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Abstract:

Systemic inflammation enhances the risk and progression of Alzheimer’s disease (AD).

Lipopolysaccharide (LPS), a potent pro-inflammatory endotoxin produced by the gut, is

found in excess levels in AD where it associates with neurological hallmarks of pathology.

Sex differences in susceptibility to inflammation and AD progression have been reported,

but how this impacts on LPS responses remains under investigated. We previously

reported in an APP/PS1 model of AD that systemic LPS administration rapidly altered

hippocampal metabolism in males. Here, we used untargeted metabolomics to

comprehensively identify hippocampal metabolic processes occurring at onset of systemic

inflammation with LPS (100µg/kg, i.v.) in APP/PS1 mice, at an early pathological stage,

and investigated the sexual dimorphism in this response. Four hours after LPS

administration, pathways regulating energy metabolism, immune and oxidative stress

responses were simultaneously recruited in the hippocampi of 4.5-month-old mice with a

more protective response in females despite their pro-inflammatory and pro-oxidant

metabolic signature in the absence of immune stimulation. LPS induced comparable

behavioural sickness responses in male and female wild-type and APP/PS1 mice and

comparable activation of both the serotonin and nicotinamide pathways of tryptophan

metabolism in their hippocampi. Elevations in N-methyl-2-pyridone-5-carboxamide, a

major toxic metabolite of nicotinamide, correlated with behavioural sickness regardless of

sex, as well as with the LPS-induced hypothermia seen in males. Males also exhibited a

pro-inflammatory-like downregulation of pyruvate metabolism, exacerbated in APP/PS1

males, and methionine metabolism whereas females showed a greater cytokine response

and anti-inflammatory-like downregulation of hippocampal methylglyoxal and methionine

metabolism. Metabolic changes were not associated with morphological markers of

immune cell activation suggesting that they constitute an early event in the development

of LPS-induced neuroinflammation and AD exacerbation. These data suggest that the

female hippocampus is more tolerant to acute systemic inflammation.

Keywords: Inflammation, Lipopolysaccharide, Alzheimer’s disease, APP/PS1 mouse

model, sex differences, hippocampus, microglia, metabolomics, serotonin, methionine.
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1. Introduction

Alzheimer’s disease (AD), the most common senile dementia, is characterised by a

progressive cognitive decline accompanied by the accumulation of aggregated amyloid

beta (Aβ) plaques, neurofibrillary tangles made of hyperphosphorylated tau protein, 

severe brain atrophy and neuroinflammation. The causes of AD are far from being

understood, but systemic infection and inflammation have emerged as key modulators of

its risk and progression. A number of genes conferring susceptibility to inflammatory

conditions have indeed been found to be associated with a predisposition to AD (Karch

and Goate, 2015; Malik et al., 2015; Yokoyama et al., 2016), whereas circulating levels

of acute phase proteins or pro-inflammatory cytokines were found to be elevated in non-

demented subjects presenting with a higher risk of developing late-onset AD (Eikelenboom

et al., 2012; Koyama et al., 2013), and in patients in the prodromal, mild cognitive

impairment (MCI) phase of AD (Bettcher and Kramer, 2014; King et al., 2018; Trollor et

al., 2010). Infection-induced systemic inflammation has been proposed as a mechanistic

driver of AD pathogenesis (Ashraf et al., 2019; Giridharan et al., 2019), and the presence

of acute inflammatory events, such as respiratory infections or delirium have also been

associated with exacerbations of clinical presentation and precipitous cognitive decline in

AD patients (Holmer et al., 2018; Holmes et al., 2009; Ide et al., 2016). Altogether, this

suggests that AD patients and people at risk of developing the disease are more

susceptible to inflammatory conditions, and that such vulnerability contributes to the

development of clinical features of AD. The incidence and prevalence of AD are generally

higher in women, and although this may be due to their longer life expectancy, they

exhibit faster cognitive decline and brain atrophy than men (Ferretti et al., 2018;

Podcasy and Epperson, 2016) and are also thought to produce higher inflammatory

responses and be more susceptible to inflammatory conditions (Klein and Flanagan, 2016;

Roved et al., 2017). Some sex differences in the association between specific pro-

inflammatory mediators and clinical outcomes have been noted (Trollor et al., 2010), but

this has not been investigated in detail.

Systemic inflammation is thought to be the mechanism whereby acute,

accumulative or chronic infections can trigger AD pathogenesis (Ashraf et al., 2019;

Giridharan et al., 2019). In preclinical mouse models, lipopolysaccharide (LPS), mimicking

gram-negative bacterial infection, and other acute systemic inflammatory stimuli have

been found to exacerbate cognitive dysfunction, Aβ plaque load and tau phosphorylation 

(Barron et al., 2017; Cunningham and Hennessy, 2015; Nazem et al., 2015). While the

use of LPS to model systemic inflammation has been debated, in part because of the high

doses used which are more relevant to sepsis than to the chronic low grade inflammation

associated with ageing, MCI and AD (Barron et al., 2017; Cunningham and Hennessy,
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2015; Varatharaj and Galea, 2017), a comparison of three models yielded the conclusion

that LPS is a suitable model for studying the impact of new therapies for acute systemic

inflammation (Seemann et al., 2017). But importantly, this endotoxin is produced by the

gut microbiota in response to systemic infections, and its subsequent release in the

systemic circulation plays a key role in the development and persistence of systemic

inflammation (Maldonado et al., 2016; Thorburn et al., 2018). Circulating LPS levels are

elevated in AD patients (Zhang et al., 2009) and the recent discoveries of LPS infiltration

in the post-mortem AD brain where it associates with Aβ plaques, highlights the clinical 

relevance of this immune model (Zhan et al., 2018; Zhan et al., 2016; Zhao et al., 2017).

This has led to the proposal that endogenous LPS accumulation could play a critical role in

the pathophysiology of the common, sporadic form of AD (Pistollato et al., 2016; Sochocka

et al., 2019; Zhan et al., 2018). To the best of our knowledge, endogenous LPS levels

have not been quantified in AD models. Differences in gut microbiota composition between

genetic models of AD and their wild type control, consistent with endotoxemia and

susceptibility to LPS, have been reported and found associated with the progression of

cerebral amyloidosis (Brandscheid et al., 2017; Harach et al., 2017; Zhang et al., 2017).

Removal of microbiota from a humanized AD model delayed substantially Aβ plaque 

deposition, while colonisation of these mice with gut microbiota from a conventional AD

model, but not from their wild type control, accelerated Aβ deposition (Harach et al., 

2017). There is, therefore, a need to better understand the mechanisms whereby systemic

LPS affects the brain and contributes to AD progression.

LPS, is an agonist of the toll-like receptor 4, which in the brain, is almost exclusively

expressed by microglia (Hanke and Kielian, 2011), the resident immune cell in the central

nervous system. Microglia play a critical role in the clearance of Aβ and tau aggregates, 

and their dysfunction is associated with the genetic risk of developing AD (Hansen et al.,

2018; Perea et al., 2018). At low doses able to induce physiologically relevant low grade

inflammation, penetration of LPS in the mouse brain is limited in the absence of blood

brain barrier dysfunction (Banks and Robinson, 2010; Varatharaj and Galea, 2017).

However, pro-inflammatory changes in microglia can be seen as early as 4 hours post-

inoculation depending on the disease status (Murray et al., 2011; Pardon et al., 2016).

Using magnetic resonance spectroscopy, we previously observed that mild systemic

inflammation, induced with the low 100µg/kg dose of LPS, rapidly altered hippocampal

metabolism in the APPswe/PS1dE9 (APP/PS1) mouse model of amyloidosis and its wild-

type (WT) littermates at early to advanced pathological stages (Pardon et al., 2016). The

metabolic changes occurring within 4 hours of immune stimulation also discriminated the

microglial response of WT and APP/PS1 mice (Pardon et al., 2016). Variations in brain

metabolism and substrate availability are thought to influence microglial function, although

the mechanisms involved are not clear (Ghosh et al., 2018). In the same APP/PS1 mouse
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model of amyloidosis used in our previous study, age- and region-specific metabolic

perturbations have been reported in the brain of males and females, but sex differences

have not been systematically tested (Gonzalez-Dominguez et al., 2014; Maroof et al.,

2014), although they have been seen with brain aging in WT mice and are thought to

contribute to differential susceptibility to AD-like pathology (Zhao et al., 2016). Preclinical

data from genetically altered mouse models of AD indeed confirm that cerebral amyloidosis

indeed develops faster in females than in males (Li et al., 2016; Wang et al., 2003). Thus,

metabolic responses to systemic inflammation could mediate exacerbation of AD-like

pathology and the impact of sex on disease progression.

In this context, we aimed, in the present study, to gain further understanding of

the metabolic processes occurring at onset of systemic inflammation with LPS, and used

untargeted metabolomics to comprehensively identify pathways that rapidly respond to

immune stimulation in WT and APP/PS1 mice of both sexes. We tested the hypothesis that

APP/PS1 mice would be more susceptible to the metabolic effects of LPS, and postulated

a sexual dimorphism in the hippocampal metabolic response to systemic inflammation. As

reviewed above, systemic inflammation is expected to be an early event in the

pathogenesis of AD; we therefore used 4.5-month-old mice, an age characterised by the

appearance of the first plaques and subtle cognitive deficits (Bonardi et al., 2011; Malm

et al., 2011; Maroof et al., 2014). Our results indicate that pathways regulating energy

metabolism, immune and oxidative stress responses are simultaneously recruited 4 hours

after systemic LPS, and comparably in the hippocampus of both WT and APP/PS1 mice,

whose hippocampal metabolism was similar in the absence of immune stimulation. While

unchallenged females exhibited a pro-inflammatory and pro-oxidant hippocampal

metabolic signature compared to males, the recruitment of some pathways at onset of

systemic inflammation was sex-dependent with the metabolic response of females shifting

towards a more pronounced anti-inflammatory and neuroprotective component than

males, which also showed more severe sickness symptoms at this time point.

2. Material and methods

2.1. Ethics statement

All procedures were carried out in accordance with the UK Animals (Scientific

Procedures) Act of 1986 under project license 40/3601, approved by the University of

Nottingham Ethical Review Committee and are reported according to the ARRIVE

guidelines (Kilkenny et al., 2010). All analyses were performed in blind.

2.2. Animals
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Forty-four 4.5-month-old male and female APPswe/PS1dE9 (APP/PS1, (Jankowsky

et al., 2004)) mice and their wild-type (WT) littermates were used (n=5-6 per sex,

genotype and treatment). All experimental animals were bred and maintained in the

University of Nottingham Biomedical Service Unit as previously described (Pardon et al.,

2016). Genotyping was performed by Transnetyx (Cordova, TN, USA). Mice were

maintained group-housed in individually vented cages (3-4 per cage) under standard

husbandry conditions with ad libitum access to food and water, and were provided with

nesting material and a play tube. The room was on a 12/12 h light cycle with lights on

at 07:00 h; temperature, relative humidity and air exchange were automatically

controlled.

2.3. Drug treatment

Lipopolysaccharide (LPS, Escherichia coli serotype Sigma0111:B4, Sigma

Aldrich) was dissolved in phosphate buffered saline (PBS, Sigma Aldrich) at a

concentration of 200 μg/ml, and stored in aliquots at −20°C until use. On the day of the 

experiment, LPS was further diluted 1:2 in PBS to a final concentration of 100 μg/ml. 

Mice were injected intravenously (i.v.) in the lateral tail vein with 100 μg/kg of LPS, or 

an equivalent volume of its vehicle PBS, as previously described (Pardon et al., 2016).

2.4. Study design

The timeline of the experiment is represented in Fig. 1A. 4.5-month-old male and

female APP/PS1 and WT mice were randomly allocated to the LPS or PBS treatment groups

(n=5-6). Baseline behavioural assessment was carried out on days 1 & 2. Mice were first

tested for spatial working memory performance and exploratory drive in the spontaneous

alternation test (Day 1). They were then trained to burrow food in groups overnight in

their home cage (Deacon, 2012) and on Day 2, underwent baseline food burrowing testing

over 4 hours while singly housed. On Day 3, mice were challenged with LPS (100μg/kg 

i.v.) or PBS (1μl/g of body weight). Post-treatment sickness effects were assessed 4 hours 

after injection in the food burrowing and spontaneous alternation tests, by monitoring

changes in body weight and assessing body temperature taken using a rectal probe at the

time of culling. Immediately after the spontaneous alternation task, mice were culled by

cervical dislocation and trunk blood was collected. Their brains were removed; the

hippocampi were dissected from one hemisphere, snap frozen and stored at -80°C until

use for metabolomics. The second hemisphere was post-fixed by immersion in 4%

paraformaldehyde, stored at 4–8 °C for a minimum of 24 hours, and then embedded in

paraffin wax on a tissue embedding station (Leica TP1020).



7

2.5. Behavioural assessment

2.5.1. Food Burrowing

Food burrowing is a species-specific behaviour largely, dependent of the integrity

of the hippocampus (Deacon et al., 2002), which is suppressed in response to systemic

inflammation (Teeling et al., 2007). The protocol was adapted from one previously

described (Geiszler et al., 2016). A glass jar containing 30g of food pellets broken into

small pieces was added to the home cage overnight for training in groups, or in individual

cages for the two test sessions, with ad libitum access to food and water. The amount of

food displaced from the jar was recorded, expressed as a percentage from the 30g

provided, and used as a measure of food burrowing performance. To assess sickness

effects, the difference between pre- and post-injection burrowing performance was

calculated.

2.5.2. Spontaneous Alternation

Spontaneous alternation was used as previously described (Geiszler et al., 2016;

Maroof et al., 2014) to assess spatial working memory and exploratory drive. The latter is

suppressed in response to LPS-induced sickness and is a potential confounding factor for

the assessment of cognitive effects (Cunningham and Sanderson, 2008). The Y-shaped

maze comprised three identical transparent Plexiglas® arms at a 120° angle from each

other (41.5 cm in length and 6 cm in width surrounded by 15 cm high transparent Perspex

walls). The start point (6 cm x 7.5 cm) was located in the center of the maze, and the

mice were allowed to freely explore the three arms over five minutes. The number of

alternations was recorded manually and expressed as a percentage of alternations to

estimate spatial working memory performance, while the number of arms visited was used

as an indication of exploratory drive. To assess sickness effects, the difference between

pre- and post-injection performance was calculated. Mice that entered only one arm after

the LPS challenge (1 WT female, 1 WT male and 2 APP/PS1 males) were excluded from

sickness data as their alternation rate post-injection could not be calculated, but remained

included in the analysis of baseline performance.

2.6. Immunohistochemical analyses

2.6.1. Immunohistochemistry

7 μm-thick coronal sections were cut throughout the hippocampus using a 

microtome (Microtome Slee Cut 4060), mounted on APES-coated slides and dried
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overnight at 40 °C. Immunostaining of the microglial marker Ionized calcium binding

adaptor molecule 1 (Iba1) and the astrocyte marker glial fibrillary acidic protein (GFAP)

was carried out using standard protocols as previously described (Pardon et al., 2016),

in 6-8 brain slices per brain. Incubation with rabbit anti-Iba1 [Wako, cat. nr. 019–19741;

1:6000 in PBS-Tween (0.05% Tween-20 in PBS)] or anti-GFAP (Biogenix, cat. nr.

AM020-5M, 1:4000 in PBS-T) antibodies was carried out for 1 h at room temperature.

Biotinylated secondary antibody (Vectastain Elite ABC Kit, Rabbit IgG, Vector Labs,

Burlingame, CA cat. nr. PK-6101, 1:200 in PBS-T) was applied for 30 min. Tissue was

washed, exposed to ABC-HRP (Vectastain Elite ABC Kit R.T.U, Vector Labs, cat. nr. PK-

7100), labelled with DAB peroxidase substrate (Vector Labs cat. SK-4100) according to

manufacturer’s instructions, and counterstained using a haematoxylin and eosin

protocol. Digital focused photo-scanning images were then acquired using a Hamamatsu

NanoZoomer-XR 2.0-RS C10730 digital scanning system with TDI camera technology a

NanoZoomer (Hamamatsu Photonics K.K. Systems, Japan) at 20× magnification and

visualised using NDP.view2 (NanoZoomer Digital Photography).

2.6.2. Semi-automated quantification of Iba1 and GFAP immunostaining

For segmentation of microglia and astrocytes, and extraction of microglial

morphometric features, we used custom made software (Matlab) adapted from our

previous studies (Ding et al., 2016; Pardon et al., 2016) and applied to the following

regions of interest: whole hippocampus, hippocampal CA1, CA2, CA3 and dentate gyrus

(DG) subfields. Examples of the semi-automated extraction of regions of interest selection

are shown in Suppl. Fig. 5A. This provided the percentage area occupied by glial cells,

the number of Iba1- and GFAP- positive cells, used as a measure of microglial and

astrocyte density, respectively, and the size of microglial soma, used as a morphometric

marker of microglia activation and known to be sensitive to LPS (Kozlowski and Weimer,

2012; Kreisel et al., 2014; Pardon et al., 2016).

2.7. Multiplex

Plasma levels of interleukin 1 beta (IL-1β), IL-6, IL-10, interferon gamma (IFN-γ) 

and tumour necrosis factor alpha (TNF-α) were determined using the Bio-Plex ProTM 

Mouse Cytokine 23-Plex, Group I assay and Bio-Plex array reader, and analysed using the

Bio-Plex Manager Software (Bio-Rad Laboratories, Berkeley, CA, USA) according to the

manufacturer’s instructions. The cytokine panel was designed to provide a measure of key

cytokines known to respond to LPS and to play a role in AD. IL-1β data were deemed 

unreliable and were excluded from the results section.

2.8. Mass spectrometry



9

2.8.1. Metabolomic profiling by LC-MS

Hippocampal tissues were weighed and then homogenised with

chloroform/methanol/water (1:3:1, 10 µl/mg) using Retsch MM301 ball mill equipment for

3 min. The extraction solvent and sample rack for the ball mill were pre-cooled at -20 C.

The homogenised tissues were mixed vigorously for 1 h at 4 C and then centrifuged at

15,000g for 10 min at 4 C. After centrifugation, the supernatant was collected and stored

at -80 C prior to LC-MS analysis. A quality control sample was prepared by mixing an

equal volume of all samples in order to assess instrument performance (Pereira et al.,

2010). Chromatographic separation was performed using a ZIC-pHILIC column (150 mm

 4.6 mm, 5 µm, Merck Sequant). The column was maintained at 45 C with a flow rate of

300 µl/min as previously described (Surrati et al., 2016). Briefly, the mobile phase

consisted of 20 mM ammonium carbonate in water (A) and 100% acetonitrile (B), and the

tissue extracts were eluted with a linear gradient over 24 min as follows: 80% B (0 min)

to 5% B over 15 min to 5% B with a 2 min linear gradient, followed by re-equilibration

with 80% B. A 10 µl injection of each extract was employed for LC-MS analysis. An Exactive

MS (Thermo Fisher Scientific, Hemel Hempstead, UK) was used to acquire spectral data in

full scan (m/z 70-1400, resolution 50 000) and both positive and negative electrospray

ion modes. The capillary temperature and probe temperature were maintained at 275 and

150 C, respectively as previously described (Creek et al., 2011).

2.8.2. LC-MS data processing

XCMS was used to pre-process raw LC-MS data for untargeted peak-picking

(Tautenhahn et al., 2008) and mzMatch was employed for peak matching and annotation

of related peaks (Scheltema et al., 2011). The processed data was then imported into

IDEOM for noise filtering and putative metabolite identification (Creek et al., 2012).

Metabolite identification was carried out by matching accurate masses and retention times

of authentic standards but when standards were not available, accurate masses and

predicted retention times were used (Sumner et al., 2007). Metabolites were filtered in

IDEOM to have retention time errors of below 35% and mass errors below three parts per

million (Vincent et al., 2014).

2.9. Data analysis

Data are presented as mean ± SEM (standard error of the mean) and were analysed

using InVivoStat (Clark et al., 2012), unless otherwise stated. Baseline behavioural and

body weight data, sickness scores, histological and cytokine data were all subjected to 3-

way ANOVAs with genotype, sex and treatment, followed, where appropriate, by planned

comparisons. To assess the effect of the PBS and LPS challenges on behavioural data and

to compare baseline and post-injection data, we used 3-way ANOVAs with genotype, sex
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and treatment and repeated measure over time, followed, when appropriate, by planned

comparisons. The following pairwise comparisons were decided a priori: i) PBS-treated WT

vs APP/PS1 mice within each sex to test for genotype differences; ii) PBS-treated males

vs females within each genotype to test for sex differences; ii) PBS- vs LPS-treated mice

within each sex and genotype condition to test for differences caused by systemic

inflammation with LPS and, where appropriate, iv) baseline vs post-injection data within

each experimental group to test for the effect of the PBS or LPS challenge. Cytokine and

food burrowing data were rank-transformed to normalise the distribution, but presented

as non-normalised responses (Deacon, 2012). The number of arm entries was used as a

covariate for the analysis of spontaneous alternation performance, in order to control for

confounding effects of LPS-induced behavioural suppression.

For LC-MS data, variable selection was performed as a by-product of a classification

model. Data were first subjected to multivariate analyses by principal component analysis-

class (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), using

SIMCA-P version 15.02 (Umetrics AB, Umea, Sweden), in order to detect global metabolic

differences between experimental conditions. This was followed by OPLS-DAs applied to

models including 2 classes: i) WT vs APP/PS1 PBS-treated mice, to identify potential

metabolic differences due to the genotype in the absence of immune stimulation, ii) male

vs female PBS-treated mice, to identify sex-dependent metabolic differences; iii) LPS vs

PBS for all mice to identify effects global effects of LPS; iv) LPS vs PBS for each sex

separately to identify sex-dependent metabolic responses to LPS. Mass ions which

contributed to separations and clusters were selected according to the variable importance

in projection (VIP), a weighted sum of the PLS weight which indicates the importance of

the model. VIP values greater than 1.5 were first considered indicative of significant

differences between groups. Next, these metabolites were subjected to three-way ANOVAs

with genotype, sex and treatment as between subject factors, to confirm the statistical

significance of these factors and test for significant interactions between them. Metabolites

from this list for which significant overall effects of treatment, or sex X treatment

interaction were found, were also considered as potential discriminant of the LPS response

within each sex if VIP values from the OPLS-DA models testing the effect of LPS within

each sex were greater than 1. This was followed, where appropriate, by planned

comparisons, as defined above.

Relationships between behavioural, cytokine, glial and metabolic data, and

whether these associations were dependent upon the genotype, sex or treatment, were

tested using the Pearson correlation coefficient, for which statistically significant values

above 0.7 were considered as strong associations.

P ≤ 0.05 was considered statistically significant for all analyses. 
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3. Results

3.1. Systemic LPS-induced sickness

To assess whether APP/PS1 mice responded more strongly to LPS in the early hours

after systemic injection than their WT littermates, and to explore the sex dependency of

this response, we assessed LPS-induced sickness using physiological measures and by

monitoring behavioural suppression from baseline pre-injection performance in two tasks.

Results of the three-way ANOVAs on these measures are presented in Suppl. Table 1.

3.1.1. Body mass and rectal temperature

Body mass was overall lower in females regardless of their genotype (F(1,36) =

152.67, p=0.005; Suppl. Fig 1A). Within APP/PS1 mice, females (p<0.0001), but not

males (p=0.87), weighed less than their WT littermates (Genotype x Sex: F(1,36) = 12.22,

p=0.0013) but none of the experimental groups showed significant weight loss 4 hours

after the LPS or PBS challenge (Suppl. Fig 1A). Rectal body temperature was overall

reduced by LPS (F(1,34)=17.09, p=0.0002), but partial comparisons showed that this

decrease was only significant in males (minus ~1.2-1.5°C, p<0.05 for both WT and

APP/PS1 males compared to PBS-treated males, Fig. 1B).

3.1.1. LPS suppressed food burrowing activity

Food borrowing behaviour was overall suppressed by systemic LPS (p<0.0001) but

unaffected by PBS (p=0.52; Treatment x Time: F(1,36)=9.47, p=0.004, Fig. 1C). Significant

reductions in food burrowing behaviour 4 hours after injection of LPS were seen in WT

males (p=0.008), WT females (p=0.002) and APP/PS1 females (p=0.04), but not in

APP/PS1 males (p=0.10) whose baseline performance was lower than of WT males females

and more variable than of APP/PS1 females (Fig. 1C).

3.1.2. LPS suppressed exploratory drive without altering spatial working memory
performance

Exploration of the Y maze, assessed through the number of arm visits, did not differ

between any experimental groups at baseline (Fig. 1D) but was suppressed by LPS,

regardless of the genotype (p<0.0001 compared to baseline in all cases, Fig. 1E, and

p<0.01 compared to PBS-treated mice in all cases, Suppl. Fig 1B; Treatment:

F(1,36)=20.66, p<0.0001). All PBS-treated groups, but female APP/PS1, also showed a

milder reduction in Y maze exploration 4 hours after injection (p<0.05 in all cases, Fig.

1E; Treatment x Time: F(1,36)=58.55, p<0.0001), reflecting habituation to the apparatus.

Spontaneous alternation performance was overall lower in females compared to males
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(F(1,35)=4.25, p=0.048, Fig. 1F) at baseline but not following PBS or LPS administration

(Suppl. Fig 1B), and none of the treatments altered the alternation rate (Fig. 1G).

3.2. Systemic LPS-induced circulating cytokines

We assessed systemic inflammation 4 hours after inoculation with LPS by

quantifying plasma levels of 5 pro- or anti-inflammatory cytokines. Results of the three-

way ANOVAs applied to circulating cytokine levels are presented in Suppl. Table 2.

We found that, regardless of sex and genotype, LPS led to significant increases in

plasma levels of IL-6 (F(1,30)=116.2, p<0.0001, post-hoc tests: p<0.0002 compared to

PBS-treated mice in all cases, Fig. 2A), a cytokine known to exert both pro-and anti-

inflammatory effects. Elevated levels of the pro-inflammatory cytokine TNF-α after LPS 

(F(1,30)=7.82, p=0.009) were only significant in WT females (p=0.02 compared to PBS-

treated mice, Fig. 2B), whereas LPS-treated females also exhibited significantly higher

levels of the anti-inflammatory cytokine IL-10 (Treatment x Sex: F(1,30)=4.54, p=0.04),

regardless of their genotype (WT: p=0.0004 and APP/PS1: p=0.007, compared to PBS-

treated mice, Fig. 2D). Circulating INF-γ (F(1,30)=2.70, p=0.11, Fig. 2C) levels were

unaltered by LPS.

3.3. Hippocampal metabolic profiles

3.3.1. Identification of discriminant metabolites

To investigate LPS-induced metabolic changes in the hippocampus, and whether

this was dependent upon the genotype and/or and sex of the mice, we used LC-MS

analysis. Metabolic data from all hippocampal extracts were first subjected to PCA, to

identify trends, and OPLS-DA to detect global metabolic differences between experimental

conditions. Then, OPLS-DAs applied to models including 2 classes were carried out in order

to identify metabolites differentially expressed in response to LPS or as a function of sex

or genotype. The quality of these models was assessed by the R2 and Q2 parameters which

indicate the variance explained by the model and predicted variance after cross-validation,

respectively and range between 0 and 1, with Q2 values above 0.5 (50% of variance

predicted) revealing good separation between the classes tested.

Metabolites were considered to contribute to the separations and clusters

associated with each experimental condition when their VIP values from OPLS-DA models

was greater than 1.5 if subsequent 3-way ANOVAs confirmed their ability to discriminate

genotypes, sexes, treatment conditions and/or interactions between these factors. As

shown in Table 1, 98 metabolites were identified as potential discriminators of the disease

status, sex and/or LPS response, after confirmation with ANOVAs. Their function in the

brain and potential implication in sex differences in brain function, AD progression and/or

inflammatory processes, when known, is presented in Suppl. Table 3.
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3.3.1.1. Global metabolic differences reveal distinct clustering between PBS- and LPS
treated mice

PCA analysis preformed on all animals gave 6 components explaining 59.6% of the

variance. The plots pertaining to the first two components revealed, as the major trend, a

separation between LPS-treated males and females (Fig. 3A). This was confirmed by the

global OPLS-DA which gave 5 components (1 predictive and 4 orthogonal) with a variance

explained (R2) of 99.4% and predictive variance (Q2) of 88.6%. As shown on Fig.3B a

clear separation was found between PBS- and LPS-treated male and female WT and

APP/PS1 mice 4 hours after the immune challenge, indicating that metabolic changes

rapidly occurred in response to LPS, regardless of sex or disease status. Within LPS-treated

mice, some separation between sexes was also seen, regardless of genotype (Fig. 3B),

suggesting that the response to LPS was in part, sex-dependent. Metabolic differences

between genotypes were not apparent. Thirty-seven metabolites with VIP values above

1.5 were identified from the global OPLS-DA model. Thirty-two of them showed statistically

significant overall effects of treatment, revealing major changes in amino acids,

carbohydrate, nucleotide, lipid and energy metabolism in response to LPS, regardless of

sex and genotype (Table 1).

Subsequent 2-class OPLS-DAs between PBS- and LPS-treated mice within each sex,

also gave strong models with a variance explained of 100% and a predicted variance above

85%. Five components were identified in males (1 predictive + 4 orthogonal; R2= 1.00,

Q2 = 0.857) and 7 in females (1 predictive and 6 orthogonal; R2= 1.00, Q2 = 0.863).

Loading plots of predictive vs first orthogonal components revealed a clear separation

between treatment groups, regardless of genotype, in both sexes (Fig. 3C&D, for males

and females, respectively). The hippocampal metabolic response of males to LPS was

characterised by significant changes in 53 metabolites (Table 1). Thirty-six discriminant

metabolites with VIP values above 1.5 were identified from the 2-class OPLS-DA between

PBS- and LPS-treated males, and confirmed with ANOVAs. Statistical significance between

these groups was also confirmed for another 13 metabolites identified from the global

OPLS-DA model, and for 4 the 11 metabolites with confirmed Sex X Treatment interaction

effects. The hippocampal metabolic response to LPS in females was characterised by

statistically significant changes in 50 metabolites (Table 1). Twenty discriminant

metabolites with VIP values above 1.5 were identified from the 2-class OPLS-DA model,

and confirmed with ANOVAs. Statistical significance between PBS- and LPS-treated

females was also confirmed for another 20 metabolites identified from the global OPLS-

DA model, and for 9 of the 11 metabolites showing sexually dimorphic responses to LPS.

3.3.1.2. Discriminant metabolites between sexes in PBS-treated mice
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Since the metabolic response to LPS was found to be, at least in part, sex-

dependent, a 2-class OPLS-DA was also carried out between PBS-treated males and

females in order to identify whether the hippocampal metabolic profile of males and

females differs in the absence of immune stimulation. This gave a strong model with 1

predictive and 2 orthogonal components (R2= 0.985, Q2 = 0.809) and clear separation

between sexes, regardless of genotype (Fig. 3E). Sex differences in hippocampal

metabolism were characterised by significant changes in the levels of 40 metabolites,

showing major differences in amino acids, carbohydrate and fatty acyls metabolism (Table

1). While forty-three metabolites with VIP values above 1.5 were identified from the 2-

class OPLS-DA model, 36 were confirmed with statistically significant sex effects in PBS-

treated mice. Sex differences in PBS-treated mice were also confirmed for another 4

metabolites for which significant effects of sex or sex X treatment interaction were

revealed by individual ANOVAs.

3.3.1.2. Lack of major metabolic perturbations in the hippocampus of 4.5-month-old
APP/PS1 mice

Next we carried out a 2-class OPLS-DA between genotypes in PBS-treated mice to

confirm the lack of apparent differences in the hippocampal metabolic profile of WT and

APP/PS1 mice. This gave a weak model explaining 24.4% of the variance between

genotypes (3 predictive, 0 orthogonal components; R2= 0.697, Q2 = 0.244), revealing a

lack of complete separation between WT and APP/PS1 mice (Fig. 3F). This indicates that

the metabolic profile of PBS-treated WT and APP/PS1 mice was not strongly influenced by

the disease status, consistent with our previous study in males showing a lack of clear

differences in hippocampal metabolism between WT and APP/PS1 mice at 4 and 8 months

of age (Maroof et al., 2014).

Accordingly, only 2 metabolites with VIP values above 1.5 could be identified with

this 2-class OPLS-DA model and confirmed with ANOVAs. Significant genotype effects were

also found for another 3 out of the 98 validated metabolites, with confirmed statistical

significance within PBS-treated mice (Table 1). Although some separation in hippocampal

metabolism appear to be emerging between 4.5-months-old WT and APP/PS1 males (Fig.

3F), statistically significant genotype differences were predominantly seen in females

(Suppl. metabolomics results and Suppl. Fig. 2). This apparent distinct clustering, which

cannot be explained by orthogonal variation within males, may be due to a combination

of borderline differences that are not sufficiently severe to reach statistical significance in

individual ANOVAs. Indeed, 59 additional metabolites showed VIP values comprised

between 1 and 1.5 (Table1).

3.3.2. Metabolic pathways with sex differences and responsive to systemic LPS
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The analyses revealed that regardless of sex and disease status, LPS predominantly

affected the activity of four metabolic pathways: tryptophan (Fig. 4) and methionine (Fig.

5), regardless of sex and disease status, pyruvate in males (Fig. 6) and methylglyoxal in

females (Fig. 7); while sex differences were also found in the absence of immune

stimulation within the methionine (Fig. 5) and pyruvate (Fig. 6) metabolic pathways.

Changes in other metabolites as well as their role in brain function and implications

in sex differences, AD progression and immune processes, are reported in Suppl.

metabolomics results, Suppl. Fig. 3 and Suppl. Table 3, respectively.

3.3.2.1 LPS-induced tryptophan metabolism regardless of sex and disease status

Tryptophan metabolic pathways are represented Fig.4. Tryptophan is an essential

amino acid involved in protein synthesis and substrate of a number of bioactive

substances. It is the precursor of the monoaminergic neurotransmitter serotonin which

plays a critical beneficial role in modulating behaviour, cognition, mood, stress and

inflammatory responses (Hoglund et al., 2019). The majority of tryptophan is, however,

catabolised by the kynurenine pathway, the first part of the tryptophan nicotinamide

pathway (Fukuwatari and Shibata, 2013), which has been linked to impaired behavioural

and stress responses, and proinflammatory changes to the brain (Hoglund et al., 2019).

Kynurenine metabolism leads to activation of nicotinamide adenine dinucleotide (NAD)

metabolism, an important regulator of various energy metabolism pathways and cellular

homeostasis, via the biosynthesis of quinolinic acid, forming the second part of the

tryptophan-nicotinamide pathway (Fukuwatari and Shibata, 2013; Yaku et al., 2018).

Both the serotonin and nicotinamide pathways of tryptophan metabolism,

illustrated Fig. 4, were found to be stimulated in the hippocampus of LPS-treated mice.

This was reflected by elevated L-tryptophan levels (Fig. 4A), associated with higher levels

of 5-Hydroxylindoleacetate (5-HIAA), the end product of the serotonin pathway of

tryptophan metabolism, as well as of N1-methyl-2-pyridone-5-carboxamide (2PY, Fig.

4B&C), a toxic degradation product of nicotinamide (Lenglet et al., 2016) whose levels

reflect the amount of nicotinamide biosynthesized from tryptophan (Shibata and Matsuo,

1990) and correlate with upstream activation of the kynurenine pathway of tryptophan

metabolism (Mayneris-Perxachs et al., 2016).

Correlation analyses indicated that fluctuations in 2PY levels were associated with a

number of parameters related to the sickness response to LPS. We found negative

associations between 2PY levels and i) rectal temperature (Fig. 4D) in males, which

exhibited LPS-induced hypothermia (males: r = -0.718, p = 0.0004; females: r = -0.21,

p = 0.37); ii) the number of arms visited in the spontaneous alternation test 4 hours

after the injection (r = -0.80, p < 0.0001; Fig. 4E), in both males (r = -0.837,

p < 0.0001) and females (r = -0.791, p < 0.0001); and iii) sickness scores for arm visits
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(r = -0.773, p < 0.0001; Fig. 4F) in both males (r = -0.741, p < 0.0001) and females

(r = -0.824, p < 0.0001).

3.3.2.2. LPS-induced alterations in methionine metabolism are in part sex-dependent

Methionine is an essential amino acid involved in protein synthesis and required for

growth and tissue repair, immune responses, protection against oxidative stress as well

as epigenetic regulation in the brain (Martinez et al., 2017; McGowan et al., 2008). It is

also a substrate for other key amino acids, such as taurine and cysteine, as well as the

antioxidant molecule glutathione (Fig. 5).

Significant reductions in L-methionine (Fig. 5A), L-methionine S-oxide (Fig. 5B), a

toxic oxidation product of methionine (Stadtman et al., 2005), and 5’-methylthioadenosine

(Fig. 5C), a methionine precursor in the salvage pathway (Christa et al., 1986), indicated

that LPS attenuated the production and metabolism of L-methionine, regardless of sex and

disease status.

Levels of S-adenosy-L-homocysteine, an intermediate in methionine biosynthesis

and degradation by the recycling and transsulfuration pathways, respectively, were

increased by LPS in APP/PS1 males with opposite effects seen in APP/PS1 females

(Genotype X Sex X Treatment: F(1,34)=4.13, p=0.49; Fig. 5E). Methionine is a substrate

for the anti-oxidant molecule glutathione whose toxic oxidation product glutathione

disulfide (Stadtman et al., 2005) was more found more abundant in the hippocampus of

LPS-treated males, regardless of genotype, but less abundant in the hippocampus of WT

females (Sex X Treatment: F(1,34)=14.52, p=0.0006, Fig. 5H).

Effects of LPS were more pronounced in females which also showed downregulation

of other metabolites involved in the synthesis of methionine via both the salvage and

recycling pathways. LPS-treated females exhibited reduced hippocampal levels of S-

adenosy-L-methionine (Fig. 5D), an intermediate in methionine salvage also involved in

the synthesis of homocysteine, key intermediate in methionine metabolism located at the

branch point between the recycling pathway and transsulfuration pathway, as well as of

O-succinyl-L-homoserine (Fig. 5F), also involved in L-methionine recycling and

degradation via modulation of homocysteine biosynthesis (Flavin and Slaughter, 1967).

In the absence of immune stimulation, females also presented with reduced levels

of L- 5’-methylthioadenosine (Fig. 5C), the first step in the methionine salvage pathway,

as well as L-cystathionine and hypotaurine (Fig. 5G&I, respectively), two methionine

derivatives and key intermediates in the synthesis of taurine, an amino acid found in very

high concentrations in most cells (Schaffer and Kim, 2018); but L-methionine levels were

not affected by sex differences (Fig. 5A).

3.3.2.3. LPS lowers pyruvate metabolism in APP/PS1males
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Pyruvate is a key metabolite in several metabolic pathways important for glucose

and energy homeostasis, with potent anti-oxidant and anti-inflammatory properties (Das,

2006). It is made from glucose and is the end-product of glycolysis (Fig. 6).

In males, and more specifically APP/PS1 males, LPS rapidly lowered pyruvate

metabolism by downregulating several intermediates in the glycolysis pathway. D-fructose

1,6-bisphosphate (Fig.6A), and downstream metabolites, D-glyceraldehyde 3-phosphate

(Fig.6B), 3-Phospho-D-glycerate (Fig. 6C), phosphoenolpyruvate (Fig. 6D) and ultimately

of pyruvate (Fig. 6E) were all significantly less abundant in the hippocampus of LPS-treated

APP/PS1 males 4 hours after LPS administration. A baseline, however, there was a trend

for these metabolites to be more abundant in the hippocampi of APP/PS1 males, explaining

the greater effect of LPS, but post-LPS levels of these intermediates in pyruvate

metabolism were similar in males from both genotypes. This was associated with reduced

levels of 2-phosphoglycolate (Sex X Treatment: F(1,34)=7.63, p=0.009, Fig. 6G), which can

be converted into the glycolytic intermediate 3-phospho-D-glycerate (Fig. 6C) via

activation of glycolate metabolism. Conversion of glucose into fructose is a two-step

process in which glucose is reduced to sorbitol, which is then converted to fructose. LPS-

treated APP/PS1 males also failed to show the decreased in D-sorbitol contents observed

in all other LPS-treated groups (WT males, WT and APP/PS1 females, Fig.6F). In females

of both genotypes, LPS also reduced the levels of S-malate (Sex X Treatment:

F(1,34)=11.62, p=0.0017, Fig. 6I), a metabolite of the KREBS cycle, which can be recycled

into pyruvate.

3.3.2.4. LPS lowers methylglyoxal metabolism in females

Methylglyoxal is a neurotoxic by-product of glycolysis, fructose, fatty acid and

protein metabolism and potent inducer of inflammation and oxidative stress which can be

detoxified by degradation in D-lactate via conversion into D-S-lactoylglutathione [(Allaman

et al., 2015; Desai et al., 2010), Fig. 7].

In females, LPS induced a downregulation a number of metabolites upstream and

downstream of methylglyoxal production. This includes D-sorbitol, which is involved in

fructose metabolism (Fig.6F), metabolites involved in the biosynthesis of unsaturated fatty

acids, particularly APP/PS1 females [hexadecanoic acid, octadecanoic acid, icosatrienoic

acid (Sex X Treatment: F(1,34)=10.67, p=0.002), Fig. 7A-C, respectively], the fatty acid

and conjugate [FA (20:4)] 5Z,8Z,11Z,14Z-eicosatetraenoic acid (Sex X Treatment:

F(1,34)=11.42, p=0.0018, Fig. 7D) as well as sn-glycerol 3-phosphate (Sex X Treatment:

F(1,34)=10.94, p=0.002, Fig. 7E), which is synthesised by both glycerol and sn-glycero-3-

phosphoethanolamine (Sex X Treatment: F(1,34)=18.49, p=0.002, Fig. 7F) to form

dihydroxyacetone phosphate and ultimately, methylglyoxal. This was associated with
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reduced levels of its degradation product (D)-S-lactoylglutathione and (D)-lactate (Sex X

Treatment: F(1,34)=6.17, p=0.02 & F(1,34)=5.62, p=0.02; Fig. 7G&H, respectively).

3.4. Lack of glial response to LPS at 4 hours post-injection

We used immunohistochemistry to detect Iba-1 positive cells, quantify their

number, the area they occupied and the size of their soma (used as a morphological

marker of microglial activation) and to determine the area occupied by GFAP-positive

astrocytes, in the hippocampus of 4.5-month-old male and female WT and APP/PS1 mice

4 hours after LPS or PBS administration. Results of the three-way ANOVAs applied to these

measures are presented in Suppl. table 4.

We report that the area occupied by Iba-1 positive microglia was lower in the

hippocampus of WT female mice compared to WT males and APP/PS1 females (Genotype

X Sex: F(1,35)=4.14, p=0.049, Fig. 8A&F), with significant reductions being particularly

evident in the CA2 (Genotype X Sex: F(1,34)=4.24, p=0.047, Fig. 8C&H) and CA3 (Genotype

X Sex: F(1,36)=7.37, p=0.01, Fig. 8D&I) subfields. The smaller area covered by microglia

seen in WT females was particularly evident in PBS-treated mice for both the whole

hippocampus (p =0.02 vs WT males and APP/PS1 females, Fig. 8F) and CA3 subfield

(p=0.01 vs WT males and p=0.007 APP/PS1 females, Fig. 8I). LPS caused non-significant

reductions in the area covered by Iba-1 throughout the hippocampus of APP/PS1 females,

as well as of males from both genotypes (Fig. 8F-J). We also found a lower number of Iba1

positive cells in the DG of PBS-treated females compared to PBS-treated WT males

(p=0.008, Fig. 8O) and APP/PS1 females (p=0.03, Genotype X Sex: F(1,36)=5.02, p=0.03,

Fig. 8O). The area of microglial somas did not differ between the sex, genotype and

treatment conditions in any of the hippocampal subfields (Suppl. Fig 5B-F), and there were

very few microglial clusters, albeit significantly more in the hippocampi of APP/PS1 mice

compared to their WT littermates (F(1,35)=10.05, p=0.003; Suppl. Fig 5G), consistent with

the relatively low Aβ plaque load at 4.5 months of age (Suppl. Fig 5H&I). 

We did not detect differences in the area occupied by GFAP after LPS in discrete

hippocampal regions of 4.5-month-old male and female WT and APP/PS1 mice and there

was no genotype or sex dependency in this measure (Suppl. Fig 6A-J).

4. Discussion

Given the role of systemic inflammation in AD pathogenesis and known sex

differences in the risk of AD and immune responses, we tested whether the behavioural

and hippocampal metabolic responses to a systemic challenge with LPS would be

exacerbated in young APP/PS1 female in the early hours post-inoculation. Here, we first

show that the hippocampal metabolic signature of APP/PS1 mice, in the absence of
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immune stimulation, did not clearly differ from that of WT mice, at this early pathological

stage, revealing only subtle differences, but predominantly in females. This is consistent

with our previous study in males (Maroof et al., 2014). Differences in hippocampal

metabolism have been previously reported in this model at 6 months of age, and in

comparison to C57BL/6j mice rather than WT littermates, but without testing for potential

sex differences although both males and females were included in that study (Gonzalez-

Dominguez et al., 2014). Second, we also show in the absence of immune stimulation, a

sexual dimorphism in the hippocampal metabolic profile of 4.5-month-old mice,

particularly affecting methionine and pyruvate metabolism, but independent of the

genotype. The major finding, however, was that 4 hours after onset of systemic

inflammation, several aspects of the LPS response were also sex-dependent. Importantly,

we found at this time point that males and females exhibited comparable behavioural

responses to LPS, regardless of the genotype, but the temperature change was greater in

males and the cytokine response, particularly the secretion of IL-10, was greater in

females. Metabolic data indicated that LPS induced a comparable activation of both the

serotonin and nicotinamide pathways of tryptophan metabolism in the hippocampus of WT

and APP/PS1 mice of both sexes, with hippocampal levels of the toxic nicotinamide

metabolite 2PY being positively associated with the severity of the sickness response. And

while all LPS-treated mice exhibited a downregulation in methionine levels, reversible

oxidation and salvage, sex-differences were observed in the response of the recycling and

transsulfuration pathways of methionine metabolism. Males also exhibited a

downregulation of pyruvate metabolism after LPS, exacerbated in APP/PS1 males, while

females showed downregulation of methylglyoxal metabolism.

Sex differences in hippocampal metabolism in the absence of immune

stimulation

Spontaneous alternation was preserved in APP/PS1 mice regardless of sex, in

agreement with our previous findings in both males and females at the same pathological

stage (Bonardi et al., 2011; Maroof et al., 2014). In the present study, however, we

observed an overall reduction in spontaneous alternation performance in females,

suggesting a lower spatial working memory ability as was also previously reported in

C57BL/6j mice (Tucker et al., 2016), the genetic background of our APP/PS1 mice. Males

are indeed generally found to outperform females for spatial working memory, and this

has been related to differences in hippocampal morphology and function (Koss and Frick,

2017). Accordingly, we have also shown that the hippocampal metabolic profile of females

differed from that of males for 41 metabolites, but similarly in WT and APP/PS1 mice.

The most significant changes affected the metabolism of methionine, an essential

amino acid for protein synthesis and epigenetic regulation in the brain, and key regulator
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of antioxidant protection and immune responses at physiological levels (Martinez et al.,

2017; McGowan et al., 2008). Sex differences were seen in the salvage and

transsulfuration pathways of methionine metabolism, with robustly downregulated levels

of 5’-methylthioadenosine and hypotaurine, respectively. Methionine levels are in part

regulated by the salvage pathway which recycles 5’-methylthioadenosine back in

methionine (Albers, 2009). Reduced levels of 5’-methylthioadenosine in females were not

associated with altered methionine levels, suggesting that they could be maintained via

an alternative biosynthetic route and/or through reduced catabolism. The latter hypothesis

is supported by the associated reduced levels of L-cystathionine and hypotaurine in

females, two key intermediates in the synthesis of taurine from the methionine derivative

homocysteine, during their degradation of via the transsulfuration pathway (Stipanuk and

Ueki, 2011). While methionine levels were preserved in females, the specific changes

observed in downstream metabolites in females may predispose them to immune

dysfunction and cell damage. 5’-methylthioadenosine, is indeed now seen as a key

regulator of immune responses to inflammation and systemic infections (Albers, 2009;

Wang et al., 2017), proven to mediate protection against LPS-induced inflammation in

vitro (Hevia et al., 2004) but also to inhibit inflammation and reduce brain damage in

animal models of neuroinflammation (Moreno et al., 2006). Furthermore, hypotaurine

which has well established antioxidant properties (Fontana et al., 2004), was also found

to effectively suppress inflammatory and neuropathic pain (Hara et al., 2012). Taurine and

hypotaurine are present in elevated levels in the brain of the long-lived Snell Dwarf mouse

(Vitvitsky et al., 2013), which exhibits reduced oxidative damage to the brain (Brown-

Borg, 2006) and hypothalamic inflammation (Sadagurski et al., 2015). Taurine also plays

a protective role against age-related cognitive decline (El Idrissi, 2008), and therefore, the

downregulated transsulfuration pathway of methionine metabolism could, in part,

contribute to the lower spatial working memory performance seen in females.

Increased abundance in members of the glycolytic metabolic pathway, which

provides energy for cellular metabolism in the form of pyruvate and ATP, was also

observed in female hippocampi with particularly elevated levels of 3-phosphoglycerate and

phosphoenolpyruvate in WT females. This was accompanied by unaltered pyruvate and

ATP levels, but reduced levels of 2—phosphoglycolate, regardless of the genotype, possibly

reflecting a metabolic shift towards enhanced regeneration of 3-phosphoglycerate from 2-

phosphoglycolate, at the expense of glyoxylate metabolism, as suggested by the

associated downregulation in 3-oxalomalate levels. Glycolate and glyoxylate metabolism

have been linked to oxidative stress in peroxisomes (Schrader and Fahimi, 2006), essential

organelles mediating biosynthetic and biodegradative reactions in a variety of cells

(Terlecky et al., 2012). 2-phosphoglycolate is produced as a by-product of oxidative DNA

damage (Segerer et al., 2016), and is also toxic for cells as a source of glycolate
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accumulation (Flugel et al., 2017). Conversion of glycolate into glyoxylate, a precursor of

3-oxalomate (Irace et al., 2007), is reduced in rats subjected to oxidative stress (Recalcati

et al., 2003). This may lead to adverse effects as oxalomalate is known to prevent LPS-

induced production of nitric oxide by activated macrophages (Irace et al., 2007).

Peroxisome-associated oxidative stress is a mechanism thought to contribute to

neurotoxicity, inflammation, cognitive dysfunction, and accelerated brain aging (Moruno-

Manchon et al., 2018; Terlecky et al., 2012), but whether the metabolic changes seen in

females reflect a pro- or anti-oxidant status will need to be addressed in further studies.

In PBS-treated mice, metabolic differences were not associated with significant sex

differences in the number of astrocytes and microglia, or microglial soma size, a

morphological activation marker. The area covered by microglia was, however, lower in

the hippocampus of WT females, which could reflect reduced ramification per cell, as

previously reported in females (Young et al., 2018). This reduction was not seen in

APP/PS1 female mice, consistent with recent observations. Microglia of APP/PS1 mice was

indeed found to develop ramifications in the presence of Aβ plaques, regardless of sex, 

but this response occurs earlier in females than in males (Frigerio et al., 2019), which can

be related to the faster progression of cerebral amyloidosis consistently seen in females

from this genotype (Frigerio et al., 2019; Li et al., 2016; Wang et al., 2003). APP/PS1

female mice also slightly differed from WT mice in their hippocampal metabolic profile, as

well as with their reduced body weight and lack of habituation to repeated exposure to the

Y-maze. But, while sex differences in brain metabolism seen in the ageing WT mouse brain

have been hypothesised to contribute to the greater susceptibility of females to AD-like

pathology (Zhao et al., 2016), our data do not support a link between differences in

hippocampal metabolism and early-stage amyloidosis. The implication of the few

metabolites found to be less abundant in the hippocampus of female APP/PS1 mice in Aβ 

plaques deposition is currently unknown. In contrast, global differences in hippocampal

metabolism appeared to be emerging at 4.5 months of age between WT and APP/PS1

males, expected to develop the pathology at a slower rate than female, but in the absence

of behavioural and/or physiological changes. Furthermore, the role of the metabolites

found altered in female APP/PS1 mice in microglial morphology or function is also

unknown, and we did not found any association between metabolite levels and microglial

density and/or activation.

Metabolic effects of LPS independent of sex and disease status.

4.5-month-old WT and APP/PS1 mice, regardless of their sex, exhibited a robust

behavioural suppression 4 hours after inoculation with a low systemic LPS dose of

100ug/kg, without concomitant changes in the number and morphology of glial cells in the

hippocampus. This is consistent with findings in 4-month-old C57BL/6J females (Hart et
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al., 2012), but the discrepancy with our previous data showing enlargement of microglial

soma in WT, but not APP/PS1 males at the same time point (Pardon et al., 2016), could

be due to the exacerbating impact of anaesthesia (Ye et al., 2013), as previously discussed

(Pardon et al., 2016). Indeed, morphological activation of microglia would generally occur

6 hours after systemic administration of higher doses of LPS in the healthy brain (Hoogland

et al., 2015), but within 4 hours in the primed hippocampus (Murray et al., 2011). Thus,

the fact that we did not find differences in microglial number and morphology between

sexes and genotypes is consistent with the lack of microglial response at 4 hours post-

LPS, and published reports showing that changes in microglial phenotypes, occurring with

the progression of amyloidosis in this APP/PS1 model, manifest after the age of 5 months

(Martin et al., 2017). A subset of microglia, however, shows signs of activated morphology

and phenotype prior to that, when clustering around Aβ plaques (Martin et al., 2017; Ruan 

et al., 2009), but our data show that both are rare in 4.5-month-old APP/PS1 mice.

As consistently reported with a range of systemic LPS doses, hippocampal

tryptophan levels rapidly increased in the hippocampus of LPS-treated mice, independently

of sex and disease status. This was associated with elevated levels of degradation products

of both the serotonin and nicotinamide pathways of tryptophan metabolism, suggesting

their co-activation, as seen previously (Guo et al., 2016; O'Connor et al., 2009; Parrott et

al., 2016). A shift in the balance of brain tryptophan metabolism towards the kynurenine

pathway is thought to be a major mediator of pro-inflammatory changes following

systemic inflammation, and to ultimately cause serotonin deficiency (Kim and Jeon, 2018).

Although serotonin levels were not measured here, as this would require the optimisation

of a single LC/MS method specifically designed to address behavioural and structural

differences between tryptophan metabolites and related monoamines (Fuertig et al.,

2016), increased levels of its degradation product 5-HIAA could instead suggest an

increase in serotonin turnover. Several studies have shown that elevated hippocampal 5-

HIAA occurring in the first 24 hours after inoculation with systemic LPS were associated

with stable serotonin levels (Pitychoutis et al., 2009; Sens et al., 2017), suggesting an

increased rate of serotonin synthesis (Brodie et al., 1966). Transient region-specific

increases in the activity of enzymes involved in serotonin synthesis were indeed seen 2

hours after systemic LPS in the frontal cortex and midbrain of rats challenged with the

same 100ug/kg dose, but returning to baseline levels by the 6th hour post-inoculation

(Nolan et al., 2000). In agreement with this, a time course microdialysis study showed

that systemic LPS-induced a gradual increase in extracellular hippocampal tryptophan and

5-HIAA levels over 8 hours, which was associated with a transient increase in serotonin

levels, peaking 3-4 hours after administration (Guo et al., 2016). Interestingly, the

subsequent decline towards baseline serotonin levels was associated with a

downregulation of the serotonin/tryptophan ratio and concomitant upregulation of the
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kynurenine/tryptophan ratio, indicating a metabolic shift towards kynurenine metabolism

(Guo et al., 2016). Increased 2PY levels, reflecting the amount of nicotinamide

biosynthesized from tryptophan (Shibata and Matsuo, 1990), have been linked to

activation of tryptophan metabolism through the kynurenine pathway and associated with

systemic inflammation in malnutrition (Guerrant et al., 2016; Mayneris-Perxachs et al.,

2016). We can, therefore, hypothesise that the elevated hippocampal 2PY levels we saw

4 hours after LPS administration would reflect an activation of the tryptophan-nicotinamide

pathway, but whether or not its association with elevated hippocampal 5-HIAA levels

predict a metabolic shift towards kynurenine metabolism will need to be determined in

future studies, by measuring the levels of serotonin and key intermediates of the

kynurenine pathway at later points. This is particularly important because activation of the

serotonin pathway of tryptophan metabolism is protective to the brain whereas activation

of the kynurenine pathway leads to detrimental effects, the former being anti-

inflammatory (Dominguez-Soto et al., 2017) and latter pro-inflammatory (Davis and Liu,

2015) and a major driver of LPS-induced sickness (O'Connor et al., 2009). This is also

consistent with our observed association between 2PY levels and the severity of the

behavioural and temperature response to LPS. The time course of changes in tryptophan

metabolic pathways also has implication for our understanding of the mechanisms

underlying the precipitating influence of systemic infection and inflammation in AD. Recent

findings indeed suggest that reduced serotonin neurotransmission contributes to the

development of early cognitive symptoms of AD (Smith et al., 2017), while upregulation

of key components of the kynurenine pathway are associated with Aβ plaques and 

neurofibrillary tangles in the brain of AD patients (Wu et al., 2013).

We also showed, for the first time, that systemic LPS rapidly inhibited the synthesis

and metabolism of methionine in the hippocampus, illustrated by the lowering of both L-

methionine and its downstream metabolites. Regardless of sex, LPS altered methionine

reversible oxidation and salvage. Methionine reversible oxidation, the process whereby

methionine is oxidized into methionine sulfoxide, which is then reduced back to

methionine, is thought to play a key regulatory role in mediating activity-dependent plastic

changes in cellular excitability (Hoshi and Heinemann, 2001). The reduction in the levels

of the methionine oxidation product L-methionine S-oxide by LPS could be seen as a

protective response since reversible methionine oxidation becomes impaired in ageing and

related diseases, leading to the accumulation of toxic methionine oxidation products,

oxidative damage to cells (Stadtman et al., 2005) and Aβ accumulation (Moskovitz et al., 

2016). Methionine sulfoxide reductase, the antioxidant enzyme which reduces methionine

sulfoxide back to methionine, is also known to alleviate LPS-induced inflammation in

microglia (Fan et al., 2015). However, we found here that this was associated with reduced

abundance of L-methionine, suggesting that the lack of L-methionine availability, rather
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than enhanced reversible oxidation, caused the lowering of L-methionine S-oxide levels.

The salvage pathway plays a critical role in maintaining optimal methionine levels as

proven by the ability of 5’-methylthioadenosine to replenish the cellular methionine pool

within 24 hours of methionine deprivation (Shiraki et al., 2014). Reduced levels of both S-

adenosyl-L-methionine and 5’-methylthioadenosine, as we saw here associated with

methionine deficiency 4 hours after LPS administration, are thought to be early events

reflecting the activation of the salvage pathway for the rescue of methionine levels, but

this could only confirmed by looking at later time points (Shiraki et al., 2014). A failure of

this mechanism would lead to detrimental effects, by compromising cell differentiation,

growth and survival (Shiraki et al., 2014) as well as protein synthesis and epigenetic

reactions. The methionine salvage pathway indeed recycles the sulphur of 5’-

methylthioadenosine back into methionine, which is critically needed for protein synthesis

(Kabil et al., 2014). S-adenosyl-L-methionine, whose levels were particularly decreased

by LPS in female mice, is a precursor for this reaction but also a methyl donor for epigenetic

reactions and key regulator of metabolism, proliferation, and apoptosis (Albers, 2009).

Persistent downregulation of the salvage pathway could also be damaging due to the anti-

inflammatory properties of both S-adenosyl-L-methionine and 5’-methylthioadenosine (Ge

et al., 2018; Hevia et al., 2004; Moreno et al., 2006; Pfalzer et al., 2014), whose levels

were also found reduced in the AD brain (Morrison et al., 1996). However, while

methionine deficiency, if persistent, can impair multiple aspects of cell function, and

ultimately cell viability (Shiraki et al., 2014), and as such contribute to the development

of AD, its excess is also neurotoxic leading to inflammation and exacerbation of

behavioural and neurological markers of AD (Tapia-Rojas et al., 2015), perhaps

questioning the functional significance of our findings. Reduced availability and metabolism

of methionine is indeed thought to be the main driver of lifespan and healthspan

enhancement by dietary restriction through improved lipid metabolism as well as reduced

oxidative stress, inflammation and susceptibility to immune and central nervous disorders

(Martinez et al., 2017; Orgeron et al., 2014). Methionine metabolism is indeed reduced in

the long-lived naked-mole rat (Lewis et al., 2018) but it is enhanced in the long-lived

Ames dwarf mouse (Uthus and Brown-Borg, 2003), and both show activation of anti-

inflammatory pathways (Cheng et al., 2017; Dhahbi et al., 2007).

Thus, whether our observed rapid downregulation of methionine metabolism by

LPS constitutes a beneficial or detrimental response in the brain cannot be fully answered

in this study and our data also suggest that this may be, in part, sex-dependent. Indeed,

O-succinyl-L-homoserine contributes to the synthesis of both homocysteine and L-

methionine (Flavin and Slaughter, 1967), and in the present study, it was less abundant

in LPS-treated females. This is particularly relevant to the link between immune responses

and AD progression, since homocysteine can trigger neuroinflammation and microglial



25

activation (Chen et al., 2017) and its levels are positively associated with the risk of

dementia (Smith et al., 2018), therefore suggesting a protective downregulation of

methionine metabolism in females. In contrast, in LPS-treated males instead presented

with increased levels of glutathione disulfide, a toxic oxidized form of glutathione and an

end product of methionine metabolism, whose circulating levels were found to be elevated

in inflammatory conditions (Ikegami et al., 1994), and reduced in the long-lived naked-

mole rat (Lewis et al., 2018), suggesting a more damaging downregulation of methionine

metabolism.

Sexual dimorphism in the hippocampal metabolic response to LPS.

Changes in body temperature, pyruvate and methylglyoxal metabolism 4 hours

after onset of systemic inflammation were clearly sex-dependent. Thermoregulatory

responses to LPS in rodents are made of one to three phases of hyperthermia and/or

hypothermia, although fever is less likely to occur in mice than in rats (Blanque et al.,

1996; Romanovsky et al., 2005). LPS-induced hypothermia is seen as a thermoregulatory

"failure", thought to reflect the inability of the brain to regulate body temperature in shock

(Romanovsky et al., 2005). It is also an indicator of the severity of LPS responses, as it

was found to be dose-dependent and more pronounced in mouse strains susceptible to

this endotoxin (Blanque et al., 1996). Consistent with our findings, LPS-induced

hypothermia is generally found to be more severe in male than female mice (Cai et al.,

2016; Card et al., 2006), suggesting that they experience more severe acute effects of

LPS. Hypothermia is thought to be in part induced in response to changes in the brain as

it did not appear to be related to variations in circulating levels of IL-1β, IL-6 or IL-10 

(Blanque et al., 1996; Skelly et al., 2013). Our data showing that LPS-induced

hypothermia is correlated with increased 2PY levels, thought to reflect an activation of the

tryptophan-nicotinamide pathway, are consistent with previous reports showing that

sickness responses to LPS are in part mediated by activation of the kynurenine pathway

(O'Connor et al., 2009) and the ability of kynurenine and its metabolites to potentiate

drug-induced hypothermic responses (Lapin, 2003). Here, hypothermia was sex-

dependent and this was also associated with a reduction in hippocampal pyruvate

metabolism particularly affecting APP/PS1 males. A possible link cannot be ruled out as

hypothermia was found to cause a progressive decrease in cerebral pyruvate contents in

the rat (Nilsson et al., 1975), although central administration of pyruvate did not

significantly alter body temperature (Soto et al., 2018). Pyruvate is an intermediate

energy metabolite of glucose with potent anti-oxidant and anti-inflammatory actions (Das,

2006). Sex differences in pyruvate metabolism have been associated with a higher

mitochondrial respiration rate and reduced oxidative stress in females (Gaignard et al.,

2015), as well as protection against oxidative damage induced by excitotoxic injury
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whereby the ratio of lipid peroxidation markers over pyruvate increased in males but

decreased in females in response to an ischemic insult (Wagner et al., 2004). Evidence of

anti-inflammatory effects of pyruvate in the brain include the demonstration that

treatment with its ethyl pyruvate derivatives exerts robust neuroprotective effects, in both

the post-ischemic brain and LPS-treated animals, by alleviating microglial activation and

neutrophil infiltrations in vivo, and inhibiting LPS-induced pro-inflammatory changes in

these cells in vitro (Lee et al., 2017; Lee et al., 2013). In addition, dietary supplementation

with pyruvate was found to improve spatial memory impairments and brain energy

metabolism in males of the same APP/PS1 mouse line as used here (Koivisto et al., 2016)

as well as in male and female 3xTg-AD mice, while also reducing oxidative stress, albeit

without effects on Aβ and tau pathology (Isopi et al., 2015). Although systemic 

inflammation has been linked to cognitive decline and AD progression in both males and

females (Holmes et al., 2009; Trollor et al., 2010), sex-specific differences were found in

the association between pro-inflammatory mediators and cognitive function in mild

cognitively impaired patients (Trollor et al., 2010). Thus, the present finding that male

APP/PS1 mice were more susceptible to downregulation of pyruvate metabolism in the

early hours post-inoculation with LPS could constitute a male-specific mechanism

underlying exacerbation of cognitive and neurodegenerative changes after systemic

inflammation.

In contrast, females displayed a downregulation of methylglyoxal metabolism

illustrated by reduced levels of its upstream regulators, with the exception of glycolysis,

and of its reduction product D-lactate. Methylglyoxal is a cytotoxic and pro-inflammatory

glycotoxin whose deleterious effects are due to its role as a major precursor of advanced

glycation end-products, and have been associated with several pathologies including

diabetes, ageing and neurodegenerative diseases (Allaman et al., 2015; Angeloni et al.,

2014; Beeri et al., 2011). Cerebrospinal fluid as well as serum methylglyoxal

concentrations are increased in AD patients (Beeri et al., 2011; Kuhla et al., 2005) and

the latter has been found to be associated with cognitive decline regardless of sex (Beeri

et al., 2011). Direct administration of methylglyoxal was also found to cause cognitive

deficits in rats (Hansen et al., 2016) and its accumulation promotes inflammation

(Vulesevic et al., 2016) as well as Aβ aggregation (Woltjer et al., 2003). Methylglyoxal is 

also produced by Aβ, contributing to cell death (Tajes et al., 2014), providing a link 

between inflammation and AD exacerbation. In this context, we can hypothesise that the

inhibition of methylglyoxal metabolism seen in females in response to systemic

inflammation would constitute a protective response that, if persistent, may limit

inflammation-induced exacerbation of AD-like pathology. The mechanism behind a sexual

dimorphism in this response, is however unknown. Females were found to be more
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susceptible to the acute toxicity of methylglyoxal (Peters et al., 1978), but the present

study is the first show a sex-dependent response of this metabolic pathway to immune

stimulation. Nevertheless, methylglyoxal metabolism has been implicated in obesity and

diabetes (Matafome et al., 2013), the risk of which is exacerbated by systemic

inflammation (Esser et al., 2014), and females have been found less susceptible to diet-

induced obesity and its metabolic and pro-inflammatory consequences (Dorfman et al.,

2017). Our finding is, however, consistent with the elevated levels of the anti-

inflammatory cytokine IL-10 that we found in LPS-treated females, but not males, at the

4 hour time point. Indeed, methylglyoxal was found to particularly inhibit the secretion of

IL-10 and TNFα by myeloid cells (Price et al., 2010), whereas IL-10 can suppress pro-

inflammatory and toxic effects of methylglyoxal (Onishi et al., 2015).

5. Conclusions

Taken together, our data indicate that while hippocampal metabolism in females,

compared to males, may reflect a shift towards a pro-inflammatory and pro-oxidant

signature, and while subtle metabolic differences in APP/PS1 mice compared to their WT

littermates were only seen in females, in the early hours following inoculation with LPS,

the physiological and metabolic responses of males are more pronounced, regardless of

the genotype. This is consistent with recent findings in a model of traumatic brain injury,

whereby males exhibited a more aggressive neuroinflammatory profile than female mice

during the acute and subacute phases post-injury (Villapol et al., 2017), and also with the

recently established sexual dimorphism in microglia. The molecular signature of male

microglia was indeed found to be skewed towards pro-inflammatory activation and that of

females found to be neuroprotective, expressing proteins related to the inhibition of

inflammatory responses and promotion of repair mechanisms (Guneykaya et al., 2018;

Villa et al., 2018a; Villa et al., 2018b). Metabolic changes in the hippocampus occurred in

the present study before morphological signs of microglial activation could be detected,

affecting pathways known to modulate microglial activation. This provides insights into

how systemic LPS, whose brain penetration is poor at low dose and in the absence of blood

brain barrier dysfunction (Banks and Robinson, 2010; Varatharaj and Galea, 2017), can

trigger rapid inflammatory responses in the brain. Importantly, we have found here that

some of the metabolic changes are sex-specific, highlighting the importance of taking

gender into consideration when studying susceptibility to inflammatory conditions and AD

exacerbation. Moreover, this study is the first to show an association between onset of

systemic inflammation and downregulation of hippocampal methionine metabolism, but

the protective or detrimental nature of this change needs to be determined in future

studies. No major differences in the response to LPS were seen here between WT and
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APP/PS1 mice, which can be due to the early pathological stages under investigation, since

differences in microglial activation are subtle before the age of 4 months (Martin et al.,

2017; Ruan et al., 2009), and/or the early time point, as the resolution of

neuroinflammation is an active process particularly impaired in neurodegenerative

diseases (Schwartz and Baruch, 2014). However, some of the metabolic changes that we

saw here in the hippocampus, a brain area critically affected by AD, 4 hours after induction

of systemic inflammation with LPS, are relevant to AD pathogenesis, particularly the

activation of the tryptophan-nicotinamide pathway, reduced methionine availability and

salvage as well as the reduction in pyruvate metabolism in male The extent to which a

single infectious episode is sufficient to drive the progression of AD in susceptible

individuals is not currently known. Looking at the persistence of these metabolic

alterations in relation to the progression of behavioural and neurological hallmarks of AD

may help answering into this question.
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Figure captions.

Figure 1. LPS-induced behavioural suppression at 4 hours post-injection is

independent of sex or genotype. A) Timeline of the experiment. 4.5-month-old male

and female APP/PS1 mice and their wild-type (WT) littermates (n=5-6) were subjected to

baseline assessment of spatial working memory performance and exploratory drive in the

spontaneous test as well as food burrowing behaviour prior to receiving a tail vein

injection of lipopolysaccharide (LPS, 100 μg/kg) or its vehicle (phosphate buffer saline, 

PBS). Induced sickness effects were tested at 4 hours post-injection in the same tests,

prior to blood and tissue collection. At this time point, a significant decrease in core body

temperature was observed in males, regardless of their genotype (B). LPS also suppressed

food burrowing activity (C) and exploratory drive in the spontaneous alternation test,

assessed through the number of arms visits (E), regardless of sex and genotype, but

baseline performance for these behavioural measures did not differ between groups (C,D).

Female mice overall exhibited lower spontaneous alternation performance than their male

counterparts at baseline (F), but LPS had no significant impact on this measure (G).

Parametric data are expressed as Means + SEM. Dots represent individual animals. Post-

hoc tests: * p< 0.05; ** p<0.01, *** p<0.0001 vs PBS or baseline. Food burrowing data

were rank-transformed for statistical analysis but represented as non-normalised

responses and expressed as Median + interquartile range. Sickness scores are represented

as the difference between pre- and post-injection performance. Within-subjects pairwise

comparisons following 3-way ANOVAs: # p<0.05; ## p<0.01, ### p<0.0001 compared to

baseline performance (E).

Figure 2. LPS-induced plasma cytokine at 4 hours post-injection. 4.5-month-old

male and female APP/PS1 mice and their wild-type (WT) littermates were challenged with

LPS (100µ/kg i.v.) or its vehicle PBS. Their plasma was collected 4 hours later, immediately

after behavioural assessment, for measurement of induced levels of pro- and anti-

inflammatory cytokines. At this time point, a significant increase in circulating Interleukin

6 (IL-6, A), which has both pro- and anti-inflammatory effects, was observed regardless

of sex and genotype (A). Levels of the pro-inflammatory cytokine tumour necrosis factor

alpha (TNF-α) were increased by LPS in females, particularly WT females (B), but the 

levels of the other pro-inflammatory mediator, interferon gamma (IFN-γ), were unaltered 

(C). A significant increase in circulating levels of the anti-inflammatory cytokine IL-10, was

also observed in females, regardless of genotype (E). Data were rank-transformed for

statistical analyses but are expressed as Median + interquartile range of non-normalised

responses. Dots represent individual animals. Pairwise comparisons: * p<0.05; **

p<0.01, *** p<0.0001 vs PBS.
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Figure 3. Score plots of Principal Component Analysis (PCA) and two-class

Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) models for

hippocampal metabolism at 4 hours post-injection with LPS or PBS. R2: variance

explained, Q2: variance predicted. Dots represent individual animals. A). PCA analysis

reveals global metabolic differences between LPS-treated males and females regardless of

genotype [PC1 (X axis): R2X[1] = 0.232, Q2 = 0.115; PC2 (Y axis): R2X[2] = 0.123, Q2 =

0.082). B) Global OPLS-DA model (R2= 0.994, Q2 = 0.886) revealing clear separations

between PBS- and LPS-treated mice (X axis: predictive component), but also some

separation between LPS-treated male and female mice (Y axis: first orthogonal

component), regardless of genotype. C) Accordingly, the class OPLS-DA model comparing

genotypes in PBS-treated mice confirmed the lack of clear separation between WT and

APP/PS1 mice (R2= 0.697, Q2 = 0.244). Predictive component 1 (X axis) vs 2 (Y axis). 2-

class OPLS-DA models confirmed the strong differences in hippocampal metabolism due

to sex in the absence of immune stimulation, (R2= 0.985, Q2 = 0.809; D) as well as the

excellent separation between PBS- and LPS-treated mice males (R2= 1.00, Q2 = 0.857; E)

and females (R2= 1.00, Q2 = 0.863, F). D-F: Predictive (X axis) vs 1st orthogonal (Y axis)

component.

Figure 4. Increased hippocampal tryptophan metabolism 4 hours after systemic

LPS administration. 4.5-month-old male and female APP/PS1 mice and their wild-type

(WT) littermates were challenged with LPS (100µ/kg i.v.) or its vehicle PBS. Schematic

representation of the anti-inflammatory serotonin, and pro-inflammatory kynurenine,

pathways of tryptophan metabolism. At 4 hours post-injection, LPS-treated mice showed

significant upregulation of L-tryptophan (A) as well as of 5-Hydroxylindoleacetic acid (B)

and N1-Methyl-2-pyridone-5-carboxamide (2PY, C), the end metabolites of the serotonin

and kynurenine pathways, respectively. Changes in 2PY levels were negatively correlated

to D) rectal temperature in males (r = -0.718, p = 0.0004) which exhibited an

hypothermic response to LPS but not females 9r = -0.21, p = 0.37); E) the number of

arms visited in the spontaneous alternation test 4 hours after the injection in both males

(r = -0.837, p < 0.0001) and females (r = -0.791, p < 0.0001); and F) sickness scores

for arm visits in both males (r = -0.741, p < 0.0001) and females (r = -0.824,

p < 0.0001), suggesting that increased 2PY levels is associated with the severity of LPS-

induced sickness. Data are expressed as Means + SEM. Dots represent individual animals.

Discriminant metabolites are highlighted by grey text boxes. Pairwise comparisons

following 3-way ANOVAs: *, p<0.05; **, p<0.01; **, p<0.0001 compared to PBS-treated

mice of same sex and genotype.
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Figure 5. Reduced hippocampal methionine metabolism 4 hours after systemic

LPS administration. 4.5-month-old male and female APP/PS1 mice and their wild-type

(WT) littermates were challenged with LPS (100µ/kg i.v.) or its vehicle PBS. Schematic

representation of methionine metabolism showing downregulation of 4 key metabolites of

this pathway in LPS-treated mice, at 4 hours post-injection, regardless of sex or genotype

(A-D). Two of these metabolites, L-methionine-S-Oxide (B) and 5’-Methylthioadenosine

(D), as well as 2 methionine derivatives involved in taurine metabolism, L-Cystathionine

(E) and hypotaurine (F), were also found in significantly reduced levels in females

compared to males. Data are expressed as Means + SEM. Dots represent individual

animals. Discriminant metabolites are highlighted by grey text boxes. Pairwise

comparisons following 3-way ANOVAs: *, p<0.05; **, p<0.01; **, p<0.0001 compared

to PBS-treated mice of same sex and genotype; ++, p<0.01, +++, p<0.0001 compared to

males. #, p<0.05; ##, p<0.01; ###, p<0.0001; compared to PBS-treated males of same

genotype.

Figure 6. Reduced pyruvate metabolism in the hippocampus of APP/PS1 male 4

hours after systemic LPS administration. 4.5-month-old male and female APP/PS1

mice and their wild-type (WT) littermates were challenged with LPS (100µ/kg i.v.) or its

vehicle PBS. Schematic representation of the pyruvate metabolic pathway and its links

with the sorbitol and glycolate pathways. At 4 hours post-injection, LPS-treated APP/PS1

male mice failed to show a reduction in D-sorbitol levels (A), but in contrast, exhibited

downregulation of 4 key metabolites of the pyruvate metabolic pathway: 3-Phospho-D-

glycerate (B), 2-phosphoglycolate (C), phosphoenolpyruvate (D) and pyruvate (E). Data

are expressed as Means + SEM. Dots represent individual animals. Discriminant

metabolites are highlighted by grey text boxes. Pairwise comparisons following 3-way

ANOVAs: *, p<0.05; **, p<0.01; compared to PBS-treated mice of same sex and

genotype. #, p<0.05; ##, p<0.01; ###, p<0.0001; compared to PBS-treated males of same

genotype.

Figure 7. Reduced methylglyoxal metabolism in the hippocampus of WT and

APP/PS1 female 4 hours after systemic LPS administration. 4.5-month-old male

and female APP/PS1 mice and their wild-type (WT) littermates were challenged with LPS

(100µ/kg i.v.) or its vehicle PBS. Schematic representation of the main pathways

regulating methylglyoxal metabolism. At 4 hours post-injection, LPS-treated APP/PS1

female mice showed a reduction in lipid metabolism, with downregulation of 5 key

metabolites involved in fatty acid and glycerolipid metabolism: hexadecanoic acid (A),

octadecanoic acid (B), Icosatrienoic acid (C) and [FA (17:0)] heptadecanoic acid (D) and

sn-Glycerol 3-phosphate (E). This was associated with reduced levels of (D)-S-
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Lactoylglutathione (F) and (D)-Lactate (G), the reduction products of methylglyoxal. Data

are expressed as Means + SEM. Dots represent individual animals. Discriminant

metabolites are highlighted by grey text boxes. Pairwise comparisons following 3-way

ANOVAs: *, p<0.05; **, p<0.01; ***, p<0.0001 compared to PBS-treated mice of same

sex and genotype. #, p<0.05; compared to PBS-treated males of same genotype.

Figure 8. Lack of microglial response to LPS in the hippocampus at 4 hours post-

injection. 4.5-month-old male and female APP/PS1 mice and their wild-type (WT)

littermates were challenged with LPS (100µ/kg i.v.) or its vehicle PBS. Their brain were

collected 4 hours later, immediately after behavioural assessment, and one hemisphere

was processed for immunostaining of Iba1 positive microglia. Representative images of

Iba1 immunostaining in the whole hippocampus (A), CA1 (B), CA2 (C), CA3 (D), and

dentate gyrus (DG, E) subfields extracted and analysed using a Matlab tool. LPS had no

significant effects on microglial density in any hippocampal areas, estimated through the

quantification the percentage area covered by Iba1 positive microglia (F-J) and number of

microglial cells per mm2 (K-O). The area covered by microglia, was, however, significantly

lower in the hippocampus of WT females (F), particularly in the CA2 (H) and CA3 (G)

subfields, but lower microglial numbers were only observed in the dentate gyrus (O). Data

are expressed as Means + SEM. Dots represent individual animals. Pairwise comparisons:

* p<0.05; ** p<0.01.
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Table 1. Metabolites differently expressed between males and females and in response to LPS. Statistical significance from 3-way ANOVAs

followed by pairwise comparisons testing the effect of LPS within each sex, when appropriate. When significant Genotype, Sex and or their interaction with

treatment were observed, metabolites with VIP values below 1.5 were considered discriminant if pairwise comparisons confirmed genotype or sex

differences in PBS-treated mice and/or a sexually dimorphic LPS response.

Genotype effect

(PBS-treated)

Sex effect

(PBS-treated)

Overall

LPS effect

LPS effect

in males

LPS effect

in females

Exact
mass

RT
(min)

Putative metabolite
Formula

Pathway VIP p
vs.
WT

VIP p
vs.

males
VIP p

vs.
PBS

VIP p
vs.
PBS

VIP p
vs.
PBS

Amino acid metabolism

131.09 11.79
(3R)-beta-Leucine

C6H13NO2

Valine, leucine and isoleucine
degradation

1.37 2.04 <0.0001  0.75 0.39 0.64

103.10 15.33
Choline

C5H13NO

Glycine, serine and threonine
metabolism

0.83 0.71 1.45 2.00 <0.0001  0.69

222.07 11.11
L-cystathionine

C7H14N2O4S

Glycine, serine and threonine
metabolism

Methionine metabolism

1.35 1.39 0.01  0.89 0.65 0.88

149.05 8.79
L-methionine

C5H11NO2S
Methionine metabolism 0.69 0.57 2.92 <0.0001  2.14 <0.0001  1.88 <0.0001 

165.05 9.32
L-methionine S-oxide

C5H11NO3S
Methionine metabolism 0.69 0.83 2.52 <0.0001  1.84 <0.0001  1.77 <0.0001 

384.12 9.50
S-adenosyl-L-homocysteine

C14H20N6O5S
Methionine metabolism 0.92 1.18 0.91 1.70 0.0001  1.10 0.036 

219.07 9.59
O-succinyl-L-homoserine

C14H20N6O5S
Methionine metabolism 0.72 1.18 2.04 <0.0001  1.31 0.03  1.50 <0.0001 

398.14 11.02
S-adenosyl-L-methionine

C15H22N6O5S

Methionine metabolism

Arginine and proline
metabolism

1.13 0.70 1.82 0.0002  1.30 1.37 0.0002 

297.09 6.79
5'-methylthioadenosine

C11H15N5O3S

Methionine metabolism

Arginine and proline
metabolism

1.31 1.57 0.0001  2.44 <0.0001  2.00 <0.0001  1.70 <0.0001 

132.05 8.62
N-carbamoylsarcosine

C4H8N2O3

Arginine and proline
metabolism

0.92 1.07 1.84 0.0002  1.37 0.004  1.21 0.005 

231.07 8.97

N-succinyl-L-glutamate 5-
semialdehyde

C9H13NO6

Arginine and proline
metabolism

1.25 1.75 0.0005  0.72 1.34 0.009  1.37 0.005 

104.02 9.07
Urea-1-carboxylate

C2H4N2O3

Arginine and proline
metabolism

1.20 0.60 1.87 <0.0001  1.80 <0.0001  1.07 0.03
 in
WT



188.13 16.71
Homoarginine

C7H16N4O2

Arginine and proline
metabolism

1.17 1.88 <0.0001  1.06 0.63 1.38

133.04 10.25
L-aspartate

C4H7NO4

Arginine and proline
metabolism

Lysine biosynthesis

1.00 1.39 1.02 1.78 0.004  0.97

276.13 10.24

N6-(L-1,3-Dicarboxypropyl)-
L-lysine

C11H20N2O6

Lysine biosynthesis 1.16 1.52 0.002  0.72 0.32 0.93

203.08 9.24
N2-acetyl-L-aminoadipate

C8H13NO5
Lysine biosynthesis 1.31 1.75 0.001  0.90 0.75 1.14

161.07 10.10
L-2-aminoadipate

C6H11NO4
Lysine biosynthesis 1.44 1.69 0.008  0.80 1.06 0.78

129.08 9.34
L-pipecolate

C6H11NO2

Lysine degradation

Alkaloid biosynthesis I
1.38 1.65 <0.0001  0.91 0.86 0.79

151.06 5.15
(Z)-4-

hydroxyphenylacetaldehyde-
oxime

C8H9NO2

Tyrosine metabolism 1.28 1.85 <0.0001  0.82 0.97 0.57

190.05 8.17

[FA hydroxy,oxo(7:0/2:0)] 4-
hydroxy-2-oxo-Heptanedioic

acid

C7H10O6

Tyrosine metabolism 1.12 1.59 0.003  0.91 1.30 0.03  1.51 0.0002 

165.08 8.00
L-phenylalanine

C9H11NO2

Phenylalanine, tyrosine and
tryptophan biosynthesis

0.83 0.78 2.19 <0.0001  1.87 <0.0001  1.44 0.003
in
WT

204.09 9.16
L-tryptophan

C11H12N2O2

Phenylalanine, tyrosine and
tryptophan biosynthesis
Tryptophan metabolism

1.47 1.64 0.09 2.55 <0.0001  1.94 <0.0001  1.67 <0.0001 

191.06 9.66
5-hydroxyindoleacetate

C10H9NO3
Tryptophan metabolism 1.07 0.84 2.32 <0.0001  2.04 <0.0001  1.31 0.0012 

219.11 6.80
Pantothenate

C9H17NO5

beta-Alanine metabolism

Pantothenate and CoA
biosynthesis

1.27 2.06 0.0001  0.75 0.93 1.16

160.08 6.83
D-alanyl-D-alanine

C6H12N2O3

D-Alanine metabolism

Peptidoglycan biosynthesis
1.35 0.03  2.08 <0.0001  0.99 0.98 0.72

612.15 11.03
Glutathione disulfide

C20H32N6O12S2

Glutamate metabolism

Glutathione metabolism
0.82 1.37 0.77 1.51 0.001  1.10

140.06 7.25
Methylimidazoleacetic acid

C6H8N2O2
Histidine metabolism 0.97 1.40 0.88 1.51 0.002  1.01

169.08 9.39 N(pi)-methyl-L-histidine Histidine metabolism 1.32 2.00 <0.0001  1.62 <0.0001  1.70 <0.0001  1.59 0.0005 



C7H11N3O2

109.02 10.64
Hypotaurine

C2H7NO2S

Taurine and hypotaurine
metabolism

1.43 2.07 <0.0001  0.95 0.87 0.95

Carbohydrate metabolism

118.03 10.42
Succinate

C4H6O4

Citrate cycle (TCA cycle)

Glyoxylate and dicarboxylate
metabolism

1.14 0.65 1.69 0.0003  1.40 0.005  1.18 0.01 

192.03 8.66
Isocitrate

C6H8O7

Citrate cycle (TCA cycle)

Glyoxylate and dicarboxylate
metabolism

1.34 1.91 <0.0001  0.96 1.02 0.82

134.02 10.92
(S)-malate

C4H6O5

Citrate cycle (TCA cycle)

Pyruvate metabolism

Glyoxylate and dicarboxylate
metabolism

0.97 0.82 1.46 0.79 1.53 0.0001 

90.03 7.25
(D)-lactate

C3H6O3
Pyruvate metabolism 0.90 0.95 1.88 1.08 1.55 <0.0001 

379.10 9.05
(D)-S-lactoylglutathione

C13H21N3O8S
Pyruvate metabolism 0.90 0.93 1.26 0.53 1.63 0.0008 

167.98 11.75
Phosphoenolpyruvate

C3H5O6P

Citrate cycle (TCA cycle)

Pyruvate metabolism

Glycolysis / Gluconeogenesis

1.08 1.48 <0.0001  1.23 1.79 0.01  0.78

88.01 6.81
Pyruvate

C3H4O3

Citrate cycle (TCA cycle)

Glycolysis / Gluconeogenesis
0.73 0.16 0.70 1.66 0.03  0.53

170.00 10.31

D-glyceraldehyde 3-
phosphate

C3H7O6P

Glycolysis / Gluconeogenesis 0.87 0.33 1.70 0.0007  1.10 0.04
 in
APP/
PS1

1.28 0.003
 in
APP/
PS1

185.99 11.39
3-phospho-D-glycerate

C3H7O7P

Glycolysis /Gluconeogenesis

Glyoxylate and dicarboxylate
metabolism

0.99 1.35 <0.0001  1.10 1.69 0.007  0.67

155.98 11.41
2-phosphoglycolate

C2H5O6P

Glyoxolate and dicatboxylate
metabolism

1.28 2.11 <0.0001  1.08 1.54 0.0007  0.71

206.01 11.83
3-oxalomalate

C6H6O8

Glyoxolate and dicatboxylate
metabolism

1.28 2.00 <0.0001  0.85 0.91 0.61

164.07 9.24
L-rhamnose

C6H12O5

Fructose and mannose
metabolism

0.99 0.78 1.16 1.51 0.002  0.85

182.08 10.09
D-sorbitol

C6H14O6

Fructose and mannose
metabolism

1.07 0.96 2.06 <0.0001  1.40 0.002
 in
WT

1.65 <0.0001 



276.02 11.62
6-phospho-D-gluconate

C6H13O10P
Pentose phosphate pathway 0.79 0.86 1.70 0.0006  1.07 0.08 1.33 0.001 

154.00 8.48
Propanoyl phosphate

C6H13O10P

Propanoate metabolism

C5-Branched dibasic acid
metabolism

1.05 0.85 0.98 1.53 0.0009  0.64

130.03 8.65
Itaconate

C5H6O4

C5-Branched dibasic acid
metabolism

Citrate cycle (TCA cycle)

1.34 1.91 <0.0001  0.94 1.10 0.74

146.02 9.93
Methyloxaloacetate

C5H6O5

C5-Branched dibasic acid
metabolism

1.20 1.53 0.006  0.95 0.88 0.94

Nucleotide metabolism

136.04 8.58
Hypoxanthine

C5H4N4O
Purine metabolism 0.77 0.78 1.00 1.66 0.03  0.94

168.03 9.07
Urate

C5H4N4O3
Purine metabolism 0.22 0.59 2.17 <0.0001  1.77 <0.0001  1.34 0.006 

463.07 11.88
N6-(1,2-Dicarboxyethyl)-AMP

C14H18N5O11P
Purine metabolism 0.85 0.71 1.52 0.69 1.52 <0.0001 

156.02 7.91
Orotate

C5H4N2O4
Pyrimidine metabolism 1.21 1.58 0.005  0.83 1.08 1.18 0.01 

242.09 6.82
Thymidine

C10H14N2O5
Pyrimidine metabolism 0.57 0.26 2.05 <0.0001  1.88 0.002  1.18 0.0007 

126.04 6.82
Thymine

C5H6N2O2
Pyrimidine metabolism 0.74 0.98 1.87 <0.0001  1.77 0.002  1.03 0.005 

114.04 7.17
5,6-dihydrouracil

C4H6N2O2

Pyrimidine metabolism

Beta-Alanine metabolism

Pantothenate and CoA
biosynthesis

0.70 0.88 0.77 1.52 0.0007  0.93

Lipid metabolism and Fatty acyls

284.27 3.88
Octadecanoic acid

C18H36O2

Fatty acids biosynthesis

Biosynthesis of unsaturated
fatty acids

1.13 0.99 1.50 0.004
 in
WT

0.89 1.46 0.005 

256.24 3.91
Hexadecanoic acid

C16H32O2

Biosynthesis of unsaturated
fatty acids

1.21 1.18 1.52 0.002  0.92 1.35 0.01 

306.25 3.88
Icosatrienoic acid

C20H34O2

Biosynthesis of unsaturated
fatty acids

0.70 094 0.88 0.57 1.41 0.001 

304.24 3.88

[FA (20:4)] 5Z,8Z,11Z,14Z-
eicosatetraenoic acid

C20H32O2

Fatty Acids and Conjugates 0.96 0.85 1.32 0.42 1.62 <0.0001 



118.06 5.16
Formyl 3-hydroxy-butanoate

C5H10O3
Fatty esters 1.44 2.17 <0.0001  0.97 1.16 0.88

172.01 10.13
sn-glycerol 3-phosphate

C3H9O6P

Glycerolipid metabolism

Glycerophospholipid
metabolism

0.99 1.34 0.98 0.76 1.33 0.0009 

306.26 3.88

sn-glycero-3-
Phosphoethanolamine

C5H14NO6P

Glycerophospholipid
metabolism

Ether lipid metabolism

1.26 1.37 1.79 0.47 1.69 <0.0001 

393.29 4.82
PGH2-EA

C23H39NO4
Eicosanoids 1.11 1.05 1.73 0.0003  1.40 0.01  1.18 0.005 

Energy Metabolism

506.99 10.98
ATP

C10H16N5O13P3

Oxidative phosphorylation

Purine metabolism
1.04 0.80 1.97 <0.0001  1.47 0.002  1.28 0.0004 

340.00 11.91
D-fructose 1,6-bisphosphate

C6H14O12P2
Carbon fixation 1.04 1.54 0.002  1.44 0.0005  1.15 0.05  1.21 0.003 

370.01 12.01

D-sedoheptulose 1,7-
bisphosphate

C7H16O13P2

Carbon fixation 1.23 1.22 1.32 0.81 1.52 <0.0001 

Metabolism of Cofactors and Vitamins

73.02 10.25
Iminoglycine

C2H3NO2
Thiamine metabolism 0.71 0.98 1.00 1.56 0.001  0.91

152.06 6.87
N1-methyl-2-pyridone-5-

carboxamide

C7H8N2O2

Nicotinate and nicotinamide
metabolism

0.81 0.61 2.73 <0.0001  2.25 <0.0001  1.62 <0.0001 

Peptides

276.10 11.03

Gamma glutamylglutamic
acid

C10H16N2O7

Peptide 0.95 0.94 0.89 1.59 0.005  0.90

262.08 9.71

L-beta-aspartyl-L-
glutamicacid

C9H14N2O7

Peptide 1.52 0.03


in ♀ 0.82 0.65 0.56 0.58

357.13 7.80
Asp-Ser-His

C13H19N5O7
Basic peptide 0.71 0.74 1.54 0.005  0.82 1.36 0.002 

508.18 6.81
Asn-Met-Met-Asn

C18H32N6O7S2
Hydrophobic peptide 0.52 1.01 1.60 1.57 0.003  0.95

482.20 8.23
Asp-Phe-Thr-Thr

C21H30N4O9
Hydrophobic peptide 1.34 0.03


in ♂ 1.59 0.003  0.86 0.69 0.64

360.14 8.79 Asn-Asn-Asn Polar peptide 0.72 0.15 2.87 <0.0001  2.10 <0.0001  1.85 <0.0001 



C12H20N6O7

Biosynthesis of Polyketides and nonribosomal Peptides

509.33 4.64
Narbomycin

C28H47NO7

Biosynthesis of 12-, 14- and
16-membered macrolides

0.61 0.29 2.14 <0.0001  1.44 0.003  1.50 <0.0001 

515.18 11.20
13-dihydrocarminomycin

C26H29NO10

Biosynthesis of type II
polyketide products

1.21 1.71 0.004  0.84 0.86 0.69

Biosynthesis of Secondary metabolites

200.08 7.89
Dihydroclavaminic acid

C8H12N2O4
Clavulanic acid biosynthesis 1.27 2.04 <0.0001  0.80 0.79 0.83

Not known

102.08 16.19
γ-aminobutyramide 

C4H10N2O
Not known 1.23 1.73 0.004  0.77 1.48 0.003  1.37 0.006 

274.05 10.27

1-deoxy-D-altro-heptulose 7-
phosphate

C7H15O9P

Not known 1.13 1.19 1.24 1.65 0.01  0.58

281.11 10.68
1-methyladenosine

C11H15N5O4
Not known 1.54 0.03


in ♀ 0.61 0.1 0.79 0.53

367.27 4.95
3, 5-tetradecadiencarnitine

C21H37NO4
Not known 1.06 1.24 1.57 0.002  1.15 0.01  1.44 0.04 

181.99 9.73

3-
methylphosphoenolpyruvate

C4H7O6P

Not known 1.20 1.77 <0.0001  0.88 0.75 0.83

181.10 8.58
6-methyltetrahydropterin

C7H11N5O
Not known 1.00 1.11 0.83 1.79 0.0006  1.05 0.02 

430.20 5.36
Athamantin

C24H30O7
Not known 1.31 1.79 0.01  0.85 0.78 0.65

348.11 9.24
Camptothecin

C20H16N2O4
Not known 0.97 0.72 1.59 0.02  1.37 0.009

 in
WT

1.11

158.06 4.39
Dimethyl citraconate

C7H10O4
Not known 0.97 1.72 0.0005  0.53 0.92 1.11

159.13 9.46
DL-2-sulfoctanoicacid

C8H17NO2
Not known 1.09 1.67 0.0002  0.60 0.41 0.88

425.35 4.65
Elaidiccarnitine

C25H47NO4
Not known 1.20 1.44 1.53 0.004  1.19 0.04

in
APP/
PS1

1.14 0.03
in
WT

275.14 8.59 Glutarylcarnitine Not known 1.36 1.89 0.007  0.68 0.70 0.87



C12H21NO6

246.05 8.65
Glycerophosphoglycerol

C6H15O8P
Not known 1.28 1.52 0.003  1.29 0.68 1.49 0.0001 

423.33 4.68
Linoelaidylcarnitine

C25H45NO4
Not known 1.28 1.42 1.52 0.003  1.24 0.02  0.98 0.04 

216.12 10.34
N-acetyl-(L)-arginine

C8H16N4O3
Not known 1.15 0.03


in ♀ 1.53 0.005  0.87 0.76 1.28 0.0008 

202.14 14.08
NG,NG-dimethyl-L-arginine

C8H18N4O2
Not known 1.22 0.97 1.32 1.60 0.001  0.81

243.09 8.89
Nocardicin C

C23H26N4O8
Not known 0.91 0.71 1.65 0.71 1.53 <0.0001 

175.03 5.16
Nonulose 9-phosphate

C9H19O12P
Not known 1.15 1.48 0.004  1.81 1.91 <0.0001  0.70

249.03 12.35
Norepinephrinesulfate

C8H11NO6S
Not known 0.97 1.87 0.003  0.75 1.35 0.008  0.72

288.06 8.85
Orotidine

C10H12N2O8
Not known 1.29 1.56 0.0003  0.92 0.59 1.19 0.007 

371.30 4.84
Tetradecanoylcarnitine

C21H41NO4
Not known 1.22 1.53 0.04  1.00 0.90 0.77

573.09 8.83
GDP-3,6-dideoxy-D-galactose

C16H25N5O14P2
Not known 1.17 0.81 1.10 1.79 0.002  0.63

133.07 6.76
N-hydroxyvaline

C5H11NO3
Linamarin biosynthesis 1.29 1.70 <0.0001  2.45 <0.0001  2.14 <0.0001  1.61 <0.0001 

PBS: Phosphate-buffered saline; WT: wild-type; ♀: female; ♂: male.
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Supplementary Figure 1. Body mass (A) was recorded prior to and 4 hours after the PBS or LPS

challenge. The two-way ANOVA with repeated measures revealed a significant Genotype x Sex

interaction effect (F(1,36) = 12.22, p=0.0013). Females were overall lighter than males regardless of

genotype (F(1,36) = 152.67, p<0.0001) but within females, the APP/PS1 mice were also lighter than

their WT littermates (p<0.0001). None of the experimental groups showed significant weight loss at 4

hours following the LPS or PBS challenge. Before injection with PBS or LPS, none of the groups differed

for the number of arm visits in the Y-maze (B), but females showed an overall reduction in spatial

alternation performance (B; Sex effect: F(1,35) = 4.65, p=0.04). At 4 hours post injection, LPS-treated

mice visited significantly less arms of the Y-maze than PBS-treated mice (F(1,36) = 65.53, p<0.0001)

and but PBS-treated APP/PS1 mice were also hyperactive compared to PBS-treated APP/PS1 males and

WT females (p=0.009 in both cases, C), but their spontaneous alternation performance (D) did not

differ. Data are expressed as Means + SEM. *, p<0.05; **, p<0.01; **, p<.0001
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***

**
**

**

*

*

**

***
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Supplementary table 1. Results of the two-way repeated measure ANOVAs on behavioral

measures.

Body weight Food
Burrowing*

Arm entries Alternation rate

Covariate (arm entries) F(1,31)=0.80
p=0.38

Genotype F(1,36)=14.4
p=0.0006

F(1,36)=0.03
p=0.86

F(1,36)=2.12
p=0.15

F(1,36)=0.88
p=0.36

Sex F(1,36)=152.67
p<0.0001

F(1,36)=2.30
p=0.14

F(1,36)=3.17
p=0.08

F(1,36)=0.11
p=0.74

Treatment F(1,36)=2.30
p=0.14

F(1,36)=22.2
p<0.0001

F(1,36)=20.66
p<0.0001

F(1,36)=0.41
p=0.53

Time F(1,35)=9.37
p=0.004

F(1,36)=15.92
p=0.003

F(1,36)=145.25
p<0.0001

F(1,31)=0.18
p=0.68

Genotype X Sex F(1,36)=12.22
p=0.0013

F(1,36)=1.22
p=0.28

F(1,36)=0.59
p=0.45

F(1,36)=1.09
p=0.30

Genotype X Treatment F(1,36)=0.19
p=0.67

F(1,36)=0.20
p=0.66

F(1,36)=0.97
p=0.33

F(1,36)=0.85
p=0.36

Genotype X Time F(1,35)=0.35
p=0.56

F(1,36)=1.62
p=0.21

F(1,36)=3.09
p=0.09

F(1,31)=2.98
p=0.09

Sex X Treatment F(1,36)=0.17
p=0.68

F(1,36)=0.37
p=0.55

F(1,36)=0.28
p=0.60

F(1,36)=0.18
p=0.67

Sex X Time F(1,35)=1.06
p=0.31

F(1,36)=0.06
p=0.81

F(1,36)=0.25
p=0.62

F(1,31)=4.25
p=0.048

Treatment X Time F(1,35)=1.02
p=0.32

F(1,36)=9.47
p=0.004

F(1,36)=58.55
p<0.0001

F(1,31)=0.65
p=0.43

Genotype X Sex X
Treatment

F(1,36)=0.04
p=0.84

F(1,36)=3.13
p=0.08

F(1,36)=0.04
p=0.84

F(1,36)=0.97
p=0.33

Genotype X Sex X Time F(1,35)=0.32
p=0.57

F(1,36)=0.46
p=0.50

F(1,36)=1.20
p=0.28

F(1,30)=0.73
p=0.40

Genotype X Treatment
X Time

F(1,35)=1.05
p=0.31

F(1,36)=0.12
p=0.73

F(1,36)=0.24
p=0.63

F(1,30)=0.01
p=0.91

Sex X Treatment X
Time

F(1,35)=1.29
p=0.27

F(1,36)=0.30
p=0.59

F(1,36)=3.79
p=0.06

F(1,30)=0.00
p=0.95

Genotype X Sex X
Treatment X Time

F(1,35)=0.59
p=0.45

F(1,36)=0.09
p=0.77

F(1,36)=1.94
p=0.17

F(1,30)=0.78
p=0.38

*: Food burrowing data were rank-transformed prior to statistical analyses.



Supplementary table 2. Results of the two-way repeated measure ANOVAs on plasma

cytokine levels. Data were rank-transformed prior to statistical analyses.

IL-6 TNF-α INF-γ IL-1β IL-10

Genotype F(1,30)=0.43
p=0.51

F(1,30)=0.21
p=0.65

F(1,30)=0.59
p=0.45

F(1,30)=0.05
p=0.83

F(1,30)=0.88
p=0.35

Sex F(1,30)=0.76
p=0.39

F(1,30)=1.04
p=0.31

F(1,30)=0.41
p=0.52

F(1,30)=0.93
p=0.34

F(1,30)=5.07
p=0.03

Treatment F(1,30)=116.02
p<0.0001

F(1,30)=7.82
p=0.0089

F(1,30)=2.7
p=0.11

F(1,30)=0.17
p=0.68

F(1,30)=23.49
p<0.0001

Genotype X Sex F(1,30)=0.03

p=0.87

F(1,30)=0.09
p=0.77

F(1,30)=0.37
p=0.55

F(1,30)=0.90
p=0.35

F(1,30)=0.00
p=0.95

Genotype X
Treatment

F(1,30)=4.01
p=0.054

F(1,30)=0.48
p=0.49

F(1,30)=1.12
p=0.30

F(1,30)=0.40
p=0.53

F(1,30)=0.18
p=0.67

Sex X Treatment F(1,30)=3.13
p=0.09

F(1,30)=2.15
p=0.15

F(1,30)=0.98
p=0.33

F(1,30)=0.77
p=0.38

F(1,30)=4.54
p=0.04

Genotype X Sex X
Treatment

F(1,30)=3.00
p=0.09

F(1,30)=2.69
p=0.11

F(1,30)=0.90
p=0.35

F(1,30)=2.26
p=0.14

F(1,30)=1.68
p=0.20



Supplementary metabolomics results

Lack of major metabolic perturbations in the hippocampus of 4.5-month-old APP/PS1 mice

5 of the 98 selected metabolites were found to significantly discriminate between PBS-treated WT

and APP/PS1 mice (Table1), albeit predominantly in females. Levels of L-beta-aspartyl-L-glutamic acid,

which belongs to the family of N-acyl-alpha amino acids and derivatives which are known for their anti-

inflammatory action (1), were particularly reduced in female APP/PS1 mice (Suppl. Fig. 2A), but its function

and implication in AD pathology is, to the best of our knowledge, unknown. 1-Methyladenosine, an oxidized

nucleoside known to be immunosuppressive on macrophage function (2) and found in elevated levels in

the urine of patients with mild-to-moderate AD (3), was more abundant in the hippocampus of female

APP/PS1 mice compared to their WT female littermates (Suppl. Fig. 2B).

Significant Genotype X Treatment interactions were also found for N-acetyl-(L)-arginine

(F(1,34)=12.07, p=0.001), whose levels were significantly lower in PBS-treated APP/PS1 females compared

to PBS-treated WT females (Suppl. Fig. 2C), and for the hydrophobic tetrapeptide Asp-Phe-Thr-Thr

(F(1,34)=5.40, p=0.03), whose levels were significantly increased in PBS-treated APP/PS1 males compared

to their PBS-treated counterparts (Suppl. Fig. 2D). Their function and potential roles in AD pathology are

also, to the best of our knowledge, unknown.

Sex differences in the hippocampal metabolic profile are independent of the APP/PS1 genotype.

Forty-one metabolites with sex differences were identified revealing major changes in amino acids,

carbohydrate metabolism and fatty acyls (Table 1). A few metabolites from other chemical classes and

many unknown metabolites were also found in different levels between PBS-treated males and females

(Table 1). Metabolic differences in the methionine and pyruvate metabolic pathways are described in the

main manuscript and illustrated Fig. 5 and 6, respectively. Changes in other metabolites with previously

associated with differences immune function are described below. Their potential role in brain function or

implication in AD progression is presented in Suppl. Table 3.

These included reduced levels of (3R)-beta leucine (Suppl. Fig. 3), a degradation product of the

anti-inflammatory amino acid L-Leucine (4), D-alanyl-D-alanine (Suppl. Fig. 3B), an anti-inflammatory

antibiotic-binding protein (5), and N(pi)-methyl-L-histidine (Suppl. Fig. 3C), a metabolic product of the

amino acid histidine known to be negatively associated with inflammation in obese women (6). Females

also presented with an increased abundance of N-Succinyl-L-glutamate 5-semialdehyde (Suppl. Fig. 3D),

a metabolite found to be elevated in the plasma of lung cancer patients harbouring a mutation in the

epidermal growth factor receptor (7) that also exacerbate their pro-inflammatory status (8).

Lysine, whose dietary restriction was found to trigger pro-inflammatory changes (9), indicated the

major anti-inflammatory pathway upregulated in females as seen by elevated levels in three metabolites

involved in lysine biosynthesis :N6-(L-1,3-Dicarboxypropyl)-L-lysine, N2-Acetyl-L-aminoadipate and L-2-

Aminoadipate (Suppl. Fig. 3E-G), and reduced levels of L-pipecolate (Suppl. Fig. 3H), a degradation

product of L-lysine whose urine levels are positively associated with low grade inflammation (10).

Differences in amino acid metabolism also indicative of anti-inflammatory effects in females included

increased abundance of pantothenate (vitamin B5; Suppl. Fig. 3I), whose dietary intake was found to

alleviate chronic low grade inflammation (11) and norepinephrinesulfate (Suppl. Fig. 3O), a metabolite of

the anti-inflammatory neurotransmitter norepinephrine (12), as well as reduced levels of (Z)-4-



Hydroxyphenylacetaldehyde-oxime (Suppl. Fig. 3J), an enzyme involved in tyrosine metabolism found in

increased levels in inflammatory bowel disease (13), and homoarginine (Suppl. Fig. 3K), known to be

negatively associated with pro-inflammatory changes (14).

Changes in carbohydrate metabolism and fatty acyls seen in females were indicative of a pro-

inflammatory status. Furthermore, isocitrate, a substrate of the tricarboxylic acid (TCA) cycle found to

exert anti-inflammatory effects in a rat model of mild anemia of inflammation (15) and itaconate, a potent

anti-inflammatory TCA derivative found in immune cells (16), were also less abundant in the female

hippocampus (Suppl. Fig. 3M&N, respectively). Hippocampal concentrations of formyl 3-hydroxy-

butanoate, a fatty ester, were also significantly lower in females (Suppl. Fig. 3L) and fatty esters are

thought to be anti-inflammatory (17).

Metabolites differentially expressed in PBS- and LPS-treated mice regardless of sex and
genotype.

Thirty six metabolites were altered to similar extents by LPS in all experimental groups (Table 1).

The most significant changes were those affecting tryptophan and methionine metabolism, as described in

the main manuscript and represented Figs. 4&5, respectively. Changes to other metabolites associated

with immune status are described below and represented Suppl. Fig. 4, and the potential association of

these metabolites in brain function, sex differences and/or AD progression is described in Suppl. Table 3.

These metabolic differences included increased levels of thymidine and thymine (Suppl. Fig. 4A&B),

two derivatives of the anti-inflammatory nucleotide pyrimidine (18) as well as reduced levels of the

inflammation signalling molecule adenosine triphosphate (ATP) (19), particularly in WT mice (Suppl. Fig.

4C) and of succinate (Suppl. Fig. 4D), a pro-inflammatory intermediate of the TCA cycle which plays a

crucial role in ATP generation (20).

Pro-inflammatory metabolic changes included increased levels of N(pi)-methyl-L-histidine (Suppl.

Fig. 4C), an histidine derivative positively associated with levels of pro-inflammatory markers (21), urate

(Suppl. Fig. 4E) known to cause cognitive deficits through enhancing hippocampal inflammation (22), and

of its downstream metabolite urea-1-carboxylate (Suppl. Fig. 4F). LPS-treated mice also had elevated

hippocampal levels of L-phenylalanine (Suppl. Fig. 4G), whose circulating levels are increased in elderly

people with chronic low grade inflammation (23) and prostaglandin-H2-ethanolamide (PGH2-EA) (Suppl.

Fig. 4H), a precursor of prostaglandin E2 (PGE2), which plays a major role in acute inflammation and

transition to chronic inflammation (24), and is a key mediator of LPS-induced sickness (25).

Metabolites sex-dependently affected by LPS

Forty-six metabolites showed sex-dependent effects of LPS, of which twenty-one were selectively

altered in males, twenty were selectively altered in females, and five showed opposite effects in the two

sexes (Table 1). These changes particularly affected two metabolic pathways: pyruvate (Fig. 6) and

methylglyoxal (Fig. 8). Changes in other metabolites known to be associated with immunomodulation are

reported below and illustrated Suppl. Fig. 4.

Metabolic effects of LPS in males

Levels of methylimidazoleacetic acid (Sex X Treatment: F(1,34)=13.22, p=0.0009, Suppl. Fig. 4J), a

metabolite of the pro-inflammatory mediator histamine (26) were increased by LPS in APP/PS1 males.



Other metabolic changes found in LPS-treated males include increased levels of

norepinephrinesulfate (Sex X Treatment: F(1,34)=6.64, p=0.01, Suppl. Fig. 3O), a metabolite of the anti-

inflammatory neurotransmitter norepinephrine (12), choline (Sex X Treatment: F(1,34)=19.89, p<0.0001,

Suppl. Fig. 4K), a precursor of acetylcholine and agonist of α7 nicotinic receptors expressed in neurons 

and macrophages with established anti-inflammatory effects (27, 28), found to dose-dependently inhibit

LPS-induced TNFa production by macrophages (29), L-rhamnose (Sex X Treatment: F(1,34)=7.25, p=0.01,

Suppl. Fig. 4L), previously shown able to inhibit pro-inflammatory cytokines production (30), and

hypoxantine (Sex X Treatment: F(1,34)=10.06, p=0.003, Suppl. Fig. 4M), whose levels are negatively

correlated with the severity of mucosal inflammation (31).

Metabolic effects of LPS in females

6-Phospho-D-gluconate (Suppl. Fig. 4N), an intermediate of the pentose phosphate pathway

known to trigger pro-inflammatory cytokines secretion in LPS-activated macrophages (32), was less

abundant in LPS-treated females

Pro-inflammatory metabolic changes found in LPS-treated females include reduced levels of N2-

Succinyl-L-ornithine (Sex X Treatment: F(1,34)=6.25, p=0.02, Suppl. Fig. 4N), a degradation product of the

anti-inflammatory amino acid arginine (33), and, in WT LPS-treated females, and homoarginine (Suppl.

Fig. 3K), known to be negatively associated with pro-inflammatory changes (14).

Metabolites showing opposite pattern in LPS-treated males and females

Two of the five metabolites that showed opposite effects of LPS in males and females, S-Adenosy-

L-homocysteine Fig. 4E) and N-Succinyl-L-glutamate 5-semialdehyde (Suppl. Fig. 3D), have been reported

to be associated with increased inflammation. They both were found more abundant in male hippocampi

but less abundant in female hippocampi 4 hours after LPS administration.



Suppl. Table 3. Physiological role of metabolites from known metabolic pathways differently expressed between PBS-treated WT and

APP/PS1 mice, PBS-treated males and females and in response to LPS.

Putative metabolite
Metabolic
Pathway

Physiological role in the brain
Implication in sex differences

in brain function
Implication in Alzheimer’s

disease (AD)
Implication in immune status

Amino acid metabolism

(3R)-beta-Leucine
Valine, leucine and

isoleucine
degradation

Degradation product of L-Leucine
which is produced by muscle protein
catabolism and serves as a donor for

brain glutamate synthesis by
astrocytes and cerebral protein

synthesis (34).

Not known

Increased serum levels of l-leucine
in AD patients and in the 3xTg

mouse model of AD (35).

L-leucine up-regulates tau
phosphorylation in 3xTg mice (35).

L- leucine reduces inflammation
and increases repair after muscle

injury in rats (4).

Choline
Glycine, serine and

threonine
metabolism

Precursor for the cerebral synthesis
of acetylcholine, a neurotransmitter
essential for cognitive function, and
phospholipid phosphatidylcholine, a

major constituent of biological
membranes in neurons and glial cells

(36, 37).

Higher choline concentrations in
the hippocampus of cognitively

intact elderly females (38).

Loss of cholinergic function in AD is
associated with memory decline

(39).

Dietary intake of choline improves
cognitive function in AD patients

and mouse models (37).

Agonist of α7 nicotinic receptors 
expressed on macrophages,
supresses LPS-induced TNFa

production by macrophages (29).

L-cystathionine

Glycine, serine and
threonine

metabolism

Methionine
metabolism

Intermediate in the transsulfuration
pathway which decreases neurotoxic
homocysteine concentrations (40)

Mediates the conversion of
homocysteine into cysteine (Fig. 5).

Not known
Increased levels in the temporal
cortex of post-mortem AD brains

(41).

Inhibits the expression of the pro-
inflammatory cytokine MCP-1 in

macrophages in vitro (42).

L-methionine
Methionine
metabolism

Key role in epigenetic regulation in
the brain through conversion into
homocysteine via S-adenosyl-L-

methionine (43).

No differences in mouse brain
concentrations (44).

Decreased levels in the temporal
cortex of post-mortem AD brains

(41).

Elevated CSF levels in MCI and AD
(45).

Excess dietary methionine induces
cognitive and neurological

hallmarks of AD in mice (46).

Excess dietary methionine induces
astrocyte and microglia activation

in the hippocampus (46).

Induces pro-inflammatory
activation in macrophages in vitro
(47).

L-methionine S-oxide
Methionine
metabolism

Toxic oxidation product of
methionine (48).

Not known
Increased production triggers Aβ 

aggregation (49).

Inhibition reduces TNFa and IL1β 
secretion in LPS-stimulated

microglia (50).

S-adenosyl-L-
homocysteine

Methionine
metabolism

Biosynthetic precursor of
homocysteine (Fig. 5) which is

neurotoxic and pro-inflammatory in
microglia (51).

Formed by demethylation of S-
adenosyl-L-methionine.

No differences in mouse brain
concentrations (44).

Increased levels in the post-
mortem AD brain are associated
with cognitive dysfunction and

neurological hallmarks of AD (52).

Increase Aβ formation in BV-2 
microglial cells (53).

Induces pro-inflammatory
activation in endothelial cells in

vitro (54).

O-succinyl-L-homoserine
Methionine
metabolism

Mediates the conversion of
homocysteine into cystathionine

(Fig. 5).
Not known Not known Not known



S-adenosyl-L-
methionine

Methionine
metabolism

Arginine and
proline metabolism

Main donor of methyl groups for
DNA methylation in the brain (43).

Dietary supplementation improves
cognitive abilities in mice (55).

No differences in mouse brain
concentrations (44).

Decreased levels in the post-
mortem AD brain (56) and CSF of

AD patients (57).

Inhibits TNFa production and
enhances IL-6 and IL-10 secretion

in LPS-stimulated human
macrophages and/or murine

monocytes (58, 59).

5'-methylthioadenosine

Methionine
metabolism

Arginine and
proline metabolism

Neuro-protective and anti-
inflammatory derivative of

methionine.
Not known

Increased CSF levels in MCI
impaired patients (60).

Reduces brain damage; inhibits
INFg and TNFa production and
enhances IL-10 production in

animal models of
neuroinflammation (61).

N-carbamoylsarcosine
Arginine and

proline metabolism
Not known Not known Not known Not known

N-succinyl-L-glutamate
5-semialdehyde

Arginine and
proline metabolism

Not known Not known Not known

Elevated in plasma from lung
cancer patients harbouring a
genetic mutation (7) which

increases their susceptibility to
inflammation (8).

Urea-1-carboxylate
Arginine and

proline metabolism
Not known Not known Not known Not known

Homoarginine
Arginine and

proline metabolism

Precursor of the free radical nitric
oxide.

Unclear role in healthy brain function
(62).

Not known Not known

Reduced plasma levels associated
with increased C-reactive protein
levels in chronic kidney disease

patients (14).

L-aspartate

Arginine and
proline metabolism

Lysine biosynthesis

Excitatory amino acid and selective
glutamatergic NMDA receptor

agonist (63).
Not known Not known No known

N6-(L-1,3-
Dicarboxypropyl)-L-

lysine
Lysine biosynthesis Not known Not known Not known Not known

N2-acetyl-L-
aminoadipate

Lysine biosynthesis Not known Not known Not known Not known

L-2-aminoadipate Lysine degradation

Intermediate in lysine degradation.
Antagonises excitatory NMDA

receptors and reduces kynurenine
levels in the hippocampus (64).

Not known
Increased plasma levels in MCI and

AD patients (65).

Produced by peritoneal cells in
response to acute inflammation

(66).

Inhibits kynurenine production by
astrocytes (64).

L-pipecolate

Lysine degradation

Alkaloid
biosynthesis I

Major degradation product of lysine
in the murine brain (67).

Not known
Reduced CSF levels in MCI, but not

AD, patients (60).

Urine levels are positively
associated with low grade

inflammation in healthy individuals
(10).

(Z)-4-
hydroxyphenylacetaldeh

yde-oxime

Tyrosine
metabolism

Not known Not known Not known
Increased gut levels in

inflammatory bowel disease (13).

[FA
hydroxy,oxo(7:0/2:0)]

Tyrosine
metabolism

Not known Not known Not known Not known



4-hydroxy-2-oxo-
Heptanedioic acid

L-phenylalanine

Phenylalanine,
tyrosine and
tryptophan
biosynthesis

Dietary precursor of catecholamines.

Accumulation in the brain due to
impaired degradation causes brain
damage and mental retardation

(68).

Not known
Increased circulating levels

correlate with inflammation in a
subgroup of AD patients (69).

Increased circulating levels in
elderly people with chronic low

grade inflammation (23).

L-tryptophan

Phenylalanine,
tyrosine and
tryptophan
biosynthesis
Tryptophan
metabolism

Dietary precursor of serotonin and
vitamin B3 (nicotinic acid).

Improves mood and cognition by
enhancing serotoninergic

neurotransmission (70) and
nicotinamide pathway (71)

Women are more susceptible to
episodic memory impairment
caused by acute tryptophan

depletion (72).

Lower plasma tryptophan levels in
females associated with reduced

serotonin synthesis rate
throughout the brain (73).

Reduced CSF levels in MCI, but not
AD, patients (60).

Reduced serotoninergic
neurotransmission associated with

the development of cognitive
symptoms in AD (74).

Upregulation of kynurenine
pathway associated with

neurological hallmarks of AD (75).

Increases inflammation via
stimulation of the kynurenine

pathway (76).

Serotoninergic neurotransmission
thought to protect against
neuroinflammation (77).

5-hydroxyindoleacetate
Tryptophan
metabolism

End metabolite of the serotonin
pathway of tryptophan metabolism

(Fig. 6).
See L-tryptophan

Elevated CSF levels in MCI and AD
(45).

See L-tryptophan

Pantothenate
beta-Alanine
metabolism

Pantothenate and
CoA biosynthesis

Vitamin B5. Substrate for the
biosynthesis of coenzyme A which
contributes to the structure and

function of brain cells via its role in
the synthesis and oxidation of fatty

acids (71).

Not known
Dietary intake positively associated

with cerebral Aβ burden in MCI 
patients (78).

Dietary intake lower systemic
inflammation (C-reactive protein
levels) in healthy adults over 40

(11).

D-alanyl-D-alanine

D-Alanine
metabolism

Peptidoglycan
biosynthesis

Not known Not known Not known
Anti-inflammatory antibiotic-

binding protein (5).

Glutathione disulphide
(GSSG)

Glutamate
metabolism

Glutathione
metabolism

Toxic oxidation product of the anti-
oxidant glutathione produced and

exported by astrocytes in the brain
(79).

No sex differences in brain tissue
content with aging in mice despite

the most pronounced decline in
glutathione concentrations seen in

males (80).

Higher activity of glutathione
reductase activity, which catalyses
the reduction of GSSG disulphide in
glutathione, in the temporal cortex
of AD patients (81), but unaltered

GSSG contents (82).

Increased circulating levels during
acute systemic inflammation in the

rats (83).

Methylimidazoleacetic
acid

Histidine
metabolism

Main metabolite of histamine, a
neuromodulator, also involved in

cognition, wakefulness and anxiety
and motivated behaviours (84, 85).

Not known
Degeneration of histaminergic

nerve fibres in AD (86).

Histamine is produced by immune
cells in the brain, induces pro-

inflammatory microglial activation
but inhibits LPS-induced microglial

activation (87).

N(pi)-methyl-L-histidine
Histidine

metabolism
Derivative of histidine, a precursor of

brain histamine (85).
Not known Not known

Serum histidine levels are
negatively associated with systemic

inflammation (C-reactive protein
levels) in obese women (6).

Hypotaurine Taurine and Intermediate in the synthesis of Not known Not known Suppresses inflammatory and



hypotaurine
metabolism

taurine from the methionine
derivative cysteine (Fig. 5) in

neurons, astrocytes and microglia
(88, 89).

neuropathic pain (90).

Carbohydrate
metabolism

Succinate

Citrate cycle (TCA
cycle)

Glyoxylate and
dicarboxylate
metabolism

Support brain energy metabolism by
promoting ATP generation in

mitochondria (91).

Ameliorates metabolic deficits of
glial cells with mitochondrial

dysfunction (92).

Not known
Reduced whole brain content from

9 months of age in an APP/PS1
mouse model (93).

Pro-inflammatory mediator in
macrophages mediating LPS-

induced IL-1β production (20, 94). 

Isocitrate

Citrate cycle (TCA
cycle)

Glyoxylate and
dicarboxylate
metabolism

Not known Not known
Increased CSF levels in a

transgenic rat model of tauopathy
(95).

Anti-inflammatory in rat model of
anaemia of inflammation (15).

Microglial deficiency in isocitrate
dehydrogenase, the enzyme that

catalyses oxidative decarboxylation
of isocitrate, suppresses LP-induced

pro-inflammatory cytokine
production (TNFa, IL-6, IL-1β) 

(96).

(S)-malate

Citrate cycle (TCA
cycle)

Pyruvate
metabolism

Glyoxylate and
dicarboxylate
metabolism

Metabolite of the KREBS cycle which
promotes mitochondrial ATP

generation and can be recycled into
pyruvate (97).

Not known Not known
Produced by pro-inflammatory

activation of macrophages (98).

(D)-lactate
Pyruvate

metabolism

Produced by methylglyoxal
metabolism. Excess levels can cause

encephalopathy (99).

Sex differences in D-lactate
metabolism may contribute to
reduced association between
microbiota and neurological
symptoms in females (100).

Methylglyoxal can cause Aβ 
aggregation (101) and its

neurotoxicity is associated with AD
(102).

Methylglyoxal is pro-inflammatory
and activates glial cells in the brain

(103).

(D)-S-lactoylglutath

ione

Pyruvate
metabolism

Intermediate in the formation of D-
lactate from methylglyoxal.

Not known Not known Not known

Phosphoenolpyruvate

Citrate cycle (TCA
cycle)

Pyruvate
metabolism

Glycolysis /
Gluconeogenesis

Intermediate in glycolysis and

gluconeogenesis.
Not known Not known

Systemic LPS increases brain levels
of phosphoenolpyruvate

carboxykinase (104), which
catalyses the conversion of

oxaloacetate to
phosphoenolpyruvate in

gluconeogenesis and has anti-
inflammatory effects on LPS-

induced circulating pro-
inflammatory cytokines levels

(104) and macrophages phenotype



(105).

Pyruvate

Citrate cycle (TCA
cycle)

Glycolysis /
Gluconeogenesis

Intermediate metabolite of glucose
with potent antioxidant and anti-
inflammatory properties (106).

Sex differences in pyruvate
metabolism associated with
reduced oxidative stress and

damage in females (107, 108).

Improves cognitive performance in
mouse models of AD without

affecting tau or Aβ pathology (109, 
110).

Ethyl derivatives of pyruvate
alleviate pro-inflammatory changes

in the brain (111, 112).

D-glyceraldehyde 3-
phosphate

Glycolysis /
Gluconeogenesis

Intermediate in glycolysis and
gluconeogenesis.

Not known Not known Not known

3-phospho-D-glycerate

Glycolysis
/Gluconeogenesis

Glyoxylate and
dicarboxylate
metabolism

Conversion of 3-phospho-D-
glycerate to

phosphohydroxypyruvate by the
enzyme 3-phosphoglycerate

dehydrogenase (3PGDH) is the first
step in serine production.

Deficiency in 3PGDH causes brain
atrophy, seizures and psychomotor

retardation (113).

Not known Not known

3PGDH is an astrocytic enzyme that
catalases the production of serine
by neurons and glia (114) and is
anti-inflammatory in fibroblasts

(115).

2-phosphoglycolate
Glyoxolate and
dicatboxylate
metabolism

Possible indicator of damage and
repair of DNA ends (116).

Not known

Decreased expression and activity
in AD brain of phosphoglucomutase

1 (PGM1) the glycolytic enzyme
that catalyses the conversion of 3-

phosphoglycerate to 2-
phosphoglycerate (117).

Not known

3-oxalomalate
Glyoxolate and
dicatboxylate
metabolism

Not known Not known Not known
Antioxidant in LPS-activated

macrophages (118).

L-rhamnose
Fructose and

mannose
metabolism

Not known Not known Not known
Inhibits pro-inflammatory cytokines
production in macrophages (119).

D-sorbitol
Fructose and

mannose
metabolism

Intermediate in the production of
fructose from glucose in the brain

(120).
Not known

Elevated levels in the post-mortem
AD brain (121).

Anti-inflammatory properties in
resident cells from articular

cartilage (122).

6-phospho-D-gluconate
Pentose phosphate

pathway
Regulatory control of brain

metabolism (123).
Not known

Increased activity of the pentose
phosphate pathway associated with

increased pro-oxidant activity in
the post mortem AD brain (124)

Triggers pro-inflammatory
cytokines secretion in LPS-

activated macrophages (32).

Propanoyl phosphate

Propanoate
metabolism

C5-Branched
dibasic acid
metabolism

Not known Not known Not known Not known

Itaconate

C5-Branched
dibasic acid
metabolism

Citrate cycle (TCA
cycle)

Endogenous antibiotic in the brain
(125).

Not known Not known
Anti-inflammatory metabolite found
in macrophages (16) and produced

by microglia (125).



Methyloxaloacetate
C5-Branched
dibasic acid
metabolism

Not known Not known Not known Not known

Nucleotide metabolism

Hypoxanthine Purine metabolism
Endogenous ligand of

benzodiazepine-binding sites in the
brain (126).

Not known

Increased brain concentration in a
transgenic rat model of tauopathy

(95).

Elevated CSF levels in MCI patients
(45).

Hypoxanthine is anti-inflammatory
and depleted in LPS-stimulated

macrophages (127).

Urate Purine metabolism
Neuroprotective and antioxidant at

physiological levels (128).
Reduced brain tissue contents in

women (129).

Increased CSF contents in AD
(130).

Trends towards reduced levels in
the post-mortem AD brain (129).

High uric acid diet causes cognitive
deficits by inducing hippocampal

neuroinflammation (22).

Suppresses LPS-induced pro-
inflammatory microglial activation

in vitro (131).

N6-(1,2-
Dicarboxyethyl)-AMP

Purine metabolism Not known Not known Not known Not known

Orotate
Pyrimidine
metabolism

Not known Not known Not known Not known

Thymidine
Pyrimidine
metabolism

Not known Not known Not known Not known

Thymine
Pyrimidine
metabolism

Not known Not known Not known Not known

5,6-dihydrouracil

Pyrimidine
metabolism

Beta-Alanine
metabolism

Pantothenate and
CoA biosynthesis

Not known Not known Not known Not known

Lipid metabolism and
Fatty acyls

Octadecanoic acid

(18:0 stearic acid)

Fatty acids
biosynthesis

Biosynthesis of
unsaturated fatty

acids

Needed for the synthesis of
membranes of neurons and

astrocytes during brain development
(132).

No sex differences in mouse brain
content with normal diet (133).

Induces tau phosphorylation in
cultured neurons and astrocytes

(134).

Triggers secretion of Aβ peptide 
(135).

Reduced levels in the post-mortem
AD brain (136).

Accumulates primarily in astrocytes
(137) where it triggers the release

of TNFα and IL-6 (138). 

Hexadecanoic acid

(16:0 palmitic acid)

Biosynthesis of
unsaturated fatty

acids

Dietary administration, which enters
the brain, improves cognitive and

motor function (139).

No sex differences in mouse brain
content with normal diet (133).

Induces tau phosphorylation and
amyloid processing in cultured

neurons and astrocytes (134, 135,
140).

Increased levels in the post-
mortem AD brain (136).

 Triggers astrocytic release of TNFα 
and IL-6 in vitro (138).

Impairs the protective migratory
and phagocytic activities of
microglia in both males and

females (141).



Icosatrienoic acid

20:3

Biosynthesis of
unsaturated fatty

acids

Increased brain levels associated
with reduced brain growth in

developing rats fed with an essential
fatty acid deficient diet (142).

Intermediate in the synthesis of
Arachidonic acid.

Not known Not known Not known

[FA (20:4)]
5Z,8Z,11Z,14Z-

eicosatetraenoic acid

(20:4 Arachidonic acid)

Fatty Acids and
Conjugates

Contributes in brain growth and
function in combination with other

fatty acids (143).

No sex differences in mouse brain
content with normal diet (133).

Triggers secretion of Aβ peptide 
(135).

Reduced levels in the post-mortem
AD brain (136, 144).

Precursor of potent pro-
inflammatory eicosanoids (e.g.
prostaglandins) in astrocytes

(145).

Does not trigger pro-inflammatory
cytokine release in astrocytes

(138).

PGH2-EA Eicosanoids
Metabolite of the endocannabinoid

anandamide known to modulate the
brain reward system (146)

Not known
Increases the neurotoxicity of Aβ 

peptide (147).

Precursor of prostaglandin E2 which
mediates LPS-induced sickness

(148).

Formyl 3-hydroxy-
butanoate

Fatty esters Not known Not known Not known Not known

sn-glycerol 3-phosphate

Glycerolipid
metabolism

Glycerophospholipi
d metabolism

Intermediate in the glycolysis
metabolic pathway.

Increased biosynthesis in the
hippocampus during long-term

potentiation (149).

Not known Not known Not known

sn-glycero-3-
Phosphoethanolamine

Glycerophospholipi
d metabolism

Ether lipid
metabolism

Not known. Not known Not known Not known

Energy Metabolism

ATP

Oxidative
phosphorylation

Purine metabolism

Main cellular source of energy in the
brain, which can improve cognitive

function (150).

Greater ATP production in female
mitochondria in the rodent brain

(107)

Decreased brain contents in a
transgenic rat model of tauopathy

(95) and mouse model of
amyloidosis (151).

Pro-inflammatory signalling
molecule in the brain via increased
synthesis of prostaglandin E2 (19).

Produced by microglia and
astrocytes, leading to microglial
activation and chemotactic factor
for microglia towards tissue injury

(152, 153)

D-fructose 1,6-
bisphosphate

Carbon fixation
Neuroprotective high energy
glycolytic intermediate (154).

Not known Not known
Anti-inflammatory in pain models

(155)

D-sedoheptulose 1,7-
bisphosphate

Carbon fixation Not known Not known Not known Not known

Metabolism of Cofactors
and Vitamins

Iminoglycine
Thiamine

metabolism
Not known Not known Not known Not known



N1-methyl-2-pyridone-
5-carboxamide

Nicotinate and
nicotinamide
metabolism

Toxic end metabolite of the
tryptophan-nicotinamide pathway

(156)
Not known Not known

Elevated circulating levels
associated with systemic

inflammation (157).

Peptides

Gamma
glutamylglutamic acid

Peptide Not known Not known Not known Not known

L-beta-aspartyl-L-
glutamicacid

Peptide Not known Not known Not known

Belongs to the family of N-acyl-
alpha amino acids and derivatives

which are known for their anti-
inflammatory action (1)

Asp-Ser-His Basic peptide Not known Not known Not known Not known

Asn-Met-Met-Asn
Hydrophobic

peptide
Not known Not known Not known Not known

Asp-Phe-Thr-Thr
Hydrophobic

peptide
Not known Not known Not known Not known

Asn-Asn-Asn Polar peptide Not known Not known Not known Not known

Biosynthesis of Polyketides and nonribosomal Peptides

Narbomycin

Biosynthesis of 12-
, 14- and 16-
membered
macrolides

Not known Not known Not known Not known

13-dihydrocarminomycin
Biosynthesis of

type II polyketide
products

Not known Not known Not known Not known

Biosynthesis of Secondary metabolites

Dihydroclavaminic acid

C8H12N2O4

Clavulanic acid
biosynthesis

Not known Not known Not known Not known

Not known

γ-aminobutyramide 

C4H10N2O
Not known Not known Not known Not known Not known

1-deoxy-D-altro-
heptulose 7-phosphate

Not known Not known Not known Not known Not known

1-methyladenosine Not known
Increased urinary levels in patients
with mild-to-moderate Alzheimer's

disease (3).

Immunosuppressive on
macrophage function (2).

3, 5-
tetradecadiencarnitine

Not known Not known Not known Not known Not known

3-methylphosphoenol-
pyruvate

Not known Not known Not known Not known Not known

6-methyltetrahydropterin Not known Not known Not known Not known Not known



Athamantin Not known Not known Not known Not known Not known

Camptothecin Not known Not known Not known Not known Not known

Dimethyl citraconate Not known Not known Not known Not known Not known

DL-2-sulfoctanoicacid Not known Not known Not known Not known Not known

Elaidiccarnitine Not known Not known Not known Not known Not known

Glutarylcarnitine Not known Not known Not known Not known Not known

Glycerophosphoglycerol Not known Not known Not known Not known Not known

Linoelaidylcarnitine Not known Not known Not known Not known Not known

N-acetyl-(L)-arginine Not known Not known Not known Not known Not known

NG,NG-dimethyl-L-
arginine

Not known Not known Not known Not known Not known

Nocardicin C Not known Not known Not known Not known Not known

Nonulose 9-phosphate Not known Not known Not known Not known Not known

Norepinephrinesulfate Not known Not known Not known Not known Not known

Orotidine Not known Not known Not known Not known Not known

Tetradecanoylcarnitine Not known Not known Not known Not known Not known

GDP-3,6-dideoxy-D-
galactose

Not known Not known Not known Not known Not known

N-hydroxyvaline
Linamarin

biosynthesis
Not known Not known Not known Not known
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Supplementary. Fig. 2. Metabolites affected in APP/PS1 mice in the absence of immune
stimulation. Levels of L-beta-aspartyl-L-glutamic acid, were particularly reduced in female
APP/PS1 mice (A). B) 1-Methyladenosine, was more abundant in the hippocampus of
female APP/PS1 mice compared to their WT female littermates (B). Significant Genotype X
Treatment interactions were also found for N-acetyl-(L)-arginine (F(1,34)=12.07, p=0.001),
whose levels were significantly lower in PBS-treated APP/PS1 females compared to PBS-
treated WT females (C), and for the hydrophobic tetrapeptide Asp-Phe-Thr-Thr (F(1,34)=5.40,
p=0.03), whose levels were significantly increased in PBS-treated APP/PS1 males compared
to their PBS-treated counterparts (D). Data are expressed as Means + SEM. Pairwise
comparisons following 3-way ANOVAs: $, p<0.05; $$, p<0.01 compared to WT PBS-treated
(same sex); ##, p<0.01 compared to PBS-treated males (same genotype); *, p<0.05; **,
p<0.01 compared to PBS-treated mice of same sex and genotype.
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Supplementary Figure 3. Metabolites with sex differences in the hippocampus. Data are expressed as

Means + SEM. Post-hoc tests following 3-way ANOVAs: #, p<0.05, ##, p<0.01 compared to PBS-treated males

(same genotype); **, p<0.01; ***, p<0.0001 compared to PBS-treated mice of same sex and genotype.
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Supplementary table 3. Results of the two-way repeated measure ANOVAs on glial measures.

% area stained by
Iba1

Number of
cells/mm2

Microglial soma area % area stained by
GFAP

Whole hippocampus
Genotype F(1,35)=0.96; p=0.33 F(1,35)=0.43; p=0.51 F(1,35)=0.00; p=0.95 F(1,33)=3.81; p=0.059
Sex F(1,35)=0.80; p=0.38 F(1,35)=3.28; p=0.08 F(1,35)=2.16; p=0.15 F(1,33)=1.02; p=0.32
Treatment F(1,35)=2.26; p=0.14 F(1,35)=1.39; p=0.24 F(1,35)=0.20; p=0.66 F(1,33)=0.16; p=0.69
Genotype X Sex F(1,35)=4.14; p=0.049 F(1,35)=3.01; p=0.09 F(1,35)=0.20; p=0.75 F(1,33)=0.87; p=0.36
Genotype X Treatment F(1,35)=0.65; p=0.42 F(1,35)=0.22; p=0.64 F(1,35)=0.10; p=0.70 F(1,33)=0.13; p=0.72
Sex X Treatment F(1,35)=0.71; p=0.40 F(1,35)=0.23; p=0.64 F(1,35)=0.75; p=0.39 F(1,33)=0.66; p=0.42
Genotype X Sex X
Treatment

F(1,35)=0.98; p=0.33 F(1,35)=1.75; p=0.19 F(1,35)=0.42; p=0.52 F(1,33)=0.06; p=0.80

CA1
Genotype F(1,35)=1.08; p=0.31 F(1,35)=0.07; p=0.79 F(1,35)=0.02; p=0.90 F(1,33)=4.13; p=0.0503
Sex F(1,35)=1.45; p=0.24 F(1,35)=3.21; p=0.08 F(1,35)=1.60; p=0.21 F(1,33)=1.03; p=0.32
Treatment F(1,35)=3.30; p=0.08 F(1,35)=0.19; p=0.66 F(1,35)=0.15; p=0.70 F(1,33)=0.16; p=0.69
Genotype X Sex F(1,35)=3.56; p=0.07 F(1,35)=1.95; p=0.17 F(1,35)=0.06; p=0.80 F(1,33)=0.43; p=0.52
Genotype X Treatment F(1,35)=0.51; p=0.48 F(1,35)=0.13; p=0.72 F(1,35)=0.03; p=0.86 F(1,33)=0.03; p=0.85
Sex X Treatment F(1,35)=1.15; p=0.29 F(1,35)=0.50; p=0.48 F(1,35)=0.42; p=0.52 F(1,33)=0.20; p=0.66
Genotype X Sex X
Treatment

F(1,35)=0.89; p=0.35 F(1,35)=1.76; p=0.19 F(1,35)=0.52; p=0.48 F(1,33)=0.68; p=0.42

CA2
Genotype F(1,35)=0.82; p=0.37 F(1,34)=0.45; p=0.51 F(1,34)=0.34; p=0.56 F(1,32)=0.18; p=0.67
Sex F(1,35)=0.73; p=0.40 F(1,34)=0.66; p=0.42 F(1,34)=2.01; p=0.16 F(1,32)=0.13; p=0.72
Treatment F(1,35)=1.29; p=0.26 F(1,34)=1.00; p=0.32 F(1,34)=0.22; p=0.64 F(1,32)=1.93; p=0.17
Genotype X Sex F(1,35)=4.24; p=0.047 F(1,34)=2.26; p=0.14 F(1,34)=0.04; p=0.84 F(1,32)=0.03; p=0.87
Genotype X Treatment F(1,35)=0.02; p=0.90 F(1,34)=0.10; p=0.75 F(1,34)=0.09; p=0.77 F(1,32)=0.00; p=0.99
Sex X Treatment F(1,35)=0.11; p=0.74 F(1,34)=0.61; p=0.44 F(1,34)=0.93; p=0.34 F(1,32)=1.54; p=0.22
Genotype X Sex X
Treatment

F(1,35)=0.29; p=0.59 F(1,34)=0.03; p=0.85 F(1,34)=0.95; p=0.33 F(1,32)=0.13; p=0.71

CA3
Genotype F(1,36)=2.50; p=0.12 F(1,36)=1.79; p=0.19 F(1,36)=0.00; p=0.99 F(1,33)=1.21; p=0.28
Sex F(1,36)=0.97; p=0.33 F(1,36)=1.55; p=0.22 F(1,36)=3.62; p=0.06 F(1,33)=0.41; p=0.53
Treatment F(1,36)=1.77; p=0.19 F(1,36)=3.08; p=0.09 F(1,36)=0.01; p=0.93 F(1,33)=0.24; p=0.63
Genotype X Sex F(1,36)=7.37; p=0.01 F(1,36)=3.04; p=0.09 F(1,36)=0.00; p=0.96 F(1,33)=0.76; p=0.39
Genotype X Treatment F(1,36)=0.56; p=0.46 F(1,36)=0.59; p=0.45 F(1,36)=0.16; p=0.69 F(1,33)=0.09; p=0.76
Sex X Treatment F(1,36)=0.98; p=0.33 F(1,36)=0.03; p=0.85 F(1,36)=0.68; p=0.41 F(1,33)=1.15; p=0.29
Genotype X Sex X
Treatment

F(1,36)=0.47; p=0.49 F(1,36)=0.05; p=0.82 F(1,36)=1.08; p=0.30 F(1,33)=0.01; p=0.93

Dentate Gyrus
Genotype F(1,36)=1.33; p=0.26 F(1,36)=0.17; p=0.68 F(1,36)=0.04; p=0.83 F(1,33)=3.43; p=0.07
Sex F(1,36)=0.82; p=0.37 F(1,36)=3.69; p=0.06 F(1,36)=2.82; p=0.10 F(1,33)=0.15; p=0.70
Treatment F(1,36)=3.15; p=0.08 F(1,36)=0.00; p=0.99 F(1,36)=0.75; p=0.39 F(1,33)=0.09; p=0.77
Genotype X Sex F(1,36)=2.81; p=0.10 F(1,36)=5.02; p=0.03 F(1,36)=0.01; p=0.92 F(1,33)=0.68; p=0.41
Genotype X Treatment F(1,36)=0.14; p=0.71 F(1,36)=0.45; p=0.50 F(1,36)=0.50; p=0.48 F(1,33)=0.94; p=0.34
Sex X Treatment F(1,36)=0.51; p=0.48 F(1,36)=0.11; p=0.74 F(1,36)=0.96; p=0.34 F(1,33)=1.75; p=0.19
Genotype X Sex X
Treatment

F(1,36)=0.83; p=0.36 F(1,36)=1.17; p=0.29 F(1,36)=0.02; p=0.90 F(1,33)=0.10; p=0.76
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Supplementary Figure 5. Microglial soma size a morphometric marker of microglial activation was
measured using Iba1 immunostaining at 4 hours after the PBS or LPS challenge. Illustration of the
regions of interests used for microglia and astrocytes segmentation, delineated using a custom made
Matlab tool. No differences were found in the whole hippocampus (B), CA1(C), CA2 (D), CA3 (E) or
Dentate Gyrus (F) subfields. The number of microglial clusters was elevated in APP/PS1 mice
(F(1,35)=10.05, p=0.003; G), which displayed relatively few plaques (white arrows) at 4.5 months of
age (H, I). *, p<0.05. Data are expressed as Means + SEM.
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Supplementary Figure 6. The area occupied by astrocytes was quantified using GFAP

immunostaining 4 hours after the PBS or LPS challenge. Representative image of GFAP positive

astrocytes in the whole hippocampus (A), CA1(B), CA2 (C), CA3 (D) or Dentate Gyrus (E) subfields.

No differences were found between any of the experimental conditions in these regions of interests:

whole hippocampus (F), CA1(G), CA2 (H), CA3 (I) or Dentate Gyrus (J). Data are expressed as

Means + SEM.



Highlights:

 Hippocampal metabolic profile of females is more pro-inflammatory and pro-oxidant

 Comparable LPS-induced sickness behaviour in male and female WT and APP/PS1 mice

 Pro- and anti-inflammatory pathways both recruited 4h after systemic LPS

 Predominant anti-inflammatory metabolic response to LPS in female hippocampi
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