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Abstract 13 

The competitive and inhibitory interactions between the two eyes’ images are a 14 

pervasive aspect of binocular vision. Over the last decade, our understanding of the 15 

neural processes underpinning binocular rivalry (BR) and continuous flash suppression 16 

(CFS) has increased substantially, but we still have little understanding of the 17 

relationship between these two effects and their variation in the general population. 18 

Studies that pool data across individuals and eyes risk masking substantial variations in 19 

binocular vision that exist in the general population. To investigate this issue we 20 

compared the depth of inter-ocular suppression evoked by BR with that elicited by CFS, 21 

in a group (N=25) of visually normal individuals. A noise pattern (either static for BR or 22 

dynamic for CFS) was presented to one eye and its suppressive influence on a probe 23 

grating presented simultaneously to the other eye was measured. We found substantial 24 

individual differences in the magnitude of suppression (a 10-fold variation in probe 25 

detection threshold) evoked by each task, but performance on BR was a significant 26 

predictor of performance on the CFS task. However many individuals showed marked 27 

asymmetries between the two eyes’ ability to detect a suppressed target, that were not 28 

necessarily the same for the two tasks. There was a tendency for the magnitude of the 29 

asymmetry to increase as the refresh rate of the dynamic noise increased. The results 30 

suggest a common underlying mechanism is likely to be responsible, at least in part, for 31 

driving inter-ocular suppression under BR and CFS. The marked asymmetries in inter-32 

ocular suppression at higher noise refresh rates, may be indicative of a difference in 33 

temporal processing between the eyes. 34 

  35 
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1. Introduction 36 

When the relative differences between the two eyes’ images become too large, they 37 

compete for awareness and the brain must adopt a strategy to prevent the unwanted 38 

consequences of confusion and diplopia. It has long been recognised that one possible 39 

solution is to alternate visual awareness between the two images (binocular rivalry) but 40 

another strategy is to simply suppress one image (inter-ocular suppression), so that the 41 

other one dominates perception (e.g. Alais, 2012; Blake & Logothetis, 2002; Tsuchiya & 42 

Koch, 2005). An understanding of how these processes operate is fundamentally 43 

important not only for explaining binocular vision in the normal visual system, but also 44 

for situations when it is disrupted during development (e.g. Barrett, Bradley, & McGraw, 45 

2004). 46 

Binocular rivalry (BR) has been studied extensively in the laboratory (Levelt, 1965) and 47 

has traditionally been measured by presenting a pair of incompatible half images to 48 

each eye, and tracking the time course (phases) of the changing subjective experiences 49 

reported by the observer (e.g. periods of exclusive perceptual dominance, mixed 50 

percepts) over the course of the trial. It is also possible to quantify the depth of inter-51 

ocular suppression using this technique, by requiring the observer to wait until one 52 

particular stimulus dominates perception and then measuring sensitivity to a probe 53 

stimulus presented to the other eye (Fox & Check, 1968, 1972). However a potential 54 

limitation of BR is that perceptual dominance is both unstable and unpredictable, 55 

making it difficult to measure depth of suppression in a controlled manner. A more 56 

recent technique, called continuous flash suppression (CFS), has been developed to 57 

overcome these issues (Tsuchiya & Koch, 2005). CFS is a potent form of inter-ocular 58 

suppression which occurs when a dynamic, changing pattern (e.g. a series of random 59 

Mondrians) flashed continuously to one eye renders an image presented to the other 60 

eye undetectable throughout the viewing period. Despite the fact that both are the 61 

consequences of conflict between the inputs to the two eyes, the difference in the 62 

effectiveness of inter-ocular suppression evoked by BR and CFS is dramatic (Tsuchiya & 63 

Koch, 2005; Tsuchiya, Koch, Gilroy, & Blake, 2006). That is, CFS evokes suppression of 64 

the target stimulus for extended periods of time (often up to several minutes). 65 
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Over the last decade or so, our understanding of BR and CFS has advanced significantly, 66 

but we still have little understanding of the relationship between these two processes. 67 

For example, an important unresolved issue concerns whether CFS is merely an 68 

enhanced version of BR (i.e. quantitatively different), or if they rely on distinct 69 

mechanisms (i.e. qualitatively different). It has been suggested that CFS is not a special 70 

form of BR, based on the observation that one of Levelt's (1965) propositions of BR—71 

that increasing the strength of one rivalrous stimulus only shortens the phase duration 72 

of the other stimulus—does not apply in the case of CFS (Tsuchiya & Koch, 2005). 73 

However the generality of Levelt’s original proposition has subsequently been 74 

questioned (Brascamp, van Ee, Noest, Jacobs, & van den Berg, 2006) and thus its bearing 75 

on the relationship between BR and CFS remains equivocable. Furthermore Baker and 76 

Graf (2009) have shown that depth of suppression measured using dichoptic masking is 77 

positively associated with longer phase durations during BR, suggesting that both 78 

phenomena may share a common mechanism. 79 

Studies that have examined the effects of low-level stimulus properties on the depth of 80 

suppression evoked by either BR or CFS, are also relevant to this issue. For example, it is 81 

well established that the degree of suppression under BR, indicated by either a change 82 

in sensitivity or relative percept dominance, can be modulated by basic attributes such 83 

as the orientations and spatial frequencies of the stimuli (Fahle, 1982; Kakizaki, 1960; 84 

Song & Yao, 2009; Stuit, Cass, Paffen, & Alais, 2009; Whittle, 1965). Similarly, it is known 85 

that in CFS the spatiotemporal properties of both the dynamic flashing stimulus and the 86 

target stimulus can influence the efficacy of suppression (S. Han, Blake, & Alais, 2018; S. 87 

Han, Lunghi, & Alais, 2016; Yang & Blake, 2012; Zhan, Engelen, & de Gelder, 2018; Zhu, 88 

Drewes, & Melcher, 2016). However, some studies that have investigated how the same 89 

low-level stimulus properties affect CFS and BR suggest that they may be mediated, at 90 

least in part, by distinct mechanisms. For instance we have recently reported that CFS is 91 

not an “all-or-nothing” phenomenon and its potency as measured by the depth of 92 

suppression of a target stimulus depends critically both on the contrast and the 93 

luminance of the dynamic noise pattern inducing the suppression (Gao et al., 2016, 94 

2018; Ledgeway, McGraw, & Thompson, 2013). This clearly suggests that CFS may 95 

engage different inhibitory mechanisms to BR, as for the latter suppression depth (but 96 
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not rivalry dynamics) is supposedly independent of the contrast and luminance of the 97 

inducing stimulus (Holopigian, 1989). 98 

The suppression evoked by CFS and BR are often assumed to reflect the same 99 

underlying process and many studies have adopted CFS as an alternative technique to 100 

BR to render a stimulus invisible (e.g. Hong & Blake, 2009; Moors, Wagemans, & De-Wit, 101 

2014; Sterzer, Jalkanen, & Rees, 2009; Yamashiro et al., 2014; Zadbood, Lee, & Blake, 102 

2011). However, as substantial methodological differences between studies exist, this 103 

necessarily limit the conclusions that can be currently drawn. Thus there is a need to 104 

meaningfully compare the depth of suppression evoked by BR and CFS, under directly 105 

comparable conditions using the same set of participants, in order to better understand 106 

their relationship. Investigating the relationship between BR and CFS may be crucial for 107 

understanding the role of temporal transient components in the modulation of 108 

suppression. 109 

Individual differences in susceptibility to laboratory-induced suppression, and rivalry, 110 

are present in subjects with normal binocular vision. For example, in the literature on 111 

binocular rivalry, individual differences in the temporal dynamics of the perceptual 112 

tracking task have been frequently noted, with respect to phase duration (Bosten et al., 113 

2015; Carter & Pettigrew, 2003; Dieter, Sy, & Blake, 2017a; Law, Miller, & Ngo, 2017; 114 

Patel, Stuit, & Blake, 2015; van Loon et al., 2013), alternation rate (Carter & Pettigrew, 115 

2003; Dieter et al., 2017a; Fesi & Mendola, 2015; Hancock, Gareze, Findlay, & Andrews, 116 

2012; Kleinschmidt, Sterzer, & Rees, 2012; Law et al., 2017; Miller et al., 2010), and local 117 

biases in the visual field (Dieter, Sy, & Blake, 2017b). These individual differences in BR 118 

appear to be associated with other aspects of visual and cortical functioning including 119 

cortical surface area (Genç, Bergmann, Singer, & Kohler, 2013), gamma-amino-butyric 120 

acid (GABA) concentration (van Loon et al., 2013), peak frequency of Gamma activity in 121 

visual cortex (Fesi & Mendola, 2015), frequency of saccadic eye movements (Hancock et 122 

al., 2012), dynamics of other perceptual rivalry paradigms (Carter & Pettigrew, 2003; 123 

Patel et al., 2015), and genetic factors (Miller et al., 2010). Importantly the high intra-124 

individual reliability of some of these measurements indicates that they are unlikely to 125 

be measurement error (Genç et al., 2013; Miller et al., 2010). 126 
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In terms of individual differences in CFS, researchers have observed that the duration of 127 

suppression ranges from a few seconds to minutes for different participants (Yamashiro 128 

et al., 2014, 2009), and others report considerable variability in threshold elevations 129 

evoked by CFS across individuals (Hong & Blake, 2009). Similarly we have recently 130 

noted marked individual differences, in a relatively small sample of 8 participants, using 131 

a conventional CFS paradigm (Ledgeway et al., 2013). Detection thresholds for a probe 132 

grating presented to one eye were measured for each of a range of dynamic noise 133 

contrasts (0-0.8) presented to the other eye. Results showed that the depth of 134 

suppression increased strongly (by up to a factor of 25) with the contrast of the 135 

dynamic noise. The threshold versus noise contrast function was characterised by a 136 

straight line, on linear-log axes, but crucially the slope of this line (an index of 137 

suppression gain) differed substantially between observers. Neuroimaging studies have 138 

also sought to identify the neural substrates associated with individual susceptibility to 139 

CFS and suppression depth has been shown to be correlated with an individual’s fMRI 140 

activity in both early (striate cortex) and later cortical visual areas (Yamashiro et al., 141 

2014, 2009). 142 

Tasks of inter-ocular suppression such as BR and, more recently, CFS have also been 143 

used to assess sensory eye dominance, under the assumption that the dominant eye is 144 

somewhat less susceptible to suppression. However not only are there considerable 145 

individual differences in sensory eye dominance measured using each of these 146 

techniques, there is little consistency between tasks in terms of the eye which is 147 

dominant (e.g. Dieter et al., 2017a; C. Han, He, & Ooi, 2018; Yang, Blake, & McDonald, 148 

2010). Moreover, many studies that have sought to compare BR and CFS in the 149 

laboratory have averaged measurements of suppression between eyes, or have chosen 150 

to examine only the eye that elicits the higher level of suppression, which may obscure 151 

asymmetries between the two eyes’ susceptibility to suppress or be suppressed. 152 

In the present study we sought to measure the depth of inter-ocular suppression 153 

evoked by both BR and CFS, using comparable stimuli and procedures in the same set of 154 

participants, to elucidate the relationship between these two processes. In addition, 155 

pooling data across individuals and eyes risks masking substantial variations in 156 

binocular vision that exist in the general population. Therefore we also aimed to 157 
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establish the pattern of individual differences in susceptibility to BR and CFS in a 158 

representative sample of participants, with normal binocular vision. Finally, we 159 

addressed the role of sensory eye dominance in inter-ocular suppression, by assessing 160 

potential asymmetries between the eyes with respect to BR and CFS. 161 

2. Experiment 1: Individual differences and eye dominance 162 

associated with CFS and BR 163 

2.1. Methods 164 

2.1.1. Participants 165 

Twenty-five subjects participated in Experiment 1 (age range: 21–49 years, 10 females 166 

and 15 males), including the three authors (S1, S7 and S8). The participants all had 167 

normal or corrected-to-normal vision and no history of ocular disease. All had 168 

stereopsis (range: 15 to 120 arcsec) as assessed by the TNO test (              , 169 

Nieuwegein, The Netherlands). The study was conducted with the approval of 170 

University of Nottingham, School of Psychology Ethics Committee and all participants 171 

gave informed consent. All participants practised the tasks before any formal data 172 

collection. 173 

2.1.2. Apparatus and Stimuli 174 

Stimuli were grey scale images, computer generated using an Apple Macintosh running 175 

custom software written in the C programing language and were presented on a pair of 176 

identical LCD monitors (22 inch Samsung Sync-Master 2233RZ; 1024 x 768-pixel 177 

resolution; 60 Hz refresh rate; 318 cd/m2 maximum luminance). The spatial 178 

characteristics, timing and luminance properties of these displays, for use in vision 179 

experiments, have been well documented (P. Wang & Nikolic, 2011). The two monitors 180 

were temporally synchronised with each other (driven by the dual outputs of the same 181 

video card) and calibrated such that output luminance was a linear function of the 182 

digital representation of the image. For precise control of luminance contrast the 183 

number of intensity levels available on each display was increased using the noisy-bit 184 

method, which was applied to each colour channel separately (Allard & Faubert, 2008). 185 
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Participants viewed the stimuli dichoptically through a Wheatstone mirror stereoscope, 186 

producing an effective (optical) viewing distance of 231.5 cm, in an otherwise dark 187 

room. Although the angle of the pair of full-silvered mirrors was nominally ±45q, with 188 

respect to the median plane of the head, it was adjusted if needed for individual 189 

observers to ensure that stable fusion was achieved. The stimuli were presented against 190 

a uniform “grey” background (159 cd/m2) within a central square region of each display 191 

which was surrounded by a high contrast, checkered fusion frame (2.21° x 2.21q), along 192 

with a pair of vertically and horizontally oriented Nonius lines, to assist stable binocular 193 

fusion. A binocular fixation cross was presented at the centre of the displays between 194 

trials and a chin rest was employed to stabilise head position when performing the 195 

tasks. 196 

The pair of conflicting monocular stimuli used to trigger CFS or BR consisted of a 197 

spatially two-dimensional noise pattern composed of square elements (0.128q x 0.128q), 198 

and a horizontally-oriented sinusoidal grating (spatial frequency 1.8 cpd). For the noise 199 

pattern, the luminance of each element was assigned by random sampling with 200 

replacement, from a uniform probability distribution spanning a range determined by a 201 

Michelson contrast of 20%. For the CFS protocol, the noise pattern was updated with a 202 

new stochastic sample every 100 ms (10 Hz) to create a stream of dynamic visual noise. 203 

This stimulus sequence was presented to one eye, and the grating was presented to the 204 

other eye. The phase of the grating was always 0° (i.e. ±sine phase) with respect to the 205 

horizontal midline and each half of the square display window contained an integer 206 

number of cycles, preventing luminance artefacts. The Michelson contrast of the grating 207 

was 20%. For BR, the stimuli were identical to the CFS task, except that the noise 208 

pattern was static. 209 

2.1.3. Procedure 210 

A typical trial is illustrated in Figure 1. To directly compare the depth of suppression 211 

evoked by BR with that evoked by CFS, a two-alternative forced choice (2-AFC) probe 212 

detection paradigm was used to quantify the contrast increment required to break the 213 

suppression (Fox & Check, 1968, 1972; Tsuchiya et al., 2006). At the beginning of each 214 

trial the participant was required to view the binocular fixation cross and wait until the 215 
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noise pattern completely dominated perception (i.e. it was exclusively perceived). This 216 

ensured that the grating was being suppressed by the noise. The participant then 217 

pressed a key that triggered the presentation of the probe stimulus. The probe stimulus 218 

consisted of a contrast increment applied to either the top or bottom half of the grating, 219 

chosen at random on each trial. The probe lasted for 500 ms, with a smooth temporal 220 

onset and offset modulated by a Gaussian envelope (SD 100 ms). Following the offset of 221 

the probe, the dynamic noise stopped updating for the CFS task or the noise remained 222 

stationary for the BR task, and a response was expected at this point. Participants were 223 

required to judge the probe’s spatial location (top vs. bottom). Following this response, 224 

the noise and grating were replaced with a blank interior within the fusion border and 225 

then the fixation cross was presented for 1000 ms before the next trial began. 226 

Insert Figure 1 about here 227 

The probe contrast increment threshold for each observer was measured using a three-228 

down-one-up adaptive staircase tracking the 79% correct response level. For the 229 

staircase a proportional step size of 30% was used before the fourth reversal and was 230 

15% thereafter. The staircase terminated after 12 reversals and the geometric mean of 231 

the last four reversals was used to calculate the threshold for that particular set of trials. 232 

To assess potential asymmetries between the two eyes with respect to BR and CFS, 233 

thresholds were measured with both configurations of eye of presentation. That is, in 234 

half the conditions tested, the grating was always presented to the left eye and the noise 235 

to the right eye, and for the remaining trials the converse was true. Baseline probe 236 

thresholds were also obtained using an identical procedure, but in the absence of the 237 

noise stimulus. Participants completed a minimum of five staircases for each condition 238 

tested, in a pseudorandom order and the final threshold for each condition was 239 

calculated as the arithmetic mean of these values (the standard error of the mean, SEM, 240 

was also calculated). 241 
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2.2. Results 242 

The overall group mean probe increment thresholds measured under CFS, BR, and the 243 

baseline condition (averaged across both eyes, and then across all subjects) are shown 244 

in Figure 2. These data are plotted in the same manner as Tsuchiya et al. (2006) and 245 

despite some differences in the methodologies employed (e.g. the base contrast of the 246 

grating; isotropic noise vs. random Mondrians) they exhibit a similar pattern of results, 247 

validating our testing protocol. Both BR and CFS elicited considerable inter-ocular 248 

suppression, indicated by the elevated mean probe thresholds compared to that 249 

measured in the baseline (monocular sensitivity) condition. However the depth of 250 

suppression elicited by CFS was approximately three times greater. 251 

Insert Figure 2 about here 252 

To reveal the individual differences within our sample of participants, and also any 253 

potential asymmetries between the two eyes with respect to baseline sensitivity, BR 254 

and CFS, the right eye’s thresholds are plotted against the left eye’s thresholds 255 

separately for every observer in Figure 3. Considerable individual variation in 256 

thresholds is evident in all three conditions, whereby the mean probe thresholds, 257 

averaged across eyes, ranged from 1.94 to 7.19% for the baseline condition, 2.22 to 258 

20.06% for BR and 5.53 to 53.48% for CFS. That is, there is almost an order of 259 

magnitude difference between the lowest and highest thresholds obtained for each 260 

condition. Indeed the coefficient of variance (ratio of the SD to the mean) shows that the 261 

relative variability is comparable for thresholds measured under CFS (51.56%) and BR 262 

(51.91%), while baseline thresholds are much less variable (35.70%). 263 

In term of sensory eye dominance in inter-ocular suppression, it is clear from Figure 3 264 

that although the thresholds for the two eyes are in general similar (i.e. fall close to a 265 

diagonal line with unity slope), for many individuals they are not necessarily the same. 266 

To quantify the potential asymmetries between the two eyes with respect to baseline 267 

sensitivity, BR and CFS, the Spearman rank-order correlation coefficient was calculated 268 

for each condition (a non-parametric test was used due to the violation of the 269 

assumption of normality assessed by the Shapiro-Wilk test). This showed (see Figure 3) 270 
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that in the sample we tested, for all tasks, one eye’s threshold is significantly predictable 271 

from the other eye’s threshold (although rs never exceeds 0.84). Nonetheless, inspection 272 

of Figure 3b and 3c shows that for BR and CFS tasks there is an overall bias towards 273 

right eye dominance in our sample, in that the right eye is less susceptible to 274 

suppression than the left eye, and is most evident for CFS. 275 

Insert Figure 3 about here 276 

To investigate the relationship between the degree of suppression evoked by CFS and 277 

BR, Spearman rank-order correlations were also conducted between the thresholds 278 

measured under the two tasks. To control for the baseline variations in monocular 279 

sensitivity, partial correlation was used to reveal the relationship between the 280 

magnitude of suppression elicited by each task. Figure 4 illustrates the residuals of the 281 

thresholds measured under CFS versus those for BR, separately for each eye, after 282 

partitioning out the variance accounted for by the baseline thresholds. It is evident that 283 

performance on the two tasks are significantly associated, although it is worth noting 284 

that the correlation for right eye suppression was much weaker than that for the left eye 285 

(rs of 0.437 vs. 0.729, respectively). This latter result implies that the direction and 286 

degree of asymmetric suppression between the two eyes is to some extent task 287 

dependent. That is, (as indicated in Figure 3b and 3c) the right eye bias in our sample is 288 

much more marked for thresholds measured under CFS than those under BR. Therefore, 289 

an additional analysis was conducted to explore the relationship between inter-ocular 290 

variations in CFS and BR. 291 

Insert Figure 4 about here 292 

To quantify the eye dominance associated with inter-ocular suppression on each task, a 293 

signed asymmetry index was calculated for each participant using the following 294 

equation: 295 
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 , (1) 

where Suppression denotes the mean threshold measured when the participant was 296 

undergoing either the CFS or BR task, and Baseline represents the mean threshold 297 

measured in the absence of the noise. This index allows us to directly quantify for each 298 

task and observer, the degree of asymmetry between the two eyes’ susceptibility to 299 

suppress or be suppressed, whilst discounting any potential baseline differences in 300 

monocular sensitivity. Positive and negative values indicate right and left eye 301 

dominance1, respectively. Whilst zero signifies perfectly balanced suppression between 302 

the eyes, higher absolute values of the Asymmetry Index suggest a greater degree of bias.  303 

Figure 5 plots the asymmetry indices calculated for both BR and CFS (see figure legend). 304 

Asymmetric suppression between the eyes can be seen in both tasks. One participant 305 

(S15) showed no suppression under BR when the grating was presented to her right 306 

eye, so it was not possible to compute a meaningful asymmetry index in this case and 307 

this participant’s data was excluded from further statistical analysis. While many points 308 

cluster around zero for both axes (i.e. the centre point) the rest of the points can be 309 

found in nearly every quadrant. Spearman rank-order correlations showed that there 310 

was no significant association between the indices measured on the two tasks. A Bayes 311 

factor was then computed to quantify the evidence for the null hypothesis (i.e. no 312 

relationship between the asymmetry indices obtained on the two tasks), based on the 313 

method proposed by Wetzels and Wagenmakers (2012). Since the method is designed 314 

for parametric tests, for the sake of simplicity2 the data for one other participant (S1, 315 

the most extreme outlier) were excluded from this analysis, such that the remaining 316 

data became normally distributed. A Bayes factor of 0.24 (N=23) was obtained, 317 

suggesting substantial to strong evidence for the null hypothesis, according to the 318 

categories defined by Jeffreys (1961), that there is no relationship between the 319 

asymmetries observed in the CFS and BR tasks. 320 

                                                      
1 Positive values of the index indicate greater suppression of the probe stimulus when it is viewed by the 
left eye than the right eye, and therefore indicate right eye dominance. 
2 The results of the Shapiro-Wilk test showed that the asymmetry indices for CFS were normally 
distributed but this was not the case for BR. Excluding one extreme case, the outlier S1, made the 
asymmetry indices for BR also normally distributed.  
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Insert Figure 5 about here 321 

In summary, profound individual differences are evident in our measures of inter-322 

ocular suppression under both CFS and BR. Whilst the significant correlations between 323 

the suppression produced by CFS and BR are at least suggestive of a similar mechanism 324 

mediating both phenomena, the finding that sensory eye dominance is task dependent 325 

(i.e. can be different for BR and CFS in the same individual) indicates that they might 326 

each also engage distinct mechanisms at some stage of binocular processing. This 327 

important issue will be explored further in the next experiment. 328 

3. Experiment 2: Does the inter-ocular asymmetry in 329 

suppression vary with noise refresh rate? 330 

The importance of the transient (constantly changing) nature of the suppressing 331 

stimulus (e.g. noise) for evoking the potent and robust inter-ocular suppression found 332 

in CFS, compared to other techniques, has been realised since its inception. Tsuchiya et 333 

al. (2006), for example, observed that the depth of suppression evoked by CFS 334 

depended on the number of updates (i.e. flashes) of the dynamic Mondrian sequence. 335 

They found that suppression increased with an increasing number of flashes and 336 

reached a maximum with 5 flashes, each separated by 100 ms, equivalent to an image 337 

update rate of 10 Hz. A number of later studies have also investigated this issue 338 

although there is some variation in what is reported to be the optimal rate that triggers 339 

the strongest suppression effect (S. Han et al., 2016; Zhan et al., 2018; Zhu et al., 2016). 340 

Nonetheless these findings highlight the crucial role played by transient components in 341 

eliciting the relatively high degree of suppression found with CFS compared to BR. 342 

The results of Experiment 1 indicate that even in two tasks designed to assess the depth 343 

of inter-ocular suppression, sensory eye dominance is task dependent. The paradigms 344 

used to quantify suppression under CFS and BR differed only in terms of the temporal 345 

properties of the noise stimulus: Dynamic noise refreshing at 10 Hz was used to trigger 346 

suppression for the former, whilst a stationary noise pattern was used for the latter. 347 

This raises the possibility that the differential patterns of sensory eye dominance, 348 

observed in the same individuals across the two tasks, may in fact be indicative of 349 
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differences in low-level temporal properties (i.e. temporal tuning or temporal 350 

sensitivity) of the two eyes in response to binocular stimulation. If this is the case, it is 351 

reasonable to expect that varying the refresh rate of the dynamic noise pattern in a CFS 352 

task will systematically influence the magnitude of any asymmetry observed between 353 

the eyes with respect to suppression depth. The aim of the present experiment was to 354 

test this hypothesis. 355 

3.1. Methods 356 

3.1.1. Participants 357 

Seven representative participants (S1, S2, S4, S7, S8, S13 and S16) that took part in 358 

Experiment 1, also participated in Experiment 2. 359 

3.1.2. Apparatus and Stimuli 360 

The apparatus and stimuli were identical to those used in Experiment 1 with the 361 

exception that performance was measured for each of a range of noise refresh rates. 362 

Four values of refresh rate were tested — 0 (i.e. BR with static noise), 2.5, 5 and 10 Hz. 363 

3.1.3. Procedure 364 

The procedure was identical to that used in Experiment 1. All conditions were repeated 365 

at least five times in a pseudorandom order. The data reported for thresholds measured 366 

under the baseline condition, noise refresh rate of 0 Hz and 10 Hz are those from 367 

Experiment 1. 368 

3.2. Results 369 

Figure 6 shows the contrast increment thresholds for each participant measured as a 370 

function of the refresh rate of the noise serving as the suppressing stimulus. Generally, 371 

suppression depth tends to increase as the noise refresh rate increases, consistent with 372 

the findings of Tsuchiya et al. (2006). However participant S1, who showed the least 373 

suppression, seems to exhibit a ceiling effect in that suppression depth appears to 374 

increase little for refresh rates > 2.5 Hz. For observers S2 and S16, although the 375 

suppression increased with the noise refresh rate when the probe stimulus was 376 
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presented to the left eye, thresholds remained relatively constant when the probe 377 

stimulus was presented to the right eye under all CFS conditions. Nevertheless, when 378 

averaged across both eyes, a mixed-effects model analysis incorporating a random 379 

effect of individuals, shows a significant fixed effect of the noise refresh rate (b = 1.97, 380 

t(26) = 4.47, p < 0.001). Thus despite the discrepancies in thresholds between the eyes of 381 

some participants, the overall susceptibility to suppression for a given individual 382 

increases as the noise rate is increased. 383 

Insert Figure 6 about here 384 

Despite all participants showing relatively similar baseline monocular sensitivities for 385 

the two eyes, there are some discrepancies between individuals when the thresholds 386 

were measured with noise presented simultaneously to the other eye. First, participants 387 

S1, S4, S7 and S8 exhibit little asymmetry between the two eyes with respect to 388 

suppression depth, regardless of the refresh rate of the suppressing noise pattern. In 389 

contrast S2, S13 and S16 exhibit marked asymmetries between their eyes, the 390 

magnitude of which increases as noise refresh rate is increased. In all cases there is little 391 

difference between eyes in the BR condition. These results confirm that asymmetric 392 

suppression only exists in some observers, rather than being a universal phenomenon, 393 

since not every participant showed different degrees of suppression for the two eyes in 394 

one or more conditions. For those observers that did show asymmetric suppression, its 395 

magnitude depended strongly on the flicker rate of the noise. Notably, the magnitude of 396 

asymmetry is not predictable from the individual’s stereo vision (see Figure 6 for 397 

results of the TNO test). 398 

4. General discussion 399 

A common view is that inter-ocular suppression arises when the two eyes are 400 

stimulated with incompatible images and is mediated by mechanisms that encode 401 

binocular differences (Katyal, Engel, He & He, 2016; Katyal, Vergeer, He, He & Engel, 402 

2018; Said & Heeger, 2013). However evidence from modeling studies suggests that 403 

inter-ocular suppression might operate under a much broader range of conditions, even 404 

when the inputs to the two eyes are identical (e.g. Baker & Wade, 2017; Meese, 405 
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Georgeson & Baker, 2006). Therefore exactly what instantiates inter-ocular suppression 406 

is not yet firmly established. CFS and BR are two representative examples but their 407 

precise relationship remains unclear. The results of Experiment 1 revealed significant 408 

correlations between the suppression measured in the two tasks, for both directions of 409 

inter-ocular suppression (i.e. from left eye to right eye and vice versa). This suggests 410 

that a common underlying mechanism is likely to be responsible, at least in part, for 411 

evoking the inter-ocular suppression under CFS and BR. Similarly, Baker and Graf (2009) 412 

reported that greater depth of suppression under dichoptic masking was associated 413 

with longer phase durations during BR. In addition, BR elicits comparable patterns of 414 

suppression depth to those evoked by another type of inter-ocular suppression termed 415 

permanent suppression (Ooi & Loop, 1994). These findings collectively suggest 416 

considerable overlap in these inter-ocular suppression phenomena. 417 

We sought to address the role of sensory eye dominance in inter-ocular suppression, by 418 

assessing potential asymmetries between the eyes with respect to BR and CFS. Sensory 419 

eye dominance has previously been reported on a variety of binocular tasks including 420 

BR and CFS (e.g. Bossi, Hamm, Dahlmann-Noor, & Dakin, 2018; Dieter et al., 2017a; Yang 421 

et al., 2010). In the present study, utilising an objective measure of suppression, we also 422 

found that the thresholds measured in BR and CFS tasks exhibited notable variation 423 

(asymmetry) between many of our participant’s eyes. Interestingly when we computed 424 

an asymmetry index, to quantify the sign and magnitude of each participant’s eye 425 

dominance on each task, whilst discounting baseline differences in monocular 426 

sensitivity, there was no significant association between the indices measured on the 427 

two tasks. Indeed for half of our participants for which a meaningful asymmetry index 428 

could be computed, the sign of the index was different for BR and CFS. That is, for one 429 

task a participant’s right eye was dominant (less susceptible to inter-ocular suppression) 430 

and for the other task the left eye was dominant. This finding could be important in the 431 

sense that it might imply some degree of task-dependence for sensory eye dominance. 432 

This clearly suggests that although CFS and BR may share one, or more, stages of visual 433 

processing, they are not necessarily one and the same (c.f. Holopigian, 1989). However, 434 

those that showed changes in sensory eye dominance between the two tasks had 435 

considerably smaller absolute asymmetry indices (mean = 3.68 ± 1.20 for BR and 3.00 ± 436 

0.93 for CFS) than those that did not switch (mean = 5.52 ± 1.99 for BR and 4.80 ± 1.38 437 
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for CFS). Thus the change in sign is likely to be a noisy result and is consistent with 438 

some previous reports on eye dominance (e.g. Li et al., 2010). 439 

Whilst the data show that the range of the asymmetry index values is somewhat wider 440 

in BR than in CFS (see Figure 5), this may be due in part to the way the index is 441 

calculated. That is, it uses four measurements (see Equation 1) to obtain the final value 442 

and the error terms are not taken into account. Consequently errors in the individual 443 

threshold values measured will have a multiplicative impact on the final ratio that is 444 

computed. With relatively small values in particular, as typically found in the case of BR, 445 

the errors may yield spuriously large asymmetry scores. This is likely to be the case for 446 

some of the observers, such as S13. Consequently further research is needed to address 447 

the reliability of this finding. 448 

Phenomenally CFS appears distinct from BR, in terms of the persistent unilateral inter-449 

ocular suppression compared to the stochastic perceptual alternations that are 450 

characteristic of BR. However, the stimuli triggering the two processes, only differ in 451 

terms of the presence or absence of transient components in the noise used for CFS and 452 

BR, respectively. It is therefore possible that CFS is just an extreme, but more stable, 453 

version of binocular rivalry such that the switches of perceptual dominance are 454 

minimised by the temporal characteristics of the noise. Commensurate with this 455 

suggestion, there is evidence that neural adaptation may be the mechanism 456 

underpinning perceptual alternations in BR (Alais, 2012; Alais, Cass, O’Shea, & Blake, 457 

2010; Kang & Blake, 2010; Laing & Chow, 2002; Lankheet, 2006; Shimaoka & Kaneko, 458 

2011; Wilson, 2003). If this is the case, the transient nature of the suppressing stimulus 459 

(e.g. noise) used to evoke CFS might serve to preclude or reduce adaptation of the 460 

mechanism encoding the noise, compared with the mechanism encoding the persistent 461 

static image presented to the other eye, such that it can dominate perception for a 462 

relatively prolonged period of time. 463 

We found in Experiment 2 that the depth of suppression increased when the noise was 464 

updated at a faster rate, up to a value of 10 Hz that is conventionally used in 465 
                                                      
3 The range of individual asymmetry indices revealed with BR becomes narrower than that with CFS if 
excluding this subject’s data (see Figure 5b). 
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experiments employing a CFS task (Tsuchiya & Koch, 2005; Tsuchiya et al., 2006; Yang 466 

& Blake, 2012). Although the optimal refresh rate to trigger inter-ocular suppression is 467 

still under debate (S. Han et al., 2016; Zhan et al., 2018; Zhu et al., 2016), our finding 468 

that the depth of suppression systematically varied with flicker rate, underscores the 469 

crucial role of temporal transient energy in the modulation of suppression evoked by 470 

CFS. 471 

Our results revealed that asymmetric inter-ocular suppression, present in a subset of 472 

our participants, whilst modest in the case of BR, increased when the noise was flashed 473 

and as its rate was increased. Furthermore, that the lack of obvious asymmetry in the 474 

thresholds measured in our baseline condition, implies that monocular sensitivity 475 

cannot be the origin of the asymmetry in thresholds measured under suppression. 476 

Instead, the asymmetry occurs at a stage where the inputs from both eyes interact. 477 

Consistent with this finding, C. Han et al. (2018) have shown that the imbalance in 478 

sensory eye dominance cannot be fully accounted for by a discrepancy in monocular 479 

contrast thresholds and that at least some degree of the asymmetry must be purely 480 

binocularly driven. 481 

The seemingly contradictory conclusion, that a common mechanism might underpin 482 

CFS and BR whilst they differ in terms of sensory eye dominance, may be reconciled in 483 

the following sense. Our results are in line with the suggestion that the differential 484 

patterns of sensory eye dominance, observed in some individuals across BR and CFS 485 

tasks, arise due to differences in the temporal response properties of the two eyes 486 

under conditions of inter-ocular suppression. This suggests that the nature of the inter-487 

ocular suppression underlying the two processes is likely to be the same, but the 488 

introduction of temporal transient energy in the stimulus viewed by one eye in CFS may 489 

reveal intrinsic differences between the eyes, in some individuals (even with normal 490 

binocular vision), associated with the visual processing of those components. 491 

It is tempting to speculate that clinical suppression, typically found in strabismus and 492 

amblyopia, is mediated by the same mechanism as laboratory-induced suppression (e.g. 493 

BR). Some research has provided evidence that the suppression in amblyopia exhibited 494 
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similar time course as rivalry suppression (Wolfe, 1986). Where their time courses 495 

differ, they can be equated, in amblyopia and normal subjects, using neutral density 496 

filters (Leonards & Sireteanu, 1993). However, strabismic suppression is not tuned to 497 

wavelength as is typically the case in BR (Ooi & Loop, 1994; Smith III, Levi, Harwerth, & 498 

White, 1982; Smith III, Levi, Manny, Harwerth, & White, 1985). This finding may 499 

provide useful insight for future investigations into the relationship between 500 

laboratory-induced inter-ocular suppression, and clinical suppression that is 501 

pathologically present in atypical visual development. 502 

In summary, individual differences in suppression depth measured using CFS are likely 503 

to be commonplace in the general population, and are predictive of performance on an 504 

analogous BR task. However sensory eye dominance is task dependent and can be 505 

different for BR and CFS in the same individual. This latter finding may have important 506 

practical implications, when using tests of inter-ocular suppression to assess eye 507 

dominance, both in the general population and in clinical cases. We have also 508 

demonstrated that asymmetries in suppression for the two eyes depend critically and 509 

systematically on the temporal properties (flicker rate) of the noise stimulus inducing 510 

that suppression. We speculate that a possible explanation is that differences in 511 

temporal processing arising between the two eyes, under conditions of sensory conflict, 512 

can lead to marked asymmetries in the efficacy of inter-ocular suppression. This is an 513 

important area for further research, which we are currently exploring in our laboratory. 514 

  515 
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Figure 1: Schematic representation of a single trial. After the initiation of the trial, a 725 

noise pattern (either dynamic in the case of CFS or static in the case of BR) was 726 

presented to one eye (right eye in this example) and a sinusoidal grating was 727 

simultaneously presented to the other eye. For CFS the noise image was replaced with a 728 

new sample every 100 ms (i.e. at 10 Hz). A probe (contrast increment) was presented 729 

randomly to either the top or bottom half of the grating. The location of the probe was 730 

judged after its offset. 731 

Figure 2: Mean contrast increment thresholds (N=25) measured under CFS, BR and the 732 

baseline condition. Error bars represent SEM across individuals. 733 

Figure 3: Right eye thresholds plotted against left eye thresholds for all twenty-five 734 

individuals, measured (a) when there was no suppressing noise (baseline condition), (b) 735 

under suppression during BR and (c) under CFS. The diagonal dotted line (of unity slope) 736 

on each plot indicates where thresholds would fall if both eyes were equally sensitive to 737 

the probe stimulus. Points above the line show higher right eye thresholds than left eye 738 

thresholds (left eye dominance), whereas those below the line indicate the converse. 739 

Horizontal and vertical error bars represent the SEM calculated across repetitions of the 740 

task for each individual. The Spearman rank-order correlation coefficient between the 741 

two eyes’ thresholds is also shown on each plot. 742 

Figure 4: Suppression depth measured under CFS versus that measured under BR when 743 

the probe stimulus was presented to the (a) left eye and (b) right eye, for twenty-five 744 

subjects. The axes show adjusted thresholds (note the difference in scales for the 745 

ordinates and abscissae), which are the residuals left after accounting for the variance 746 

arising from the monocular baseline thresholds. The results of Spearman partial 747 

correlations are shown on each plot (see text for further details). 748 

Figure 5: The asymmetry index (Equation 1) in the depth of suppression between the 749 

two eyes for BR and CFS. (a) The index for every individual is plotted for CFS (ordinate) 750 

against that for BR (abscissa). The vertical and horizontal dashed lines indicate 751 

symmetric suppression under BR and CFS, respectively. The dotted diagonal line (unity 752 
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slope) indicates matched asymmetries on the two tasks, in terms of both magnitude and 753 

direction. *S15 showed no suppression under BR when the grating was presented to her 754 

right eye, so it was not possible to compute a meaningful asymmetry value for this 755 

participant and it was therefore conservatively assigned to be zero. The Spearman rank-756 

order correlation coefficient between the indices measured on the two tasks (excluding 757 

S15’s data) is shown on the plot. (b) The same data are summarised in a violin plot, 758 

allowing a direct comparison between the distributions of asymmetry indices for BR 759 

and CFS along the same axis. 760 

Figure 6: Contrast increment thresholds as a function of noise refresh rate. Red squares 761 

show thresholds measured when the probe stimulus was presented to the left eye and 762 

the noise to the right eye. Black circles represent the converse configuration. Red 763 

dashed lines and black dotted lines mark the baseline thresholds for the left and right 764 

eye, respectively. Error bars represent the SEM calculated across repetitions of the task 765 

for each individual. The results of the TNO test for each individual are also shown, as an 766 

assessment of the quality of binocular vision. 767 
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