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ABSTRACT  33 
Background: Determining the rate of breast cancer (BC) growth in-vivo, which can predict 34 
prognosis, has remained elusive despite its relevance for treatment, screening 35 
recommendations and medicolegal practice. We developed a model that predicts the rate of in-36 
vivo tumor growth using a unique study cohort of BC patients who had two serial mammograms 37 
wherein the tumor, visible in the diagnostic mammogram, was missed in the first screen.  38 
Methods: A Serial Mammography-derived In-vivo Growth Rate (SM-INVIGOR) index was 39 
developed using tumor volumes from two serial mammograms and time interval between 40 
measurements. We then developed a machine learning-based surrogate model called Surr-41 
INVIGOR using routinely-assessed biomarkers to predict in-vivo rate of tumor growth and 42 
extend the utility of this approach to a larger patient population. Surr-INVIGOR was validated 43 
using an independent cohort.  44 
Results: SM-INVIGOR stratified discovery cohort patients into fast- versus slow- growing tumor 45 
subgroups wherein patients with fast-growing tumors experienced poorer BC specific survival. 46 
Our clinically relevant Surr-INVIGOR stratified tumors in the discovery cohort and was 47 
concordant with SM-INVIGOR. In the validation cohort, Surr-INVIGOR uncovered significant 48 
survival differences between patients with fast- and slow-growing tumors.  49 
Conclusion: Our Surr-INVIGOR model predicts in-vivo BC growth rate during the pre-50 
diagnostic stage, and offers several useful applications. 51 
BACKGROUND 52 
Breast cancer (BC) is a heterogeneous disease with tumors exhibiting variable morphology, 53 
molecular profiles, behavior, and response to therapy. Mounting evidence demonstrates that BC 54 
shows variable rates of growth, which has important clinical and medicolegal implications (1-4). 55 
In-vivo growth rate is not only a quantifiable trait of the tumor but can also serve as a tool to plan 56 
and evaluate screening programs, clinical trials or epidemiologic studies. In addition, BC growth 57 
rate evaluated using tumor size from mammograms may predict tumor response to 58 
chemotherapy and may help in determining the likely time of tumor initiation and previous tumor 59 
size in medicolegal cases (5-7). BC growth rate is also associated with prognostic variables 60 
such as lymph node status, stage and vascular invasion (3, 4, 8); however, the prognostic and 61 
predictive value of BC growth rate has not been harnessed in routine practice due to the 62 
inherent difficulty in its assessment in the short intervals between diagnosis and treatment.   63 
Although the growth rate of BC in-vivo is strictly regulated, it appears to be dependent on the 64 
balance between several variables including growth fraction (the tumor cells that are 65 
proliferating and leading directly to the addition of new tumor cells), the rate of tumor cell loss by 66 
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apoptosis and/or necrosis, tumor cells’ doubling-time/kinetics, and the surrounding 67 
microenvironment including angiogenesis, blood supply, and host immune response to the 68 
proliferating tumor cells (9-12). The complexity of the processes controlling BC growth and the 69 
interaction with the tumor microenvironment make assessment and prediction of BC growth rate 70 
a challenging task. Therefore, serial imaging of BC at different time points is considered as the 71 
best model available for assessing the in-vivo growth rate and for determining associations 72 
between potential intrinsic growth rate determinants and BC behavior, including response to 73 
therapy.  74 
This study utilizes a discovery cohort comprising clinically and molecularly well-characterized 75 
data from BC patients who underwent serial mammography. It is a unique and rare cohort 76 
because the second mammogram illuminated that the tumor was indeed “missed” during the 77 
first mammogram. We find that this one-of-a-kind cohort can be interrogated to (a) identify 78 
predictors of BC in-vivo growth rate, (b) evaluate the impact of BC growth rate on disease 79 
outcome, and (c) develop a surrogate model that robustly predicts pre-diagnosis in-vivo growth 80 
rate for patients who would normally not have tumor volume data from two serial mammograms. 81 
In contrast to a matched first-presentation-only BC patients’ cohort, BC growth rate in this study 82 
is determined by the changes in tumor volume between sequential mammograms, wherein the 83 
first mammogram “mistakenly” reported the case as normal/benign and the cancer was 84 
identified in the screening mammogram on a retrospective review subsequent to the second 85 
(diagnostic) mammogram (Figure 1). 86 
METHODS 87 
Study cohort: The study cohort comprised of 114 BC patients aged between 50-70 years who 88 
were presented at the Nottingham City Hospital from 1988 to 2008 with BC, and for whom 89 
review of the previous screening mammogram showed a previously undetected tumor at the 90 
same affected site. This may have been due to either a false-negative screening outcome, or 91 
due to minimal visible signs of malignancy on the previous mammogram. Mammographic 92 
abnormalities included measurable soft tissue abnormality (mass, distortion or asymmetry) on 93 
screening and diagnostic films. On retrospective review of the previous mammogram after the 94 
disease diagnosis, two radiologists (blinded to each other’s observations) confirmed the 95 
“missed” cancer. We selected patients in whom a soft tissue abnormality was detected (upon 96 
retrospective review of prior screening mammograms) at the site of the subsequent cancer. Due 97 
to a misdiagnosed mammogram, this cohort uniquely comes with an earlier screening 98 
measurement with a visible tumor. Clinicopathological data including age, histological tumor 99 
type, primary tumor size, lymph node status, histological grade, Nottingham Prognostic Index 100 
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(NPI), vascular invasion and patients’ outcome data were obtained. BC-specific survival (BCSS) 101 
was defined as the time interval (in months) between the primary surgeries and death from BC. 102 
The mean survival time of this cohort of patients was 120 months. Clinicopathological variables 103 
were available for 92 cases and the BCSS was available in 90 cases; thus, we restricted our 104 
study to these cases (Figure 1A).  105 
Calculating tumor volumes and growth rates: The two measurements in the screening and 106 
diagnostic mammograms were assumed as tumor diameter and tumor height, which were then 107 
used to calculate tumor volumes at the time of screening and diagnosis. The greater 108 
mammogram dimension was assumed as height corresponding to the diameter of the semi-109 
major axis, and the other dimension was regarded as diameter of the semi-minor axis. For 110 
tumor volume calculation, we considered the aforementioned dimensions as volume inputs for a 111 
cylinder, sphere, and an oblate spheroid (13). For tumor growth rates, we tested exponential 112 
growth (14, 15), the Gompertz model (16), and power law growth with the exponent set to both 113 
the classic value of 2/3 (17, 18) and 1/2 (19) as shown in Table S1. For all models, the initial 114 
volume for the growth rate was determined using the screening mammogram and the final 115 
volume was determined from the diagnostic mammogram, with the time variable denoted by the 116 
days between the two mammograms.  117 
Selecting optimal tumor volume, growth rate combination and development of SM-118 
INVIGOR: Multiple tumor volume/three-dimensional shape assumptions and growth rate 119 
functions used in previous studies (19), were tested to find the optimal combination that was 120 
prognostic. Growth rate indices that combined tumor volume (calculated assuming the tumor to 121 
be a sphere, cylinder, or spheroid) and individual growth functions (calculated assuming 122 
exponential growth, two sets of the Power Law function (α =1/2 or 2/3), or Gompertz growth), 123 
were compared on the basis of their prognostic ability. Growth rates were used either as a 124 
continuous variable or through a fast/slow growth cutoff determined through optimizing the log-125 
rank statistic (20, 21). Both forms of all growth rates were analyzed univariately in a Cox 126 
proportional hazard regression model using 10-year breast cancer specific survival (BCSS), and 127 
corresponding model fits were ranked with the Akaike Information Criterion (AIC) (22). The best-128 
fitting growth rate index was chosen via the lowest relative AIC and was used in subsequent 129 
analyses. Data related to changes in volume of the lesion between the time of screening and at 130 
diagnosis, as well as the time between screening and diagnosis, were used to estimate the 131 
Serial Mammography-derived In-vivo Growth Rate (SM-INVIGOR) (Figure 1B). To control for 132 
common clinicopathological confounders, the growth rate model was also analyzed with 133 
multivariate Cox regression alongside grade, age, and estrogen receptor (ER) status. In 134 
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addition, the tumor volumes at the screening and diagnostic time-points were tested 135 
prognostically to evaluate the prognostic significance of the change in tumor volume versus that 136 
of the screen- or diagnostic mammogram-calculated volume individually (Figure 1C).  137 
Assessing and scoring immunohistochemical staining: For each patient, a representative 138 
formalin-fixed paraffin wax-embedded (FFPE) tumor block of the resected tumor was obtained 139 
from the Nottingham breast tumor bank (Figure 1D). Full-face sections 4 μm thick from the 140 
representative FFPE tumor blocks were prepared onto Xtra® Surgipath glass slides and were 141 
used for immunohistochemical (IHC) assessment of the following markers: estrogen receptor 142 
(ER), progesterone receptor (PR), HER2 (human epidermal growth factor receptor 2), the 143 
proliferation markers Ki67 and MCM2 (Minichromosome Maintenance 2), the basal markers 144 
CK5/6 (cytokeratin 5/6) and EGFR epidermal growth factor receptor), the apoptosis markers 145 
BCL2 and cleaved caspase-3. IHC was performed on tissue sections using Novolink™ Max 146 
Polymer Detection System. (Leica, Newcastle, UK). Briefly, heat-assisted retrieval of antigen 147 
epitopes was performed in citrate buffer (pH 6) using a microwave for 20 minutes, followed by 148 
immediate cooling. The slides were rinsed with Tris-Buffered Saline (TBS, pH 7.6). The primary 149 
antibodies as summarized in Table S2 were applied for 30 minutes at room temperature except 150 
for cleaved caspase-3 staining. For cleaved caspase-3 a pre-fabricated detection kit 151 
(SignalStain® Cleaved Caspase-3 (Asp175) IHC Detection Kit #8120, Cell Signaling 152 
Technology) was used following manufacturer’s instructions. Other markers were stained using 153 
our protocols as previously published (23, 24).  154 
Appropriate positive and negative controls were used for each marker and included in each 155 
staining run. Only the invasive tumor cells were scored independently by two observers (SB and 156 
MA) blinded to each other’s scores and clinicopathological data. Cases with discordant results 157 
were further reviewed by both observers to achieve scoring consensus. For each marker, the 158 
percent and intensity of staining were assessed, and H-scores were generated. For ER, PR, 159 
and HER2, cut-offs according to published guidelines were used (25, 26). Ki67, and cleaved 160 
caspase-3 were assessed and scored as previously described (23, 24). BC molecular subtypes 161 
were defined based on their IHC expression profile into: a) luminal (ER+ and/or PR+ /HER2-), b) 162 
HER2+ (HER2-positive), c) Triple negative (TN; ER-, PR-, HER2-) and d) Basal-like Breast 163 
cancer (BLBC: TN+ CK5/6+) (24). A total of 92 cases were informative for IHC biomarkers and 164 
these comprised the study cohort in the subsequent analyses including molecular markers 165 
(Figure 1E). 166 
Development of the machine learning-based surrogate model (Surr-INVIGOR): The above 167 
mentioned clinical and molecular variables, and immunohistochemical biomarkers (Table S3) 168 
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were evaluated using machine learning algorithms to identify an optimal feature set that could 169 
serve as a surrogate model for SM-INVIGOR to predict fast or slow in-vivo growth rate for cases 170 
where only a single (diagnostic) mammogram is available (Figure 1F/G/H). The significance of 171 
mean differences for all potential surrogate variables, between fast- and slow-growing tumors, 172 
was first calculated using a 2-tailed t-test; this was followed by a ranking of the variables based 173 
upon their discriminating capacity. Multiple classification algorithms (support vector machines,, 174 
naïve Bayes, decision trees, discriminant analysis, ensemble), with optimized hyperparameters 175 
(27, 28) were then tested. The machine learning algorithm and feature set that resulted in the 176 
maximum 5-fold cross-validated accuracy (mean of 100 iterations) was chosen. For each 177 
trained machine learning model (combination of biomarkers), hyperparameters were fit through 178 
Bayesian optimization (27, 28) over 180 iterations (Table S4).  Furthermore, a combination of 179 
variables was used, in an optimized regression model, to identify if the continuous growth rate 180 
value for each patient could be determined. Finally, the outputs from the machine learning-181 
based approach were compared to the regression-based models which did not yield good R2 182 
values owing to small sample size.  183 
Validation of Surr-INVIGOR: The prognostic performance of this surrogate model (Surr-184 
INVIGOR) was tested in an independent, well-characterized large validation cohort of 1241 BC 185 
patients using Kaplan-Meier survival analysis (Figure 1I/J). Multivariate Cox regression was 186 
used to control for confounding effects of common clinicopathological variables.  187 
Statistical analysis: All statistical analyses were carried out with SAS 9.4 ® software and 188 
MATLAB Version 9.2. Clinicopathological proportion differences between growth groups were 189 
determined using the χ2 test. Continuous clinicopathological variable differences were 190 
evaluated via a 2-tailed t-test. Prognostic time to event analysis was performed using Kaplan-191 
Meier and Cox Proportional Hazard regression, wherein a death due to BC was considered as 192 
an event and every other outcome was censored. For all analyses, p<0.05 was considered 193 
significant.  194 
RESULTS 195 
Clinicopathological and molecular features of cases in the study cohort 196 
Most patients in the study cohort showed features associated with good prognosis including 197 
lower grade and negative (65%) or early positive (pN1; 26%) lymph nodes. Age at the time of 198 
diagnosis ranged from 50 to 73 years (mean=60.3 years, median=61.0 years). There was a 199 
predominance of the luminal A subtype with 85% positive for ER while HER2 overexpression 200 
was identified in only 6% of the patients. Ki67 staining ranged from 0 to 96%, with a mean 201 
expression of 19% (Table 1). Moreover, there was a significant correlation between the 202 
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histological tumor size and the mammogram tumor size at time of diagnosis (Pearson’s 203 
correlation=0.58870; p<0.0001).  204 
Development of SM-INVIGOR,  a significant predictor of breast cancer-specific survival 205 
Since fast in-vivo growth prior to diagnosis is a sign of aggressive disease and could lead to 206 
poor outcomes, we reasoned that the growth rate model of choice would be the one that is most 207 
prognostic. Thus, we evaluated various combinations of growth rate functions and assumptions 208 
regarding the tumor’s three-dimensional shape. The best fitting model of tumor volume and 209 
growth rate was obtained using the assumption that the study cohort comprises spherical 210 
tumors growing at a power law (α=0.5) rate; this growth rate function (SM-INVIGOR) stratified 211 
the tumors into slow-growing and fast-growing subgroups and produced a minimum cross 212 
validated AIC of 152.621 (Table S5). Using these assumptions, tumor volumes at the time of 213 
screening ranged from 53-56,115 mm3 (mean of 2,742 ± 7,619 mm3). This contrasted with 214 
tumor volumes at diagnosis, which ranged from 61 to 61,562 mm3 (mean=5,573 ± 8,768 mm3). 215 
The mean time difference between date of first screening and that of second diagnostic 216 
screening was 18 months, (range 4-37 months, median=17.5 months). Tumor growth rate 217 
differed considerably from patient to patient, ranging from 0 to 0.53 mm3/day (mean=0.08 ± 0.13 218 
mm3).  219 
SM-INVIGOR used a cutoff of 0.045 mm3/day to stratify tumors into slow-growing (n=53) and 220 
fast-growing (n=37) subgroups. Faster SM-INVIGOR significantly associated with 221 
clinicopathological factors normally associated with poorer prognoses, such as larger 222 
histological tumor size (p=0.0023), high grade (Grade 3) (p=0.0186), more mitotic divisions 223 
(p=0.0134), apparent vascular invasion (p=0.0139), and a poor Nottingham Prognostic Index 224 
(p=0.011) (Figure 2A). SM-INVIGOR varied significantly between BC molecular subtypes with 225 
the highest rate observed in triple-negative BC (TNBC) compared to other subtypes (p<0.05). 226 
Among the proliferation/apoptosis-related biomarkers that were immunohistochemically 227 
assessed (Table S3), only Ki67 showed a significant mean difference (p=0.0003) between the 228 
fast- (24%) versus slow- growing (11%) tumor subgroups. Furthermore, patients with higher 229 
tumor growth rate showed significantly poorer survival (BCSS=71.7%) relative to the slow-230 
growing tumors (BCSS=91.9%) as shown in Kaplan Meier’s survival graph (Figure 2B). SM-231 
INVIGOR retained prognostic significance (p=0.0299, high growth rate HR=4.605) upon 232 
controlling for common clinicopathological variables including grade, age and ER status. In fact, 233 
SM-INVIGOR was the only variable significantly associated with BCSS in our multivariable 234 
analysis (Figure 2C). 235 



 8

Development of a clinically-relevant surrogate model (Surr-INVIGOR) for in-vivo growth 236 
rate prediction 237 
Unlike the patients in our unique discovery cohort, most begin therapy at an initial cancer 238 
diagnosis, and are therefore unlikely to have two serial mammograms with two tumor volume 239 
measurements. Because of this difference, SM-INVIGOR is limited in its utility to derive in-vivo 240 
tumor growth rate for most BC patients in routine clinical practice. Therefore, to extend the 241 
benefits of having growth rate data (or estimates) to a much larger group of patients lacking a 242 
second mammogram, we developed a machine learning-based surrogate growth rate model for 243 
SM-INVIGOR and called it Surr-INVIGOR (described in Suppl. data). Surr-INVIGOR non-linearly 244 
combines multiple clinicopathological variables and immunohistochemical biomarkers to predict 245 
in-vivo growth rate. First, we evaluated the ability of individual clinicopathological variables to 246 
serve as potential surrogate features and discriminate between the fast- and slow- growing 247 
tumor subgroups of our study cohort (p-values for mean difference between the subgroups is 248 
shown in Table S4. Ki67 (p=0.000265), mitotic score (MI; p=0.002479), tumor size 249 
(p=0.003619), NPI (p=0.004163), and grade (p=0.021128) differed significantly between the 250 
fast- and slow- growing tumors. The seven variables (Ki67, Mitotic score, tumor size, NPI, 251 
Grade, Stage and Tumor size) with p value <0.2 were then tested in multiple machine learning-252 
based classification algorithms via sequential selection (Figure S1). The maximized cross-253 
validated accuracy, which indicates the optimal Surr-INVIGOR model, was obtained when three 254 
features (Ki67, MI, and histological tumor size) were used in a K-nearest neighbor algorithm or 255 
KNN (accuracy or concordance with the classification yielded by SM-INVIGOR=0.706). The 256 
Ensemble also yielded a 70% accurate classifier but required 4 additional features; the more 257 
parsimonious KNN was thus selected for use in Surr-INVIGOR. Fitting an optimal regression 258 
model to predict the growth rate continuously resulted in a poor R2, peaking at 0.22, as shown in 259 
Figure S2, perhaps owing to the small sample size. Thus, our machine learning-based Surr-260 
INVIGOR model was a clinically-relevant, superior choice compared to regression-based 261 
models. 262 
Validation of Surr-INVIGOR in an independent BC case series demonstrates its robust 263 
prognostic value 264 
We then evaluated the prognostic ability of Surr-INVIGOR in an independent BC case series 265 
(n=1241) from Nottingham University Hospital, UK. Patient age at the time of diagnosis ranged 266 
from 21-71 years (mean=53.6 years, median=54 years). Most patients showed features 267 
associated with good prognosis including negative lymphovascular invasion (55.3%), and 268 
negative (61%) or showed 1-3 positive (30%) lymph nodes. Patient follow up time ranged from 1 269 
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to 120 months (mean=100.237, median=120 The clinicopathological features of patients are 270 
summarized in Table 1.  271 
The clinicopathological variables that discriminated between slow- and fast-growing tumors are 272 
depicted in Figure 2D. Applying the previously-trained Surr-INVIGOR model, using the same 273 
input parameters on this naïve validation cohort resulted in significant BCSS stratification. 274 
Patients in the fast growth rate group (n=922, BCSS=72.9%) had a significantly lower survival 275 
than patients in the slow growth rate group (n=269, BCSS=92.3%) Figure 2E. After accounting 276 
for potential clinicopathological cofounders, Surr-INVIGOR retained prognostic significance 277 
(HR=1.758, p=0.0361) alongside grade as shown in Figure 2F. 278 
Surr-INVIGOR can be used to determine tumor age at diagnosis in a subset of breast 279 
tumors 280 
Using the different growth rate groups, we can estimate tumor age and the time of inception of a 281 
subset of tumors. Assuming the highest (bounded) power law (α=0.5) growth rate (0.04593 282 
mm3/day) for the slow-growing subgroup, we can estimate the date after which the tumor was 283 
definitely present within the patients in the slow-growing tumor subgroup. Using these 284 
assumptions, we determined that the average tumor age at diagnosis of slow-growing tumors 285 
was 4.7 years (Figure S3). Using this methodology, it may be possible to determine whether a 286 
patient possessing a slow-growing tumor undetected at earlier screenings, had received a true-287 
negative or false-negative (i.e., tumor was missed) screening result.  288 
DISCUSSION 289 
Although several studies have investigated variables associated with pre-diagnosis in-vivo BC 290 
growth rate, only clinicopathological variables and a few molecular biomarkers have been 291 
studied in this context and the available tumor dimensions were limited due to the measurement 292 
of the tumor’s long-axis only (2, 5, 29, 30). This study utilized a unique cohort of cases with 293 
tumor volume measurements (derived using tumor diameter and height data) available from a 294 
pair of serial mammograms to derive their in-vivo growth rates (SM-INVIGOR). We explored the 295 
potential association of a larger number of molecular biomarkers with their in-vivo BC growth 296 
rate, reaffirmed that fast tumor growth rate has a profound impact on prognosis, developed and 297 
validated a surrogate model (Surr-INVIGOR) that can predict a gross scale (fast versus slow) in-298 
vivo growth rate accurately in routine practice, and its medicolegal consequences.  299 
The success of breast screening lies in the timely detection of cancer on mammography. False 300 
negative mammography is among the principal reasons for delayed diagnosis of BC(31-34). 301 
Even though some authors quote high sensitivity (>90%) for diagnostic mammography, such 302 
results are not universal (35). Among many factors, age appears to be one of the important 303 
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factors underlying false negative reporting because the high radiographic density of breast in 304 
young women makes detection difficult (6). Mammograms are generally capable of detecting 305 
tumors as small as 2 mm in diameter, which equates to a tumor of approximately 107 cells and 306 
about 23 tumor doublings (36). In our study cohort, however, patients with tumors ranging from 307 
4-55 mm received false-negative diagnoses in their screening mammograms, showing the 308 
imperfection associated with this technology and inherent human limitations associated with 309 
reading radiology films. Whether the spread of a tumor is due to delays in diagnosis and 310 
initiation of treatment, or due to the inherently more aggressive nature of the tumor cells 311 
themselves (i.e., higher in-vivo tumor growth rate) is another highly controversial matter. Natural 312 
fears that the delay in diagnosis has reduced their chances of survival or of avoiding the life-313 
sapping effects of chemotherapy, or the feeling that cosmetic outcomes which would have been 314 
better had the tumor been detected earlier, are frequent causes of patients seeking legal 315 
redress. The importance of breast imaging in BC diagnosis and the use of mammography in 316 
screening has thus pushed breast radiologists into the frontline for medicolegal actions (37). 317 
Cancers missed at screening but followed by a positive diagnostic mammogram are not 318 
common yet false negative mammography is among the principal reasons for delayed diagnosis 319 
of BC (31-34). Only few population-screening programs have reported data on this group of 320 
cancers, which makes our study cohort uniquely valuable. This cohort allowed us to develop a 321 
model to predict pre-diagnostic in-vivo tumor growth rate and provide insights into the potential 322 
prognostic consequences of delays in BC diagnosis.  323 
Our study has yielded several key insights into features and the prognostic significance of the 324 
rate of tumor growth in its early stages. In our study, we found that SM-INVIGOR varies 325 
considerably and is consistent with findings by Weedon-Fekjaer and colleagues (5) who 326 
reported that the time BC takes to grow from 10 mm to 20 mm in diameter varied from less than 327 
1.2 months to more than 6.3 years. Our current study also reinforced previous findings that 328 
higher grade and larger tumors with high proliferative activity are likely to have faster SM-329 
INVIGOR and that faster pre-diagnosis growth rate predicted shorter survival (2, 5, 29, 30, 38, 330 
39). We also found that the status of lymphovascular invasion (LVI) correlated with growth rate; 331 
with highly proliferative and fast-growing tumors more likely to develop when there is increased 332 
provision of nutrients to the tumor cells from the leaky invaded blood vessels. Our results 333 
indicated that increasing SM-INVIGOR increases the risk of mortality of the disease. However, 334 
SM-INVIGOR cannot be included as a prognostic variable in routine clinical practice because of 335 
difficulty in evaluating it in the short interval between diagnosis and treatment.  336 
Therefore, we developed Surr-INVIGOR to predict the pre-diagnosis in-vivo BC growth rate after 337 
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testing multiple clinicopathological and molecular variables (individually and in combination) 338 
using diverse machine learning algorithms. The optimal algorithm, a KNN which used Ki67, MI, 339 
and size, stratified both the study and validation cohorts into two subgroups with very distinct 340 
outcomes. Surr-INVIGOR further allowed routine clinical parameters to be used in patients with 341 
slow-growing tumors to determine tumor size at various time-points before the diagnosis of the 342 
tumor. For fast-growing tumors, immediate surgery is often recommended, as delays may result 343 
in upgrading of clinical T stage. Surr-INVIGOR may thus have a potential use in medicolegal 344 
cases, and may be used to guide screening and perhaps even follow-up intervals in selected 345 
groups of BC patients.  346 
Consistent with previous studies (40, 41), results from our validation cohort showed a significant 347 
correlation between BC molecular subtypes and pre-diagnosis tumor growth rate wherein a 348 
higher growth rate was observed in triple negative/basal-like BC patients. Previous studies have 349 
indicated that faster growing tumors lead to poorer survival (42-45). Our results compellingly 350 
demonstrated that high pre-diagnosis in-vivo BC growth rate increases the risk of mortality from 351 
the disease regardless of potential clinicopathological cofounders. Some previous studies did 352 
not find such statistically significant associations (3, 4), which might be because in those 353 
studies, the tumor volume was calculated using only one dimension-a method that can 354 
introduce considerable inaccuracy into growth rate calculations. In the current study, we utilized 355 
a combination of power law growth rate and spherical volume-both of which were significant in a 356 
previous study using 2-dimensional breast mammogram data (19), and showed the most 357 
significant prognostic relevance in our data. 358 
Review of previous mammography is carried out as a routine practice at Nottingham Hospital, 359 
and cases that show an abnormality at the same site as the diagnosed tumors are considered 360 
as cancers potentially missed in the prior screening. Some of these tumors are only detectable 361 
in retrospect with knowledge of the diagnostic mammograms, and if all such subtle areas were 362 
recalled for further assessment, this would likely increase the false positive rate beyond what is 363 
regarded as acceptable in the NHS breast screening program. The impact of such delay in the 364 
diagnosis on the presentation and outcome of these tumors compared to matched population of 365 
women who presented for the first time as symptomatic or with screen-detected BC remains to 366 
be defined. Most tumors included in our study (similar to other studies looking at screen-367 
detected tumors) by their very nature, were small, slow-growing luminal tumors, and infrequently 368 
expressed basal markers or HER2 with similar nodal status (30). This can be explained by the 369 
unique nature of these slow growing early-stage tumors in this study. By contrast, aggressive 370 
tumors are likely to present without prior mammographic abnormality (46). In line with these 371 
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results, Kalager et al. (47) have reported that BCs presenting as interval cancers were slightly 372 
larger than symptomatic BC but there was no difference between the two groups regarding 373 
lymph node status or patient outcome. Moreover, our results indicated that the impact of SM-374 

INVIGOR on disease stage and development of LVI is limited. However, the present study holds 375 

a few limitations: due to the unique nature of the study cohort and the lack of similar missed 376 
cancer cohorts, the SM-INVIGOR growth index could not be readily validated. Additionally, this 377 
is a retrospective, single center study and adjuvant treatment regimens were not factored in our 378 
analyses. Validation of the model in diverse cohorts is necessary before it can be applied for the 379 
prediction of in-vivo growth rate and determination of the likely tumor initiation date and previous 380 
tumor size in clinico-legal cases. If validated in further studies, the model developed herein 381 
could potentially guide treatment selection as it prognostically distinguishes fast-growing tumors 382 
from slow-growing ones. For example, for fast growing tumors, immediate treatment in the form 383 
of primary systemic therapy (rather than surgery) may be required. Moreover, HER2 is known to 384 
be related to rapid growth of tumors and might be a good marker to add to the Surr-INVIGOR, 385 
however our study cohort was overwhelmingly HER2 negative and thus it’s impact within a 386 
prognostic model could not be properly measured. Further analysis may be required in a diverse 387 
cohort.   388 
In conclusion, this study has demonstrated that multiple factors control BC growth; when 389 
considered together Ki67, Mitotic Index, and tumor size produce a robust prediction model of 390 
pre-diagnostic growth rate and can be used to classify BCs as slow- or fast- growing. The 391 
impact of missing subtle cancers in screening mammography seems to depend on whether the 392 
tumor was slow- or fast- growing prior to diagnosis, as fast-growing tumors were associated with 393 
poorer outcomes and perhaps reflected more aggressive tumor biology. Independent validation 394 
of these findings in multiple and more diverse cohorts is warranted. 395 
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 547 
Figure and Table Legends: 548 
Figure 1: Schematic depicting sequences of steps in our study leading to the calculation 549 
of SM-INVIGOR and the development of Surr-INVIGOR that predicts in-vivo tumor growth 550 
rate in BC: Briefly, tumor volumes from two serial mammograms and the time interval between 551 
measurements in a unique dataset of 92 patients (A), were used to develop a growth rate index 552 
SM-INVIGOR (B), The growth index significantly predicts BCSS and classifies tumors as slow- 553 
or fast-growing (C). When the tumors were resected after final diagnosis (D), tumor sections 554 
were immunohistochemically stained for a panel of BC biomarkers (E). A machine learning 555 
algorithm was used to develop a surrogate model (termed Surr-INVIGOR) for SM-INVIGOR that 556 
uses routinely assessed BC clinical biomarkers like Ki67, Mitotic Index and Histological size. 557 
The multivariable model non-linearly combines multiple clinicopathological variables and 558 
immunohistochemical biomarkers to predict the tumor’s in-vivo growth rate prior to diagnosis 559 
(F,G). Using the same growth rate threshold as SM-INVIGOR, the Surr-INVIGOR model was 560 
able to prognostically stratify patients in study cohort (H). Finally, Surr-INVIGOR was validated 561 
using an independent BC validation cohort of 1241 patients and was found to be strongly 562 
prognostic in the validation cohort (I,J). 563 
 564 
Figure 2: Prognostic significance of SM-INVIGOR. (A) Univariate associations between 565 
clinicopathological parameters and SM-INVIGOR. (B) Kaplan-Meier survival curve for study 566 
cohort patients stratified into high and low growth rate groups by SM-INVIGOR. (C) Multivariable 567 
analysis of the association between clinicopathological variables and outcome {breast cancer 568 
specific survival (BCCS)} in study cohort. (D)Univariate association between clinicopathological 569 
parameters and Surr-INVIGOR in validation cohort. (E) Kaplan-Meier survival curve for patients 570 
stratified into high and low growth rate subgroups by Surr-INVIGOR in validation cohort. (F) 571 
Multivariable analysis of the association between clinicopathological variables and BCSS in 572 
validation cohort.  573 
 574 

Table 1: Clinicopathological characteristics of cases in the study cohort and validation 575 

cohort. 576 

 577 







Table 1: Clinicopathological characteristics  

Parameters 

Study Cohort 
Validation 
Cohort 

Number of 
cases (N; %) 

Number of 
cases (N; %) 

Age     

≤65 75 (81.5) 1057 (85.2) 
>65 17 (18.5) 184 (14.8) 

Tumor Grade     

1 16 (17.4) 325 (26.2) 
2 42 (45.7) 501 (40.4) 
3 34 (36.9) 415 (33.4) 

Tumor Size     

≤15 32 (35.0) 969 (72.31) 
>15 60 (65.0) 371 (27.69) 

Lymph Node     

1 60 (65.2) 763 (61.5) 
2 24 (26.1) 382 (30.8) 
3 8 (8.7) 96 (7.7) 

Hormone Receptor Status     

ER Positive 78 (84.8) 915 (73.7) 
ER Negative 14 (15.2) 326 (26.3) 
PR Positive  59 (64.1) 675 (54.4) 
PR Negative 33 (35.9) 566 (45.6) 

HER2 Expression     

Positive 5 (5.4) 151 (12.2) 
Negative 81 (88.0) 1058 (85.3) 
Missing 6 (6.5) 32 (2.6) 
Intrinsic Molecular 
Subtypes 

    

Luminal A 38 (41.3) 408 (32.9) 
Luminal B 28 (30.4) 429 (34.6) 
HER2 5 (5.4) 151 (12.2) 
BLBC 4 (4.3) 138 (11.1) 
Triple Negative 11 (12.0) 68 (5.5) 
Missing 6 (6.5) 47 (3.8) 

Ki67      

High 44 (47.8) 667 (53.7) 



Low 48 (52.2) 574 (46.3) 

Tumor Type     

Invasive No Special Type 50 (54.3) 761 (61.3) 
Invasive lobular 17 (18.5) 93 (7.5) 
Tubular 11 (12.0) 299 (24.1) 
Mucinous 2 (2.2) 11 (0.8) 
Mixed type 12 (13.0) 77 (6.2) 

Coexisting DCIS     

None 21 (23.0) NA 
Low grade 20 (22.0) NA 
Intermediate grade 22 (24.0) NA 
High grade 29 (31.0) NA 
Lympho-vascular 
Invasion 

    

Negative 60 (66.2) 686 (55.3) 
Definite 21 (22.8) 397 (32.0) 
Probable 11 (11) 158 (12.7) 

Outcome Status      

Alive 62 (67.4) 650 (52.3) 
Dead 30 (32.6) 591 (47.6) 
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