July 1, 2019 16:5 WSPC/INSTRUCTION diagonal forms Int J Number Theory

FILE

DIAGONAL FORMS OF HIGHER DEGREE OVER FUNCTION FIELDS OF p-ADIC CURVES

S. PUMPLÜN

School of Mathematical Sciences, University of Nottingham, University Park
Nottingham NG7 2RD, United Kingdom
susanne.pumpluen@nottingham.ac.uk

Received (25 May 2018) Accepted (25 June 2019)

We investigate diagonal forms of degree d over the function field F of a smooth projective p-adic curve: if a form is isotropic over the completion of F with respect to each discrete valuation of F, then it is isotropic over certain fields F_U , F_P and F_p . These fields appear naturally when applying the methodology of patching; F is the inverse limit of the finite inverse system of fields $\{F_U, F_P, F_p\}$. Our observations complement some known bounds on the higher u-invariant of diagonal forms of degree d.

We only consider diagonal forms of degree d over fields of characteristic not dividing d!.

Keywords: Forms of higher degree, diagonal forms, function fields, p-adic curves, u-invariant

Mathematics Subject Classification 2010: 11E76

Introduction

The fact that Springer's Theorem holds for diagonal forms of higher degree over fields of characteristic not dividing d! [9] guarantees that on occasion diagonal forms of higher degree defined over function fields behave similarly to quadratic forms. For a survey on the behaviour of (diagonal) forms of higher degree in general the reader is referred to [12].

In this note we consider diagonal forms of degree d over function fields F = K(X) where X is a smooth, projective, geometrically integral curve over K and K is the fraction field of a complete discrete valuation ring with a residue field k of characteristic not dividing d!. Let v be a rank one discrete valuation of F, and F_v the completion of F with respect to v. It was shown by Colliot-Thélène, Parimala and Suresh [2, Theorem 3.1] that a quadratic form which is isotropic over F_v for each v is already isotropic over F, using the methodology of patching developed by Habater and Hartmann [4], i.e. viewing F as the inverse limit of a finite inverse system of certain fields $\{F_U, F_P, F_p\}$.

Given a nondegenerate diagonal form φ over F of degree d > 2 and dimension > 2, it is not clear, however, whether the isotropy of φ over F_v for each v implies

that φ is isotropic.

Our main result proves that the isotropy of a nondegenerate diagonal form φ over F_v for each v implies that at least over the field extensions F_U , F_P and F_p of F, φ is isotropic as well (Theorem 3.1). These fields depend on the choice of the form $\varphi = \langle a_1, \ldots, a_n \rangle$, more precisely on the choice of the regular proper model \mathcal{X} (over the complete discrete valuation ring A) of the curve X over K, which depends on φ : \mathcal{X} is selected such that there exists a reduced divisor D with strict normal crossings, which contains both the support of the divisor of all the entries a_i , $1 \leq i \leq n$, and the components of the special fibre of X/A. Since nondegenerate diagonal forms of degree $d \geq 3$ have finite automorphism groups [6, p. 137], we are not able to apply [5, Theorem 3.7] to conclude that the isotropy of φ over the F_U 's and F_P 's implies that φ is also isotropic over F, however. This is only possible for d = 2.

After collecting the terminology and some basic results in Section 1, in particular defining diagonal u-invariants of degree d over k, we consider diagonal forms of higher degree over valued fields in Section 2 and then study diagonal forms of higher degree over function fields of p-adic curves using some of the ideas of [2] in Section 3. Recall that a p-adic field is a finite field extension of \mathbb{Q}_p .

As a consequence of Springer's Theorem for diagonal forms, any diagonal form of degree d and dimension $> d^3 + 1$ over a function field in one variable F = K(t), where K is a p-adic field with residue field k, $\operatorname{char}(k) \nmid d!$, is isotropic over F_v for every discrete valuation v with residue field either a function field in one variable over k or a finite extension of K. Moreover, it is isotropic over F_U for each reduced, irreducible component $U \subset Y$ of the complement of S in the special fibre $Y = \mathcal{X} \times_A k$ of X/A, and isotropic over F_P for each $P \in S$ (Corollary 3.4), and thus isotropic over F_p for each p = (U, P). Here, S is the inverse image under a finite A-morphism $f : \mathcal{X} \to \mathbb{P}^1_A$ of the point at infinity of the special fibre \mathbb{P}^1_k .

1. Preliminaries

Let k be a field such that char(k) does not divide d!.

1.1. Forms of higher degree

Let V be a finite-dimensional vector space over k of dimension n. A d-linear form over k is a k-multilinear map $\theta: V \times \cdots \times V \to k$ (d-copies) which is symmetric, i.e. $\theta(v_1, \ldots, v_d)$ is invariant under all permutations of its variables. A $form\ of\ degree\ d$ over k (and of dimension n) is a map $\varphi: V \to k$ such that $\varphi(av) = a^d \varphi(v)$ for all $a \in k, v \in V$ and such that the map $\theta: V \times \cdots \times V \to k$ defined by

$$\theta(v_1, \dots, v_d) = \frac{1}{d!} \sum_{1 \le i_1 < \dots < i_l \le d} (-1)^{d-l} \varphi(v_{i_1} + \dots + v_{i_l})$$

 $(1 \le l \le d)$ is a d-linear form over k. By fixing a basis $\{e_1, \ldots, e_n\}$ of V, any form φ of degree d can be viewed as a homogeneous polynomial of degree d in $n = \dim V$ variables x_1, \ldots, x_n via $\varphi(x_1, \ldots, x_n) = \varphi(x_1e_1 + \cdots + x_ne_n)$ and, vice versa, any

homogeneous polynomial of degree d in n variables over k is a form of degree d and dimension n over k. Any d-linear form $\theta: V \times \cdots \times V \to k$ induces a form $\varphi: V \to k$ of degree d via $\varphi(v) = \theta(v, \dots, v)$. We can hence identify d-linear forms and forms of degree d.

Two d-linear spaces (V_i, θ_i) , i = 1, 2, are isomorphic (written $(V_1, \theta_1) \cong (V_2, \theta_2)$ or just $\theta_1 \cong \theta_2$) if there exists a bijective linear map $f: V_1 \to V_2$ such that $\theta_2(f(v_1),\ldots,f(v_d))=\theta_1(v_1,\ldots,v_d)$ for all $v_1,\ldots,v_d\in V_1$. A d-linear space (V,θ) (or the d-linear form θ) is nondegenerate if v = 0 is the only vector such that $\theta(v, v_2, \dots, v_d) = 0$ for all $v_i \in V$. A form of degree d is called nondegenerate if its associated d-linear form is nondegenerate. A form φ over k is called anisotropic, if it does not have any non-trivial zeroes, otherwise it is called *isotropic*.

The orthogonal sum $(V_1, \theta_1) \perp (V_2, \theta_2)$ of two d-linear spaces (V_i, θ_i) , i = 1, 2, is the k-vector space $V_1 \oplus V_2$ together with the d-linear form

$$(\theta_1 \perp \theta_2)(u_1 + v_1, \dots, u_d + v_d) = \theta_1(u_1, \dots, u_d) + \theta_2(v_1, \dots, v_d)$$

 $(u_i \in V_1, v_i \in V_2)$ [7].

A d-linear space (V, θ) is called decomposable if $(V, \theta) \cong (V, \theta_1) \perp (V, \theta_2)$ for two non-zero d-linear spaces (V, θ_i) , i = 1, 2. If φ is represented by the homogeneous polynomial $a_1x_1^d + \ldots + a_mx_m^d$ $(a_i \in k^{\times})$ we use the notation $\varphi = \langle a_1, \ldots, a_n \rangle$ and call φ diagonal. A diagonal form $\varphi = \langle a_1, \dots, a_n \rangle$ over k is nondegenerate if and only if $a_i \in k^{\times}$ for all $1 \leq i \leq n$.

If $d \geq 3$, $a_i, b_j \in k^{\times}$, then $\langle a_1, \ldots, a_n \rangle \cong \langle b_1, \ldots, b_n \rangle$ if and only if there is a permutation $\pi \in S_n$ such that $\langle b_i \rangle \cong \langle a_{\pi(i)} \rangle$ for every i. This is a special case of [6, Theorem 2.3].

Note that for quadratic forms (d=2), the automorphism group of φ is infinite, whereas for $d \geq 3$, the automorphism group of φ usually is finite, for instance if φ is is nonsingular in the sense of algebraic geometry [13]. In particular, nondegenerate diagonal forms of degree $d \geq 3$ have finite automorphism groups [6, p. 137], which creates a problem when trying to imitate patching arguments as it is not possible to apply [5, Theorem 3.7].

1.2. Higher degree u-invariants

The *u-invariant* (of degree d) of k is defined as $u(d,k) = \sup\{\dim_k \varphi\}$, where φ ranges over all the anisotropic forms of degree d over k. The diagonal u-invariant (of degree d) of k is defined as $u_{diag}(d,k) = \sup\{\dim \varphi\}$, where φ ranges over all the anisotropic diagonal forms over k.

Thus the diagonal u-invariant $u_{diag}(d,k)$ is the smallest integer n such that all diagonal forms of degree d over k of dimension greater than n are isotropic, and the u-invariant u(d,k) is the smallest integer n such that all forms of degree d over k of dimension greater than n are isotropic. Obviously, $u_{diag}(d,k) \leq u(d,k)$. If u = u(d, k) then each anisotropic form of degree d over k of dimension u is universal. If $u = u_{diag}(d, k)$ then each diagonal anisotropic form of degree d over k

4 S. Pumplün

of dimension u is universal. We have

 $u_{diag}(d,k) \leq \min\{n \mid \text{all forms of degree } d \text{ over } k \text{ of dimension } \geq n \text{ are universal}\}$

with the understanding that the "minimum" of an empty set of integers is ∞ , cf. [12]. For d = 2, $u_{diag}(d, k) = u(d, k)$ is the *u*-invariant of quadratic forms.

For an algebraically closed field k, $|k^{\times}/k^{\times d}| = 1$ and hence $u_{diag}(d, k) = u(d, k) = 1$. For a formally real field k, the diagonal u-invariant is infinite for even d: since $-1 \notin \sum k^2$, also $-1 \notin \sum k^d$ for any even d. Thus the form $m \times \langle 1 \rangle$ of degree d is anisotropic for each integer m, implying $u_{diag}(d, k) = u(d, k) = \infty$.

The strong diagonal u-invariant of degree d of k, denoted $u_{diag,s}(d,k)$, is the smallest real number n such that

- (1) every finite field extension E/k satisfies $u_{diag}(d, E) \leq n$, and
- (2) every finitely generated field extension E/k of transcendence degree one satisfies $u_{diag}(d, E) \leq dn$.

If these *u*-invariants are arbitrarily large, put $u_{diag,s}(d,k) = \infty$.

Analogously as observed in [5] for d=2, $u_{diag,s}(d,k) \leq n$ if and only if every finitely generated field extension E/k of transcendence degree $l \geq 1$ satisfies $u_{diag}(d,k) \leq d^l n$. Thus if $u_{diag,s}(d,k)$ is finite, it is at least 1 and lies in $\frac{1}{d}\mathbb{N}$.

1.3. C_r^0 fields

Let $r \geq 1$ be an integer. A field F is a C_r -field if for all $d \geq 1$ and $n > d^r$, every homogeneous form of degree d in n variables over F has a non-trivial solution in F. In particular, then F satisfies $u(d, F) \leq d^r$. Moreover, every finite extension of F is a C_r -field, and every one-variable function field over F a C_{r+1} -field [14, II.4.5]. Hence $u_{diag,s}(d,F) \leq d^r$ for a C_r -field F.

A field F is a C_r^0 -field if the following holds: For any finite field extension F' of F and any integers $d \geq 1$ and $n > d^r$, for any homogeneous form over F' of degree d in n variables, the greatest common divisor of the degrees of finite field extensions F''/F' over which the form acquires a nontrivial zero is one. This amounts to requiring that the F'-hypersurface defined by the form has a zero-cycle of degree 1 over F'

Assume char(F) = 0. For each prime l, let F_l be the fixed field of a pro-l-Sylow subgroup of the absolute Galois group of F. Any finite subextension of F_l/F is of degree coprime to l. The field F is C_r^0 if and only if each of the fields F_l is C_r . A finite field extension of a C_r^0 -field is C_r^0 . If F is C_r^0 then a function field $E = F(x_1, \ldots, x_s)$ in s indeterminates x_1, \ldots, x_s over F is C_{r+s}^0 [2, 2.1].

It is not known if p-adic fields have the C_2^0 -property.

Remark 1.1. Assume that p-adic fields have the C_2^0 -property. Let K(X) be any function field of transcendence degree r over a p-adic field K (here we do not need to assume $p \neq 2, 3$). Suppose that there is $\ell \neq 2$ such that there exists a finite subextension of $K_{\ell}(X)/K(X)$ of degree 2. Then any cubic form over K(X) in

strictly more than 3^{2+r} variables has a nontrivial zero: If the p-adic field K is C_3^0 , then the function field E = K(X) in r variables over K is C_{3+r}^0 [2, Lemma 2.1]. Thus a cubic form over E = K(X) in strictly more than 3^{2+r} has a nontrivial zero in each of the fields $K_{\ell}(X)$, l a prime, hence in a finite extension of K(X) of degree coprime to ℓ , for each ℓ prime. Pick $\ell \neq 2$, then $[K_{\ell}(X):K(X)]$ is even. Moreover, pick $l \neq 2$ such that there exists a finite subextension of $E_{\ell}/K(X)$ of degree 2 then the cubic form has a zero over it. By Springer's Theorem for cubic forms and their behaviour under quadratic field extensions [8, VII], thus the cubic form has a nontrivial zero in K(X). This is the analogue of [2, Proposition 2.2].

2. Diagonal forms over Henselian valued fields

2.1.

Let K be a valued field with valuation v, valuation ring R and maximal ideal m. Let Γ be the value group. Assume that d! is not divisible by the characteristic of the residue field k = R/m. For $u \in R$, denote by \bar{u} the image of u in k. For a polynomial $f \in R[X], f = a_n x^n + \dots + a_1 x + a_0$, define the polynomial $\overline{f} = \overline{a}_n x^n + \dots + \overline{a}_1 x + \overline{a}_0$ over k. If $\varphi = \langle a_1, \ldots, a_n \rangle$ is a nondegenerate diagonal form with entries $a_i \in R$, define the diagonal form $\overline{\varphi} = \langle \overline{a}_1, \dots, \overline{a}_n \rangle$ over k. φ is called a *unit form*, if $\overline{\varphi}$ is nondegenerate. Choose a set $\{\pi_{\gamma} \in R \mid \gamma \in I\}$ such that the values of the π_{γ} 's represent the distinct cosets in $\Gamma/d\Gamma$. We may decompose a diagonal form φ as $\varphi = \perp \varphi'_{\gamma}$ by taking φ'_{γ} to be the diagonal form whose entries comprise all a_i with $v(a_i) = v(\pi_\gamma) \mod d\Gamma$. By altering the slots by d-powers if necessary, we may then write $\varphi'_{\gamma} = \pi_{\gamma} \varphi_{\gamma}$ with each φ_{γ} a diagonal unit form. There are only finitely many non-trivial φ_{γ} [9]. If $\Gamma = \mathbb{Z}$, the set $\{\pi_{\gamma} \mid \gamma \in I\}$ can be chosen to be $\{\pi^i \mid i=0,\ldots,d-1\}$ and $|\Gamma/d\Gamma|=d$ is finite.

If R satisfies Hensel's Lemma then (K, v) is called a Henselian valued field and R a Henselian valuation ring. Every complete discretely valued field is Henselian.

Let φ be a diagonal form over a Henselian valued field (K, v). Write $\varphi = \pi_1 \varphi_1 \perp$ $\cdots \perp \pi_r \varphi_r$ with each φ_i a diagonal unit form and the π_i having distinct values in $\Gamma/d\Gamma$. Then φ is isotropic if and only if some $\overline{\varphi_i}$ is isotropic [9, Proposition 3.1]. This is because for a diagonal unit form φ over a Henselian valued field (K, v), φ is isotropic if and only if $\overline{\varphi}$ is isotropic [9, Lemma 2.3].

Theorem 2.1. ([9] or [12, Theorem 4, Corollary 2]) Suppose that $\operatorname{char}(k) \nmid d!$. (i) Let (K, v) be a Henselian valued field. Then $u_{diag}(d, K) = |\Gamma/d\Gamma| u_{diag}(d, k)$. (ii) Let (K, v) be a Henselian valued field. If every diagonal form of degree d of dimension n+1 over k is isotropic, then every diagonal form of degree d and dimension dn + 1 over K is isotropic. If k has an anisotropic form of degree d and dimension n, then K has an anisotropic form of degree d and dimension dn. (iii) Let K be a discretely valued field. Then $u_{diag}(d, K) \geq d u_{diag}(d, k)$. (iv) Let F be a field extension of finite type over k of transcendence degree n. Then $u_{diag}(d,F) \geq d^n u_{diag}(d,k')$ for a suitable finite field extension k'/k.

The (in)equalities in (i), (iii), (iv) also hold when the values are infinite.

For d=2, (ii) is Springer's Theorem for quadratic forms over Henselian valued fields [15]. Springer's Theorem does not hold for non-diagonal forms of higher degree than 2 [9, 2.7]. Theorem 2.1 is a major ingredient in our proofs, for instance we can show:

Proposition 2.2. Let A be a discrete valuation ring with fraction field K and residue field k such that $\operatorname{char}(k) \nmid d!$.

- (i) $u_{diag}(d, K) \ge d u_{diag}(d, k)$ and $u_{diag, s}(d, K) \ge d u_{diag, s}(d, k)$.
- (ii) If A is Henselian then $u_{diag}(d, K) = d u_{diag}(d, k)$.
- (iii) If A is a complete discrete valuation ring then every finite extension of K has diagonal u-invariant at most $du_{diag}(d,k)$.

The first assertions of (i) as well as (ii) and (iii) follow from Theorem 2.1. The proof of the second claim in (i) is analogous to the one of [5, 4.9], employing Theorem 2.1 instead of Springer's Theorem.

2.2.

A field K is called an m-local field with residue field k if there is a sequence of fields k_0, \ldots, k_m with $k_0 = k$ and $k_m = K$, and such that k_i is the fraction field of an excellent Henselian discrete valuation ring with residue field k_{i-1} for $i = 1, \ldots, m$. Recall that a discrete valuation ring R is called excellent, if the field extension \widehat{K}/K is separable, where \widehat{K} denotes the quotient field of R and K is its completion. (This condition is trivially satisfied if K has characteristic 0 or R is complete.)

Proposition 2.2 implies (compare the next two results with [5, Corollary 4.13, 4.14] for quadratic forms):

Corollary 2.3. Suppose that K is an m-local field whose residue field k is a C_r -field with $\operatorname{char}(k) \nmid d!$. Let F be a function field over K in one variable.

- (i) $u_{diag}(d, k) = u_{diag,s}(d, k) = d^r \text{ and } u_{diag}(d, K) = d^{r+m}$.
- Moreover, if some normal K-curve with function field F has a K-point, then $u_{diag}(d, F) \ge d^{r+m+1}$.
- (ii) If $u_{diag}(d, k') = d^r$ for every finite extension k'/k, then $u_{diag}(d, F) \ge d^{r+m+1}$.
- **Proof.** (i) Since k is a C_r -field, $u_{diag}(d,k) = d^r$, thus $u_{diag}(d,k) \leq u_{diag,s}(d,k) \leq d^r$ and the first two equations follow. Applying Proposition 2.2 and induction yields that $u_{diag}(d,K) \geq d^m u_{diag}(d,k) = d^{r+m}$. Let X be a normal K-curve with function field F and let ξ be a K-point on X. The local ring at ξ has fraction field F and residue field K. So Proposition 2.2 implies that $u_{diag}(d,K) = d^m u_{diag}(d,k)$ and $u_{diag}(d,F) \geq du_{diag}(d,K) = d^{r+m+1}$.
- (ii) Choose a normal or equivalently a regular K-curve X with function field F, and a closed point ξ on X. Let R be the local ring of X at ξ with residue field $\kappa(\xi)$. Then the fraction field of R is F, and $\kappa(\xi)$ is a finite extension of K. Hence $\kappa(\xi)$

is an m-local field whose residue field k' is a finite extension of k. By assumption, $u_{diag}(d,k')=d^r$ and k' is a C_r -field since k is. So applying part (ii) to k' and $\kappa(\xi)$, it follows that $u_{diag}(d,\kappa(\xi)) \geq d^{r+m}$. Proposition 2.2 yields $u_{diag}(d,F) \geq d^{r+m+1}\square$

Corollary 2.4. (i) Let F be a one-variable function field over an m-local field K with residue field k such that $\operatorname{char}(k) \nmid d!$ and k is algebraically closed. Then $u_{diag}(d,F) \geq d^{m+1}$.

(ii) If k is a finite field and $u_{diag}(d, k) = d^r$ with $r \in \{0, 1\}$, then $u_{diag}(d, k) = u_{diag,s}(d, k) = d^r$ and $u_{diag}(d, K) \ge d^{r+m}$. Moreover, if some normal K-curve with function field F has a K-point, then $u_{diag}(d, F) \ge d^{r+m+1}$.

Proof. (i) This is a special case of Corollary 2.3 using that an algebraically closed field k is C_0 , satisfies $u_{diag}(d, k) = 1$, and has no non-trivial finite extensions.

(ii) A finite field is C_1 [14, II.3.3(a)], hence $u_{diag}(d, k) \leq d$. Here $u_{diag}(d, k) = u_{diag,s}(d, k) = d^r$ and Corollary 2.3 yields the assumption.

In general, for any finite field $k = \mathbb{F}_q$ we obviously do not have $u_{diag}(d, k) = d^r$, $r \in \{0, 1\}$: for instance, if $-1 \in \mathbb{F}_q^{\times d}$ and $d \geq 4$ then $u_{diag}(d, \mathbb{F}_q) \leq d - 1$ by [10]. Or, if $d^* = \gcd(d, q - 1)$, then $u_{diag}(d, \mathbb{F}_q) \leq d^*$. This implies that $u_{diag}(d, \mathbb{F}_q) = 1$, if d is relatively prime to q - 1 and that for $q > (d^* - 1)^4$, $u_{diag}(d, \mathbb{F}_q) = 2$ [12, 5.1].

3. The behaviour of diagonal forms of higher degree over function fields of p-adic curves

Whenever we write 'discrete valuation ring' and 'discrete valuation' we mean a discrete valuation ring of rank one and a valuation with value group \mathbb{Z} .

3.1.

Let A be a complete discrete valuation ring with fraction field K and residue field k with $\operatorname{char}(k) \nmid d!$. Let X be a smooth, projective, geometrically integral curve over K and F = K(X) be the function field of X. Let t denote a uniformizing parameter for A. For each (rank one) discrete valuation v of F, let F_v denote the completion of F with respect to v.

We will adapt some ideas from [2] to diagonal forms of higher degree: take a nondegenerate form $\varphi = \langle a_1, \ldots, a_n \rangle$ of degree d over F. Then choose a regular proper model \mathcal{X}/A of X/K, such that there exists a reduced divisor D with strict normal crossings which contains both the support of the divisor of all the entries a_i , $1 \leq i \leq n$, and the components of the special fibre of X/A. (Note that this implies that the regular proper model \mathcal{X}/A depends on the form φ , and thus so do Y, Y_i , S_0, S, F_P, F_U, \ldots as defined in the following.)

Let $Y = \mathcal{X} \times_A k$ be the special fibre of X/A. Let x_i be the generic point of an irreducible component Y_i of Y. Then there is an affine Zariski neighbourhood $W_i \subset \mathcal{X}$ of x_i , such that the restriction of Y_i to W_i is a principal divisor. Let S_0

be a finite set of closed points of Y containing all singular points of D, and all the points that lie on some Y_i , but not in the corresponding W_i .

Choose a finite A-morphism $f: \mathcal{X} \to \mathbb{P}^1_A$ as in [4, Proposition 6.6]. Let S be the inverse image under f of the point at infinity of the special fibre \mathbb{P}^1_k . Then the set S_0 is contained in S. All the intersection points of two components Y_i are in S. Each component Y_i contains at least one point of S. Let $U \subset Y$ run through the reduced irreducible components of the complement of S in Y. Then each U is a regular affine irreducible curve over k and we define k[U] to be its ring of regular functions and k(U) to be its fraction field. k[U] is a Dedekind domain and $U = \operatorname{Spec} k[U]$. Each U is contained in an open affine subscheme Spec R^U of \mathcal{X} and is a principal effective divisor in Spec R^U . Moreover, R_U is the ring of elements in F which are regular on U and also a regular ring, since it is the direct limit of regular rings. The ring R_U is a localisation of R^U and so U is a principal effective divisor on Spec R_U given by the vanishing of an element $s \in R_U$. The t-adic completion \widehat{R}_U of R_U is a domain and coincides with the s-adic completion of R_U , since $t = us^r$ for some integer $r \geq 1$ and a unit $u \in R_U^{\times}$. By definition, F_U is the field of fractions of R_U . We have $k[U] = R_U/s = R_U/s$. For $P \in S$, the completion R_P of the local ring R_P of \mathcal{X} at P is a domain and F_P is the field of fractions of \widehat{R}_P . Let p=(U,P) be a pair with $P \in S$ in the closure of an irreducible component U of the complement of S in Y. Then let R_p be the complete discrete valuation ring which is the completion of the localisation of \widehat{R}_P at the height one prime ideal corresponding to U. Then F_p is the field of fractions of R_p and F is the inverse limit of the finite inverse system of fields $\{F_U, F_P, F_p\}$ by [4, Proposition 6.3].

The following can be seen as a weak generalization of [2, Theorem 3.1] to diagonal forms of higher degree. Here we are not able to conclude that under the given assumptions, φ is isotropic over F, only over the F_U 's and F_P 's:

Theorem 3.1. Let φ be a nondegenerate diagonal form of degree d over F. If φ is isotropic over the completion F_v of F with respect to each discrete valuation v of F with residue field either a function field in one variable over k or a finite extension of K, then:

- (i) φ is isotropic over F_U for each reduced irreducible component $U \subset Y$ of the complement of S in Y,
- (ii) φ is isotropic over F_P for each $P \in S$.

Proof. Suppose $\varphi = \langle a_1, \dots, a_n \rangle$.

(i) Each entry a_i of φ is supported only along U in Spec R_U , thus has the form us^j where $u \in R_U^{\times}$. We sort the entries $a_i = u_i s^j$ by the power j of s and use them to define new diagonal forms ρ_j which have all the u_i 's belonging to those a_i where s occurred in the jth power as their diagonal entries. Hence φ is isomorphic to the diagonal form

$$\rho_0 \perp s \rho_1 \perp \cdots \perp s^{d-1} \rho_{d-1}$$

over F, where the ρ_i are nondegenerate diagonal forms of degree d over R_U . Note

By hypothesis, φ is isotropic over the field of fractions of the completed local ring of \mathcal{X} at the generic point of U. By Theorem 2.1, this implies that the image of at least one of the forms ρ_0 , ρ_1 or ρ_{d-1} under the composite homomorphism $R_U \to k[U] \to k(U)$ is isotropic over k(U). Since the residue characteristic p does not divide d!, the forms $\rho_0, \rho_1, \ldots, \rho_{d-1}$ define a smooth projective variety over R_U . In particular, all of them define a smooth variety over k[U]. Since k[U] is a Dedekind domain, if such a projective variety has a point over k(U), it has a point over k[U]. Since the variety is smooth over R_U , a k[U]-point lifts to an \widehat{R}_U -point (cf. the discussion after [5, Lemma 4.5]). Thus φ has a nontrivial zero over F_U . (ii) Let $P \in S$. The local ring R_P of \mathcal{X} at P is regular. Its maximal ideal is generated by two elements (x, y) with the property that any a_i is the product of a unit, a power of x and a power of y. Thus over F, the fraction field of R_P , φ is isomorphic to

$$\varphi_1 \perp x\varphi_2 \perp y\varphi_3 \perp xy\varphi_4 \perp x^2\varphi_5 \perp y^2\varphi_6 \perp x^2y^2\varphi_7 \perp x^2y\varphi_8 \perp xy^2\varphi_9 \perp \cdots \perp x^{d-1}y^{d-1}\varphi_{d^2},$$

where each φ_i is a nondegenerate diagonal form over R_P . Let R_y be the localization of R_P at the prime ideal (y). R_y is a discrete valuation ring with fraction field F. The residue field E of R_y is the field of fractions of the discrete valuation ring $R_P/(y)$. By hypothesis, the form

$$(\varphi_1 \perp x\varphi_2 \perp x^2\varphi_5 \perp \dots) \perp y(\varphi_3 \perp x\varphi_4 \perp \dots)$$
$$\perp y^2(\varphi_6 \perp \dots) \perp \dots \perp y^{d-1}(\dots \perp x^{d-1}\varphi_{d^2})$$

is isotropic over the field of fractions of the completion of R_y . By Theorem 2.1, the reduction of one of the forms

$$(\varphi_1 \perp x\varphi_2 \perp x^2\varphi_5 \perp \dots), (\varphi_3 \perp x\varphi_4 \perp \dots), \dots,$$

is isotropic over E. Since x is a uniformizing parameter for $R_P/(y)$, by Theorem 2.1 this implies that over the residue field of $R_P/(y)$, the reduction of one of the forms $\varphi_1, \varphi_2, \varphi_3 \ldots, \varphi_{d^2}$ is isotropic. But then one of these forms is isotropic over \widehat{R}_P , hence over the field F_P which is the fraction field of \widehat{R}_P .

Remark 3.2. (i) In the proof of Theorem 3.1, one of the forms is isotropic over \widehat{R}_P , and since R_p is the complete discrete valuation ring which is the completion of the localisation of \widehat{R}_P at the height one prime ideal corresponding to U when p = (U, P), this form is also isotropic over R_p and therefore over the field of fractions F_p of \widehat{R}_p . This implies that if φ is isotropic over the completion of F with respect to each discrete valuation of F, then φ is isotropic over F_U for each reduced irreducible component $U \subset Y$ of the complement of S in Y, over F_P for each $P \in S$ and over R_p for each $P \in S$ is the inverse limit of the finite inverse system of

10 S. Pumplün

fields $\{F_U, F_P, F_p\}$, φ is isotropic over all overfields used in the inverse limit.

(ii) The discrete valuation rings used in the above proof are the local rings at a point of codimension 1 on a suitable regular proper model \mathcal{X} of X determined by the choice of φ (analogously as noted in [2, Remark 3.2]).

Given a nondegenerate diagonal form φ of degree d and dimension greater than two over F, it is not clear whether the isotropy of φ over F_v for each v (respectively, of φ over all F_U , F_P and F_p) implies that φ is isotropic (the fact that dim $\varphi > 2$ is necessary: it is easy to adjust the example in [2, Appendix] to two-dimensional diagonal forms of even degree).

Corollary 3.3. Let $r \ge 1$ be an integer and $d \ge 3$. Assume that any diagonal form in strictly more than dr variables over any function field in one variable over k is isotropic. Then:

- (i) Any diagonal form of degree d and dimension $> d^2r$ over the function field F = K(X) of a curve X/K is isotropic over F_v , for every discrete valuation v with residue field either a function field in one variable over k or a finite extension of K.
- (ii) Any diagonal form of degree d and dimension $> d^2r$ over the function field F = K(X) of a curve X/K is isotropic over F_U for each reduced, irreducible component $U \subset Y$ of the complement of S in Y and is isotropic over F_P for each $P \in S$.

Note that Y and S depend on φ .

Proof. (i) Let L be a finite field extension of K. This is a complete discretely valued field with residue field a finite extension ℓ of k. The assumption made on diagonal forms of degree d over functions fields in one variable over k, in particular diagonal forms of degree d over the field $\ell(t)$, and Theorem 2.1 applied to $\ell(t)$ show that any diagonal form of dimension > r over ℓ has a zero. A second application of Theorem 2.1 yields that any diagonal form of degree d of dimension > dr over L is isotropic. Let φ be a diagonal form of dimension n over E with $n > d^2r$. By the assumption and Theorem 2.1, φ is isotropic over E for every discrete valuation e with residue field either a function field in one variable over e or a finite extension of e.

(ii) follows from Theorem 3.1.

This shows that trying to extend [2, Corollary 3.4] from quadratic to diagonal forms of higher degree results in a much weaker version.

3.2.

Let K be a p-adic field with residue field k such that $\operatorname{char}(k) \nmid d!$.

Corollary 3.4. Any diagonal form of degree d and dimension $> d^3 + 1$ over a function field in one variable F = K(t) is

- (i) isotropic over F_v , for every discrete valuation v with residue field either a function field in one variable over k or a finite extension of K;
- (ii) isotropic over F_U for each reduced, irreducible component $U \subset Y$ of the complement of S in Y and isotropic over F_P for each $P \in S$.

Proof. Every finite field k is C_1 and so every diagonal form of degree d and dimension $> d^2$ over any function field in one variable over k (which is C_2) is isotropic. Assertion (i) is a direct consequence of Theorem 2.1 and (ii) follows from Corollary 3.3 (ii).

So if φ is a diagonal form of degree d in at least $d^3 + 1$ variables over $\mathbb{Q}(t)$ then φ is isotropic over $(\mathbb{Q}_p(t))_U$ for any $p \nmid d!$, for each reduced, irreducible component $U \subset Y$ of the complement of S in Y, and isotropic over $(\mathbb{Q}_p(t))_P$ for each $P \in S$.

Remark 3.5. Let us compare Corollary 3.4 with the Ax-Kochen-Ersov Transfer Theorem [1]: given a degree d, for almost all primes p, a form of degree d over \mathbb{Q}_p of dimension greater than or equal to $d^2 + 1$ is isotropic [G, (7.4)]. Moreover, for any form φ of degree $d \geq 2$ and dimension greater than d^3 over $\mathbb{Q}(t)$, for almost all primes p the form φ is isotropic over $\mathbb{Q}_p(t)$ ([16] for d = 2, [12] for $d \geq 3$). The model-theoretic proofs of both results do not allow for a more concrete observation on which primes exactly are included here, nor can they be extended to other base fields.

Stronger upper bounds on $u_{diag}(d, \mathbb{F}_q(t))$ will yield stronger results on its dimension, since we only used the upper bound in the well known inequality $d \cdot u_{diag}(d, \mathbb{F}_q) \leq u_{diag}(d, \mathbb{F}_q(t)) \leq d^2$ to prove Corollary 3.4, for instance we obtain:

Corollary 3.6. Assume that $u_{diag}(d, k(t)) = dr < d^2$ for some $r \in \{1, ..., d-1\}$. Let φ be a diagonal form of degree d and dimension $> d^2r + 1$ over a function field in one variable F = K(t). Then:

- (i) φ is isotropic over F_v , for every discrete valuation v with residue field either a function field in one variable over k or a finite extension of K;
- (ii) φ is isotropic over F_U for each reduced, irreducible component $U \subset Y$ of the complement of S in Y and over F_P for each $P \in S$.

It is well known that $u_{diag}(d, K) \leq d^2$ for a p-adic field K with residue field $k = \mathbb{F}_q$ [3]. Indeed, $u_{diag}(d, K) = d u_{diag}(d, \mathbb{F}_q)$ by Theorem 2.1, assuming that char $\mathbb{F}_q = p \nmid d!$ as before, which shows that clearly $u_{diag}(d, K)$ can be smaller than d^2 . On the other hand, Artin's conjecture that \mathbb{Q}_p is a C_2 -field is false for instance for forms of degree 4.

Bibliography

[1] J. Ax and S. Kochen, Diophantine problems over local fields I. Amer. J. Math. 87 (1965) 605–630.

12 S. Pumplün

- [2] J.-L. Colliot-Thélène, R. Parimala and V. Suresh, Patching and local global principles for homogeneous spaces over function fields of p-adic curves. Comment. Math. Helv. 87 (2012) (4), 1011-1033.
- [3] H. Davenport and D. J. Lewis, Homogeneous additive equations. *Proc. Royal Soc. Ser.* A 272(1963), 443–460.
- [G] M. J. Greenberg, Lectures on forms in many variables. W.A. Benjamin, Inc., New York, Amsterdam, 1969.
- [4] D. Harbater and J. Hartmann, Patching over fields. Israel J. Math. 176 (2010), 61–107.
- [5] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras. Invent. Math. 178 (2) (2009), 231–263.
- [6] D. K. Harrison, A Grothendieck ring of higher degree forms. J. Algebra 35 (1975), 123–138.
- [7] D. K. Harrison and B. Pareigis, Witt rings of higher degree forms. Comm. Alg. 16 (6) (1988), 1275–1313.
- [8] S. Lang, Algebra. Third Edition. Addison-Wesley Publ. Comp. 1997.
- [9] P. Morandi, Springer's theorem for higher degree forms. Math. Z. 256 (1) (2007), 221–228.
- [10] M. Orzech, Forms of low degree in finite fields. Bull. Austral. Math. Soc. 30 (1) (1984), 45–58.
- [11] R. Parimala and V. Suresh, Isotropy of quadratic forms over function fields of p-adic curves. *Inst. Hautes Etudes Sci. Publ. Math.* **88** (1998), 129–150.
- [12] S. Pumplün, u-invariants for forms of higher degree. Expo. Math. 27 (2009), 37–53.
- [13] J. E. Schneider, Orthogonal groups of nonsingular forms of higher degree. J. Alg. 27 (1973), 112–116.
- [14] J.-P. Serre, *Cohomologie Galoisienne*. Fourth edition. Lecture Notes in Math. 5, Springer-Verlag, Berlin, Heidelberg and New York, 1973.
- [15] T. A. Springer, Quadratic forms over a field with a discrete valuation. *Indag. Math.* 17 (1979), 33–39.
- [16] K. Zahidi, On the u-invariant of p-adic function fields. Comm. Alg. 33 (7) (2005) 2307–2314.