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Abstract

Vortex induced vibration (VIV) is an important phenomenon which appears in flexible structures im-
mersed in a moving fluid. This oscillation is self-sustained and self-limited, but VIV might cause fatigue
damage and affect the structure’s serviceability.

In the present study, the aerodynamics of the flow fields around a static and vertically free-to-oscillate
4:1 rectangular cylinder are analysed by means of 3D LES simulations, adopting the OneEqEddy viscosity
model. Integral parameters, pressure distributions, amplitudes of oscillation, coherences and correlations
are obtained and compared with the available experimental data. Aiming to ascertain the impact of the
boundary conditions and the grid resolution on the accuracy of results, five cases adopting 3 different meshes
including two different spanwise discretisations have been considered. When studying the aerodynamics of
the cylinder in static conditions, the influence of the spatial discretisation is very limited, and the agreement
with experimental data is fairly good. On the other hand, for the free-to-oscillate cylinder, the structural
response is dramatically dependent on the spanwise discretisation. The maximum amplitude of the structural
response decreases as the mesh resolution increases, providing a closer fit with the experimental data. Also,
the spanwise correlation of pressures is studied, finding remarkable differences depending on the level of
spatial discretisation.

Keywords: 3D LES, rectangular cylinder, vortex shedding, vortex induced vibrations, spanwise discretisation,
correlations, coherence, force coefficients, Strouhal number, pressure coefficient distribution.

1 Introduction

Rectangular cylinders are a common geometry used in many structural members. Moreover, certain width
to depth ratios (4:1 or 5:1 for instance) can be used in fundamental studies to represent a generic bridge deck.
These geometries present fixed flow separation points and may show large amplitudes of oscillation at lock-in
(Marra et al., 2011).

Experimental campaigns of rectangular cylinders with different width to depth ratios have been carried out
for many years for both static and free-to-oscillate configurations. Nakaguchi et al. (1968) studied the variability
of the drag coefficient, Strouhal number and pressure coefficient distributions with respect to the width to depth
ratios of a static cylinder, ranging from 0.1 to 4.0. Also for static models, Mizota and Okajima (1981) studied
the unsteady flow around rectangular cylinders having ratios of 0.4, 1.0, 2.0 and 4.0. Okajima (1983) considered
cylinders with ratios ranging from 0.8 to 6, including in his studies velocity and Strouhal number measurements.
Washizu et al. (1978) studied the aeroelastic instabilities of rectangular cylinders of ratios ranging from 1 to
4 in heaving oscillation. Komatsu and Kobayashi (1980) studied the VIV for different geometries, including
rectangular cylinders of ratio 2, 3, 4 and 5. In recent years Marra et al. (2015) studied the influence of damping
on the VIV structural response of a 4:1 rectangular cylinder and proposed an empirical expression formulating
this relationship.

These types of geometries have also been studied numerically. Ohya et al. (1992) studied the vortex shedding
over rectangular cylinders with ratios ranging from 3 to 9. In the recent years, thanks to the BARC initiative,
the ratio 5:1 rectangular cylinder has been extensively studied by means of both numerical and experimental
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research (Bruno et al., 2014; Ricci et al., 2017). Shimada and Ishihara (2012) studied the VIV for rectangular
cylinders of ratio 2 and 4 by means of numerical and experimental techniques, meanwhile Nguyen et al. (2018)
studied a 5:1 rectangular cylinder. In LES simulations researchers have used a wide range of spanwise discreti-
sations. For instance, for the case of the 5:1 rectangular cylinder, in Bruno et al. (2014) a compendium of the
discretisations used by different researches is presented, ranging from δz/B = 0.0025 to 0.042. In a more recent
paper (Daniels et al., 2016), a spanwise discretisation of δz/B = 0.025 for a 4:1 rectangular cylinder undergoing
free heave or torsional vibrations was used. This is an important parameter as in many cases these meshes
are built by extrusion along the spanwise direction, hence impacting the overall number of elements. To the
best knowledge of the authors, no sensitivity study of this key parameter in the VIV response of rectangular
cylinders has been reported.

LES CFD simulations are a powerful tool to study the 3D flow field around a body submerged in a fluid. In
computational wind engineering practice, the effect of the spatial resolution in the accuracy of the simulations
must be carefully assessed. The level of refinement of the grid along a flow domain section orthogonal to the
axis of the body (plane XY in figure 1) and, very remarkably, over the spanwise direction, plays a key role in the
ability of the computational simulations to match experimental tests. In that sense, the present work attempts to
increase the knowledge about the different phenomena taking place over a rectangular cylinder of ratio 4:1, and
the impact of different mesh discretisations, for the static and vertically free to oscillate cases. Grid resolution
studies are scarce in the literature, focusing mainly on fixed bodies (Bruno et al., 2012), hence to the author’s
knowledge there are no available studies dealing with fluid structure interaction simulations using 3D LES.
In this piece of research, it has been found that vortex induced vibration (VIV), is a particularly demanding
problem in terms of spatial discretisation, because of the need to properly simulate the flow correlation over
the cylinder’s span, which deeply impacts the structural response of the system. Previous studies dealing with
numerical simulations of a 4:1 rectangular cylinder by means of LES simulations can be found in Yu and Kareem
(1998), Sohankar (2008), Sarwar and Ishihara (2010) or Daniels et al. (2016).

2 Formulation

2.1 Governing equations

The unsteady flow field around the cylinder is modelled by the Navier-Stokes equations, which in the LES
approach are spatially filtered by the cell size, as follows (Bruno et al., 2010):
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where u is the filtered velocity, p is the filtered pressure, x is the space coordinate, t is the time, ν is the
kinematic viscosity and ρ is the fluid density. Using the Boussinesq assumption, the sub-grid stress tensor is
expressed as shown in equation (3). Thus, the system of equations can be closed by adding a transport equation
for the kinematic energy kt of the unresolved stresses (Yoshizawa, 1986):
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1
2
t , with Cε = 1.05, Ck = 0.07 and lε = lk = ∆. ∆ is the characteristic

spatial length of the filter, related to the mesh size and defined as the cubic root of the mesh cell volume. For
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the modelling of the flow in the turbulent boundary layer a damped filter width δ according to the Van Driest
approach is introduced:

δ = min
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(
1− exp
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− y

+

A+

))}
, (5)

where k = 0.4187 is the Von Karman constant, C∆ = 0.158, A+ = 26 is the Van Driest constant, y the distance
to the wall, y+ = (uτy)/ν the non dimensional wall unit and uτ the shear velocity (de Villiers, 2006). In other
words, for the boundary layer the characteristic length of the filter is adapted locally in space and time.

For the present study the LES model OneEqEddy provided by the open-source CFD software OpenFOAM
was selected.

2.2 Modelling and computational approach

The filtered Navier-Stokes equations are solved by means of the CFD software OpenFOAM. The diffusive
terms were discretised by using the second order central difference scheme while the first/second order upwind
differencing scheme was applied for the convective terms. Advancement in time was performed by the second
order backward scheme. Finally, the pressure-velocity coupling was solved by the PIMPLE algorithm. The
maximum Courant (Co) number was limited to 1 at every time step. In the dynamic simulations, the Arbitrary
Lagrangian Eulerian algorithm was applied to incorporate the movement of the mesh into the governing fluid
equations. The cylinder was restrained allowing displacements only in the heave degree of freedom, and its
oscillation was modelled by a single-degree-of-freedom mass-spring-damper system. The coupling between the
fluid, structure and dynamic mesh was achieved by the use of the conventional serial staggered scheme.

The overall computational domain size is shown in figure 1a, and its dimensions are presented in table 1,
which are very similar to the ones reported in Bruno et al. (2014) for various 5:1 rectangular cylinder simula-
tions. In order to better control the elements growth and the mesh refinement in the regions of interest, the
fluid domain in the XY plane was subdivided in four zones, as described in figure 1b. Zone K is the so called
buffer zone, which is the zone surrounding the rectangular cylinder, where very important phenomena take
place: flow separation and reattachment, as well as vortex shedding. Zone L is the wake zone, a narrow band
downwind the rectangular cylinder in which the vortices shed from the cylinder evolve and eventually dissipate.
Finally, Zones M and N define the overall dimension of the fluid domain, which is large enough to minimise the
influence of the boundary conditions on the flow around the cylinder. Also, Zones M and N control the size of
the elements far away from the rectangular cylinder.

At the inlet, Dirichlet conditions were imposed for the velocity and turbulent kinetic energy, meanwhile Neu-
mann conditions were imposed for the pressure. At the outlet, Dirichlet conditions were applied to the pressure,
and Neumann conditions to the velocity and turbulent kinetic energy. For the upper, lower and lateral faces,
two different boundary conditions were applied in different cases: periodic and symmetric. All the simulations
were conducted imposing smooth flow condition (I = 0%, I is the turbulence intensity) at the inlet. For the
rectangular cylinder walls, no-slip and no-penetration boundary conditions were applied (Wilcox, 2012).

The characteristics of the different meshes considered in this work are presented in the table 2. Cases C01
and C02 use the same mesh but they differ in the boundary conditions imposed on the lateral, top and bottom
sides. Meanwhile, the difference between cases C02 and C03 is that case C03 has a finer discretisation on the
XY plane. Case C04 has the double number of elements in the spanwise direction compared to case C03, while
keeping the same discretisation in the XY plane. Finally, the difference between the cases C04 and C05, is that
the latter one has a finer discretisation on the XY plane (see tables 2 and 3). Images from the mesh of the case
C05 are shown in figures 2a to 2d.
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Figure 1: (a) Computational fluid domain and (b) mesh zones subdivisions in the XY plane.

(a) Overall domain. (b) Zones K, L and M.

(c) Zone K. (d) Boundary layer mesh.

Figure 2: Computational domain and mesh details for the case C05.
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Table 1: Domain Dimensions. B is the cylinder width and D is the cylinder height.

D Λx Λy Dx Dy Dz

B/4 15B 15B 41B 30.25B B

Table 2: Mesh properties.The parameter y1 is the height of the first element of the boundary layer (BL), B is
the width of the rectangular cylinder, x1 is the length of first element in the BL, r is the growth ratio of the
elements in the BL, nBL is the number of layers forming the BL and yBL is the total height of the BL, δz is
the cell size in the spanwise dimension, nz is the number of elements in the spanwise dimension and BC are the
type of boundary conditions applied to the lateral, upper and lower faces.

Case y1/B x1/y1 r nBL yBL/B δz/B nz XY cells Total cells BL cells BC

C01 6.67 · 10−4 4 1.32 6 8.94 · 10−3 4.17 · 10−2 24 42656 1023744 134784 periodic
C02 6.67 · 10−4 4 1.32 6 8.94 · 10−3 4.17 · 10−2 24 42656 1023744 134784 symmetric
C03 6.67 · 10−4 4 1.32 6 8.94 · 10−3 4.17 · 10−2 24 95462 2291088 134784 symmetric
C04 6.67 · 10−4 4 1.32 6 8.94 · 10−3 2.08 · 10−2 48 95462 4582176 269568 symmetric
C05 6.67 · 10−4 4 1.32 6 8.94 · 10−3 2.08 · 10−2 48 146953 7053744 269568 symmetric

Table 3: Number of elements of the different mesh zones for all the meshes studied on the XY plane.

Case Zone K Zone L Zone M Zone N

C01 15739 6102 11049 4150
C02 15739 6102 11049 4150
C03 32226 18239 29896 9485
C04 32226 18239 29896 9485
C05 52710 31248 42599 14780

In table 4, the flow domain and discretisation characteristics of several numerical simulations, available in
the literature, for ratio 4 and 5 rectangular cylinders are presented. It may be appreciated that the dimensions
of the flow domain and the level of discretisation used in this work are in the range of state-of-the-art simulations
conducted by other researchers.

Table 4: Characteristics of LES simulations of rectangular cylinders of ratio 4 and 5 available in the literature.

B/D ReD I Λx/B Λy/B Dx/B Dy/B Dz/B y1/B δx/B δz/B BC

Sohankar (2008) 4 1.0 · 105 0 1.875 - 6.875 - 1 - var. 0.04 periodic
Daniels et al. (2016) 4 0.4 · 104 0-12 - 2.4 16.65 5 3.325 1.2 · 10−3 - 0.025 periodic
Arslan et al. (2011) 5 0.26 · 105 0 10 10 23 20.2 1 2.0 · 10−4 4.0 · 10−3 0.04 periodic

Bruno et al. (2010,2011) 5 0.4 · 105 0 15 15 41 30.2 1, 2, 4 5.0 · 10−4 2.0 · 10−3 0.042-0.01 periodic
Grozescu et al. (2011b) 5 0.4 · 105 0 15 15 41 30.2 1 5.0 − 2.5 · 10−4 10−2 − 2.0 · 10−3 0.042-0.01 periodic

Patruno (2016) 5 0.27 · 105 0 16 14.9 40 30 2 5.0 · 10−4 2.5 · 10−3 0.02 periodic
Ricci et al. (2017) 5 0.55 · 105 2.9-13.6 16 14.9 40 30 2 5.0 · 10−4 2.5 · 10−3 0.02 periodic

Nguyen et al. (2018) 5 0.13 · 105 - 2.5 2 11 4.2 3 2.0 · 10−3 4.0 · 10−3 0.1 periodic
Present study 4 0.59 · 105 0 15 15 41 30.25 1 6.67 · 10−4 2.66 · 10−3 0.042-0.021 symmetric

The values of the y+ were calculated as in (Bruno et al., 2010), obtaining a mean value y+ ' 0.65, and less
than a 4% of the elements around the body have a y+ value higher than 4. Further details about the y+ values
of the different cases is provided in table 5. The maximum y+ values are mainly located in the vicinity of the
corners of the rectangular cylinder.
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Table 5: y+ values for the different cases.

Case y+
mean %y+ > 2 %y+ > 4

C01 0.6519 3.6325 1.2821
C02 0.6297 3.7749 1.1129
C03 0.6281 3.6369 0.6455
C04 0.6364 3.6636 0.6833
C05 0.6593 3.9441 1.2731

2.3 Force Coefficients, Strouhal Number and Pressure Coefficient

The force coefficients (drag (Cd), lift (Cl) and moment (Cm)) along with the Strouhal (St) number are the
so called integral parameters. They are calculated as indicated in equation (6),

Cd =
FD

1
2ρU

2D
, Cl =

FL
1
2ρU

2D
, Cm =

M
1
2ρU

2D2
, St =

fD

U
. (6)

where D stands for the cylinder height, ρ is the air density, U is the free-stream velocity, f is the dominant
frequency of the lift coefficient, and FD, FL and M are the drag and lift forces and moment per unit of length,
which were calculated as the time and spanwise averaging of the integration of the pressure and viscous forces
along the rectangular cylinder surface. The sign convention for the movements and force coefficients is presented
in figure 3. The positive directions for the lift and moment are the upward direction and clockwise rotation
respectively. The positive drag is the along wind direction, which is coincident with the positive X-axis in
figure 1a.

D

B

+x, +FD

+y, +FL
+α, +M

O

Figure 3: Sign convention.

The standard deviation of the force coefficients is calculated as indicated in equation (7):

C̃i =

√√√√ 1

n

n∑

k=1

(
Cik − Ci

)2
. (7)

The mean pressure coefficient (Cp) and its standard deviation (C̃p) are calculated as shown by equations (8)
and (9).

Cp =
p

1
2ρU

2
, (8)

C̃p =
σp

1
2ρU

2
. (9)

In the latter equations, p is the time averaged pressure and σp is the standard deviation of the pressure.

The distributions of Cp and C̃p help to understand the resultant mean force coefficients and the fundamental
flow features over the cylinder.
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3 Results for the static case

3.1 Integral parameters and force coefficients correlation.

The values of the force coefficients and St number obtained from the simulations where different boundary
conditions and mesh discretisations were considered are presented next. For all the simulations, the conver-
gence criteria for the mean drag coefficient and the standard deviation of the drag, lift and moment coefficients,
as well as the Strouhal number were based on the values of the residual of the corresponding variables. The
residuals were calculated as ϕres = |(xn − xn−1)/xn| · 100 and the simulations were extended until the residual
value was less than 5%, as indicated in (Bruno et al., 2010) (n is the number of sampling windows). These
residuals were calculated for increasing extends of the sampling window Tn, with T0 = 50 and Tn = Tn−1 + 50
(in non-dimensional time units ((tU)/D)). This criterion is not appropriate to assess close-to-zero variables, as
very small variations imply large residuals. Therefore, for the mean value of the lift and moment coefficients
the simulations were extended until the difference between two consecutive sampling windows is less than 0.05
in absolute value (see figure 4).
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Figure 4: Force coefficients and Strouhal number (a) evolution, (b) residuals and (c) absolute difference for the
case C05.

In table 6 the results obtained for the mean values and standard deviation of the force coefficients and
Strouhal number are in good agreement with the experimental and numerical data taken from the literature.
It can be noticed a decrease in the standard deviation of the force coefficients with increasing grid resolution in
the XY plane, which is in agreement with results obtained by Grozescu et al. (2011a,b).

Table 6: Force coefficients for the static cases. All data calculated with respect to B except for Re and St calculated with

respect to D.

Case Method Re I [%] Cd Cl Cm C̃d C̃l C̃m St

C01 LES 0.59 · 105 0 1.1404 -0.0604 0.0288 0.0972 0.9016 0.7312 0.135
C02 LES 0.59 · 105 0 1.1408 -0.0592 0.0160 0.0880 0.8172 0.6576 0.135
C03 LES 0.59 · 105 0 1.0708 0.0440 0.0144 0.0684 0.5192 0.4288 0.131
C04 LES 0.59 · 105 0 1.0424 0.0124 -0.0080 0.0484 0.4144 0.3392 0.138
C05 LES 0.59 · 105 0 1.0308 -0.0264 0.0320 0.0400 0.3128 0.2672 0.142

Nakaguchi et al. (1968) Exp. 0.2 − 0.6 · 105 - 1.1192 - - - - - 0.129
Mizota and Okajima (1981) Exp. 0.43 · 105 - - 0.0700 - - - - 0.118

Igarashi (1985) Exp. 0.26 − 0.58 · 105 - 1.2132 - - - - - 0.135
Vairo (2003) by CSTB Exp. 0.5 · 104 - 1.4240 -0.2960 -0.4160 0.3240 1.1560 0.8640 0.159

Marra et al. (2011) Exp. 0.15 − 0.57 · 105 - - - - - - - 0.136
Sarkic (2014) Exp. 0.2 · 105-0.33 · 105 3-4 0.9240 0.2680 -0.0160 0.1400 0.5440 - 0.129

Yu and Kareem (1998) LES 1.0 · 105 - 1.300 - - 0.1400 1.0300 - 0.156
Sohankar (2008) LES 1.0 · 105 0 1.2024 - - 0.0536 0.4636 - 0.142
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The spanwise correlation of the drag, lift and moment coefficients are presented in figure 5. The correlation
is calculated as shown in equation (10), where ∆z is the spanwise distance between the two points where the
correlation is going to be calculated, and S represents the time-history of the variable of interest.

RCi
(∆z/D) =

cov
(
Sz/D, S(z+∆z)/D

)

σ
(
Sz/D

)
σ
(
S(z+∆z)/D

) . (10)
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Figure 5: Spanwise correlation of (a) the Drag coefficient, (b) the Lift coefficient and (c) the Moment coefficient
for the different cases studied.
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It has been found that the spanwise correlation of the drag coefficient is relatively insensitive to the mesh
discretisation. On the other hand, the lift coefficient correlation decreases with the mesh resolution. A similar
trend may be identified in the correlation of the moment coefficient, except for case C04 that provides higher
correlation than the case C03 for z/D > 1.0. It can also be appreciated that for the case C01 there is a
recovery in the value of the spanwise correlation of the force coefficients, starting from the middle of the span
approximately. This does not happen in the other cases studied, where a symmetric boundary condition is used.

The experimental data from Ricciardelli (2010) (Re = 0.64 · 105), Ito et al. (2014), Li et al. (2016) (Re =
0.46 · 105), and the numerical results in Bruno et al. (2012) (Re = 0.44 · 105) for a 5:1 rectangular cylinder are
included in figure 5, since to the authors’ knowledge there are no available experimental data for the ratio 4:1
rectangular cylinder.

It has been found that the spanwise length in CFD models and its level of discretisation, play a very important
role in obtaining correlation losses similar to the ones observed experimentally, as stated in Bruno et al. (2012),
where the better agreements were found for the simulations with the longest spanwise distance and the finest
of the discretisations.

Furthermore, the boundary conditions at the lateral sides yield different results. Previous simulations by
other researchers, to the authors’ knowledge, have been conducted using periodic boundary conditions in the
lateral sides (see table 4), in which a recovery of the correlation values of the force coefficients is obtained for
∆z ≥ L/2, meanwhile the use of symmetric boundary conditions in these lateral sides, provides correlation
values which do not present this issue along the spanwise length, as can be seen in figure 5. Furthermore, the
numerical results are similar to the ones yielded by simulations adopting periodic boundary conditions with
similar discretisation in the spanwise length, presenting longer distances in the spanwise direction.

3.2 Main flow features, and mean and fluctuating pressure coefficient distributions

In this section the main flow features are identified by means of studying streamlines, friction coefficient,
and mean and fluctuating pressure coefficient distributions. The latter ones will be compared with available
experimental data.

In figure 6 the time averaged and spanwise averaged streamlines for the cases C01 and C05 are presented,
as the results yielded by the cases C02, C03 and C04 are very similar. All the cases show the same flow regions,
which have been identified as: inner region, recirculation region, main vortex and reattachment. These regions
are the same as the ones described in Bruno et al. (2010), for the 5:1 rectangular cylinder, which is characterised
by a permanently reattached flow (Bruno et al., 2014), as the 4:1 rectangular cylinder considered herein.

recirculation
region

inner region
vortex core main vortex

reattached flow

reversed flow
in the wake

C01
(a) C01

recirculation
region

inner region
vortex core main vortex

reattached flow

reversed flow
in the wake

C05
(b) C05

Figure 6: Time averaged and spanwise averaged streamlines for the different cases (upper half). Recognised
mean flow structures (lower half).
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In figure 7, the time averaged, spanwise averaged and side averaged friction coefficient (Cf ) distribution is
presented for the different cases. The length of each region, previously identified, is given by the sign change
of the friction coefficient. The lengths of the different regions for the different cases are presented in table 7.
As the refinement of the meshes increases the reattachment takes place further away from the leeward edge
and therefore the reattachment length (lrea) increases. The lengths corresponding with the main vortex (lmv)
and the inner region (lin) are kept fairly constant. However, the recirculation region shrinks as the spatial
discretisation increases, which is apparent from the decrease in the length of the recirculation region (lrec),
according to the data in table 7.
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Figure 7: Time averaged, spanwise averaged and side averaged friction coefficient distributions for the different
cases (upper half). Recognised mean flow structures(lower half).

Table 7: Length of the different fluid structures.

Case lin/D lrec/D lmv/D lrea/D

C01 0.14 1.56 2.15 0.15
C02 0.11 1.50 2.24 0.15
C03 0.10 1.30 2.37 0.23
C04 0.11 1.29 2.25 0.35
C05 0.14 1.15 2.21 0.5
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Finally, in figure 8 the mean and standard deviation pressure coefficient distributions are compared with
available experimental data, showing a good agreement between the experimental and numerical data, particu-
larly as the mesh is progressively refined. The numerical results show certain sensitivity to the overall number
of elements, creating an earlier pressure recovery and reducing the standard deviation of the pressure coefficient
(C̃p) as the number of elements increases. In the pressure recovery region, the changes in the mean and fluctu-
ating pressure were smooth as the meshes were refined.
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Yu & Kareem (1998)
Sarkic et al. (2014)
Igarashi (1985)

(a)

C01
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C03
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Sarkic et al. (2014)
Igarashi (1985)

(b)

Figure 8: (a) Pressure coefficient mean distribution Cp. (Negative values point outwards and the value of unity

is equal to the cylinder height) (b) Pressure coefficient standard deviation distribution C̃p (Positive values point
outwards and the value of unity is equal to the cylinder height).

3.3 Pressure correlation distribution and coherence

In figure 9 the side averaged spanwise surface pressure correlations for the different cases are presented. It is
again clearly appreciated the effect of the periodic boundary condition on the spanwise correlation. As shown
in the case C01 (figure 9a), a recovery in the correlation starts approximately from the middle of the span, as
reported in the correlation of the force coefficients (figure 5).

In addition, the lengths of the mean flow structures identified in section 3.2 are included in the pressure
correlation distribution charts, aiming to better understand the physical significance of the reported results.
It has been found that the side facing the incoming flow presents the highest values of the correlation and
they smoothly decrease as the spanwise distance increases. The pressure correlation over the horizontal side
length near the windward corner, corresponding with the tip of the inner region, shows relatively high values of
pressure correlation, increasing smoothly towards the recirculation region. The correlation strongly diminishes
in the recirculation region as the distance from the windward corner and the spanwise length increase. In fact,
the lowest values in pressure correlation are found along the boundary between the recirculation and the main
vortex region, which may be explained by the complex interaction that takes place between the tail of the recir-
culation vortex and the main vortex above. This means that the flow in the recirculation region is disorganised
as it progresses towards the boundary with the main vortex region. In a similar fashion, the flow moving in
the main vortex region also becomes more highly correlated as it progresses downstream. The flow structure is
once more disorganized as the reattachment region is approached by the flow, even though the correlations are
higher than in the interface between the recirculation and the main vortex regions. Finally, it is identified an
increase in correlation over the leeward side of the cylinder as a reversed flow vortex in created is the wake (see
figure 6).

The five cases provide the same qualitative description of the pressure correlations over the surface of the
cylinder. However, as the spatial discretisation is improved, faster changes in the correlation values are identified
and the portion of the surface showing correlations above 0.3 clearly disminishes.
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Figure 9: Pressure correlation distributions for the different cases.
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In order to further study the existence of coherent structures along the spanwise direction, the pressure co-
herence is calculated at two different x positions. For each one of these positions two different spanwise distances
have been considered. The reference point in z (z = 0) is the middle of the spanwise dimension. The coherence
is calculated as expressed in equation (11), where , Sz=0(p) is the power spectrum of the pressure time-history
located at the reference point, Sz=∆z(p) is the power spectrum of the pressure time-history separated ∆z from
the reference point and S(∆z; p) is the cross-spectrum between the pressure time-histories from where the power
spectra were calculated.

Coherence(∆z; p) =
|S(∆z; p)|√

Sz=0(p)
√
Sz=∆z(p)

. (11)

In figure 10, the positions at which the power spectrum densities of the pressure are obtained, are shown for
the five studied cases. Meanwhile, in figure 11, the coherences of the points presented in figure 10 are reported
and compared with the experimental results obtained by (Matsumoto et al., 2003) for a ratio 5 rectangular
cylinder, since to the authors’ knowledge there are not available data in the literature for the 4:1 ratio. For
comparison purposes, as the Strouhal number of the ratios 4 and 5 cylinders are different, the horizontal axis
variable containing the non dimensional frequency is divided by their corresponding St. The maximum coher-
ence peak may be identified at the St value, for both the experimental and numerical time-histories. At both
sides of the St the coherence decreases. This phenomenon takes place in all cases, reducing the magnitude of
peaks as the mesh is progressively refined. This refinement also causes the reduction in the coherence peak value
around the St. It may be also appreciated how the coherence in the vicinity of St decreases more intensely
in the proximity of the leeward side (x/D = 1.6). Similarly, for larger spanwise distances (∆z/D = 1.0), the
coherence is lower around ((fD)/U)/St = 1. The high coherence region around the St is wider in the numerical
cases than in the experimental case, and similar results are obtained by (Bruno et al., 2010) for a 3D LES
simulation of a ratio 5 rectangular cylinder. The lower resolution appreciated in the numerical coherences is
due to the sampling time, lower than in the experimental case.

x
y

z
1.0

D
0.4

2D

−1.6D 1.6D

Figure 10: Location for the calculation of the coherence.

Also, in figure 12, the comparison of the power spectrum densities of the pressure for both x strips, at a
spanwise position z = 0.0 and z = 0.42D (see figure 10) for cases C01 and C05 are shown. It may be observed
how the signal components are concentrated at the Strouhal number in the case C01, with a lower spatial
discretisation. As the discretisation level is augmented, the energy content is spread over different frequency
components. In case C05, although the main peak of the power spectrum density does not coincide with
the Strouhal number, also an important part of the energy is concentrated at St for the two positions shown
(figures 12c and 12d). This explains the high coherence values in figure 11, as coherence, in accordance with
Xu (2013), ”is approximately equivalent to a frequency-dependent correlation coefficient”. Therefore, it allows
to compare how similar are the different frequency components of the considered signals.

13



0.0 0.5 1.0 1.5 2.0 2.5
(( f D)/U)/St

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

er
en

ce
x/

D
=-

1.
60

∆z/D =0.42

C01
C02

C03
C04

C05
Matsumoto et al. (2003)

(a)

0.0 0.5 1.0 1.5 2.0 2.5
(( f D)/U)/St

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

er
en

ce
x/

D
=-

1.
60

∆z/D =1.00

C01
C02

C03
C04

C05
Matsumoto et al. (2003)

(b)

0.0 0.5 1.0 1.5 2.0 2.5
(( f D)/U)/St

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

er
en

ce
x/

D
=1

.6
0

∆z/D =0.42

C01
C02

C03
C04

C05
Matsumoto et al. (2003)

(c)

0.0 0.5 1.0 1.5 2.0 2.5
(( f D)/U)/St

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

er
en

ce
x/

D
=1

.6
0

∆z/D =1.00

C01
C02

C03
C04

C05
Matsumoto et al. (2003)

(d)

Figure 11: Coherence at different positions for the different cases. (a) x/D = −1.60 ∆z/D = 0.42, (b)
x/D = −1.60 ∆z/D = 1.00, (c) x/D = 1.60 ∆z/D = 0.42 and (d) x/D = 1.60 ∆z/D = 1.00
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Figure 12: Power spectrum densities at different locations for cases C01 and C05.
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4 Results for the free-to-oscillate case

The simulations for the vertically free-to-oscillate rectangular cylinder were performed for a Scruton number
of 6.0 (Sc = (4πMξ)/(ρBDL), where M is the mass of the cylinder, ξ is the relative damping, ρ is the air
density and L is the spanwise dimension). The Scruton number is the same as in the experiments carried out by
Marra et al. (2011), which are adopted here for validation. Meshes in cases C03, C04 and C05 were selected to
conduct the VIV simulations since lower resolution meshes provided poorer agreement with experimental data
for the static case. The simulations conducted in this section have Reynolds numbers ranging from 0.3 · 105 to
0.55 · 105. It can be seen in figure 13a that the finer the discretisation, both in the spanwise dimension and
in the XY plane, the better the computed maximum structural response in comparison with the experimental
values in Marra et al. (2011) and the numerical simulations in Daniels et al. (2016). This can be explained by a
reduction in the spanwise correlation of the lift coefficient as the spatial discretisation was improved, as reported
in the static simulation (figure 5b), as well as the higher pressure fluctuations observed in the coarser meshes
(figure 8). The on-set reduced velocity of the VIV slightly varied with respect to the experimental data, and
this can be explained by the subtle differences in the value of the Strouhal number between the experimental
case and the simulations. The mesh refinement in the spanwise dimension provides the lock-in range closer to
the experimental ones. Also, for all the cases, the fluctuation of the structural response and lift force is locked
into the natural frequency of the model (f0) during the VIV lock-in. After this region, the heave oscillation
frequency remains equal to the system frequency, meanwhile the lift force frequency follows the vortex shedding
frequency defined by the Strouhal number (see figure 13b). The termination of the lock-in region coincides
with the instance when the lift force and vertical displacement phase lag angle is around 180◦ (see figure 13c)
(Nguyen et al., 2018). Therefore it is highlighted that the accurate simulation of the motion induced forces
is linked with the level of discretisation in the spanwise dimension and the ability of the model to properly
simulate the correlation of aerodynamic forces along the spanwise dimension and the phase lag between lift
force and heave oscillation.
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Figure 13: (a) Vibration amplitude, (b) Vibration frequency, (c) Phase lag between the oscillation in the heave
degree of freedom and the Cl.
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Figure 13: (a) Vibration amplitude, (b) Vibration frequency, (c) Phase lag between the oscillation in the heave
degree of freedom and the Cl. [Cont.]

4.1 Phase averaged pressure coefficient distribution

In order to obtain more information about the impact of the mesh discretisation level over VIV, in figure 14
the heave displacement and the corresponding phase averaged lift coefficient are presented, showing the phase
lag between the two phase-averaged responses at the maximum VIV structural responses for cases C03, C04
and C05.

In figure 15, the phase averaged pressure coefficient distributions at 8 different positions along the heav-
ing cycle at the reduced velocity for which the cylinder exhibits the maximum VIV structural response (see
figure 13a) are reported.

The phased averaged pressure coefficient distributions at instants P01 to P04 have their corresponding mir-
rored pressure distribution in times P05 to P08 respectively. The high suction peaks along the top and bottom
surface are related to the movement of the vortex travelling towards the leeward edge. The generation of the
vortices from the windward edge is synchronized with the oscillation of the cylinder, keeping on growing and
travelling for a cycle, and then being finally shed from the leeward side (Komatsu and Kobayashi, 1980). The
generation and shedding of the vortex located at the upper wall takes place at the instant ”P01” whilst in the
case of the lower wall this happens at the instant ”P05”, which gives the characteristic alternation of the vortex
shedding for this geometric configuration.

It is also appreciated in figure 15, that with finer mesh resolutions, the pressures on the leeward half of the
upper and lower surfaces of the cylinder, experiment smaller fluctuations along the oscillation cycle, which also
helps to explain lower amplitudes in the VIV response as the grid is progressively refined.
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Figure 14: Heave movement cycle and phase averaged Cl for the cases (a) C03 (Ur = 10.5), (b) C04 (Ur = 9.0)
and (c) C05 (Ur = 9.3)
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Figure 15: Phase averaged pressure distribution for the cases C03 (Ur = 10.5), C04 (Ur = 9.0) and C05
(Ur = 9.3) at maximum response flow velocity. (Negative values points outwards and the value of unity is equal
to the cylinder height)
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4.2 Pressure coefficient correlations

In figure 16, the spanwise correlations of pressure on the surfaces of the upper half of the cylinder, when it
experiences the maximum VIV structural response for cases C03, C04 and C05 are presented. They are in good
agreement with the experimental data for the 5:1 rectangular cylinder reported in Nguyen et al. (2018), since
to the authors knowledge, equivalent experimental data for the 4:1 rectangular cylinder are not available in the
literature. The spanwise correlation at the points closer to the windward edge presents in general higher values
than in the locations closer to the leeward edge, and in all the cases studied, the correlations are higher than the
ones obtained for the static case. This is in agreement with the results obtained from experimental campaigns for
the square cylinder (Wilkinson, 1981) and the ratio 5 rectangular cylinder (Ricciardelli, 2010; Li et al., 2016)
that have identified higher correlations of aerodynamic forces for oscillating bodies. In figure 16, in all the
cases, two zones with high correlations are identified on the upper surface, in the vicinity of the windward and
leeward corners. Over the central part of the upper side, lower pressure coefficients correlations are obtained.
The high correlation zone close to the windward corner is associated to the motion-induced vortex generated
at the leading edge, described in Matsumoto et al. (2008). This vortex travels on the body surface, developing
three-dimensional features and giving place to more uncorrelated flow structures, explaining the correlation
loss in the middle part of the upper surface. Finally, this vortex coalesces with the secondary vortex that is
generated at the trailing edge when it reaches this position, explaining the recovery in the pressure correlations
identified when approaching to the leeward corner. No clear trend in the values of the pressure correlations
is identified as the grid is progressively refined ,although case C05 provides lower magnitudes as the spanwise
distance increases, that are in better agreement with the experimental values in Nguyen et al. (2018). It may
be argued that this is due to the fact that the maximum response corresponds to different reduced velocities
for cases C03, C04 and C05.
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(b) C04

Figure 16: VIV heave pressure correlation surfaces for the cases C03, C04 and C05 at the point with the
maximum response amplitude.
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Figure 16: VIV heave pressure correlation surfaces for the cases C03, C04 and C05 at the point with the
maximum response amplitude. [Cont.]

Despite the fact of using shorter spanwise dimensions in the current simulations than in previous numerical in-
vestigations of rectangular cylinders undergoing VIV heave oscillations (Daniels et al., 2016; Nguyen et al., 2018),
the use of symmetric boundary conditions at the lateral sides of the flow domain, in combination with a sufficient
level of discretisation, has provided correlations and amplitudes of oscillation in agreement with experimental
data. Therefore, the selection of symmetric boundary conditions are allowing a reduction of the domain length
in the spanwise dimension.

5 Conclusions

Numerical simulations for the static 4:1 rectangular cylinder have been conducted for different types of
boundary conditions and mesh discretisations. It has been found that the application of the symmetric bound-
ary condition on the lateral surfaces of the fluid domain provides a more physically sound spanwise correlation.

All the simulations of the static 4:1 rectangular cylinder provide force coefficients, Strouhal number and
pressure coefficient distributions in good agreement with the available experimental data. No major differences
appear in the force coefficients and Strouhal number when the different mesh discretisations are applied, except
for the variations in the standard deviation of the pressure coefficient distributions and force coefficients. The
simulations are able to identify different flow structures developing over the cylinder; also the size of each of them
was calculated. The pressure coherence at different locations was calculated and compared with experimental
data, finding a general good agreement with the 5:1 rectangular cylinder. The pressure correlation surfaces
were obtained, and helped to understand the flow characteristics in the identified flow regions.

On the other hand, the vertically free-to-oscillate simulations present a dramatic sensitivity with the spanwise
discretisation and the overall number of elements in the XY plane; the VIV lock-in interval is better estimated
by using the mesh having a finer discretisation in the spanwise dimension, meanwhile the maximum structural
response during the lock-in is better approximated when the mesh is further refined in both the spanwise
dimension and the XY plane. Therefore, to correctly simulate the motion induced forces, using a fine enough
discretisation along the spanwise dimension as well as in the XY plane is one of the key requirements in 3D
LES modelling, finding that a feasible dimension in the spanwise direction is δz/B = 0.02. Although for higher
levels of turbulence in the incoming flow or higher heave oscillation amplitudes the discretisation requirements
in the spanwise direction may be different. For the cases considered, phase-averaged distribution of Cp as well
as the spanwise correlation of pressure at different locations were calculated as the maximum VIV structural
response is observed. These correlations were compared with experimental data and were found to be in good
agreement with them.
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