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Abstract: Members of several different virus families cause equine viral encephalitis, the majority of 

which are arthropod-borne viruses (arboviruses) with zoonotic potential. The clinical signs caused are 

rarely pathognomonic; therefore, a clinical diagnosis is usually presumptive according to the 

geographical region. However, recent decades have seen expansion of the geographical range and 

emergence in new regions of numerous viral diseases. In this context, this review presents an 

overview of the prevalence and distribution of the main viral causes of equine encephalitis and 

discusses their impact and potential approaches to limit their spread. 

Introduction 

Viral encephalitis is one the most common infections of the central nervous system (CNS) in horses 

worldwide.1 Clinical signs can include mild fever, dullness, sleepiness, listlessness, ataxia, inability to 

rise trembling, skin twitching, difficulty in urination and defecation, facial paralysis, blindness, 

seizures, coma, and other non-neurological signs.1,2 The combination, severity and duration of these 

clinical signs can vary depending on the etiological agent and its virulence; infection can be fatal. As 

clinical signs are usually very similar among the different diseases, which specific pathogen is 

considered depends on geographical areas. This review focuses on the main neurotropic viruses that 

cause encephalitis in equids, and not viruses that can cause other neurological diseases such as 

equine herpes myeloencephalopathy. Other viruses that cause encephalitis in horses less frequently 

or affecting a smaller region are listed in Table 1. 

Prevalence and distribution 

Alphaviruses 

Encephalitic alphaviruses belonging to the family Togaviridae cause neurological signs in equids and 

humans on the American continent.3 The most common equine encephalitic viruses are Eastern 

equine encephalitis (EEE), Western equine encephalitis (WEE) and Venezuelan equine encephalitis 

(VEE). Collectively known as the equine encephalitides, they are transmitted by mosquitoes and wild 

birds are the main reservoir host. Horses and humans are considered dead-end hosts for EEE and 

WEE viruses because they do not generate enough viremia to infect mosquitoes and perpetuate the 
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transmission cycle. On the other hand, equids are the key reservoir host for VEE virus because they 

develop high titer viremia that can act as source of infection for subsequent feeding mosquitoes.2,4  

Eastern Equine Encephalitis virus 

In North America, EEE has been considered endemic for decades.5 This disease is more prevalent in 

the Southeastern region of USA with a high fatality rate. However, since 2005 the geographic range of 

the virus has spread northwards,6,7 and 8.7% seroprevalence was reported in horses in southern 

Quebec in 2012.8 Madariaga virus (MADV) is the new species designation for the South American 

isolates of EEE virus (previously referred to as EEE lineages II, III and IV) to reflect the different 

pathogenesis and ecology and genetic divergence from North American strains.9 In Central and South 

America, small outbreaks of MADV with low fatality rate have been reported between the1930s and 

1990s.5 More recently, larger outbreaks of higher morbidity and mortality have occurred.10-12 In Brazil, 

high fatality rate outbreaks were reported between 2008 and 2009 with 229 horses affected.13 In 

2010, seroprevalence of MADV in horses was reported to be 26.3% in Panama and 9.9% in 

Brazil.11,14 

Western Equine Encephalitis virus 

In North America, the WEE virus has traditionally affected states west of the Mississippi river, with the 

largest outbreaks registered in the 1930s and 1940s in Canada and the USA affecting hundreds of 

thousands of equids.2 However, no cases have been reported in North America since 1998 and the 

last time the virus was detected in mosquito pools was in 2008.15 

In South and Central America, the last confirmed equine outbreak was reported in Brazil in 2007 and 

a prevalence of 36.4% has been reported in non-vaccinated horses in the Pantanal region of Brazil in 

2010 and 0.4% in 2015.14 The disease is suspected but has not been confirmed in other countries 

such as Bolivia and Costa Rica. In Uruguay, a fatal human case in 2009 associated with WEE virus 

encephalitis in a child led to a seroprevalence survey in this country, which revealed a low prevalence 

of this virus in horses ranging from 3–4%.16,17 

WEEV is an example of an apparently declining equine and human pathogen probably caused by a 

reduction in genetic diversity of circulating lineages, which contrasts with the recent emergence of 

other arboviruses.15,18 
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Venezuelan Equine Encephalitis virus 

Generally, only the epizootic strains 1-AB and 1-AC of VEE virus produce encephalomyelitis in 

horses, with a fatality rate close to 90%.19,20 Outbreaks of this disease started in South America and 

spread northward via Central America up to Mexico and southern Texas affecting hundreds of 

thousands of horses.21 In Mexico, a high equine seroprevalence has been reported ranging from to 

17% to 80% in different states between 2003 and 2010.22 

Flaviviruses 

The family Flaviviridae contains the largest number of viral species that may cause encephalitis in 

horses. All are zoonotic and transmitted by mosquitoes or ticks (Table 1). The most significant are 

West Nile virus (WNV) and Japanese encephalitis virus (JEV).1  

West Nile virus 

West Nile virus is the flavivirus with the widest distribution, which includes all continents (Table 2). In 

affected regions, WNV is maintained in an enzootic cycle between mosquitoes and birds.23 Horses 

and humans are considered dead-end hosts because of the low viremia developed, which is not 

sufficient to transmit the virus back to mosquitoes.3 Experimental studies have demonstrated that only 

10% of infected horses develop neurological signs, but they can be lethal.24 WNV was first isolated in 

Africa in 1937 and spread to Eurasia and Australia where sporadic outbreaks occurred.25 Since the 

1990s, more frequent outbreaks have occurred in the Mediterranean Basin and WNV appeared for 

the first time in North America in 1999, subsequently spreading across the continent.25,26 Since 2008, 

a re-emergence of WNV in Central and Southeastern Europe has been observed, with both lineage 1 

and lineage 2 WNV involved in outbreaks.27 In Australia, WNV was named Kunjin virus, which was 

endemic in northern Australia but has caused recent outbreaks of encephalitis in horses in the 

southeast probably because of enhanced vector transmission.28,29 

Japanese encephalitis virus 

Japanese encephalitis virus most commonly circulates amongst birds and mosquitoes.30 Pigs are 

referred to as a virus-amplifying host because they develop high viremia.31 As for EEEV and WEEV, 

horses and humans are dead-end hosts for JEV.32 The virus is endemic in southern areas of Asia and 



 

5 

 

some Pacific countries, such as Malaysia, Indonesia, Singapore, New Guinea and Australia where 

sporadic outbreaks are observed.33 Whereas in northern Asiatic areas such as Korea, Nepal, China, 

Taiwan, Japan, northern parts of Vietnam, India or Thailand; seasonal epidemics develop.33 In Korea, 

around half of 989 horses tested between 2005 and 2007 were antibody positive.34 In India, 10.5% of 

637 horses screened between 2006 and 2010 had antibodies against JEV.35 

Mononegavirales 

Viruses in the order Mononegavirales are large enveloped viruses with a single-stranded negative-

sense RNA genome. Several families in the order (Rhabdoviridae, Orthobornaviridae and 

Paramyxoviridae) include viruses that can produce encephalitis in animals and humans.36  

Rabies virus 

Rabies virus, a neurotropic virus in the genus Lyssavirus (family Rhabdoviridae) is one of the 

deadliest zoonoses worldwide.37 European countries, Iceland, Greenland, New Zealand and Australia 

are considered free of this disease, but it is present on the American, African and Asian continents.38 

All mammals are susceptible but canids and bats are the major vectors. Transmission is via saliva, 

mainly when a rabid animal bites another animal. Rabies infection is relatively rare in horses; only 23 

rabid equids were reported in the USA in 2016 and 13 in 2017.39 Nevertheless, in some African 

countries, large numbers of rabies cases occur in equids, including donkeys, and there may 

occasionally be transmission to people.40  

Borna disease virus 

Borna disease virus-1 (BoDV-1) is a neurotropic pathogen in the genus Orthobornavirus (family 

Bornaviridae) that causes mononuclear encephalomyelitis in horses.41 This disease is endemic in 

certain areas in central Europe including Germany, Switzerland, Liechtenstein and Austria and is 

usually fatal. The reservoir host of this virus is the bicolored white-toothed shrew (Crocidura 

leucodon), but natural infection can occur occasionally in equids and other animals such as sheep, 

cattle, llamas, cats, dogs, and ostriches.42 A landscape modelling study conducted in an endemic 

area suggested that horses come into contact with shrews in dry habitats such as grasslands and 

stables.43 In Germany, close to the town of Borna, large numbers of horses died in the late 1800s.42,44 



 

6 

 

In the 1990s, the incidence was much lower, around 100 horses per year in the endemic area.45 

Recently, a new endemic area in Austria was reported after confirmation of lethal disease in horses.46 

One case has been reported in the UK in a horse imported from Germany.47 Antibodies against Borna 

viruses have been detected in equids in non-endemic areas of Europe, Iceland, Turkey, Israel, Japan, 

China, Iran, Australia and United States.48-53 However, it is not considered proof of infection due to the 

cross-reactivity with avian Borna viruses.46 There are sporadic reports of confirmed human BoDV-1 

infection including a recent fatal encephalitis case,54 but it is unclear whether these represent 

interspecies transmission from horses or other hosts. An association between BoDV-1 infection and 

human neuropsychiatric disease was first reported in 1985,55 although this remains controversial. 

Hendra and Nipah virus 

The name of in the genus Henipavirus (family Paramyxoviridae) is an amalgamation of Hendra and 

Nipah. Both species are emerging zoonotic pathogens for which flying foxes (bats in the genus 

Pteropus) are the reservoir host. Hendra virus (HeV) causes respiratory and often fatal neurological 

disease in horses and people. It emerged in Brisbane in 1994 and is restricted to Australia.56 

Prevalence is low as most cases occur as spillover events to individual horses. There is risk of human 

transmission during the preclinical stages of the disease and all infected people had close direct 

contact with body fluids from infected horses.57 

Nipah virus (NiV), which has circulated in Malaysia and Singapore since the late 1990s, has spread to 

Thailand, India and Bangladesh.58 It mainly affects domestic pigs and people but can occasionally 

affect horses producing encephalitis and meningitis.59 

Prevention and control 

The majority of equine encephalitic viruses are limited to specific geographical areas. Spread to 

disease-free areas of the world can have catastrophic consequences on equine welfare and industry 

including mortality, loss of earnings, increased costs (due to veterinary treatment and hospitalization, 

and preventive measures such as vaccination), as well as public health consequences. For example, 

outbreaks of African horse sickness in the past have caused 300,000 equine deaths in a short time. It 

was estimated that the economic cost of such an outbreak in the Netherlands could be more than 500 
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million Euros.60 In another recent study, it was estimated that the cost of a WNV epidemic in Belgium 

would be over 30 million euros for equine patients and over 45 million euros for human patients.61 

 

Viral outbreaks are not completely avoidable, but preventative strategies can help restrict their 

occurrence. Management strategies can also be used in an attempt to eradicate a pathogen from a 

population or limit its impact. Particularly due to its zoonotic potential, an outbreak of HeV led to the 

re-evaluation of infection control and equine management practices in Queensland, Australia. Horses 

can also be used as epidemiological sentinels for human surveillance.2 For example, although horses 

are not believed to be an amplifying host of EEEV epidemics, they tend to be the first to show clinical 

signs, therefore providing the first indication that the virus is circulating.4 Thus, illness detection in 

horses can trigger measures to prevent associated outbreaks in humans. Viruses can be spread 

through many different mechanisms, therefore warranting different control strategies.62 New equine 

encephalitic viruses are still being discovered, for example, HeV and NiV were both first identified in 

the 1990s,63 and there are likely to be more that remain undiscovered. Control of future emerging 

virus outbreaks may rely on identifying appropriate strategies already applied to related known 

diseases.  Mathematical modelling can provide an understanding of mechanisms driving disease 

outbreaks. However, it is important to consider how reliable the values assigned to parameters are 

(‘parameter identifiability’) before mathematical models are used to guide interventions. 

Diagnostic techniques 

The increasing threat of vector-borne diseases emphasizes the importance of vector surveillance 

systems and diagnostic tests for early detection of pathogens.64 Early identification of the virus 

causing equine encephalitis will improve the effectiveness of many disease control measures. As 

previously mentioned, clinical diagnosis of equine encephalitic viruses is often unreliable due to 

overlap in the clinical signs seen; therefore, laboratory testing is usually necessary to confirm the 

etiology of the disease. The OIE (World Organisation for Animal Health) Manual of Diagnostic Tests 

and Vaccines for Terrestrial Animals describes internationally agreed diagnostic tests for each of the 

virus species presented in this review with the exception of BoDV-1. The preferred diagnostic test 

varies for the different viruses and the purpose for which it is being performed, which can include 

confirmation of a clinical case, surveillance, demonstrating freedom from infection of an individual 
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animal or population and monitoring the response to vaccination. Virus isolation can be time-

consuming and for many of the viruses described requires high levels of laboratory containment, but 

the OIE recommends it as a definitive diagnostic of VEEV. Polymerase chain reaction (PCR)-based 

techniques are widely used for virus detection as they offer the advantages of being specific and rapid 

to perform. However, for some viruses, particularly the flaviviruses, the transient nature of viremia 

means that RT-PCR tests frequently return false negative results. Therefore, serological confirmation 

is necessary. Enzyme-linked immune-sorbent assays (ELISA) are increasingly popular as a relatively 

inexpensive and rapid diagnostic test. However, cross-reactivity between closely related co-circulating 

viruses complicates serological testing, particularly for flaviviruses.6 Therefore, confirmatory testing 

using a virus-neutralizing test such as the plaque-reduction neutralization test is often required. 

Disease surveillance often includes random testing of animals in order to observe whether a pathogen 

is present within a population,62 which also requires cost-effective and accurate assays to be 

developed. 

Vaccination 

Vaccines are currently available for many of the viruses that cause equine encephalitis (Table 3). An 

equine vaccine for JEV is notably missing although human vaccines are available, and are sometimes 

administered to horses (e.g. in Japan). In contrast, although there are equine vaccines against WNV, 

there is no human WNV vaccine. Although live-attenuated and inactivated virus vaccines have 

successfully prevented disease for many decades, these vaccines have some limitations. For 

example, inactivated virus vaccines typically induce short-lived protective antibody responses and 

there is a risk of reversion to virulence with inactivated virus vaccines. This has led to the 

development of second-generation vaccines, such as the live-vectored and DNA vaccines available 

for WNV. These vaccines often enable a ‘differentiation of infected from vaccinated animals’ (DIVA) 

approach to be taken whereby diagnostic tests are used that detect antibodies against proteins not 

generated in response to the vaccine. This can be critical in controlling an emerging virus outbreak as 

it enables authorities to determine when an outbreak is over by screening for antibodies that only 

develop in infected animals. 

Vaccination coverage is often determined by factors such as economic and logistic issues in 

developing countries and motivational and legislative issues in developed countries.65 Mass 
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vaccination is not likely to be cost-effective; focusing on high-risk groups would most likely be more 

appropriate.64 Furthermore, it is not always necessary to vaccinate every individual for a population to 

be protected. The basic reproduction number, 𝑅0, is the expected number of new infectious cases 

generated from an individual host during their infectious period. When this value is larger than one 

(𝑅0>1), we expect the number of infected individuals to increase, and if 𝑅0 is less than one we expect 

the disease to die out of the population. Considering this, it is possible to approximate the proportion 

of a population that require vaccination in order to stop the pathogen circulating, therefore reducing 𝑅0 

to below unity. By vaccinating a proportion (𝑝) of the population, the 𝑅0 is decreased to (1 − 𝑝)𝑅0. 

This allows derivation of a condition for this proportion; as (1 − 𝑝)𝑅0 must be less than one, we have   

𝑝 > 1 –
1

𝑅0

 

This shows that it is not necessary to vaccinate the whole population, as unvaccinated horses will be 

protected from the vaccination of others, known as herd immunity.65 Empirical studies have confirmed 

this theoretical idea.66 Vaccination has led to the global eradication of smallpox and rinderpest virus. 

However, herd immunity and disease eradication is more difficult to achieve for viruses with reservoir 

host species or insect vectors. 

Control of exposure to viral vectors and reservoir hosts 

 

Reducing exposure of horses to wildlife that transmit equine encephalitic viruses can be difficult to 

achieve. Population control methods such as vaccination and/or sterilization of wild or feral canids 

have been widely employed to reduce human transmission of rabies.67 However, this approach can 

cause ethical debate, for example where poisoning of bats has been used to control rabies in South 

America.  

At the equine premises level, exposure to insect vectors can be reduced by using fly rugs and insect 

repellents, and stabling horses during peak vector activity (e.g. at dusk).62 Other localized methods of 

vector control include mass trapping and blocking breeding sites by obstructing water surfaces with 

polystyrene balls.68 Control measures also include reducing mosquito populations.25 The use of 

pesticides to control vector-borne viruses raises environmental and health concerns and mosquito 

populations are developing resistance to conventional control agents. There has been an increased 
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interest in the development of biopesticides68 and the creation of genetically modified mosquitoes that 

cannot transmit pathogens.69-71 Mathematical modelling has predicted that if the abundance of 

mosquitoes could be reduced such that 𝑅0 becomes < 1 then WNV would die out.72  Wonham et al. 

(2004) predicted that if the initial size of the New York mosquito population was 40–70% smaller, the 

outbreak of WNV in 2000 could have been prevented.73 In contrast, reducing the bird population 

increases the chance of an outbreak as it increases the ratio of mosquitoes to birds making virus 

transmission more likely, as long as the population is not reduced to the extent that the mosquito 

population is not maintained.  Although mosquitoes are the most common insect vector of equine 

encephalitic viruses, ticks (e.g. Powassan virus74 and louping ill virus) and midges (e.g. African horse 

sickness viruses) can also act as vectors.3  

Control of disease spread through international movement of 

horses 

Increased globalization has led to a greater potential for the spread of infectious diseases. Most 

international equine movements are for competition purposes. The number of prestigious international 

competition events has increased in the last 10 to 15 years. There has also been an increase in the 

number of stallions being transported between the northern and southern hemispheres for breeding; 

this number rose from 7 in 1989 to over 100 in 2000.63 In addition, horses may be transported as a 

result of change of ownership or slaughter in the meat industry. Countries often have different 

strategies of restricting pathogens from entering, including testing and quarantine of imported 

animals. They may also place restrictions on importation from specific countries to prevent 

introduction of certain pathogens. However, this can have an impact on the equine industry given the 

frequent international movement of some horse populations.62 Quarantine, disinfection, pathogen 

screening and transport restrictions are useful tools in infection control and biosecurity systems, 

however these require optimization for maximum impact.62 

 

It is not possible to predict when a new virus (either a newly identified pathogen or a known pathogen 

in a new geographical area) will emerge. However, models to assess the risk of a virus entering a 

population and changes in risk over time can be developed. There are also models for the risk of 
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disease introduction through host movement.76,77 Countries can be characterized as high risk (virus 

circulating), low risk (previous outbreaks and/or main vector present), and very low risk. If different 

host species or reasons for travel are associated with different risk levels then these can be further 

subdivided into groups. Risk pathways can then be constructed for the steps required for incursion 

(Figure 1). From these pathways, stochastic risk models that quantify the risk that importation of 

different groups of animals can be developed. These methods allow us to assess control strategies 

such as quarantine, and their effectiveness on different risk groups. 

In the case of vector-borne viruses, seasonal prevalence and vector abundance, in endemic regions 

and regions at risk of disease introduction can be taken into account.  

Vector-borne diseases are often restricted to temperate climates due to the range of the insects.62 

However, with climate change the areas inhabited by virus-transmitting insects are changing.78,79 The 

spread of vector-borne viruses is strongly influenced by temperature. Temperature has an effect on 

the life cycle of the insects, as well as the extrinsic incubation period (the time between a vector 

acquiring an infectious agent and becoming infectious). The average global temperature is predicted 

to increase between 1 and 4.6C during this century.75 Increased temperatures and altered rainfall 

patterns are likely to affect the range and behavior of insect vectors.63 Access to breeding sites also 

has an effect on the distribution of mosquitoes; an increased transmission of EEEV has been 

associated with the freshwater hardwood swamps in the Atlantic and Gulf Coast states and the Great 

Lakes region (USA).4 This is important to consider in the case of vector-borne diseases, as even if an 

infected host enters a naïve population, the virus cannot spread without the presence of its vector. 

The main species of vector, geographical distribution and zoonotic potential varies between equine 

encephalitic viruses.4 Geographic Information System (GIS)-based spatial models for predicting 

locations with high risk have been developed,68,80-82 these use predictor variables such as 

temperature, rainfall and landscape/vegetation.25 

Whereas some regions may be able to support the vector life cycle throughout the year, viruses may 

overwinter in unidentified hosts or be re-introduced (e.g. by importation or migratory birds) in some 

climates. Some viruses, such as WNV, are transmitted vertically (from adults to eggs) within mosquito 

populations; this provides a mechanism for the viruses to be maintained within the population.64 

Vector-borne diseases can spread when vectors are carried by the wind. Incursions of JEV into 
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northeastern Queensland are thought to be most likely due to infected mosquitoes blown by the wind 

from Papua New Guinea.63 

International horse movements are not only a threat to naïve populations into which a new pathogen 

is introduced the imported equine is also at risk of acquiring disease. An example of this occurred in 

horses imported to Korea from Ireland, New Zealand and Australia in 1996 that became infected with 

JEV.63,83 This highlights the importance of vaccinating horses against viruses they may come into 

contact before they travel, for example horses that travel from the UK may be vaccinated against 

WNV.63 

Conclusion 

There is an apparent general increase in viral emergence and re-emergence, particularly of 

arboviruses. This trend includes viruses that cause potentially devastating encephalitic disease in 

horses. As a result, there is increasing awareness of the need to monitor disease trends in equine 

populations, particularly of viruses with zoonotic potential, and to formulate approaches to prevent or 

control disease outbreaks. 
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Table 1 Other equine encephalitic viruses 

Family  Genus Virus Geographical 
distribution 

Reservoir 
host 

Other 
hosts 

Vector 
borne 

Zoonotic 
potential 

Reference 

Togaviridae Alphavirus Highlands J North America Birds Equids Y Y 84,85 
 

Ross River  Australia Marsupials 
Horses 
Birds 

Human Y Y 86,87 

Middleburg  Africa Birds Equids 
Ruminants 
Human 

Y Y 88-90 

Sindbis  Africa, Eurasia 
Australia 

Birds Equids 
Human 

Y Y 91 

Flaviviridae Flavivirus Murray valley  
 

Australia  
New Guinea 

Birds Equids 
Cattle 
Marsupials 
Fox 

Y Y 92 

Kunjin  
 

Australia Birds Equids 
Human 

Y Y 92 

St. Louis encephalitis  
 

North America Birds Equids 
Human 

Y Y 93 

Usutu  
 

Africa 
Europe 

Birds Human 
Ruminants 
Equids 

Y Y 90 

Louping ill 
 

Spain 
Portugal 
UK 

Sheep 
Grouse 

Equids 
Human 

Y Y 94 

Powassan  
 

North America 
Russia 

Lagomorphs 
Rodents 
Skunks Dogs 
Birds 

Equids 
Human 

Y Y 95 

Tick-borne 
encephalitis  

Asia 
Europe Finland 
Russia 

Small rodents Equids 
Human 
Primates 
Dogs 
Ruminants 

Y Y 96-98 
 

Bunyaviridae Orthobunyaviridae California 
Serogroup (California 
encephalitis, 
Jamestown Canyon, 
La Crosse, 
Snowshoe hare) 

North America Rodents 
Lagomorphs 
 

Equids 
Human 

Y Y 99 

Shuni Virus Africa Ruminants Equids 
Human 

Y Y 100 
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Reoviridae Orbivirus African horse 
sickness 

Africa Equids - Y N 101 

Equine encephalosis Africa Equids 
Elephants 

- Y N 102 
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Table 2 Recently published seroprevalence of West Nile virus in some countries 

Country Seroprevalence Year Test used Reference 

Algeria 17.4% 
(26.8% horses, 14.4% donkeys) 

2014 ELISA confirmed with 
WB and VNT 

103 

Argentina 16.2% 2008 PRNT 104 

Australia (KUNV) 4.8% 2011 cELISA confirmed by 
PRNT 

105 

Brazil 1.46% 2004-2009 ELISA and VNT 104 

Canada 16.5% 2012-2014 ELISA confirmed by 
PRNT 

106 

Chad 97% 2003-2004  107 

Cote d’Ivoire 28% 2003-2005  107 

Croatia 3.43% 2010-2011 ELISA confirmed with 
VNT and PRNT 

108 

France 35% 2003 ELISA and VNT 109 

Gabon 3% 2004  107 

Greece 33% 2010 cELISA 110 

Israel 84.6% 2014 cELISA and VNT 111 

Italy 39.1% 2008 - 112 

Mexico 26% 
45% 

2006 
2007 

cELISA 113 

Morocco 31% 2011 ELISA and VNT 114 

Pakistan 65% 2012-2013 cELISA (anti-pr-E IgG) 115 

Palestine 48.6% 2014 cELISA 111 

Poland 15.08% 2012-2013 VNT  116 

Romania  58.5% 
15.2% 

2010 
2006-2008 

cELISA 111 

Saudi Arabia 17.3–55.6%  
(depending on region) 

2013-2015 ELISA and VNT 117 

Senegal 92% 2002-2003 ELISA confirmed with 
PRNT 

107 

Slovak Republic 6.9% 2013 cELISA and NT 118 

Spain 7.1% (CI95% 5.4-11.2%) 2010 cELISA and VNT 119 

Tunisia 28% (95% CI 22-34%) 2009 ELISA and VNT 120 

Turkey 4.9–30.6%  
(depending on regions) 

2011-2013 PRNT 121 

Ukraine 13.5% 2010-2011 ELISA and PRNT 122 

USA 19% (feral horses)* 
7.2% (feral horses) 

2008 
2009 

ELISA confirmed by 
PRNT 

124 

Venezuela 4.3% 2004-2006 ELISA confirmed with 
PRNT 

125 

*Widespread vaccination in horses in this country precludes performing seroprevalence studies 

Abbreviations: cELISA, competition ELISA; ELISA, enzyme-linked immunosorbent assay; PRNT, 

plaque reduction neutralization test; VNT, virus neutralization test.  
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Table 3 Vaccines licensed for use in horses to protect against viruses that cause encephalitis 

Virus Vaccine type 

Eastern equine encephalitis Inactivated whole virus 

Western equine encephalitis Inactivated whole virus 

Venezuelan equine encephalitis (VEE) Inactivated whole virus 

A conditionally available modified live virus 

(MLV) VEE vaccine has been released during 

previous outbreaks 

West Nile Inactivated whole virus 

Modified live (canarypox vector expressing prM 

and E proteins) 

DNA vaccine 

Rabies Inactivated whole virus 

Hendra  Subunit (recombinant glycoprotein) 

 

Abbreviations: prM, membrane, E, envelope 

 



Figure 1 Pathway of the steps required for the incursion of a virus due to importation of infected 

host 

 

 


