52% and 66% smaller than the cross-section of a 

design based on an α=0.2. At the same time, the height of 

those same two packed beds are two and three times larger 

than the height of the packed bed based on an α=0.2.  

 

It can also be seen in Figure 11 that the exergy losses due to 

pressure drops have a general tendency to increase with 

increasing values of 𝐾𝐵. The reason behind this is not related 

to the simple fact that a larger capacity ratio entails a higher 

peak (and RMS) power, because the physical dimensions of 

the packed bed enlarge as well. In this particular case, the 

RPtS ratio of the different 𝑩 work-profiles increase as the 

capacity ratio (𝐾𝐵) increases. Although this increase is not 

dramatic, it is enough to worsen the pressure-related exergy 

losses. The increase in the RPtS ratio is intrinsically related to 

the shape of the work-cycle 𝑨 and the way the sign-preserving 

filter works. It is very well possible that a different behaviour 

would be observed if a different signal 𝑨 was used. 

 

The optimum rock size becomes smaller as the capacity ratio 

increases because a greater (dis)charging power requires a 

larger heat transfer area. For instance, the optimum packed 

bed for a 𝐾𝐵 = 0.5 has an α=0.5 and uses 6 mm rocks. This 

gives the packed bed 8846 m2 of total heat transfer area per 

kWh of exergy input. In contrast, the optimum packed bed for 

a 𝐾𝐵 = 0.8 has an α=0.7 but uses rocks with a diameter of 4 

mm, which translates into 13695 m2 per kWh of exergy input. 

The reduction in particle size is a consequence of the 

optimizer’s efforts to achieve good heat transfer capabilities. 

However, pressure drops are aggravated by the use of smaller 

sized rocks, as Eq. (9) indicates. 

 

Heat transfer exergy losses exhibit a different behaviour to 

the other three mechanisms of exergy loss already discussed. 

This form of exergy loss has optimum points which are a 

consequence of the optimizer’s attempts to minimize the 

other sources of exergy loss. Figure 11 shows that at small 

capacity ratios, packed beds based on large aspect ratios 

experience substantial heat transfer losses due to the fact that 

the rock size was increased as a measure to counteract 

pressure drops. 

 

Two general trends for the heat transfer exergy losses can be 

identified. 1) These losses reduce as α becomes smaller. The 

larger cross-section of the container helps to control pressure 

losses; therefore the optimizer can use smaller rocks which 

promote a better heat transfer. 2) For a given value of α, a 

small capacity ratio maximizes the heat transfer exergy losses. 

Heat transfer exergy losses start decreasing as 𝐾𝐵  increases, 

until reaching a minimum in the region between 0.6≤𝐾𝐵≤0.8.   
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Figure 11. Normalized exergy losses of designs for packed bed 𝑩 considering different values of α and 𝐾𝐵  

 

Figure 12 shows a set of surface plots that have been 

generated from the information presented in Figure 11. These 

plots provide a different view of the effect that the aspect 

ratio (α) and the capacity ratio (𝐾𝐵) have on the behaviour of 

the different forms of exergy loss.  

Figure 13 shows the total exergy losses of the optimum 

designs (combination of α + rock size) for each one of the 

different capacity ratios. It should be noted that the values 

shown in Figure 13 are total net exergy losses instead of being 

normalized with respect to the exergy input, as it was the case 

of previous figures.  
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Figure 12. Behaviour of the mechanisms of exergy loss (normalized) 

as the values of α and 𝐾𝐵  are varied. 

 

It can be seen from Figure 13 that as 𝐾𝐵  approaches a value of 

one, the exergy losses of packed bed 𝑩 approach the 

reference value (0.865 MWh). At this point the two work-

cycles (𝑩 and 𝑨) are almost identical, therefore the packed 

beds are very similar to each other. Designs based on a 𝐾𝐵 ≤

0.63 are automatically discarded because their roundtrip 

exergy losses exceed the target value without even 

considering the losses of packed bed 𝑪.  

 

 
Figure 13. Total exergy losses of the best packed bed 𝑩 (α+ rock size) 

for each one of the different capacity ratios 

 

Figure 13 reveals a region of “low exergy losses” between 

capacity ratios of 0.68 and 0.85. Within this region, the packed 

bed for a capacity ratio of 0.75 achieved the lowest roundtrip 

exergy losses (0.4975 MWh). This packed bed considers an α 

of 0.7 and uses rocks with a diameter of 4mm. It is 

noteworthy that despite having the lowest losses, the packed 

bed for 𝐾𝐵=0.75 does not have the highest efficiency. 

It is equally important to emphasize that although packed bed 

𝑩 obtained the lowest exergy losses with a 𝐾𝐵 = 0.75, this 

capacity ratio cannot be considered yet as the optimum split 

of the work-cycle because the exergy losses of packed bed 𝑪 

still need to be accounted for. It could be the case that the 

sum of the losses of packed beds 𝑩 and 𝑪 for a different 

capacity ratio is lower than the combined losses seen with a 

𝐾𝐵 = 0.75.  

 

4.3 Results obtained for the high-frequency packed bed (C) 

 

This section is concerned with the design/optimization of the 

packed beds for the different high-frequency profiles (𝑪) 

corresponding to the different work-cycle splits. These profiles 

have been previously shown in Figure 5.  

 

Figure 14 shows the optimization process for each one of the 

work-cycles considered. In the figure, several packed bed 

designs are presented for each capacity ratio. Each of the 

designs shown has a different α and considers the optimum 

size of rocks for that specific configuration. The exergy losses 

are normalized with respect to the exergy input of the work-

cycle to allow a comparison between different work-cycles.  It 

is important to remember that the capacity ratio is expressed 

in terms of packed bed 𝑩; for example, a 𝐾𝐵  of 0.6 means that 

packed bed 𝑪 is providing 40% of the total energy storage 

capacity.  

 

Figure 14 reveals that self-discharge exergy losses are in all 

cases a major contributor to the total exergy losses of the 

packed beds. For any given capacity ratio, self-discharge losses 

increase as the aspect ratio reduces because a smaller α 

entails a shorter distance between the hot and cold ends of 

the packed bed. In designs based on small values of α (0.2 to 

0.5), self-discharge losses account for between 50-70% of the 

total exergy losses of the packed beds.  

 

It is also possible to see that for any given value of α, exergy 

losses due to self-discharge increase as the capacity ratio of 

the work-cycle increases. A larger 𝐾𝐵  translates into a smaller 

sized packed bed 𝑪; as aforementioned, reducing the height 

of the packed bed intensifies self-discharge losses.  

 

Exhaust losses exhibit a similar behaviour to self-discharge 

losses, although for the case of packed bed 𝑪 they are not as 

critical. For any 𝐾𝐵, exhaust losses increase with α. A taller 

container helps to maintain a sharper thermal front, which in 

turn results in the air leaving the store with less exergy left. 
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Figure 14. Normalized exergy losses of different designs of packed beds for different work-cycles 𝑪 

 

Figure 14 also shows that for any given value of α, exhaust 

losses increase with an increasing capacity ratio because the 

volume and height of the packed bed reduce as the value of 

𝐾𝐵  rises. Exhaust losses are almost negligible in packed beds 

designed for small capacity ratios (0.5≤𝐾𝐵≤0.6), accounting for 

less than 1.5% of the total exergy losses. On the other hand, in 

packed beds designed for large capacity ratios (𝐾𝐵≥0.85), 

exhaust losses represent (depending on α) between 7-20% of 

the total exergy losses.    

 

Similar to what was seen in the optimization of packed bed 𝑩, 

the exergy losses caused by pressure drops have a tendency 

to increase with increasing values of α (for any given 𝐾𝐵) 

because the container’s cross-section reduces, its height 
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enlarges and the mass flow of air stays the same. For any 

capacity ratio (𝐾𝐵), the optimum rock size for packed bed 𝑪 

increases with aspect ratio in order to control pressure drops. 

However the reduced cross-section has a stronger effect on 

the pressure drops, therefore these losses increase 

considerably with increasing values of α. It can be seen in 

Figure 14 that for any value of 𝐾𝐵, pressure drops represent 

between 15-30% of the total exergy losses of designs based 

on large aspect ratios (1.3 ≤ 𝛼 ≤ 1.5) while in designs with a 

small aspect ratio (0.2 ≤ 𝛼 ≤ 0.4) they account for 5% or 

less.  

 

It can also be seen in Figure 14 that the exergy losses due to 

pressure drops have a tendency to increase as the capacity 

ratio increases, which in the case of packed bed 𝑪 means that 

the size of the store is reducing. This tendency is not very 

pronounced. As the capacity ratio (𝐾𝐵) increases, the work-

cycles 𝑪 become purer high-frequency signals (see Fig.5). 

Accordingly, the optimization algorithm will employ smaller 

sized rocks to enhance the heat transfer capabilities of the 

packed bed. A smaller particle size entails increased pressure 

drops. Furthermore, very high capacity ratios translate into 

very small packed beds 𝑪. These packed beds have a high RPtS 

ratio (see Table 3) which also contributes to having increased 

pressure drops since a larger mass flow of air is pumped 

through a narrower container.  

 

The behaviour of the heat transfer exergy losses is noticeably 

different to that of the other forms of exergy loss. Instead of 

increasing or decreasing continuously with 𝐾𝐵  and/or α, heat 

transfer losses have an optimum region. For a given capacity 

ratio, packed beds with a large aspect ratio experience 

elevated exergy losses due to heat transfer.  The losses reduce 

as α decreases but after a region between 0.3 ≤ 𝛼 ≤ 0.5 they 

start increasing again. In designs based on large aspect ratios, 

rocks with a large diameter (between 3-8 mm) are used to 

alleviate pressure drops; however the diminished overall 

surface area affects the heat transfer properties of the packed 

bed. 

 

Exergy losses due to pressure drops stop being critical in 

designs based on small aspect ratios due to the larger cross-

section of the container; therefore rocks with a smaller 

diameter (<2mm) can be employed to improve heat transfer. 

However, the reduced height (consequence of a small α) 

affects the sharpness of the thermal front. A smeared thermal 

front will produce heat transfer losses throughout the 

geometry of the packed bed in addition to considerable 

exhaust losses during the charging period because the cold 

end of the store departs from its nominal temperature. This 

rise in the temperature of the cold end will also produce 

substantial heat transfer losses during the subsequent 

discharging period.  

 

For work-cycles with a 𝐾𝐵  between 0.5 and 0.65, heat transfer 

losses account for between 50 and 68% of the total exergy 

losses seen by packed beds designed with values of α ranging 

from 0.8 to 1.5. In contrast, for work-cycles with a 𝐾𝐵≥0.8, 

heat transfer losses only represent between 17 and 30% of 

the total exergy losses of packed beds based on the same 

range of aspect ratios. 

 

For any one value of α, the contribution (%) of the heat 

transfer losses to the total exergy losses reduces as the 

capacity ratio of the work-cycle increases (𝐾𝐵). If the work-

cycle split has a larger capacity ratio, the resultant signal 𝑪 will 

have a smaller amount of low-frequency content (see Fig.5); 

in other words, the signal 𝑪 will be more purely a high 

frequency profile. Consequently, as 𝐾𝐵  increases for a 

constant aspect ratio, the optimizer will use smaller rocks to 

increase the available heat transfer area and enable the 

packed bed to deal more effectively with the fast-frequencies 

of the work-cycle. For example, a packed bed with a 𝐾𝐵=0.5 

and an α=0.8 uses rocks with a diameter of 5.5mm, which 

yields to a total of 10295 m2 per kWh of exergy input. On the 

other hand, a packed bed for a 𝐾𝐵  =0.9 and the same aspect 

ratio, utilizes 2.5mm rocks. This increases the available heat 

transfer area to 21893 m2 per kWh of exergy input.  

 

 
Figure 15. Behaviour of different forms of exergy loss (normalized) 

with respect to changes in the aspect ratio (α) and capacity ratio (𝐾𝐵) 

 

A set of surface plots that summarize the information 

discussed above is presented in Figure 15. These plots provide 
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a clear overview of the behaviour of the different types of 

exergy loss with respect to changes in two design parameters: 

the capacity ratio of the work-cycle (𝐾𝐵) and the aspect ratio 

(α) of the packed bed.  

 

Figure 16 shows the total exergy losses of the optimum 

designs (combination α and rock size) for each one of the 

different capacity ratios explored. It should be noted that the 

losses displayed in the figure are net total losses instead of 

normalized values with respect to the exergy input.  

 

 
Figure 16. Total exergy losses of the best design of packed bed 𝑪 (α + 

rock size) for each one of the different capacity ratios explored. 

 

The behaviour of the net exergy losses shown in Figure 16 

differs greatly from that observed during the optimization of 

packed bed 𝑩 (section 4.2). The net exergy losses are almost 

zero at a capacity ratio of 0.99; however this observation is to 

some extent trivial because at a 𝐾𝐵=0.99 there is very little 

exergy being stored in the packed bed, hence losses are small. 

Net exergy losses are at a maximum (within the range 

explored) for a 𝐾𝐵=0.5 because at that point the maximum 

amount of exergy is being passed through the store.  

 

The most efficient design is found for a capacity ratio of 0.75; 

however, it cannot be considered yet as the optimum work-

cycle split. The global optimum is the work-cycle split 

(indicated by 𝐾𝐵) that minimizes the sum of the losses of 

packed beds 𝑩 and 𝑪.  

 

4.4 Overall results achieved by the load-based optimization 

 

This section presents the overall results of the load–based 

optimization carried out.  Figure 17 shows the combined 

exergy losses of packed beds 𝑩 and 𝑪 for the different work-

cycles that were explored.  The individual contributions of the 

two packed beds, which were previously presented in figures 

13 and 16, are also shown in the figure. The roundtrip exergy 

losses attained by the packed bed optimized for the working 

cycle 𝑨 are displayed by a red horizontal line at 0.865 MWh. 

These losses are the target for the load-based optimization.  

 

It can be seen at a first glance that for duty-cycle splits with a 

capacity ratio (𝐾𝐵) of 0.65 or lower, the performance of the 

combined system (𝑩+𝑪) is worse than the reference case (𝑨); 

in some cases the total exergy losses are almost doubled. 

These work-cycles are automatically discarded. Work-cycle 

splits done with a capacity ratio in the region 0.7≤𝐾𝐵≤0.95 

achieve losses below the target value. The best split is 

obtained with a nominal capacity ratio of 0.85.   

 

 
Figure 17. Exergy losses of packed beds 𝑩 and 𝑪 optimized for the 

different capacity ratios explored. 

 

The packed bed 𝑩 for this particular load split (𝐾𝐵 = 0.85) is 

considers an aspect ratio of 0.7 and uses rocks with a 

diameter of 4.5 mm. This packed bed has 0.5362 MWh of 

exergy losses throughout a working cycle, which translates 

into a roundtrip exergy efficiency of 98.08 %.  

 

On the other hand, the packed bed 𝑪 for this particular load-

split is designed with an aspect ratio of 1.5 and uses rocks 

with a diameter of 4.5mm. With this design, the packed bed 

achieves 0.1078 MWh of exergy losses at the end of a full 

working cycle, which represents a roundtrip exergy efficiency 

of 98.02%.  

 

The combined exergy losses of packed beds 𝑩 and 𝑪 for a 

capacity ratio of 0.85 are 0.644 MWh. This represents a 

reduction of 25.5 % with respect to the losses of packed bed 𝑨 
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(i.e. ‘target’ value). Table 4 summarizes the most relevant 

design and performance parameters of the optimum packed 

beds for the two work-profiles 𝑩 and 𝑪 for a capacity ratio of 

𝐾𝐵=0.85.  Figure 18 shows for comparison, the temperature 

gradients of the three packed beds at different times during 

their operation.  

 

Table 4. Parameters of packed beds 𝑩 and 𝑪 designed for the 

optimum work-cycle split (𝐾𝐵=0.85) 

 
Parameters 

Packed 
Bed A 

Packed 
Bed B 

Packed 
Bed C 

G
eo

m
etrical 

Mass overrating factor  1.5 1.5 1.5 

Total mass of rock (kg) 807019 675740 131286 

Volume of rock (m3) 304.54 254.99 49.54 

Void fraction 0.395 0.395 0.395 

Particle size (mm) 6.5 4.5 4.5 

Heat transfer area per vol. or 

rock (m2/m3) 
923.1 1333.3 1333.3 

Aspect ratio (α) 0.7 0.7 1.5 

Container diameter (m) 9.71 9.15 4.11 

Container height (m) 6.79 6.41 6.17 

Container surface area (m2) 355.62 315.92 106.26 

O
p

eratio
n

al 

Max. Air flow rate (kg/s) 17.97 16.16 3.65 

Max. Inlet pressure (Bar) 1.022 1.026 1.032 

Max. Air velocity (m/s) 0.566 0.573 0.634 

Max. Heat transfer 

coefficient (W/m2K) 
79.96 80.48 85.74 

Total exergy input (MWh) 33.48 28.02 5.52 

Temp. Hot end @ 24 hr (K) 558.38 723.61 810.69 

Temp. Cold end @ 12 hr (K) 304.08 342.36 423.55 

P
erfo

rm
an

ce 

Ex. Losses due to heat 

transfer (kWh) 
525.7 201.27 35.94 

Ex. Losses due to pressure 

drops (kWh) 
117.7 154.73 29.95 

Exhaust exergy losses(kWh) 1.6 22.17 7.72 

Ex. Losses due to self-

discharge(kWh) 
220 158.1 34.17 

Roundtrip exergy efficiency 

(%) 
97.4 98.08 98.02 

 

It should be mentioned that the signal-split that obtained the 

lowest exergy losses (𝐾𝐵=0.85) may not be the true optimum. 

Remembering the discussion presented in section 3.1, the 

two-dimensional space of signal splits was reduced to only 

one dimension by means of the “capacity ratio”.  Eleven 

different signal-splits evenly distributed in the range 

0.5≤𝐾𝐵≤0.99 were selected and used for the simulations.   

 
 

Figure 18. Thermal fronts of packed beds 𝑩 (green) and 𝑪 (cyan) for 

𝐾𝐵=0.85 at different times during operation 

 

If the two-dimensional search space was fully explored, it 

would be found that the signal-split that produces the lowest 

exergy losses is created with a different combination of 𝑤𝑚𝑎𝑥  

and 𝑛𝑟𝑢𝑛𝑠 (filter’s parameters) and that it has a different 

capacity ratio. However, an exhaustive exploration of the 

space would be very computationally expensive and almost 

impracticable. It is clear from Figure 17 that the optimum 

found in the simplified search space lies very close to the real 

optimal solution given the flatness of the curve in the region 

0.7≤𝐾𝐵≤0.95. 

 

The results obtained from the load-based optimization are 

very promising. As table 4 shows, the total storage mass does 

not increase when packed bed 𝑨 is separated into two 

independent packed beds 𝑩 and 𝑪. The foregoing means that 

it is possible to design, at a marginal additional cost,  a two-

packed bed system (𝑩+𝑪) that performs the same function as 

the single packed bed 𝑨 but incurs in 25.5% less losses in 

doing so. 

 

The “load-based optimization” approach proposed could be 

used for example, to optimize a packed bed intended for 

working as a standalone industrial waste heat recovery unit 

[53] or to optimize the thermal store of a compressed air 

energy storage (CAES) system [54]. In this case the only 

modification that the CAES system will suffer is having two 

packed beds instead of one. All the components of the system 

located before the thermal store (compression train, heat 

exchangers) and after the thermal store (compressed air 

reservoir, expansion train) will remain unmodified. 
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The implementation of the two-packed bed thermal store 

entails an additional—albeit small—cost. A greater amount of 

structural steel will be required for the two containers and 

there will be a larger surface area to insulate. In addition to 

that two simple “Y-type” manifolds will be needed, one for 

charging the packed beds and one for discharging them. Each 

manifold is equipped with a pair of valves, which are the 

devices in charge of physically splitting the signal 𝑨. 

 

During the charging mode, the compression train will operate 

under the work-profile 𝑨, which is the duty for which the 

system is required. The high-pressure air coming from the 

compression train is circulated through a heat exchanger 

where it transfers its heat to a secondary stream of ambient 

pressure air, same as in a normal CAES system. A controller 

unit operates the valves in the manifold to split the flow of 

low-pressure air into two separate streams 𝑩 and 𝑪 for the 

two independent packed beds. It is worth noting that the cost 

of the controller is negligible in comparison to the rest of the 

system. The controller has predetermined values of how much 

air mass (power) should go to each one of the packed beds at 

any given time during the work-cycle and controls the position 

of the valves to split the incoming flow accordingly.  

 

The load-based optimization described in this paper 

presupposes knowing in advance the load profile 𝐀 in order to 

determine the optimum split and design the packed beds 𝐁 

and 𝐂 that will service the two frequency components. For 

this reason, this optimization technique is not very well suited 

for designing energy stores intended for working alongside 

variable renewable generation. The load-based optimization is 

particularly helpful for designing systems that will operate 

under a known duty-cycle in applications such as energy 

arbitrage or waste heat recovery. 

 

An energy storage system can operate under a different work-

cycle to the one it was optimized for; however a sub-optimal 

performance will be observed. This ‘drawback’ is not exclusive 

of the load-based optimization approach presented herein; 

the design of thermo-mechanical energy storage systems 

(including packed beds) always involves some form of 

optimization that considers a representative signal. The 

systems have the ability to deviate from their ideal operation 

at the expense of some efficiency.  

 

If it is desired to use the load-based optimization approach in 

an application with a variable load 𝑨, it behoves the designer 

to estimate how much the work-cycle will vary over time and 

evaluate if the performance attained by the packed beds 𝑩 

and 𝑪 when operating under the future conditions is still 

acceptable and/or better than the performance achievable by 

a single packed bed. 

 

If a two-bed thermal store was already built and for some 

unexpected reason the load 𝑨 was modified, a new load-

based optimization could be carried out to determine the split 

of the new profile 𝑨  that makes the most efficient use of the 

two existing packed beds 𝑩 and 𝑪.  

 

It is important to highlight that the study presented in this 

paper is only an example to demonstrate that the 

performance of a packed bed can be improved using the 

“load-based optimization” approach. In this case-study a 

25.5% reduction in the overall exergy losses was achieved. 

However, the applicability and success of this optimization 

technique depend heavily on the shape, type and amount of 

high-frequencies of the reference signal.  There may be cases 

in which using multiple (2 or more) parallel packed beds for 

servicing different frequency components of the duty-cycle 

will not yield an improvement in the overall performance of 

the thermal store. Conversely, there may be cases where the 

reduction in the exergy losses achieved is much greater than 

25%. 

 

5. Concluding Remarks 

 

In this paper, a load-based approach for optimizing a packed 

bed has been presented. The optimization method proposed 

consists in splitting the work-cycle into two profiles, a mostly 

low-frequency signal (𝑩) and a mostly high frequency signal 

(𝑪). Each one of the frequency components is handled by a 

separate packed which has been expressly designed and 

optimized for it.  

 

A ‘sign-preserving filter’ that allows separating a work-cycle 

into two signals that have the same sign at all times was 

developed and used for this work.  The case-study presented 

in the paper uses a sinusoidal profile with some added noise 

as the working cycle (𝑨) for a packed bed. The profile is a 24 

hour-long cycle that comprises a 12-hr charging period and a 

12-hr discharge.  The peak power of the cycle is 10 MW and 

the energy throughput is 76.3 MWh or 33.3 MWh of exergy if 

a charging temperature of 550°C is considered, which is 

typical of a CAES system.  

 

A packed bed was designed and optimized for the work-cycle 

𝑨 using a mathematical model that allows varying the aspect 

ratio and the rock size. This packed bed is the ‘reference case’ 
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for the study. It was found that the best possible design for 

this particular cycle has an aspect ratio of 0.7 and uses 807.02 

tons of rocks with a diameter of 6.5 mm.  The roundtrip 

exergy losses of this packed bed are 0.865 MWh, which 

translates into an exergy efficiency of 97.4 %.  

 

Several different work-cycle splits were analyzed. Many of 

them attained combined losses (𝑩 + 𝑪) below those of the 

reference case. The optimum work-cycle split has a capacity 

ratio (𝐾𝐵) of 0.85, which means that the low-frequency 

packed bed 𝑩 provides 85% of the total energy storage 

capacity. The optimum packed bed for the low-frequency 

signal (𝑩) has an aspect ratio of 0.7, uses 675.74 tons of rock 

and incurs in 0.536 MWh of exergy losses throughout the 

work-cycle. On the other hand, the optimum packed bed for 

the high frequency signal (𝑪) is based on an aspect ratio of 

1.5, uses 131.29 tons of rock and generates 0.1078 MWh of 

exergy loss per work-cycle. The combined losses of the two 

packed beds are 0.644 MWh, which translates in an overall 

exergy efficiency of 98.07%. In short, the two-packed bed 

system (𝑩 + 𝑪) performs the same function as the single 

packed bed 𝑨 but has 25.5% less exergy losses.  

 

The case study presented is just an example that 

demonstrates that the performance of a packed bed can be 

improved by splitting its load into frequency components. The 

approach can be used in other optimization problems where 

the design of a component would benefit from an input signal 

with a narrower range of frequencies. 

 

It is also important to highlight that in the particular case-

study presented in this paper, a 25.5% reduction in the overall 

exergy losses was achieved. However, the applicability and 

results of the load-based optimization depend heavily on the 

shape, type and amount of high-frequency content of the 

reference signal. There may be cases in which using multiple 

parallel packed beds for servicing different frequency 

components of the duty-cycle will not improve the overall 

performance of the thermal store and there may be cases in 

which the performance improvement is much more 

pronounced. 
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