

Qualitative and Quantitative Approaches for Evaluation of Safety Risks in Coal Mines

Charan Kumar Ala

Department of Mining Engineering National Institute of Technology Rourkela

Qualitative and Quantitative Approaches for Evaluation of Safety Risks in Coal Mines

Dissertation submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

in

Mining Engineering

by

Charan Kumar Ala

(513MN1020)

under the guidance of

Dr. Debi Prasad Tripathy

Department of Mining Engineering

National Institute of Technology Rourkela

Department of Mining Engineering National Institute of Technology Rourkela

July 24, 2019

Certificate of Examination

Roll Number: 513MN1020

Name: Charan Kumar Ala Title of Dissertation: **Qualitative and Quantitative Approaches for Evaluation of Safety Risks in Coal Mines**

We the below signed, after checking the dissertation mentioned above and the official record books of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of *Doctor of Philosophy* in *Mining Engineering* at *National Institute of Technology Rourkela*. We are satisfied with the volume, quality, correctness, and originality of the work.

Singam Jayanthu Chairman, DSC

Md. Equeenuddin Member, DSC Debi Prasad Tripathy Principal Supervisor

Hrushikesh Naik Member, DSC

Pradip Sarkar Member, DSC Sanjay Kumar Sharma External Examiner

Himanshu Bhushan Sahu Head of the Department

Department of Mining Engineering National Institute of Technology Rourkela

Prof. Debi Prasad Tripathy

Professor

July 24, 2019

Supervisors' Certificate

This is to certify that the work presented in the dissertation entitled "**Qualitative and Quantitative Approaches for Evaluation of Safety Risks in Coal Mines**" submitted by **Charan Kumar Ala**, Roll Number 513MN1020, is a record of original research carried out by him under my supervision and guidance in partial fulfillment of the requirements of the degree of **Doctor of Philosophy in Mining Engineering.** Neither this dissertation nor any part of it has been submitted earlier for any degree or diploma to any institute or university in India or abroad.

> Debi Prasad Tripathy Professor

Dedicated to my family

Declaration of Originality

I, *Charan Kumar Ala*, Roll Number *513MN1020* hereby declare that this dissertation entitled **"Qualitative and Quantitative Approaches for Evaluation of Safety Risks in Coal Mines"** presents my original work carried out as a doctoral student of NIT Rourkela and, to the best of my knowledge, contains no material previously published or written by another person, nor any material presented by me for the award of any degree or diploma of NIT Rourkela or any other institution. Any contribution made to this research by others, with whom I have worked at NIT Rourkela or elsewhere, is explicitly acknowledged in the dissertation. Works of other authors cited in this dissertation have been duly acknowledged under the section "References".

I have also submitted my original research records to the scrutiny committee for evaluation of my dissertation. I am fully aware that in case of any non-compliance detected in future, the Senate of NIT Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

July 24, 2019 NIT, Rourkela Charan Kumar Ala

Acknowledgment

During my research tenure at the National Institute of Technology, I have gained valuable experiences while meeting many people, colleagues and friends who helped me with my research along the way, either directly or indirectly. I take this opportunity to express my sincere appreciation and gratitude to them.

I would like to express deepest gratitude to my supervisor, Dr. Debi Prasad Tripathy for inspiring me to do this research and constantly guiding me through all the stage of the research work. I am greatly indebted to my supervisor for invaluable support, motivation and encouragement he has offering me in the completion of my Ph.D. study.

Further, I would like express my sincere thanks to Prof. S. Jayanthu, Prof. Md. Equeenuddin, Prof. H.K. Naik, and Prof. Pradip Sarkar, members of Doctoral Scrutiny Committee for their invaluable inputs from time to time.

I would like to extend my humble thanks to the Director, Dean (Academics), all the faculty members and staff of Department of Mining Engineering, National Institute of Technology, Rourkela for their kind support and encouragement throughout the research work.

I am grateful to all the mine officials of different coalfields whose participation made the questionnaires survey possible. I am greatly thankful to Mr. Rajagopal Sriram, Manager, Orient-3, Mr. J. Pradeep, Deputy Manager, Orient-3, Mr. N. Mahantha, Senior Manager, SECL, Mr. Ajay Tiwari, Senior Manager, CIL, Mr. V. Lakshmi Narayana, DDMS for their kind help and cooperation for this work.

I am greatly indebted to Sujeevan Agir and Susanth Panigrahi for their time and thoughtful help offered during programming. I would like to thank all my friends particularly Lazarus M for supporting me in all the activities throughout my career. I would also like to thank my parents, brothers and my wife for their countless help and encouragement. Lastly, I offer my regards to all of those who supported me in any respect during the completion of the thesis.

July 24, 2019 NIT Rourkela Charan Kumar Ala

Abstract

The safety in underground coal mines continues to be a major problem in the Indian mining industry. Despite significant measures taken by the Directorate General of Mines Safety (DGMS) to reduce the number of mining accidents in underground coal mines, the number remains high. To improve the safety conditions, it has become a prerequisite to performing risk assessment for various operations in Indian mines. It is noted that many research studies conducted in the past are limited to either statistical analysis of accidents or study of single equipment or operation using qualitative and quantitative techniques. Limited work has been done to identify, analyse, and evaluate the safety risks of a complete underground coal mine in India.

The present study attempts to determine the appropriate qualitative and quantitative risk assessment approaches for the evaluation of safety risks in Indian underground coal mines. This thesis addresses several important objectives as (i) to identify the type of safety risk analysis techniques suitable for evaluating various mining scenarios (ii) to identify and analyse the hazard factors and hazardous events that affects the safety in underground coal using the qualitative and quantitative approaches (iii) to evaluate the risk level (RL) of the hazardous factors/groups, hazardous events, and the overall mine using the proposed methodology.

In this research work, the qualitative techniques, i.e. Failure Mode and Effects Analysis (FMEA), Workplace Risk Assessment and Control (WRAC), and the quantitative techniques, i.e. Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) were applied in an underground coal mine to identify and analyse the hazard factors and hazard events. The analysis of FMEA and WRAC results concluded that the qualitative risk assessment is easy to execute and practical as they are not dependent on the historical data; rather they need experience and close examination. On the other hand, they may yield subjective results due to instinctive human assessment. The analysis of the FTA and ETA results concluded that the quantitative risk assessment could not be performed in Indian underground coal mines due to lack of probability, exposure, and consequence data.

To overcome the mentioned problems in qualitative and quantitative techniques, a methodology was proposed for evaluation of the safety risks of hazard events, hazard groups, and overall mine. The proposed methodology is the unification of fuzzy logic, VIKOR (In Serbia: VIseKriterijumska Optimizacija I Kompromisno Resenje, that means: Multi-criteria Optimization and Compromise Solution), and Analytic Hierarchy Process (AHP) techniques. Because of the imprecise nature of the information available in the mining industry, fuzzy logic was employed to evaluate the risk of each hazardous event in terms of consequence, exposure, and probability. VIKOR as was used to rank the evaluated risk of hazardous events. AHP technique helps to determine the relative importance of the risk factors. Therefore, AHP technique was integrated into the risk model so that the risk evaluation can progress from hazardous event level to hazard factor level and finally to

overall mine level. To reduce the calculation time significantly and to increase the speed of the proposed risk assessment process, a user-friendly Graphical User Interface (TRAM) was developed using the C# language through Microsoft Visual Studio 2015 and .Net libraries.

The proposed methodology developed in this thesis was applied to six underground coal mines. The results presented the risk level of hazard events, hazards groups and overall mine of six mines. The mine-5 has the highest risk level among the evaluated mines. The ranking order of the mines observed based on the overall risk level is mine-5> mine-1 > mine-2 > mine-3 > mine-6 > mine-4. The results of the proposed methodology were compared with DGMS proposed rapid ranking method. This is observed that the proposed methodology presents better evaluation than other approaches. This study could help the mine management to prepare safety measures based on the risk rankings obtained. It may also aid to evaluate accurate risk levels with identified hazards while preparing risk management plans.

Keywords: Safety risk assessment; Coal mine; FMEA; WRAC, FTA; ETA; Fuzzy logic; AHP; VIKOR; Graphical User Interface.

CONTENTS

CEI	RTIFI	CATE OF EXAMINATIONi	i
SUF	PERVI	ISORS' CERTIFICATEii	i
DEI	DICAT	rioni	V
DE	CLAR	ATION OF ORIGINALITY	V
ACI	KNOV	VLEDGMENT v	i
ABS	STRA	CTvi	i
LIS	TOF	FIGURES xi	i
LIS	TOF	TABLES xi	V
LIS	T OF	ABBREVIATIONSx	V
CH	APTE	R 1: INTRODUCTION	L
1.1.	Ba	ckground of the Problem	L
1.2.	Sta	tement of the Problem	2
1.3.	Ob	jectives and Scope of the Study	1
1.4.	Pla	n of the Study	5
1.5.	Org	ganization of the Thesis	5
CH	APTE	R 2: LITERATURE SURVEY	3
2.1.	Inti	roduction	3
2.2.	Ov	erview of Safety Risk Assessment and Management System	3
2.	2.1. 2.2. 2.3.	Definition of terms used in safety risk management)
2.3.	Ha	zard Identification14	1
	3.1. 3.2.	Hazard source/factors identification 12 Hazardous events identification 12	
2.4.	Saf	ety Risk Analysis)
2.	4.1.	Safety risk analysis techniques	l
2.5.	Lin	nitations of Safety Risk Analysis Techniques	3
	5.1. 5.2.	Qualitative vs quantitative	
2.6.	Sta	tus of Safety Risk Management in the Mining Industry	5
2.	6.1.	Legislative provisions in India and abroad	5
2.7.	Cri	tical Review)
2.8.	Ch	apter Summary	2
CH	APTE	R 3: RESEARCH METHODOLOGY	3
3.1.	Inti	roduction	3

3.2.	Qualitative Approaches	
3.2 3.2		
3.3.	Quantitative Approaches	49
3.3	.1. Fault Tree Analysis	49
3.3	•	
3.4.	Proposed Methodology	53
3.4	.1. Preliminary stage	56
3.4		
3.4		
3.4 3.4	1 8	
	-	
3.5.	Study Area	
3.5	· · · · · · · · · · · · · · · · · · ·	
3.5 3.5	1	
3.5	1	
3.5	▲ · · · · · · · · · · · · · · · · · · ·	
3.5	1	
3.6.	Application of the Developed Methodology	
3.7.	Chapter Summary	
СНА	PTER 4: QUALITATIVE AND QUANTITATIVE APPROACHES FOR SAFE	
	ASSESSMENT IN UNDERGROUND COAL MINES	
4.1.	Introduction	
4.2.	Data Collection	
4.3.	Qualitative Approaches	
		75
4.3		
43	.1. Failure Mode and Effects Analysis	
4.3	 Failure Mode and Effects Analysis Workplace Risk Assessment and Control 	75 81
4.4.	 Failure Mode and Effects Analysis Workplace Risk Assessment and Control Results and Discussion 	75 81 97
4.4. 4.5.	 Failure Mode and Effects Analysis	75 81 97 101
4.4. 4.5. 4.5	 Failure Mode and Effects Analysis	75 81 97 101
4.4. 4.5. 4.5 4.5	 Failure Mode and Effects Analysis	
 4.4. 4.5. 4.5 4.5 4.6. 	 Failure Mode and Effects Analysis	
4.4. 4.5. 4.5 4.5	 Failure Mode and Effects Analysis	
 4.4. 4.5. 4.5 4.6. 4.7. CHA 	 Failure Mode and Effects Analysis	
 4.4. 4.5. 4.5 4.6. 4.7. CHA 	 Failure Mode and Effects Analysis	
 4.4. 4.5. 4.5 4.6. 4.7. CHAI UND 	 Failure Mode and Effects Analysis Workplace Risk Assessment and Control Results and Discussion Quantitative Approaches Fault Tree Analysis Event Tree Analysis Results and Discussion Chapter Summary PTER 5: PROPOSED METHODOLOGY FOR SAFETY RISK ASSESSMENT ERGROUND COAL MINES	
 4.4. 4.5. 4.5. 4.6. 4.7. CHAI UND 5.1. 5.2. 	1. Failure Mode and Effects Analysis 2. Workplace Risk Assessment and Control Results and Discussion Quantitative Approaches 1. Fault Tree Analysis 2. Event Tree Analysis 2. Event Tree Analysis Results and Discussion Chapter Summary PTER 5: PROPOSED METHODOLOGY FOR SAFETY RISK ASSESSMENT ERGROUND COAL MINES Introduction Development of the Proposed Methodology	75 97 97 101 101 106 107 109 2 IN 111 111
 4.4. 4.5. 4.5 4.6. 4.7. CHA UND 5.1. 	.1. Failure Mode and Effects Analysis .2. Workplace Risk Assessment and Control .2. Workplace Risk Assessment and Control .2. Results and Discussion .1. Fault Tree Analysis .2. Event Tree Analysis .2. Event Tree Analysis .2. Event Tree Analysis .2. Event Tree Analysis .1. Results and Discussion .2. Event Tree Analysis .2. Event Tree Analysis .1. Results and Discussion .1. Chapter Summary PTER 5: PROPOSED METHODOLOGY FOR SAFETY RISK ASSESSMENT ERGROUND COAL MINES Introduction Development of the Proposed Methodology .1. Preliminary stage	

5.3. The	e Application of the Proposed Methodology	
5.3.1. 5.3.2.	Data collection Analysis and Results	
5.4. Dis	cussion	
5.4.1. 5.4.2.	Risk estimation and prioritization at the hazardous event level Risk evaluation at the hazardous group level and mine level	
5.5. Ch	apter Summary	
СНАРТЕ	R 6: CONCLUSIONS	
6.1. Co	ntributions of the Thesis	
6.2. Lir	nitations and Future Scope of the Research	
REFERE	NCES	
APPEND	IX A: Questionnaires	
APPEND	X B: AHP Questionnaire	
APPEND	IX C: Fuzzy Rule Base	
APPEND	IX D: Defuzzified Experts' Opinion Collected from the Mines	
APPEND	IX E: Average Pairwise Comparison Data Collected from the Mines	
LIST OF	PUBLICATIONS	

LIST OF FIGURES

Figure 1.1 Analysis of fatal and serious accidents in Indian mines (a) by major mineral (b) r type	
Figure 1.2 Fatality and serious injury rates in Indian coal mines	
Figure 1.3 Structure of the thesis	
Figure 2.1 Safety risk management process	13
Figure 2.2 Accident mechanism	14
Figure 3.1. The research methodology	44
Figure 3.2. Flowchart for conducting FMEA study	46
Figure 3.3. Flowchart for conducting WRAC study	48
Figure 3.4. Procedure of FTA	49
Figure 3.5. Procedure of ETA	53
Figure 3.6. The proposed risk assessment methodology	55
Figure 3.7. Risk tree model	57
Figure 3.8. Location of study areas	
Figure 3.9. Mine-1, Orient area, MCL	67
Figure 3.10. Mine-2, Orient area, MCL	68
Figure 3.11. Mine-3, Talcher area, MCL	69
Figure 3.12. Mine-4, Johilla area, SECL	70
Figure 3.13. Mine-5, Johilla area, SECL	71
Figure 3.14. Mine-6, Johilla area, SECL	72
Figure 4.1. Fault tree of roof fall on pump khalasi	103
Figure 4.2. Fault tree of fall of CHP bunker	
Figure 4.3. Fault tree of roof fall on explosive carrier	
Figure 4.4. Fault tree of rolling of LHD tyre accident	
Figure 4.5. Event tree for roof fall due to roof dressing	
Figure 4.6. Event tree for the conveyor belt fire	
Figure 4.7. Event tree for breakage of haulage rope	
Figure 4.8. Event tree for inundation due to barrier thickness failure	
Figure 5.1. Cause-wise analysis of fatal and serious accidents in coal mines from 2001 to 20)15113
Figure 5.2. Hazard identification at different levels for an underground coal mine	
Figure 5.3. The membership functions of probability, exposure, consequence and risk level.	
Figure 5.4. Algorithm of TRAM	
Figure 5.5. Architecture of TRAM	
Figure 5.6. A snippet of fuzzy logic	119
Figure 5.7. A snippet of VIKOR ranking method	
Figure 5.8. A snippet of the AHP method	
Figure 5.9. Snapshot of TRAM	
Figure 5.10. GUIs of a) ISO/CIL-Risk Matrix, b) DGMS-Risk Matrix, c) DGMS/SCCL Ris	
Score	
Figure 5.11. Admin tab	123
Figure 5.12. Risk evaluation of ground movement	130
Figure 5.13. Risk evaluation of transport machinery	130
Figure 5.14. Risk evaluation of machinery other than transport machinery	130
Figure 5.15. Risk evaluation of explosives - shot firing and blasting	131

Figure 5.16. Risk evaluation of electricity	131
Figure 5.17. Risk evaluation of dust, gas and other combustible materials	131
Figure 5.18. Risk evaluation of other causes - inundation	132

LIST OF TABLES

Table 2.1 Hazard identification techniques	11
Table 2.2 Hazard characteristics and effects in the mining industry	
Table 2.3 Risk rating for inadequate ventilation	
Table 2.4 Advantages and disadvantages of qualitative and quantitative methods	
Table 2.5 Hazard sources identified	
Table 3.1. Scales of risk parameters	
Table 3.2. 5×5-Risk matrix	47
Table 3.3. Scales for consequence and likelihood	47
Table 3.4. Symbols used in the construction of FTA	50
Table 3.5. Rules of Boolean algebra	51
Table 3.6. Saaty's AHP scale	63
Table 3.7. R.I values	64
Table 3.8. Geological and mining-related information of the study areas	65
Table 3.9. Accident statistics of mine-1	67
Table 4.1. FMEA of mining machinery in mine-1	75
Table 4.2. Risk ranking of hazards related to ground movement using WRAC tool	81
Table 4.3. Risk ranking of hazards related to rope haulage system using WRAC tool	84
Table 4.4. Risk ranking of hazards related to belt conveyor system using WRAC tool	86
Table 4.5. Risk ranking of hazards related to LHD using WRAC tool	87
Table 4.6. Risk ranking of hazards related to electricity using WRAC tool	89
Table 4.7. Risk ranking of hazards related to blasting operation using WRAC tool	91
Table 4.8. Risk ranking of hazards related to inundation using WRAC tool	92
Table 4.9. Risk ranking of hazards related to dust, gas and other combustible materials using	
WRAC tool	93
Table 4.10. Description of the accidents occurred in mine-1	101
Table 5.1. A six-point scales for indicator responses	
Table 5.2. Rating scale for risk parameters of an event	
Table 5.3. Rating scale for risk level of an event	
Table 5.4. Number of completely filled questionnaires collected	
Table 5.5. The risk level of hazard events for six mines	-
Table 5.6. The risk level of hazard groups at hazardous group levels	
Table 5.7. Ranking of hazard events for six mines	
Table 5.8. The weights of hazard factors at the hazardous group level	
Table 5.9. The consistency ratios of the risk parameters data	
Table 5.10. Improved risk levels with weights at the hazardous group level	
Table 5.11. The overall risk level of the mines	
Table 5.12. Comparison of risk levels evaluated using proposed methodology and rapid ranking	•
method	146

LIST OF ABBREVIATIONS

AHP	:	Analytic Hierarchy Process	
BCCL			
C		Consequence	
C.I	•	Consistency Index	
C.R	:	Consistency Ratio	
CIL	:	Coal India Limited	
CDS	:	Communication Dispatch System	
CHP	:		
DGMS		Directorate General of Mines Safety	
E	:		
ETA		Event Tree Analysis	
		Failure Mode and Effects Analysis	
		Failure Mode, Effects and Criticality Analysis	
FTA	:		
GUI	:		
HAZOP			
ILO	:		
ISO	:	International Organization for Standardization	
LHD	:		
MCDM	:		
MSHA	:	-	
MFs	:		
MCL	:	Mahanadi Coalfields Limited	
Р	:	Probability	
Q	:	Ideal Solution index	
RLs	:	Risk Levels	
RL _{HG}	:	Risk Level at hazardous group level	
R.I	:	Random Index	
RMR	:	Rock Mass Rating	
SSR	:	Systematic Support Rules	
SMP	:	Safety Management Plan	
SECL	:	South Eastern Coalfields Limited	
SMS	:	Safety Management System	
SDL	:	Side Discharge Loader	
TOPSIS	:	Technique for Order of Preference by Similarity to Ideal Solution	
TRAM	:	Tool for Risk Assessment in Mines	
VIKOR	:	In Serbia: VIseKriterijumska Optimizacija I Kompromisno Resenje, that means:	
		Multi-criteria Optimization and Compromise Solution	
W	:	Weight	
WRAC	:	Workplace Risk Assessment and Control	

CHAPTER 1

INTRODUCTION

1.1. Background of the Problem

As per International Labour Organization (ILO) (2018), more than 2.78 million workers die every year due to occupational accidents or work-related injuries. Furthermore, 374 million non-fatal work-related injuries or illnesses occur each year. Mining is renowned for being one of the most hazardous sectors in the world due to its inherent hazards and complex work environment. Mines are categorised as coal and non-coal and further subdivided into underground and surface mines. Analysis of fatal and serious accidents data in Indian mining industry during the years 2001–2017 is shown in Figure 1.1. Figure 1.1 (a) revealed that coal mining has the highest accident rate in 2017 as compared to other mining sectors. Figure 1.1 (b) revealed that the number of fatal and serious accidents in underground coal mines is higher than opencast coal mines (DGMS, 2018).

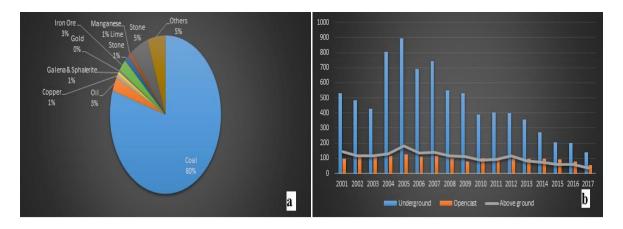


Figure 1.1 Analysis of fatal and serious accidents in Indian mines (a) by major mineral (b) mine type

After the nationalisation of coal mines in India, there was a sharp fall in the frequency rate of the accidents. In India, the DGMS has focused on prevention of accidents or incidents through rules, training and procedures and has achieved considerable success. Fatality rate and serious rate trends of coal mine accidents are represented in Figure 1.2 (DGMS, 2018). From the Figure 1.2 (a), one can observe that the death rate per 1000 persons employed was almost stagnant in the 80s and 90s. Consequently, to further improve the safety in mines, a tripartite forum at Ninth Conference on Safety in Mines held at New Delhi on February 2-3, 2000 has recommended for undertaking a formal risk assessment process aimed at reducing the likelihood and consequence of all kinds of accidents in mines (Padhi,

2004; Paliwal & Jain, 2001). The analysis of accident statistics after the introduction of Safety Management concepts in the Indian coal mines as represented in Figure 1.2 (b), (c), (d) revealed that there is a slightly decreasing trend in serious injury rate per 1000 persons employed and fatality rate per million tonnes production from 2001 to 2017. However, Figure 1.2 (b) reveals that the trend of fatality rates per 1000 persons employed is remained almost horizontal from 2001 to 2017. Although there has been significant progress in the coal mine safety since past few years; the present-day rate of accidents is still unacceptable. This reflects the gaps in current strategies employed in Indian mining industry and point out the requirement in adopting appropriate strategies to make mining safe.

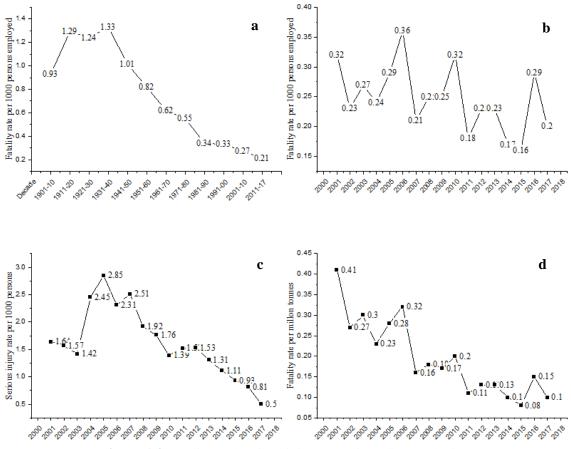


Figure 1.2 Fatality and serious injury rates in Indian coal mines

1.2. Statement of the Problem

Dynamic work process in the underground mining operations introduce not only safety issues but also health and environmental issues. The underground mine workers are exposed to various health and environmental hazards due to noise, dust, toxic gases and radiation. The health and environment factors may also create safety issues for the workers in the mine. For example, exposure of mineworkers to high levels of noise may lead to temporary/permanent noise induced hearing loss and may affect worker's behaviour at the

workplace. Short/long term exposure to radiation may cause cancer. The health issues of the mineworker may affect the performance of the worker and production of the mine and may increase the likelihood of performing unsafe acts. Short-term exposure to toxic gases lead to illness and continuous exposure to toxic gases lead to death. Environmental factor like, poor mine ventilation may lead to accumulation of methane in the workplace and may result in methane explosion in coal mines, which may result in loss of life and property. Long-term inhalation of dust can cause health risk and pneumoconiosis that affects the performance of workers.

Safety is one of the important issues in Indian underground coal mines, given that it deals with the safety of approximately 160000 employees (DGMS, 2015). Workers in underground coal mines are prone to several risk conditions during working which may endanger/cause loss of life, serious injury with the direct and indirect cost to employees and employers. Accidents in underground mines can often have serious catastrophic consequences. Because of the accidents in underground coal mines, the following consequences may arise:

- Loss of lives and human suffering;
- Inconvenience caused to injured people and others;
- Compensation paid to the deceased family;
- Compensation paid for medical treatment and disability payments; and
- Production loss.

Most of the mining accidents are preventable – they do not just happen; they are caused. Unsafe acts and unsafe conditions of work lead to accidents in underground coal mines (Tripathy, 1999, 2010; Tripathy & Patra, 1998; Zhang et al., 2018). Accidents usually occur as a combination of factors. The three main factors being the worker's environment, the equipment, and the worker (Guha & Gangopadhyay, 2001). Many hidden factors cause accidents (Ridley & Channing, 2003). The hidden factors may include active causes, latent causes and indirect causes, which contribute to mine accidents or incidents. The fact is that underground coal mining is inherent of hazards and therefore complete elimination of risks is inevitable. Identifying, ranking and targeting the hazard, which causes mine accidents or incidents or incidents or incidents. To regulate the hazards in mines, application of safety risk management has been proposed, implemented and mandated by Australian, New Zealand,

Canada, UK, USA and South African mining industries over the last few decades. In Indian mining industry, it was mandated only after the revision of the Coal Mines Regulations in 2017 (Ministry of Labour and Employment, 2017).

An effective risk assessment is required to develop practical risk management. The essential elements of risk assessment are hazard identification, risk analysis, and risk evaluation. Though the framework of the risk management is similar in all the practising countries, the risk assessment techniques used for evaluation are different as each technique has its own purpose and outcome. Marhavilas et al. (2011) stated that there are many appropriate risk assessment techniques for any circumstance and the choice has become more a matter of taste.

Joy (2004) stated that the qualitative risk assessment is commonly preferred in the Australian mining industry. Some research studies have shown that Rapid Ranking Method is the only qualitative technique adopted in Indian mining industry (DGMS, 2002, 2016; Guha & Gangopadhyay, 2001; Verma & Chaudhari, 2016b) and a very little research has been done in the area of application of risk assessment techniques for underground mining operations. As the outcome of the different risk assessment techniques varies, it is necessary to investigate safety risk in Indian underground coal mines using different qualitative and quantitative risk assessment techniques.

The qualitative and quantitative risk assessment techniques were actually developed for very hazardous industries. Extensive literature is available on the area of application of risk assessment techniques for hazardous industries (An et al., 2011; Marhavilas et al., 2011; Verma & Chaudhari, 2016b; Zeng et al., 2007). This available literature summarizes that the qualitative techniques only produce subjective results and the quantitative techniques are highly dependent on the availability of the accident or incident data. Unfortunately, in the present Indian mining industry, such data are hard to collect or may not exist. This shows that it is hard to conduct a probabilistic risk assessment in Indian mining industry. Therefore, it is necessary to develop a new risk assessment methodology to assess safety risks in underground coal mines.

1.3. Objectives and Scope of the Study

The main aim of this research is to determine an appropriate risk assessment technique for evaluation of safety risk in Indian underground coal mines. To address the research issues mentioned above, the following objectives are established in this thesis:

- To assess safety risks in underground coal mines qualitatively using FMEA and WRAC techniques.
- To assess safety risks in underground coal mines quantitatively using FTA and ETA techniques.
- To develop a risk assessment methodology for evaluation of safety risks in large underground coal mines using fuzzy logic, VIKOR, and AHP techniques.
- To develop graphical user interface for risk assessment in underground coal mines.

1.4. Plan of the Study

To accomplish the objectives of the thesis, the work was planned in the following steps:

- Visited Mahanadi Coalfields Limited (MCL), South Eastern Coalfields Limited (SECL), Bharat Coking Coal Limited (BCCL), Coal India Limited (CIL), and DGMS headquarters to gain knowledge on the risk assessment methodologies that are being used in Indian mines and to collect the accidents data.
- Identified the possible risk factors and hazards responsible for accidents based on the extensive literature survey, field investigation, and data collection.
- Identified the qualitative and quantitative risk assessment techniques suitable for the mining industry from the extensive literature survey.
- Used the FMEA, WRAC, FTA and ETA techniques to identify hazards and to evaluate safety risks.
- Developed a new methodology with an aim to overcome the drawbacks of qualitative and quantitative risk assessment techniques applied in this study.
- Developed questionnaires to assess the risk factors influencing safety in mines.
- Visited some accident-prone mines for the interview of workers with the help of developed questionnaires and discussions with the safety officer/mine management and safety officials in the studied mines.
- Assess the risk level of the studied mines using the data collected from the developed questionnaires.
- Developed a Graphical User Interface (GUI) for the new methodology in C# to reduce the computational time and to increase the speed of risk assessment process.

1.5. Organization of the Thesis

The research work undertaken in this study (evaluation and prioritization of safety risks in underground coal mines) falls within the extensive area of safety management systems. The

research work carried out is presented in six chapters and the structure of the thesis is represented in Figure 1.3. A chapter wise summary of the thesis is given below:

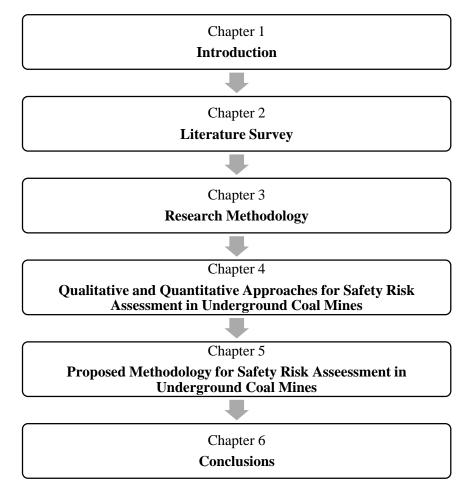


Figure 1.3 Structure of the thesis

• Chapter 1 (Introduction):

This chapter presents the background and statement of the problem, objectives and plan of the present study and the organization of the thesis.

• Chapter 2 (Literature Survey):

This chapter presents the comprehensive review of literature carried out by global researchers, academicians and mining organizations on hazard identification, safety risk analysis and risk management in the mining industry for evaluation of safety risks in underground coal mines.

• Chapter 3 (Research Methodology):

This chapter describes the comprehensive methodology developed for evaluating safety risks in underground coal mines. This includes the outline of the FMEA, WRAC, FTA, ETA and proposed methodology. The description of the preliminary, design, fuzzy logic-risk estimation, VIKOR-risk prioritization, and AHP-risk evaluation stages of the proposed methodology were presented. The details of the study area and the application of the comprehensive methodology developed is also presented.

• Chapter 4 (Qualitative and Quantitative Approaches for Safety Risk Assessment in Underground Coal Mines):

This chapter deals with the results and discussions of the qualitative and quantitative risk assessment approaches, i.e. FMEA, WRAC, and FTA, ETA applied to mine-1.

• Chapter 5 (Proposed Methodology for Safety Risk Assessment in Underground Coal Mines):

This chapter describes the application stages of the proposed methodology to the mines and the modules of the GUI developed. This chapter also deals with the results and discussions of the proposed methodology applied to evaluate the safety risks at hazardous event level, hazardous group level and overall mine level in mine-1, mine-2, mine-3, mine-4, mine-5, and mine-6.

• Chapter 6 (Conclusions):

This chapter presents the conclusions drawn from the research work. This chapter also outlines the contribution of the work for the mining industry and future scope of the study.

CHAPTER 2 LITERATURE SURVEY

2.1. Introduction

This chapter presents the comprehensive review of literature carried out by global researchers, academicians, and mining organizations on hazard identification, safety risk analysis and risk management in the mining industry for evaluation of safety risks in underground coal mines. This extensive review aims to identify the hazard sources/factors that influence the safety in underground mines, to categorize literature of the risk analysis techniques and to gain knowledge on the status of the safety risk management in the mining industry. It is also aimed to identify the research problems related to qualitative and quantitative risk analysis techniques, which would form the basis for developing a methodology for assessing risks in underground coal mines. The research problems identified therein.

2.2. Overview of Safety Risk Assessment and Management System

Safety risk assessment and management is a systematic approach taken to eliminate or mitigate risk, by identifying hazards and implementing controls in the workplace (DGMS, 2002). In simple terms, risk management is a thorough analysis of what could cause harm in an activity, so that one can review the current precautions taken and increase if required to prevent harm. Over the years, different industries and various international organization for standards have developed varieties of risk management standards and guidelines. As most of the developed standards and guidelines are based on specific industry experience, their goals, methodology and definition vary from industry to industry. Presently, risk management is present in almost all type of industries.

Komljenovic and Kecojevic (2007) did an in-depth bibliographic review of various risk management and assessment techniques used in different industries and represented that few standards and guides were generic and can be applied in any industry. The design and implication of the risk management system were influenced by the varying needs of an organization and its specificities (Komljenovic et al., 2008). AS/NZS 4360: 1999 was revised in 2004 (AS/NZS, 2004) and now replaced by International Standard (ISO 31000,

2009, 2018). The International Organization for Standardization (ISO) has presented applicability of 31 risk assessment tools in risk management standards (IEC 31010, 2009; ISO 31000, 2018).

WRAC, FMEA, Hazard and Operability Study (HAZOP), 5×5 -risk matrix, preliminary hazard analysis, bow-tie analysis, FTA and ETA are the popular risk analysis techniques included in the mining risk management guidelines like NSWDTI (2011), Joy and Griffiths (2007) and Iannacchione et al. (2008). DGMS (2002) recommended adopting rapid ranking method (also known as Fine-Kinney method) in the Indian mining industry. Sabir et al. (2012) developed a 5×5 -risk matrix for use in CIL, a major public sector company. DGMS (2014a, 2014b) promoted the use of personal risk assessment (Take 5) and 5×5 -risk matrix.

2.2.1. Definition of terms used in safety risk management2.2.1.1. Hazard

ISO vocabulary guide (2009) defined "hazard as a potential source of harm, injury or loss". Hazard source is a location or a condition that gives rise to a hazard. A hazardous event is a situation that can lead to the presence of a hazard. The workplace hazards can be classified as health hazards, safety hazards, biological hazards, chemical hazards, ergonomic hazards, physical hazards, environmental hazards, and economic hazards (CCOHS, 2017; OSHA, 2017; Tchankova, 2002). Safety hazards in mines may arise from worker's unsafe acts or unsafe practices or unfit equipment or unsafe working conditions.

2.2.1.2. Safety

Safety is defined as a state in which the risk of harm to persons or damage to property is limited to a tolerable level (IS: 18001, 2007). To define and to evaluate the safety, it is essential to link safety with risk, as safety is not quantifiable. A high level of risk corresponds to low safety, and a low level of risk corresponds to high safety (Suddle, 2009). The advantage of linking safety to risk is, risk can be quantified and evaluated to check whether the risk level is acceptable or not.

2.2.1.3. Risk

The risk is defined as the chance of something happening that will have an impact on the objectives (HB 436, 2004). Fundamentally, the risk is the chance that a safety hazard will result in an unwanted accident or incident. Mathematically, the risk is the probability that

the exposed hazard will result in the accident and consequences. Fine (1971) devised the mathematical formula for risk score as shown in equation 2.1:

```
Risk Score = Consequence \times Exposure \times Probability (2.1)
```

Where, Consequence is the most probable results of a potential accident, including injuries and property damage. Exposure is the frequency of occurrence of the hazard-event. Hazard event is the undesired event, which could start the accident-sequence. Probability is the likelihood that, once the hazard-event occurs, the complete accident-sequence of events will follow with the necessary timing and coincidence to result in the accident and consequences.

2.2.2. Risk assessment in safety risk management2.2.2.1. Hazard identification

The hazard identification step aims to generate a complete list of hazards and their associated risks that might have an impact on the success of each of the objectives identified in the context stage (ISO 31000, 2018). To identify risk, one must first know what hazards are present, and what potential harm is associated with the hazard. Therefore, hazard identification is used instead of risk identification. Canadian Standards Association (CAN/CSA, 2000) spelt out hazard identification as "the process of determining that a hazard exists and defining its characteristic".

The process of hazard identification is possibly the most crucial step of the risk assessment process, as the main causes are identified in this step only and when a cause is not identified, it cannot be actively managed (Greene & Trieschmann, 1981; Sabir et al., 2012; Tchankova, 2002). The common hazard identification techniques are shown in Table 2.1 (Glossop et al., 2000; Mannan, 2012).

As most of the hazard identification techniques are generic, they can be used to identify hazards in any workplace. However, hazards may vary from one workplace to another and that is the reason why skilled experts experience is essential to identify all the hazards in a given workplace accurately. The hazard identification process should consider the entire life cycle of job and potential impacts on workers, machine and environment. A systematic process starts at the objectives of the context establishment to generate a comprehensive list of hazards. The general steps in hazard identification are as follows (HB 436, 2004):

• Select the job to be evaluated,

- Divide the job into necessary steps,
- Develop the list of expected hazards associated with each step of the job, and
- Develop the list of risks associated with the identified hazards.

Table 2.1 Hazard identification techniques

Informal Approach	Formal Approach
Checklists	Failure Mode and Effects Analysis
What-If analysis	Event Tree Analysis
Historical accident and incident records	Fault Tree Analysis
Personal observation, interviews	Workplace Risk Assessment and Control
Safety committee meetings, informal meetings	Job Hazard Analysis
Personal experience	Bow-Tie Analysis
Brainstorming	Management Oversight Risk Tree
Consultation with workers	Preliminary Hazard Analysis
Safety audits	Hierarchical Task Analysis
	Hazard Identification and Ranking
	HAZOP
	Hazard Identification - HAZID

2.2.2.2. Risk analysis

Risk analysis is about developing an understanding of the risks associated with the hazards identified during the hazard identification process (ISO 31000, 2018). Risks associated with the identified hazards need to be assessed to find out the severity of the risk with the current controls employed. Risk should be assessed considering the following three elements:

- Exposure to the hazard causing an accident,
- Consequences arising from the accident, and
- Probability of the accident.

Based on the assessment of these three elements, the risks of the identified hazards are calculated and ranked. The risk analysis process provides an input to risk evaluation step and helps employers to make decisions as to what risks or hazards need to be controlled by selecting the appropriate risk treatment strategies and methods. Risk analysis may be carried out to a varying degree of detail, depending upon the risk, the purpose of the analysis and the data, information and resources available (HB 436, 2004). Tixier et al. (2002) studied risk analysis methodologies and categorized them into two groups: qualitative and quantitative techniques. Qualitative risk assessment techniques use relative values for consequence and probability to evaluate the level of risk in terms of high, medium, and low

levels. They are based both on systematic estimation process and experience of the expert, and they are more suitable to calculate low complex systems. On the other hand, quantitative risk assessment techniques use actual statistical values for consequence and probability to evaluate the level of risk. They are suitable for highly complex systems (IEC: 31010, 2009; Marhavilas et al., 2011; Ramona, 2011). The operation of the risk assessment techniques is presented in many works of literature (Ayyub, 2014; Bahr, 2014; Ericson, 2005; Harms-Ringdahl, 2003; ILO, 2013; Mannan, 2012; Tripathy, 1999, 2010).

The popular qualitative techniques are FMEA (BSI, 1991a; Dhillon, 1992; MIL-STD, 1980; Stamatis, 2003); WRAC (Joy, 1994; Sabir et al., 2012; Vivek et al., 2015). The popular quantitative techniques are FTA (BSI, 1991b; Ericson, 1999; Lee et al., 1985; Marhavilas et al., 2014; Reniers et al., 2005; Vesely et al., 1981); ETA (Beim & Hobbs, 1997; Hong et al., 2009; Marhavilas et al., 2014). In techniques like FTA, ETA, FMEA and WRAC, hazard identification is the starting point and the risk analysis is the final output.

2.2.2.3. Risk evaluation

The risk evaluation aims to make decisions, based on the results of risk analysis, about which risks need treatment and treatment priorities (ISO 31000, 2018). In the risk evaluation process, the level of risk found during the evaluation is compared with the risk criteria established in the context stage. If the level of risk is low or negligible, then the risk evaluation can lead to a decision to continue the existing controls and not to treat the risk. If the level of risk is medium or high, then the risk evaluation can lead to a decision about the risk treatment controls to be implemented to reduce or eliminate the risk. In some cases, further analysis may be needed (ISO 31000, 2018).

2.2.3. Safety risk management process

The safety risk management process that allows the systematic identification of hazards to the implementation of risk controls, communication and monitoring for control effectiveness is shown in Figure 2.1 (IS: 18001, 2007; ISO 31000, 2018). Establishing the context, risk assessment and risk treatment are the three major processes in the safety risk management system. The following tasks are involved in the context establishment phase (ISO 31000, 2018; Mullai, 2006):

- Define the task,
- Select a risk analysis team,
- Define the objectives,

- Identify the stakeholders,
- Define the external and internal parameters,
- Define the scope and limits of the task,
- Select method or technique and
- Collect data.

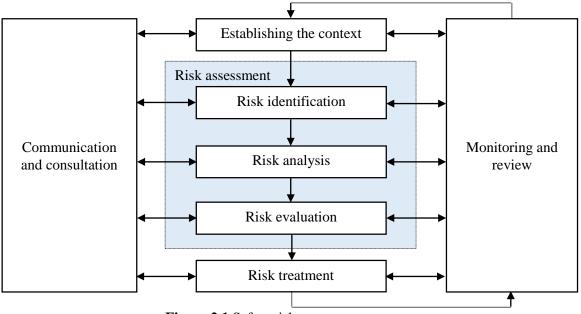


Figure 2.1 Safety risk management process

As per ISO vocabulary guide (2009), risk assessment is defined as "the overall process of risk identification, risk analysis, and risk evaluation". It aims to evaluate the potential risks associated with an activity systematically. The output of the risk assessment will be the input to the decision-making process of the industry (IEC: 31010, 2009).

Risk treatment involves identifying and evaluating treatment options for modifying risks, preparing and implementing treatment plans. The following are the risk treatment options, also known as 'Hierarchy of Controls' (NSWDTI, 2011):

Steps in Hierarchy of Controls	Risk treatment techniques	
Elimination: completely remove the hazard.	Risk elimination	
Substitution: replace the hazard.	Risk mitigation	
Engineering: isolate people from hazard using engineering	Risk mitigation	
devices.		
Administration: control the hazard using training, procedures.	Training program	
Personal protective equipment's: isolate people from hazard	Company	
using hard hats, boots, gloves, safety glasses, etc. org		
Safe human behaviour: control the hazard with awareness, instructions, and compliance with rules and procedures.	Company organization	

2.3. Hazard Identification

Presence of hazard is the main cause of the accidents as shown in Figure 2.2. As hazards are the main identifiable cause of the accidents in workplaces, its control will offer a great chance of reducing injury or accident. Therefore, prior knowledge of the type of hazards present in the workplace is required to evaluate the safety risks effectively. Rasche (2001b) presented the hazard characteristics and effects in the mining industry as presented in Table 2.2.

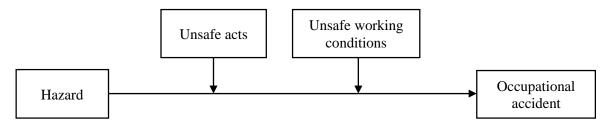


Figure 2.2 Accident mechanism

Hazard characteristics	Effects
Single concentrated	Often - Explosives magazines, fuel and chemical reagents storage,
hazard sources	transportation of blasting materials throughout the mine
Distributed sources of	Always - throughout the mine - geological, environmental,
hazards	mechanical
Chemical toxicity	Often - beneficiation plants, reagent mixing plants, tailing dams,
Chemical toxicity	chronic ill health effects well documented for the mining sector
Fires	Often – mobile and fixed equipment, beneficiation plants, electrical
Thes	installations, fuel and tyre storage extreme fire if fire underground
Explosions	Sometimes – results from fires, accidents from blasting or preparation
	of blasting agents, fuel storage, the extreme risk if fire underground
Radioactivity	Rarely – except for uranium mines and associated beneficiation plants
Changing configuration	Always - transportation of ore and waste materials, different ground
Changing configuration	conditions as mine progresses
Human error	Important
Environmental pollution	Considerable – regional & national, short, medium and long-term
potential	
	Complex processes with few redundancies- considerable exposure to
Design considerations &	inherent hazards (geological conditions) - facilities both above and
physical characteristics	underground – usually in remote locations. Very vulnerable to natural
	events – cyclones, flooding.

Table 2.2 Hazard characteristics and effects in the mining industry

A hazard may originate from different sources and can take many forms. Therefore, it is essential to identify the sources of the hazards and the scenarios in which they may originate. The identification of hazard source includes an unsafe act of worker, an unsafe condition of machinery or equipment, and an unsafe working environment. The interactions among hazard sources is the source of safety issues. The hazards can be identified using two types of approaches (Kumamoto & Henlye, 1996): (i) informal approach (ii) formal approach.

The informal approaches were based on previous accident and injury data and operational history. In this approach, the data are analysed after the occurrence of an accident event. The formal approaches were based on hazard identification techniques. In this approach, the data can be analysed either before or after the occurrence of an accident event. Khanzode (2010) classified the hazard identification techniques as backward tracking, forward tracking and morphological methods. FTA is an example of backward tracking method. The hazard identification in FTA starts with an accident event and ends at determining the root causes of the accident event. ETA is an example of forward tracking method. The hazard identification in ETA starts with an initiating event selecting from the accident data and ends at developing the models of linear paths using the scenario development techniques.

In morphological methods, the search is focused on potential hazardous elements and potential targets in the work system (Khanzode, 2010). The examples of morphological methods are HAZOP, FMEA, Failure Mode, Effects and Criticality Analysis (FMECA), Energy analysis, Management Oversight and Risk Tree, Deviation analysis, Change analysis and Comparison analysis. The application of formal approaches to identify hazards in the mining industry is very rare.

2.3.1. Hazard source/factors identification

The causes of underground coal mine accidents identified from the various literature were as follows:

Leigh et al. (1990) studied the incident reports of New South Wales coal mines from 1986-1988 and identified the personal and environmental factors associated with the accident losttime injuries. The authors concluded that the majority of the accidents in underground mines was due to various machinery or equipment.

Mandal and Sengupta (2000) analysed the fatal accidents in Indian coal mines and identified the causes of accidents coal mines. The causes identified were roof and side fall, haulage accident, conveyor accident, other transport machinery, explosives, electricity, dust and gas accident, inundation, and other accidents.

Singh and Sen (2001) stated that the main safety problems in underground mines arise from ventilation, dust and fumes, and noxious gases.

Donoghue (2004) reviewed the hazards in the mining industry and listed the common causes of fatal accidents as follows: roof fall, explosions, inundation, air blast, fires, mobile equipment accidents, fall of an object from the height and electrocution.

Padhi (2004) analysed the fatal accidents in coal mines from 1994-2001 and concluded that majority of the accidents were caused by roof fall and rope haulage.

Paul and Maiti (2005, 2008) studied the role of socio-technical and personal characteristics on work injuries in mines and concluded that socio-technical variables like social support, work hazards and safety environment were the main factors in occurrences of the accidents/ injuries in mines.

Burgess-Limerick and Steiner (2007) studied the injury narratives reported to the Mine Safety and Health Administration (MSHA) and identified five hazards associated with underground coal mining equipment. The identified hazards were rock falling from the supported roof, collisions while driving underground vehicles, incorrect operation of bolting machine controls, handling continuous miner cable and travelling in underground vehicles on rough roadways.

Iannacchione et al. (2008) presented the strata instabilities, explosions, powered haulage, fire, equipment failure and slip or fall of person as the hazard types associated with the multiple fatality events in US mineral industry.

Asia Monitor Resource Centre (2010) along with South Asian Research and Development Initiative and the International Confederation of Free Trade Unions carried out an occupational safety risk assessment in an Indian mine. Explosive gas, heat, low oxygen, roof fall, side fall, electrical hazards, presence of methane, accident due to unauthorized Side Discharge Loader (SDL) operations, haulage rope breaking, run over by coal tubs, haulage over speeding, non-availability of roller pulleys and guide pulleys, and non-provision of safety equipment were the safety hazards identified by the workers in hazard mapping exercise.

Kunar et al. (2010) assessed the job-related hazards influencing occupational accidents in two underground coal mines. The authors identified the safety issues among mine workers using an epidemiologic investigation as a risk analysis tool. The results concluded that poor

working conditions, material handling and ground control were the main job-related hazards.

Khanzode et al. (2011a) studied the accident data collected over 15 months from an underground coal mine and concluded that hazards related to ground-fall, roadways, housekeeping, machinery and materials were the recurring hazards in underground coal mines.

Bhattacherjee et al. (2011), Kunar et al. (2008) listed hand tool related, material handling, machine related, environment/work-related conditions, strata control, electrical equipment, haulage and blasting as the job-related hazards in Indian underground coal mines.

Dash et al. (2017) stated that 60 accidents with 10 or more fatalities per accident have occurred in the Indian mining industry between 1901 and 2016. The main hazard sources identified were explosion (25 accidents), inundation (18 accidents), roof/side fall (11 accidents) and fire (3 accidents).

Zhang et al. (2018) analysed the accident injury data of the US mining industry from 2000 to 2016 to find the root causes of the accidents and identified 126 unsafe conditions and 98 unsafe behaviours related to electrical, explosion, fire, inundation, haulage, machinery, roof fall, and other type of accidents.

2.3.2. Hazardous events identification

The literature identified on in-depth analysis of the causes of roof fall, machinery, inundation, electricity, and dust, gas and other combustible materials is very limited.

2.3.2.1. Roof fall

Biswas and Zipf (2003) reviewed the ground fall related accidents in the US mining industry during 1984-1999 and organised them using the taxonomic analysis. The authors presented the root causes of the ground fall accidents using the taxon tree.

Based on the analysis of accidents from 1901 to 2000 in Indian mines, **Kejriwal (2002)** cited the following as the main causes for the roof and side fall accidents in Indian underground coal mines:

- the delay in securing freshly exposed roof and sides of working places;
- poor knowledge of Systematic Support Rules (SSR);
- improper inspection after shot firing;

- failure to provide a fence at the entrance of unauthorized places; and
- inadequate examination and testing of roof and sides.

2.3.2.2. Machinery

Helander et al. (1983) studied the injury data of 600 roof-bolter accident to assess the characteristics of roof bolting accidents. The common causes identified from the analysis were: rock fall on operator, struck by machine part, caught on or beneath the machine, activating a machine part resulting in injury to fellow operator, struck by flying object, slip and fall while using the machine, one-operator trams into another operator, ruptured hydraulics and lifting or pulling objects.

Ashworth et al. (**1997**) pointed out caught between tubs, fall of materials, coupling/uncoupling of tubs, runaway of tubs, derailment, collision of tubs, fall of roof/side, fall of men as the hazards in the rope haulage transport system.

Burgess-Limerick and Steiner (2006), Burgess-Limerick (2006, 2011) studied the injury narratives from different underground mines in New South Wales and identified hazards associated with underground coal mining equipment. The common hazards associated with underground coal equipment were being struck by and being caught between while drilling or bolting on bolting machine or continuous miner. The less common hazard with high consequence was contact with hydraulic fluid.

Dhillon (2009) reviewed the mining equipment accidents in US mining industry and presented the primary causes of equipment accidents as follows: poor ingress/egress design, restricted visibility, unguarded moving parts, poor control display layout, poor design or redesign, exposed sharp surfaces and exposed wiring and hot surfaces.

Kecojevic and Nor (**2009**) examined the US underground mining accident data from 1995 to 2007 to identify the hazards associated with equipment-related fatal accidents. The hazards identified for roof bolter were working under unsupported roof, failure to follow proper maintenance procedure, failure to provide safe working conditions. The hazards identified for Load Haul Dumper (LHD) were safe working conditions and failure to set parking brake/chock.

Ruff et al. (2011) examined 562 serious accidents data of the US mining industry from 2000 to 2007 to find the contributing factors to the accidents, especially equipment-related

accidents. The results concluded that the most severe accidents have occurred while operating or maintaining the machines.

2.3.2.3. Electricity

Cooley and Hill (1981) applied FTA to identify the root causes of the electrical accidents in the metal and non-metal mines and suggested proper earthing practices for mine power systems.

Hill and Stanek (1981) applied the FTA and ETA to assess the safety and reliability of mine power systems. The results showed that poor design of power systems was the main cause of the majority of occurred accidents.

2.3.2.4. Spontaneous combustion and inundation

Lang and Fu-bao (2010) identified 42 influencing factors that lead to spontaneous combustion of coal seams.

Luo and Liu (2010) highlighted the importance of risk management in coal mines and pointed out that water, gas, coal dust, fire, and roof fall as the five natural disasters causing hazard factors. The authors also analysed the inundation accident in an underground coal mine and presented the causes of accident as lack of technical personnel, lack of inspection, lack of supervision, using of improper explosive devices and illegal operation of mine.

2.4. Safety Risk Analysis

The way in which risks are perceived is strongly correlated with the way in which they are calculated (Wilson & Crouch, 1987). Over the years, various researchers have proposed different safety risk analysis methodologies for evaluating the risk in the workplace. Lost-time injury rates, fatal accident rates, severity index, and occurrence probability are the common risk measures used to estimate the risk of unwanted events. Various distribution-based models were also applied to investigate the risk level in mines.

Kerkering and Mcwilliams (1987) applied the Inter-Arrival method and Maximum Likelihood Estimators to index the mine safety.

Maiti and Bhattacherjee (1999) studied the 4-year injury experience data of an underground coal mine in India and applied binary logit and multinomial logit analysis to evaluate the risk of occupational injuries to underground coal mine workers.

Maiti (2003) applied the logistic regression model to calculate the risk indices for Indian underground coal mines.

Düzgün and Einstein (2004) assessed and managed the roof fall risks of 12 underground coal mines in the Appalachian region using risk analysis and decision analysis methodology. The authors quantitatively calculated the risk of roof fall as the product of probability and consequence and managed the calculated risk using the decision analysis methodology. In this study, the authors used the time intervals between the roof fall accidents, the number of roof falls in each year data for weighing probability and the relative cost criterion of major attributes of roof fall like fatality, disability, injury, and equipment damage, and emergency operations for determination of consequence. The application of the methodology to case study mine showed that the proposed technique was a robust method for coping with uncertainties of the associated risks.

Düzgün (2005) assessed and managed the roof fall risks of five underground coal mines in Zonguldak coal basin using the methodology proposed by Düzgün and Einstein (2004).

Maiti and Khanzode (2009) developed a relative risk model for roof and side fall fatal accidents in Indian underground coal mines using a log-linear analysis of two-way contingency table. Potential failures, the relative risk of fatalities and the safety measure effectiveness were obtained as outputs of the developed model and were used as key safety performance indicators of the roof and side fall accidents in underground coal mines. The authors validated the proposed model using six years' data obtained from coal mines, and the results indicated that current safety measures in mines were mainly dependent on the safety performance, and the preventive measures were not based on the assessed risk.

Sari et al. (2009) proposed a methodology to establish stochastic modelling of accident risks associated with an underground coal mine. The authors used fitting appropriate distribution to model the frequency and consequence of the accident, calculated the risk levels using the Monte Carlo simulation and predicted using the time series analysis. One important conclusion was that the number of accidents followed a Poisson distribution. Time series analysis results showed that no change in risk level for the next five years.

Khanzode et al. (2011a) proposed a new methodology for evaluation and monitoring of recurring hazards in underground coal mines. In the proposed methodology, the authors identified the recurring hazards by using inspection reports and characterised the identified hazards in terms of Weibull-distribution based hazard rate, Poisson-distribution based

cumulative risk of occurrence and monitored hazard occurrences using Weibull-distribution based control charting.

Khanzode et al. (2011b) developed an injury count model and injury risk model for the overall work system and derived five statistical indices for quantifying the occupational injury risks. The indices developed in this study were the potential number of injuries, relative risk of injury, effectiveness of safety system, estimated man-days lost and potential man-days lost.

Chen et al. (2012) studied the trend of coal mine accidents in China using the multidimensional statistical analysis. In this study, the authors classified the accidents as gas explosion, poisoning and suffocation, coal and gas outburst, coal dust explosion, fire, mine, inundation, roof fall, transport and hoisting accident, blasting accident and others. The authors also presented the direct causes of the accidents. The analysis results showed that the priority should be given to coal and gas outburst, mine water accident, and gas explosion while conducting safety management.

2.4.1. Safety risk analysis techniques

Researchers use risk analysis techniques to evaluate risk systematically. Risk analysis techniques are divided into two categories (i) qualitative (ii) quantitative techniques. In qualitative techniques, the probability of a risk event and consequence of the risk are calculated using the experts' judgement, and the output of the risk level was presented using non-numeric data. On the other hand, quantitative techniques are based on the past available accident data and the output of the risk level was presented using a numeric value. Few modelling techniques like FTA, ETA can be used to identify hazards and to evaluate risk either qualitatively or quantitatively.

2.4.1.1. Qualitative techniques

Nelson (1986) developed qualitative fault trees for studying the root causes of the inherent fire safety in a coal mine.

Tripathy and Patra (1998) categorised the risks associated with underground coal mines into three groups namely pre-production, production and post-production. The risks presented in the production stage were haulages, fall of materials, work with hand tools, electrocution, roof fall, explosion, machinery, noxious atmosphere, water inrush and outburst. The authors also presented scales for probability, exposure, consequence and total risk in coal mines.

Selçuk et al. (2000) evaluated the coal mine accident data using the risk assessment techniques. The analysed results concluded the causes of accidents as follows: suffocation by gases, gas and dust explosion, roof fall, fire, handling material, powered haulage, inundation, electricity, accident due to machinery, accident due to falling objects, and slip or fall of person. In this study, to evaluate the risk, frequency (number of accidents per month) was expressed as a Poisson distribution and severity (days lost) was expressed as an exponential distribution. Risk classification schemes were plotted to explain the effects of different characteristics on variation of frequency and severity.

Donoghue (2001) illustrated the qualitative and semi-quantitative risk assessment matrices. The authors used a walk-through survey of an underground metal mine to describe the qualitative risk assessment matrix and used the element from the existing epidemiological studies of hazard-disease combinations in mining and mineral processing to describe the quantitative risk assessment matrix.

Guha and Gangopadhyay (2001) presented the results of a pilot study taken to test the application of risk management in the Indian mining industry. A sample of risk rating results is shown in Table 2.3. From the results, it could be observed that multiple hazards had the same risk level, which made it hard to prioritize the hazards.

Hazard	Hazard Mechanism				Risk
Air leakage	Air leakage Leakage through doors and windows		5	5	125
through airlock	through airlock Leakage through head gear structure		5	5	125
Improper	Improper Poor workmanship in installation of brattice and ducting		5	5	125
distribution of	distribution of Inadequate monitoring of face ventilation		5	5	125
air to faces	air to faces Poor discipline on maintaining brattice and ducts		5	5	125

Table 2.3 Risk rating for inadequate ventilation

Lind (2005) conducted a risk analysis of underground coal mine pillar extraction using a 5×5 -risk matrix and used Analysis of Pillar Extraction Potential (A-PEP) tool to predict the success of conducting pillar extraction. The main high hazards identified from the analysis were the presence of water, gas, massive roof conditions, goaf and pillar behaviour, panel design parameters, cutting parameters, the role of temporary supports, intersections, and pre-splitting of pillars.

Iannacchione et al. (2007) analysed the risk of roof falls in underground coal mines using a 5×5 -risk matrix. The probability and consequence used in the risk matrix were based on the Roof Fall Risk Index values, and the exposure of miners to roof falls respectively. In this study, the authors used a Roof Fall Risk Index tool to identify the hazards of roof falls.

Hossaini and Behraftar (2009) assessed the roof fall risks in Kerman coalfields using the Risk Priority Number approach along with the Düzgün and Einstein (2004) proposed decision analysis methodology.

Iannacchione and Mark (2009) applied the Major Hazard Risk Assessment technique studied by the National Institute for Occupational Safety and Health to evaluate the ground control hazards associated with room and pillar retreat mining. Roof falls, rib instabilities, air blast from goaf caving event, support failure, bumps, pillar instability, the presence of gases from adjacent gob, and water from overlying abandoned mine were the ground control hazards identified. In this study, the authors applied WRAC, risk matrix techniques to analyse unwanted events, and used the Bow-Tie technique to find the existing preventive controls and necessary recovery measures.

Robertson and Shaw (2009) considered the consequence severity of the biological, land use impacts, regulatory impacts, public concern and safety issues and used FMEA technique to assess the failures of mine closure plan measures.

Shahriar and Bakhtavar (2009) used the Düzgün and Einstein (2004) proposed decision analysis methodology to assess the roof fall risks in five coal regions in Iran.

Beamish et al. (2010) demonstrated the practical application of FTA for spontaneous combustion of coal in an underground coal mine.

Ghosh (2010) evaluated the causes of injuries in an Indian an underground coal mine using the Risk Priority Number method and 5×5 -risk matrix. The causes evaluated in this study were roof and side fall, slippery floor and defective shoes, hit by the tub, electrical apparatus, conveyor, drilling and dressing and haulage.

Fan et al. (2011) constructed the fault tree for analysing the mine gas explosion. The identified basic events were as follows: power failure, insufficient ventilation air quantity, failure to provide ventilation in time, gas leak, smoking, blasting flame, friction sparks and an electrical fire.

Jianmin and Renshu (2011) analysed the mine water inrush accidents using the FTA. The results of the analysis revealed that improper design, pillar failure, surface water, aquifer or goaf water, improper sump size, failure of power supply, failure of pumps, lack of knowledge of prevention and control of water, inadequate safety measures, failure of water dam were the basic events that can lead the mine water inrush accident in 90 different ways. The study also concluded that the improper design and pillar failure were the two most frequent basic events.

Pejic et al. (2013) used a semi-qualitative risk assessment and estimation method to evaluate the explosion risk in underground coal mines. The methodology consists of Fine-Kinney method and Layer of Protection Analysis. The authors used Fine-Kinney method to evaluate the risk index level for underground coal mines and Layer of Protection Analysis to find the preventive and protective measures of explosion risk. The authors had applied the proposed methodology to an underground mine and listed the organisational and technical safety measures for the reduction of consequence, probability, and exposure time factors.

Burgess-limerick et al. (2014) analysed a continuous miner accident that occurred in Queensland underground coal mine using a Bow-tie analysis.

Calizaya et al. (2014) identified the hazards associated with the use of booster fans in underground coal mines and evaluated the risks using risk matrix, WRAC, and FMEA. Fire and contaminated air recirculation were the two major hazards associated with the operation of booster fans.

Krause and Krzemień (2014) attempted to perform methane risk assessment in five underground coal mines. In this study, the authors used a heuristic methodology based on the Delphi method and a group survey by a panel of experts to evaluate the risk assessment questionnaire. The questionnaire consisted of factors shaping the methane hazards, the activity of methane ignition originators, detection and prevention of methane risk, and possible human and material losses. The results concluded that the impact of methane drainage, electrical equipment, work organization, and ventilation conditions have the most significant influence on the shaping of methane hazards in underground mines.

Kumar (2014) applied the FMEA technique to assess risk in an underground coal mine and presented the control measures based on the risk priority number. The main safety hazards identified in this study were slipping or tripping, working near water, explosives, drilling, loading, fall of roof or pillar, haulage, and ventilation.

Liu and Xue (2014) identified the root causes of main shaft accident using the FTA. The root causes identified were: bucket overload, bucket stuck, fast acceleration and deceleration, bad pulley gasket material, improper oil in pulley gasket, improper space between brake shoe and brake disc, high cylinder residual pressure in brake disc, improper quality of brake shoe material, improper oil in brake disc, jammed piston, failure of electrical control system and failure of disk spring stiffness.

Mishra and Rinne (2014) developed the guideline for managing geotechnical risks in underground coal mines. In this study, before commencing the geotechnical risk assessment, the authors applied a numerical risk-ranking method to find the suitable risk assessment process and risk assessment tools. The authors determined that WRAC, FMEA, Bow-Tie Analysis, FTA and ETA were suitable to identify the geotechnical hazards. The likelihood can be assessed using deterministic, probabilistic, or possibilistic approach and the consequence can be assessed using the accident cost model. The risk matrix was suitable for risk representation.

Bagherpour et al. (2015) attempted to assess the safety risk of Iran's underground coal mines by introducing preventive and preparative measures. In this study, the authors identified ten hazards in Iran's underground coal mines, and their related preventive and preparative measures were presented. The hazards identified were methane explosion, coal dust explosion, poisoning and suffocation, fire, roof fall or side fall, blasting, traffic accidents, water inflow, electrical, and gas burst. The authors used a questionnaire to record the probability and consequence of the identified hazards and quantified the results using a bipolar scale. The results concluded that the methane explosion, coal dust explosion, and traffic accidents were the three hazards with high-risk levels.

Behraftar et al. (2017) modified the risk priority number and defined it as the product of the degree of probability of occurrence and the degree of significance of consequence. The authors used the modified technique to assess the working risks in Iranian underground coal mines and concluded that the roof fall showed the highest risk level followed by gas poisoning.

Mishra et al. (2018) evaluated the risks associated with a conveyor belt system installed in an underground coal mine. Brainstorming and root cause analysis were carried out to find the hazards and risks involved in the evacuation of coal using the conveyor belt system. From the results, it was observed that multiple hazards like operating by unauthorized operators, belt snapping, drive head structure failure, failure of braking system, failure of take-up arrangements, have the same risk level.

2.4.1.2. Quantitative techniques

Iverson et al. (2001) investigated a dozer falling into a void in a coal dump accident using Fault Tree program on a personal computer. The quantitative study identified 15 intermediate and 28 basic events that led to the burial of the dozer and graphically represented the interrelationship between these various subordinate events as well as the chain of events leading up to the primary event. The authors also conducted a sensitivity analysis to determine the highest influence of the basic events on dozer burial in coal dump.

Gupta et al. (2006) used FTA to understand the failure logic of a longwall shearer. The FTA and ranking showed that how the maintenance priority changed over time.

Kecojevic et al. (2008) analysed the belt conveyor-related fatal accidents in the US mining industry using the data collected from MSHA from 1995 to 2006. Management's failure to provide adequate maintenance procedure, workers failure to follow adequate maintenance procedure, failure to provide over bridge, failure to use over bridge facility, adverse geological conditions, and failure of mechanical components were the six hazards identified in the hazard identification stage. The authors used quantified risk matrix to analyse the risk level of the identified hazards and concluded that failure to provide adequate maintenance procedure and failure to follow adequate maintenance procedure were the two most severe and frequent hazards.

Kecojevic et al. (2008) analysed the continuous miner-related fatal accidents in the US mining industry using the data collected from MSHA from 1995 to 2006. Failure of the victim to respect the equipment-working area, failure to identify adverse geological conditions, failure to follow adequate maintenance procedure and failure of mechanical components were the four hazards identified in the hazard identification stage. The authors used a quantified risk matrix to analyse the risk level of the identified hazards. The results concluded that failure of the victim to obey equipment working area rules was the most severe and frequent hazard.

Komljenovic et al. (2008) collected 10-year injuries data from 1995 to 2004 and systematically categorised injuries into three types: fatalities, non-fatal days-lost injuries and no-days-lost injuries. Based on the analysis of collected data, the authors proposed the

severity levels, frequency levels, and a global risk analysis matrix for analysing risks in mines.

Md-Nor et al. (2008a) analysed the haul truck-related fatal accidents in the US mining industry using the data collected from MSHA from 1995 to 2006. In the hazard identification stage, the authors identified sixteen hazards and categorised them into three groups: human errors, equipment failure and working environment. The authors used a quantified risk matrix to analyse the risk level of the identified hazards. The results concluded that the risk level of the hazards: failure of mechanical/electrical/hydraulic components, failure of victim to respect the truck working area, failure to provide adequate berm at dump sites and haul roads was very high.

Md-Nor et al. (2008b) analysed the loader and dozer related fatal accidents in the US mining industry using the data collected from MSHA from 1995 to 2006. In the hazard identification stage, the authors identified ten hazards for each loader and dozer operations. The authors used a quantified risk matrix to analyse the risk level of the identified hazards. The results concluded that the hazards: failure to follow adequate maintenance procedure and failure of mechanical/electrical/hydraulic components were the most severe and frequent hazards for the loaders and the hazard: failure to identify adverse site/ geological conditions was the most severe and frequent hazard for the dozers.

Grayson et al. (2009) studied the violation of standards data in 31 US mines and identified the major hazards related to fires and explosions in mines. The identified hazards in different mines were analysed using quantitative risk matrix. The authors evaluated the risk level as the product of the frequency of occurrence of citations and cost of citation violation.

Orsulak et al. (2010) analysed the risks associated with the safety violation in US underground coal mines using quantitative risk matrix. In this study, the authors classified the consequence based on penalties received per year by mines and the frequency based on the number of citations received per year.

Jiang et al. (2012) analysed roof fall accidents in coal mines using FTA and identified failure to support, improper geological conditions, roof suspension and lack of awareness of safety measures among leaders and workers as the most important basic events that can cause roof fall accident.

Shao-jie (2013) analysed the coal mine fire accidents using FTA and identified the root causes as follows: electrical equipment catching fire, the blaze caused by man, explosive blaze and coal ignition.

Kumar and Ghosh (2017) attempted to explore the top and initiating events of the methane explosion in underground mines using integrated event tree and FTA. Electric spark and cutter pick spark were the top events identified using event tree. Degraded fan performance, turned off fan, use of scavenger system with inadequate overlap, ventilation duct is set far from face, leak in ducts, pinched ducts, welding, electrical sparks, non-explosion proof equipment design, undersized ductwork, non-availability of gas monitoring equipment and cutter pick sparks were identified as the basic events using FTA.

Domínguez et al. (2019) identified the environmental, physical, mental, and natural hazards associated with the blasting, use of machinery and equipment in underground mines. The authors attempted to analyse and assess the risks associated with blasting, use of machinery and equipment using a 4×4 -risk matrix. The results concluded that the use of machinery and equipment have medium risk and blasting operation has low risk.

2.5. Limitations of Safety Risk Analysis Techniques2.5.1. Qualitative vs quantitative

Many authors have compared the qualitative and quantitative techniques to find the best suitable approach for the evaluation of risk in the workplace.

Pidgeon (1988) pointed out that prior knowledge of complete and accurate data on failure situations were required to conduct a probabilistic risk assessment and argued that it was not easy to get the data except for minor and well-understood situations.

Niczyporuk (1996) stated that the quantitative risk assessment yields more accurate results than qualitative risk assessment. The author also stated that the use of an arbitrary scale in qualitative risk assessment might lead to the following errors:

- Overestimation of occurrences with high consequence and low probability event,
- Underestimation of occurrences with low consequence and high probability event, and
- Output of hazards assessed by experts may have a different value.

Frosdick (1997) stated that the quantitative risk evaluation methods highly depend on the availability of data and questioned the accuracy of available data.

Raman (2003) stated that the quantitative risk assessment methods depend highly on the frequency data of initiating events of the major accidents and probability data on human error failure that was not available for the mining industry.

Joy (2004) discussed various qualitative and quantitative risk assessment techniques applied to mine operations and equipment in the Australian mining industry. The author has stated that due to lack of accurate data about hazard event likelihood and due to the availability of experienced employees at different levels, who can suggest subjective consequence and likelihood, the qualitative risk assessment was commonly preferred in the Australian mining industry.

Rasche et al. (2006) stated that quantitative models have advantages over qualitative risk ranking methods, where numerical data was available. The authors also pointed out that the mineral industry globally still lacks good developed hazard database and related risk assessment data.

Rasche and Knights (2012) pointed out the limitations of the qualitative techniques used and suggested to implement quantitative methods in the mining industry. The few limitations pointed out were the subjective judgement, peoples' inexperience, perceptions and assumptions particularly in a time of skill shortage. The authors illustrated how the other high-risk industries had applied quantitative techniques and improved safety, and operational performance. The authors also stressed the need to develop a quantitative database and to improve training in the mining industry.

Curtis and Carey (2012), Ramona (2011) presented the advantages and disadvantages of qualitative and quantitative approaches in Table 2.4.

Methods	Advantages	Disadvantages		
Qualitative	 Easy to understand and observe the level of risk. Easy to understand and implement the methods of calculation of risk level. Quantification of risk parameters are not required. 	1		

 Table 2.4 Advantages and disadvantages of qualitative and quantitative methods

	• Accurate risk parameters data are not required.	 Hard to implement control measures due to the subjective judgement. Insufficient differentiation between levels of risk (i.e. high, medium, low). Results depend on the quality of risk management team members.
Quantitative	 The evaluation and the results of the risk assessment process are based on objective methods. Risks are sorted by the numerical values obtained after evaluating the risk parameters. The results can be expressed in a specific management terminology. 	 The methods of calculation of risk level are complex. Very difficult to implement the risk assessment process without an automatic tool. Results depend on the availability of risk parameters data. Hard to understand the results for inexperienced people. The values of risk impacts are based on the subjective opinions of the people involved. Takes a long time to complete the risk assessment process.

2.5.2. Safety risk analysis techniques

Informal risk analysis techniques, i.e. WRAC, FMEA, FTA, and ETA are the most commonly applied to mining operations and equipment in the Australian mining industry (Joy, 2004; Joy & Griffiths, 2007). For evaluating the risk level, both WRAC and FMEA methods are dependent on either rapid ranking method or risk matrix.

The rapid ranking method is the most commonly adopted technique in the global mining industry (DGMS, 2002; Iannacchione et al., 2008; SIMTARS, 2001; Tripathy & Patra, 1998). The process of this method is a basic multiplication of three criteria: probability, exposure, and consequence. Though the process of this method is same in all countries, the scales of the three criteria may vary from one country to another, as they are outlined as per the requirement of the country's mining industry. However, the output obtained is crisp in nature, as the crisp inputs based on the scales used. Because of the crisp nature of the output, it has been criticised by many authors. Some of the significant shortcomings were listed as follows:

• Different values of probability, exposure, and consequence ratings may produce the same value of Risk Priority Number, but their hidden risk implications may be very different. For example, two different events with values of 3, 2, 2 and 1, 3, 4 for

probability, exposure, and consequence respectively, will have the same RPN value of 12 (Bowles & Peláez, 1995; Oraee et al., 2011; Shariati, 2014; Dallat et al., 2017).

- The relative importance among probability, exposure, and consequence was not taken into consideration. The three factors were assumed to have equal importance. This may not be the case when considering practical application of WRAC or FMEA (Bowles & Peláez, 1995; Oraee et al., 2011; Shariati, 2014; Dallat et al., 2017; Gul et al., 2017).
- The inputs of the three factors were difficult to determine precisely. Much information in WRAC or FMEA can be expressed in a linguistic way such as high, medium and so on (Bowles & Peláez, 1995; Oraee et al., 2011; Shariati, 2014; Dallat et al., 2017).

Băbuţ et al. (2011) stated that the quality of the assessment of this method depends on the experts' team and was a subjective method, which gives a false safety feeling. Verma and Gupta (2013) pointed out that the computational complexity and time required in calculating risk level, data unavailability or uncertainty were the disadvantages of the rapid ranking method. Verma and Chaudhari (2016b) indicated that the output of this method might contain vagueness as this method was based on the perception of experts participating in the process.

The risk matrix is used to rank different risks in order of importance. Probability or frequency and consequence or likelihood were used on the two axes of the risk matrix, and the output will be categorised into three or more groups like low, medium or high. The use of the risk matrix was promoted in Indian (DGMS, 2014a), American (Iannacchione et al., 2008) and Australian mines (AS/NZS, 2004). The main limitations of the risk matrix were:

- Ranking of the evaluated risks was limited to the pre-defined categories only. For example, the result obtained in Ghosh (2010) study showed that out of ten causes evaluated, 1 cause has low risk level, 1 has minor risk level, 2 has medium risk levels, and 6 has major risk levels. It was hard to rank further among the six causes with major risk level.
- The crisp risk scores assigned to likelihood and severity in the risk matrix lead to uncertainty in the risk assessment process (Iphar & Cukurluoz, 2018).

FTA is commonly adopted to identify the root causes of an accident in mines while ETA is adopted to analyse the control measures to be employed to mitigate the consequence.

Bow-tie method is a combination of FTA and ETA. Lee et al. (1985) and Marhavilas et al. (2011) stated that the time required, cost of development of FTA for a system will be very high, it is more suitable for a complex system and it may not reveal all the underlying causes. Marhavilas et al. (2011) termed the ETA as a time consuming, expensive and very complicated application.

Pillay (2015) and Escande et al. (2016) pointed out that the current risk assessment techniques used in safety management were outdated and suggested using the existing techniques in new and innovative ways. Citing the pros and cons of the risk analysis techniques, many researchers have applied soft computing techniques either alone or along with Multi Criteria Decision Making (MCDM) techniques to evaluate the risks in the underground coal mines.

Bowles and Peláez (1995) point out that the problems in analysing the results obtained by FMECA method and suggested the application of fuzzy logic method to FMECA as a solution to overcome the problems.

Fera and Macchiaroli (2009, 2010) stated that the qualitative techniques were too simple and subjective, and quantitative techniques were too complex to implement. Therefore, the authors proposed the application of a semi-quantitative technique for improving safety. The proposed methodology consists of FMECA, the Scenario-Based Risk Assessment, Italian standard on Statistics on Occupational Injuries and AHP. The authors used the Scenario-Based Risk Assessment method to identify the major risk events, FMECA to calculate the criticality of risks, Italian standard on Statistics on Occupational Injuries to calculate the frequency and occurrence and AHP to reduce the subjectivity in experts' opinion.

Orace et al. (2011) cited the important criticisms on FMEA method and applied fuzzy FMEA to evaluate safety hazards in an underground coal mine. The fuzzy FMEA results showed that rock burst was the most hazardous parameter followed by the roof collapse.

Mahdevari et al. (2014) attempted to assess safety risks in underground coal mines using fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The authors validated the proposed method using the data collected from three coal mines. The authors identified 86 hazards from the collected data and divided them into personal, chemical, geochemical, geomechanical, electrical, environmental, social, cultural, managerial, and mechanical risks groups. The results concluded that struck by materials, instability of coal face, instability of immediate roof, firedamp, emission of gases, dealing

with misfire, stopping of ventilation system, wagon separation in inclines, suffocation due to inspiration of coal dust and toxic gases, inadequate training, and poor site management system were the major hazards with high risk in the mines.

Verma and Gupta (2013) proposed fuzzy logic as a solution to overcome the problems mentioned above. By comparing the outputs of the proposed fuzzy reasoning approach with the rapid ranking method, the authors demonstrated that fuzzy reasoning approach method was capable of predicting the risk values similar to the rapid ranking method.

Petrović et al. (2014) evaluated the belt conveyor elements failure in an underground coal mine using the fuzzy logic method. The results concluded that the application of fuzzy logic theory provides a comprehensive portrait of the tendency of failure and it was easier to express the risk as a linguistic term rather than to present the risk as a numerical value. The case study results showed that the electric motor and the gearbox had the highest risk levels in the belt conveyor system.

Shariati (2014) criticised the crisp risk priority numbers used in FMEA and suggested using fuzzy FMEA in case of uncertainty. The application of fuzzy FMEA in underground mine results showed that the rock collapse was the most hazardous parameter in safety criteria, water pollution was the most hazardous parameter in environmental criteria and dust was the most hazardous parameter in health criteria.

Verma and Chaudhari (2014) proposed a fuzzy AHP methodology for analysis of risks in the mining industry. The authors have reviewed the mine accidents data from 1995 to 2012 and identified eight hazards factors. The authors evaluated the ranking of the identified hazard factors using Fuzzy AHP.

Verma and Chaudhari (2016a) stated that the statistical analysis, various distribution models and risk assessment techniques were dependent on the availability of accident data and proposed a fuzzy logic model to assess the workers' safety in mines.

Javadi et al. (2017) proposed a new methodology to evaluate the risks in underground coal mines. The proposed methodology was a combination of fuzzy TOPSIS and Bayesian networks. The authors applied the Fuzzy TOPSIS method to rank the identified hazards and Bayesian network model to quantify the roof fall risks. The hazards identified in the case study mine were roof fall, gate fall, gas explosion, dust explosion, sudden gas emission, subsidence, coal bump, and coal fire. The important factors affecting the roof fall during

longwall mining were geological conditions, layer characteristics, extraction method and equipment and stress conditions.

Gul et al. (2017) addressed one of the limitations in the Fine-Kinney method, i.e. providing equal weight to all risk parameters. The authors used the combined Buckley's fuzzy AHP and fuzzy VIKOR methods to obtain weights for the risk parameters of the Fine-Kinney method and to rank hazard events.

Samantra et al. (2017) stated that the subjective judgement was easy, practical, and provides a better assessment of risk than objective analysis, as it does not depend on historical data. The authors also mentioned that the subjective information depends on experts' experience, uncertainty, and vagueness due to human intuitive assessment. To overcome the problems in qualitative and quantitative methodologies, the authors have proposed a new methodology for selection appropriate safety measure system for the underground mining industry. The proposed method was the combination of aggregative fuzzy risk analysis and modified TOPSIS.

Shi et al. (2017) attempted to assess the methane gas explosion in underground coal mines using Improved AHP. A fault tree was used to find the root causes of the methane explosion and an AHP model was constructed based on it. The results presented the ranking of ignition source of methane gas explosion as electric spark followed by blasting, welding, friction spark, smoking and smouldering.

Gul and Ak (2018) proposed a new methodology to overcome the problems in qualitative and quantitative methodologies. The methodology was a combination of 5×5 -risk matrix, fuzzy TOPSIS and Pythagorean fuzzy AHP. In this study, the authors collected the data using subjective judgement, as it was easy to use and practical than objective analysis.

Iphar and Cukurluoz (2018) stated that the crisp risk scores assigned to likelihood and severity in the risk matrix lead to uncertainty in the risk assessment process and proposed to develop a fuzzy logic method to eliminate the drawbacks. In this study, 43 potential hazards of four underground coal mines in Turkey were identified, the risk parameters data of the identified hazards were collected using a developed questionnaire, and the identified risks were evaluated using the developed Mamdani fuzzy model.

2.6. Status of Safety Risk Management in the Mining Industry

The success of risk management for effectively controlling the risks in various hazardous industries have encouraged the mining industry to adopt it.

Foster et al. (1998) acknowledged the importance of risk assessment application for improving safety performance in mines. The authors have also presented the basic elements, brief history around the world, the need for risk assessment and risk management. The case study results revealed two differences between the risk assessment process and other approaches adopted in mining. The differences were identified in the estimation of risk, and the examination and documentation of control measures.

Rasche (2001a) suggested risk assessment tools to frame preventive safety and maintenance strategies in mines. The author also suggested selecting risk assessment tool based on the type of hazard present and the ability of the tool.

Sahu and Pal (2000) stated that the accident statistics in the Indian mining industry were not adequate to perform a detailed study and suggested adopting risk assessment as a method to assess the safety risks in mines.

Xin-chun and Xue-feng (2009) stated that the application of safety risk management system in coal mines would help achieving safe production, minimize the risks and prevent accidents in an effective, systematic and scientific ways.

Dash et al. (2015) suggested using risk assessment to find the root causes and implement corrective measures in Indian underground coal mines.

Dash et al. (2016) stated that it was essential for the Indian mining industry to adopt risk assessment to identify hazards and ensure proper control measures.

2.6.1. Legislative provisions in India and abroad

During the past few years, the legislative requirement for risk assessment and risk management have been increasing in almost every industry. The legislative requirements are important especially in the mining industry, as mining can never have zero risks due to the inherent hazards associated within. Therefore, many countries have framed risk management guidelines as per their requirements to manage safety risks in the mining industry.

Australia is the first country to frame guideline based on risk management. The Chief Inspector of coal mines in New South Wales has published a risk management handbook for the mining industry (NSWDPI, 1997) that presents a variety of procedures to assess and manage risks, which was later revised in 2011 (NSWDTI, 2011). The New South Wales also published a Safety Management Systems in Mines guidelines in 2014 (NSWDTI, 2014). Queensland published its standards in 1998 and 1999 (QDME, 1998; QMC, 1999). In Western Australia, the application of risk management processes gained popularity in 2003 (CMEWA, 2003). The Mineral Industry Safety and Health Centre at University of Queensland developed the National Minerals Industry Safety and Health Risk Assessment Guidelines (Joy & Griffiths, 2007) which outlines a risk management framework, and is widely used in the Australian mining industry. At the same time, they also launched online interactive tools RISKGATE (Kirsch et al., 2014) and MIRMGate (Kizil & Joy, 2005) for assessing risk controls and hazard-related information respectively. Systematic and comprehensive risk management was recommended to be employed in all the mines to improve the safety in underground coal mines in the US mining industry (Iannacchione et al., 2008).

The health and safety management structure, instructions, rules, and schemes applicable to UK mining industry were pointed out in the Mines Regulation, 2014 (HSE, 2014). The Mines Regulation, 2014 has replaced all the previous mine specific health and safety legislation. Risk assessment guidelines for mines in Alberta, Canada, were published in Occupational Health and Safety regulations (GOA, 2003) and Occupational Health and Safety code (GOA, 2009). The South African mining industry initiated a Hazard Identification and Risk Assessment programme for systematic identification and documentation of risks (HIRA, 2003). ILO has released a draft code of practice on safety and health in underground coal mines in 2006 and a final version in 2009 (ILO, 2009).

A tripartite forum at Ninth, Tenth and Eleventh Conference on Safety in Mines held at New Delhi on February 2-3, 2000, November 26-27, 2007, and July 5-4, 2013 respectively, recommended for commencing a formal risk assessment process in the Indian mining industry (DGMS, 2000, 2007, 2013). DGMS had circulated, guidelines for implementation of Safety Management System (SMS) in 2002 (DGMS, 2002), plan for audit and review of SMS in 2011 (DGMS, 2011), promoted risk calculator (DGMS, 2014a) and Take5 (DGMS, 2014b) approaches in 2014, an integrated approach for the development of Safety Management Plan (SMP) for coal and metalliferous mines in 2016 (DGMS, 2016). Performing SMP in mines was made mandatory after the revision of the Coal Mines Regulations in 2017 under section 37 and 104 (Ministry of Labour and Employment, 2017). The below sections briefly presents the details of the section 37 and 104 of the Coal Mines Regulations 2017.

2.6.1.1. Section 37: Duties and responsibilities of owner

- 1. In taking preventive and protective measures, the owner shall arrange for regular assessment of the risk and dealing with it in the following order of priority:
 - a. eliminate the risk;
 - b. control the risk at source;
 - c. minimize the risk that include the design of safe work systems; and
 - d. in so far as the risk remains, provide for the use of personal protective equipment, having regard to what is reasonable, practicable and feasible, and to good practice and the exercise of due diligence.
- 2. Owners shall take all necessary measures to eliminate or minimize the risks to safety and health of persons employed in mines under their control and shall:
 - a. ensure that the mine is designed, constructed and provided with electrical, mechanical and other equipment, including a communication system, to provide conditions for safe operation and a healthy working environment;
 - b. ensure that the machine is commissioned, operated, maintained and decommissioned in such a way that workers can perform the work assigned to them without endangering their safety and health or that of other persons;
 - c. take steps to maintain the stability of the ground in which persons have access in the context of their work;
 - d. where practicable, provide from every underground workplace, two exits each of which is connected to separate means of egress to the surface;
 - e. ensure the monitoring, assessment and regular inspection of the working environment to identify the various hazards to which the workers may be exposed and to assess their level of exposure;
 - f. ensure adequate ventilation for all underground working to which access is permitted;
 - g. in respect of zones susceptible to particular hazards, draw up and implement an operating plan and procedures to ensure a safe system of work and the protection of workers;

- h. take measures and precautions appropriate to the nature of a mine operation to prevent, detect and combat the start and spread of fires, explosions and inundations;
- i. ensure that, when there is serious danger to the safety and health of workers, operations are stopped and workers are evacuated to a safe location;
- j. ensure that corrective actions are taken immediately, when manager or other officials report non-compliance with safety and health regulations or code of practice by any person.
- 3. The owner shall ensure preparation of an emergency response plan specific to each mine for reasonably foreseeable industrial and natural disasters.
- 4. Where workers are exposed to physical, chemical or biological hazards, the owner shall:
 - a. inform the workers, in a comprehensible manner, of the hazards associated with their work, the health risks involved and relevant preventive and protective measures;
 - b. take appropriate measures to eliminate or minimize the risks resulting from exposure to those hazards;
 - c. where adequate protection against risks of accident or injury to health including exposure to adverse conditions is not possible to be ensured by other means, provide and maintain at no cost to the worker, suitable protective equipment, clothing as necessary and other facilities as defined by these regulations;
 - d. provide workers who have suffered from an injury or illness at the workplace with first aid, appropriate transportation from the workplace and access to appropriate medical facilities.
- 5. The owner shall ensure that:
 - a. adequate training and re-training programs and comprehensible instructions are provided for workers, at no cost to them, on safety and health matters as well as on the work assigned;
 - b. adequate supervision and control are provided in each shift to secure the safe operation of the mine;
 - c. a system is established so that the names of all persons who are employed belowground can be accurately known at any time, as well as their probable location;

- d. all accidents and dangerous occurrences are investigated and appropriate remedial actions are taken;
- 6. The owner shall ensure regular health surveillance of workers exposed to occupational health hazards specific to mining operations.

2.6.1.2. Section 104: Safety management plan

- 1. The owner, agent and manager of every mine shall:
 - a. identify the hazards to health and safety of the persons employed at the mine to which they may be exposed while at work;
 - b. assess the risks to health and safety to which employees may be exposed while they are at work;
 - c. record the significant hazards identified and risks assessed;
 - d. make those records available for inspection by the employees; and
 - e. follow an appropriate process for identification of the hazards and assessment of risks.
- 2. The owner, agent and manager of every mine, after consulting the safety committee of the mine and Internal Safety Organisation, shall determine all measures necessary to:
 - a. eliminate any recorded risk;
 - b. control the risk at source;
 - c. minimise the risk; and
 - d. in so far as the risk remains,
 - o provide for personal protective equipment; and
 - institute a program to monitor the risk to which employees may be exposed.
- 3. Based on the identified hazards and risks, the owner, agent and manager of every mine shall prepare an auditable document called "Safety Management Plan", that forms part of the overall management and includes organisational structure, planning, activities, responsibilities, practices, procedures, processes and resources for developing, implementing, achieving, reviewing and maintaining a safety and health policy of a company.
- 4. It shall be the duty of the owner, agent and manager to implement the measures determined necessary and contained in the SMP for achieving the objectives set out in sub-regulation (2) in the order in which the measures are listed in the said sub-regulation.

- 5. The SMP shall contain:
 - a. defined mine safety and health policy of the company;
 - b. a plan to implement the policy;
 - c. how the mine or mines intend to develop capabilities to achieve the policy;
 - d. principal hazard management plans;
 - e. standard operating procedures;
 - f. ways to measure, monitor and evaluate performance of the SMP and to correct matters that do not conform with the SMP;
 - g. a plan to regularly review and continually improve the SMP;
 - h. a plan to review the SMP if significant changes occur; and
 - i. details of involvement of mine workers in its development and application.
- 6. The owner, agent and manager of every mine shall periodically review the hazards identified and risks assessed, to determine whether further elimination, control and minimisation of risk is possible and consult with the safety committee on review.
- 7. The owner, agent or manager of every mine shall submit a copy of the SMP to the Regional Inspector who may, at any time by an order in writing, require such modifications in the plan as he may specify therein.
- 8. The owner, agent and manager of every mine shall be responsible for effective implementation of the SMP.

2.7. Critical Review

The hazard factors and hazard events that affect the safety in underground coal mines were identified from the literature review. The outline of identified hazard factors from the literature is shown in Table 2.5. The hazard factors that affected the safety in Indian underground coal mines were roof fall and side fall; conveyor; haulage; machinery; explosives/blasting; electricity; dust, gas and combustible materials; and inundation.

Causes	References
Roof fall and	Mandal and Sengupta (2000), Donoghue (2004), Padhi (2004), Burgess-Limerick
side fall	and Steiner (2007), Iannacchione et al. (2008), Asia Monitor Resource Centre
	(2010), Kunar et al. (2010), Khanzode et al. (2011a), Bhattacherjee et al. (2011),
	Kunar et al. (2008), Dash et al. (2017), Zhang et al. (2018), Selçuk et al. (2000),
	Chen et al. (2012), Tripathy and Patra (1998)
Conveyor	Mandal and Sengupta (2000)
Haulage	Mandal and Sengupta (2000), Padhi (2004), Iannacchione et al. (2008), Asia
_	Monitor Resource Centre (2010), Bhattacherjee et al. (2011), Kunar et al. (2008),
	Zhang et al. (2018), Selçuk et al. (2000), Chen et al. (2012), Tripathy and Patra
	(1998)

Table 2.5 Hazard sources identified

Machinery	Leigh et al. (1990), Donoghue (2004), Burgess-Limerick and Steiner (2007), Iannacchione et al. (2008), Asia Monitor Resource Centre (2010), Khanzode et al. (2011a), Bhattacherjee et al. (2011), Kunar et al. (2008), Zhang et al. (2018), Selçuk et al. (2000), Tripathy and Patra (1998)				
Explosives/bl asting	Mandal and Sengupta (2000), Bhattacherjee et al. (2011), Kunar et al. (2008), Chen et al. (2012)				
Electricity	Mandal and Sengupta (2000), Donoghue (2004), Asia Monitor Resource Centre (2010), Zhang et al. (2018), Selçuk et al. (2000), Tripathy and Patra (1998)				
Dust, gas and other combustible materials	Mandal and Sengupta (2000), Singh and Sen (2001), Donoghue (2004), Asia Monitor Resource Centre (2010), Dash et al. (2017), Zhang et al. (2018), Selçuk et al. (2000), Chen et al. (2012), Tripathy and Patra (1998)				
Fall of persons	Iannacchione et al. (2008), Selçuk et al. (2000)				
Înundation	Mandal and Sengupta (2000), Donoghue (2004), Dash et al. (2017), Zhang et al. (2018), Selçuk et al. (2000), Chen et al. (2012), Tripathy and Patra (1998)				

The identified hazard factors/causes were just secondary events, which were caused by other events and therefore, every cause identified should be further investigated in-detail (Mandal & Sengupta, 2000). However, such attempts to analyse hazard events were scarce and limited literature was found on roof fall and side fall, conveyor, electricity, machinery, dust, gas and other combustible materials, and inundation. Therefore, all the hazard factors/ causes need to be investigated for identifying the hazardous events.

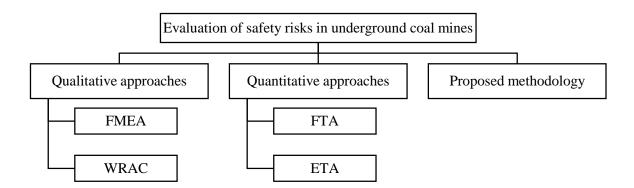
Although various countries have framed guidelines for carrying out the risk assessment process in the mining industry, the type of risk analysis techniques suitable for evaluating various mining scenarios were not stated. DGMS (2002) recommended adopting the rapid ranking method in the Indian mining industry and it was assumed that this approach would evaluate all kinds of risks present in mines. It remains only wishful thinking since different tools have different purposes and give different output. This necessitates a need for trying different risk analysis techniques for evaluating risk in Indian mines. The qualitative techniques identified from the literature were risk matrix, rapid ranking method, WRAC, FMEA, FTA, ETA, bow-tie methods and the quantitative techniques were FTA, ETA, and risk matrix. It was also observed that the research studies on risk analysis techniques in Indian underground coal mines were very limited to either statistical analysis of accidents or study of single equipment or operation using qualitative and quantitative techniques. Limited work has been done to identify, analyse, and evaluate the safety risks of an overall underground coal mine in India.

The study of risk analysis techniques revealed that assessment of risk could be conducted by using either qualitative or quantitative techniques. Qualitative risk analysis techniques like risk matrix, rapid ranking method, WRAC, and FMEA are easy to execute and practical as they are not dependent on the historical data; rather they need experience and close examination. However, the qualitative risk assessment techniques may yield subjective results due to instinctive human assessment. Quantitative risk assessment techniques like FTA and ETA are substantially dependent on the accuracy of available data. However, in many situations, these methods fail to deal well with uncertain or incomplete data. Therefore, it may be very hard to conduct a quantitative risk assessment in the Indian mining industry, where only the number of accidents occurred are recorded. The consequence and the exposure data remains unrecorded or unavailable. Therefore, a new methodology is needed to be developed for risk assessment in underground coal mines to effectively assess the safety risks. The proposed methodology should be able to address the limitations of risk analysis techniques like uncertain input data, the relative importance of risk parameters, computational complexity, time, and ranking.

In this study, the identified hazard factors of the Indian underground coal mines were examined to identify and assess the associated hazard events using WRAC, FMEA, FTA and ETA. Due to the limitations of these approaches as presented in Section 2.5.2, a new methodology to evaluate safety risk assessment for underground coal mines was proposed. In the proposed methodology, the relative importance of probability, exposure and consequence were taken into consideration; the data was collected using the linguistic scales; and analysis was done using the amalgamation of Mamdani fuzzy logic approach, VIKOR, and AHP techniques to overcome the uncertainty and ranking issues.

2.8. Chapter Summary

In this chapter, an extensive review of the literature on hazard identification, risk analysis, risk assessment, risk management in underground coal mines is presented. The hazard sources that affect the safety in underground coal mines were identified. The advantages and disadvantages of the qualitative and quantitative risk analysis techniques were discussed briefly. Based on the literature review, research problems were identified and presented in the critical review section.


CHAPTER 3 RESEARCH METHODOLOGY

3.1. Introduction

Evaluation of safety risks is a complex process of identifying and assessing the hazard factors contributing to the occurrence of accidents in underground coal mines. There are several types of hazard factors responsible for the occurrence of accidents in mines. Kunar et al. (2010) categorised the hazard factors as individual and occupational factors. The occupational hazard factors identified in underground coal mines are ground movement, rope haulage system, belt conveyor system, LHD, shot firing and blasting, electricity, dust, gas and other combustible material, and inundation. Individual hazard factors namely life-style, health, demographic, socio-economic, and behaviour related factors were not considered in this study.

In mines, any working operation involves the interaction of people, machines, and environment within procedural constraints (Bullock, 1979; Hammer, 1972; NSWDTI, 2011). Therefore, it is requisite to identify human, safe work procedures/practices, work environment, and equipment related hazards and their interactions to develop a comprehensive list of hazards in the workplace. There are various risk assessment techniques available for evaluation of risk (Arunraj & Maiti, 2007; Tripathy, 2014; Xue et al., 2010). The risk assessment techniques identified from the literature viz. WRAC, FMEA, FTA, ETA are used in this thesis for hazard identification, risk analysis and risk evaluation.

The comprehensive methodology developed in this thesis is shown in Figure 3.1. In this chapter, the steps involved in developing a research methodology for evaluating safety risks in underground coal mines are presented. This includes the overview of qualitative and quantitative approaches, and outline of the proposed methodology to assess and rank the safety risk level of the hazardous events, hazard groups, and overall underground mine. The details of the study area and the application of the comprehensive methodology developed is also presented in this chapter.

3.2. Qualitative Approaches

3.2.1. Failure Mode and Effects Analysis

FMEA is a highly structured and systematic technique for identifying all the possible failures in a machine, design, or assembly process (Mannan, 2012; MIL-STD, 1980). "Failure mode" means the ways in which something might fail. "Effect analysis" refers to studying the consequences of those failures. FMEA is more suitable to identify hazards related to machine design changes. The FMEA technique is generally used to assess risk qualitatively or semi-qualitatively. It can be used for assessing risk quantitatively using actual failure rates. The commonly used method to evaluate the risk quantitatively is shown in equation 3.1.

$$Risk Priority Number (RPN) = S * O * D$$
(3.1)

Where, S = Severity of the failure

O = likelihood of occurrence of the failure

D = likelihood of the not detecting the failure

Other less common techniques like risk matrix, past experience, process maps can also be used to evaluate risks in FMEA. The rapid ranking method recommended by DGMS (2002) uses equation 2.1 for evaluation of risk and the scales of risk parameters are shown in Table 3.1. The scales of risk parameters were presented by DGMS (2002) for conducting risk assessment process in the Indian coal mines. For evaluation of risk using rapid ranking method, the expert selects a hazard and assess the level of consequence, exposure, and probability of the hazard. For example, if the selected hazard has consequence of "several dead", then the expert selects rank 5 from Table 3.1. Similarly, if the selected hazard has

exposure of "very rare" and probability of "quite possible", then the expert selects 1.5 and 7 respectively from Table 3.1. Using the equation 2.1, risk score can be calculated as 52.5 (5*1.5*7). In the same way, the process is repeated for all the hazards present for evaluation of risk score. Based on the risk scores of the evaluated hazards, appropriate risk treatment techniques are applied to mitigate or eliminate the risks. The procedural steps involved in the conducting FMEA are shown in Figure 3.2.

The advantages of the FMEA technique are as follows:

- Identify potential failure modes, their causes and consequences;
- Application ranges widely from the system, equipment failure modes to procedures and software;
- Presents output in an easily readable format;
- Provide input data for developing FTA.

Consequence	Rank	Exposure	Rank	Probability	Rank
Several dead	5	Continuous	10	May well be expected	10
One death	1	Frequent (daily happening)	5	Quite possible	7
Significant chance of fatality	0.3	Seldom (weekly)	3	Unusual but possible	3
One permanent disability / least chance of fatality / serious accident	0.1	Unusual (may be once a month)	2.5	Only remotely possible	2
Many minor injuries / lost time injuries	0.01	Occasionally (yearly)	2	Conceivable but unlikely	1
One minor injury	0.001	Very rare (once in 5 years)	1.5	Practically impossible	0.5
No time loss injury	0.0001	Once in 10 years	0.5	Virtually impossible	0.1
		Once in 100 years	0.02		
		Never in the world in any industry	0.01		

3.2.2. Workplace Risk Assessment and Control

From the early-90s', WRAC is the most commonly employed technique in the Australian mining industry for evaluating risks. The application of the WRAC technique in the Australian mining industry has shown a sharp improvement in the areas of safety. WRAC is a participative risk ranking approach that allows the analyst to concentrate on the highest

risk. It is a powerful tool for identifying potential production and operational losses (Iannacchione et al., 2008; Joy & Griffiths, 2007).

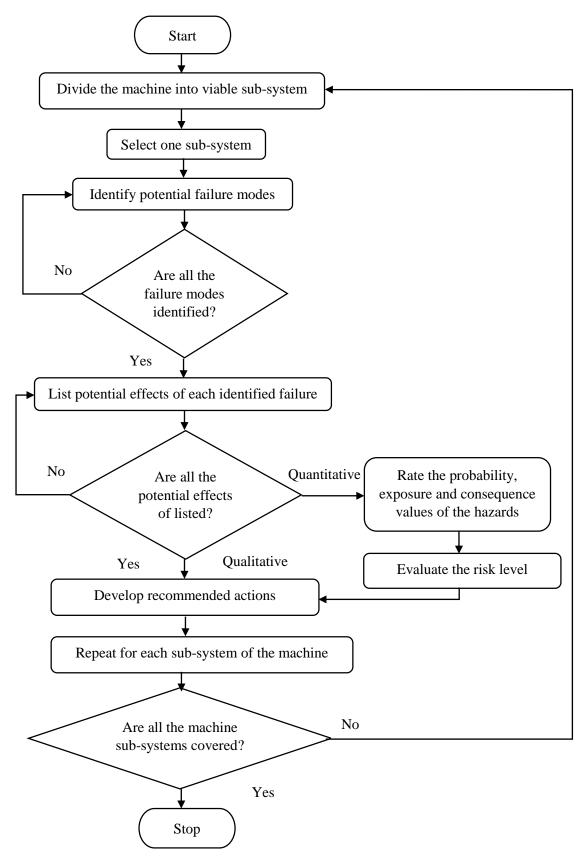


Figure 3.2 Flowchart for conducting FMEA study

Before starting a WRAC study, a clear objective, scope of the system, types of hazards to be considered, depth of the analysis, and risk scoring details should be established. The procedural steps involved in the conducting WRAC are shown in Figure 3.3. The WRAC technique is generally used to assess risk qualitatively or semiqualitatively. It can be used for assessing risk quantitatively using actual failure rates. Rapid ranking method and risk matrix are commonly used to evaluate risks in WRAC tool. The output of the WRAC tool is a list of current, planned or potential new controls to mitigate priority risks (Thompson, 1999). The advantages of the WRAC technique are:

- It is suitable for identifying multiple failures in the system;
- Unlike FMEA, its study is not limited to only failure modes, but to the elements that comprise the integration of human, machinery, and environment;
- Can be applied in any stage of the process;
- Can be applied to identify all type of hazards like electrical, mechanical, and gravitational.

The 5×5 -risk matrix exercised in CIL is shown in Table 3.2 (Sabir et al., 2012). The description of the likelihood and consequence scales are presented in Table 3.3.

	Risk		Consequence				
		Insignificant	Minor	Moderate	Major	Catastrophic	
		(C ₁)	(C_2)	(C ₃)	(C_4)	(C_5)	
Ч	Rare (L_1)	1	3	6	10	15	
õ	Unlikely (L ₂)	2	5	9	14	19	
lib	Possible (L ₃)	4	8	13	18	22	
Likelihood	Likely (L ₄)	7	12	17	21	24	
Ι	Almost Certain (L5)	11	16	20	23	25	
Note: Risk Score:							
	Low: 1-6	Me	Medium: 7-19 High: 20-25			.0-25	

Table 3.2 5×5-Risk matrix

Table 3.3 Scales for consequence and likelihood

Consequence	Safety description	Likelihood	Safety description
Insignificant	No Treatment	Rare (L_1)	Occurs once every 1000-10000
(C ₁)			years
Minor (C ₂)	First Aid Treatment	Unlikely	Occurs once every 100-1000
		(L_2)	years
Moderate (C ₃)	Medical Treatment	Possible	Occurs once every 10-100
		(L_3)	years
Major (C ₄)	Extensive Injuries, Single	Likely (L ₄)	Occurs once every 1-10 years
	Fatality		
Catastrophic	Multiple Fatalities	Almost	High frequency of occurrence,
(C_5)		Certain (L ₅)	occurs once every year

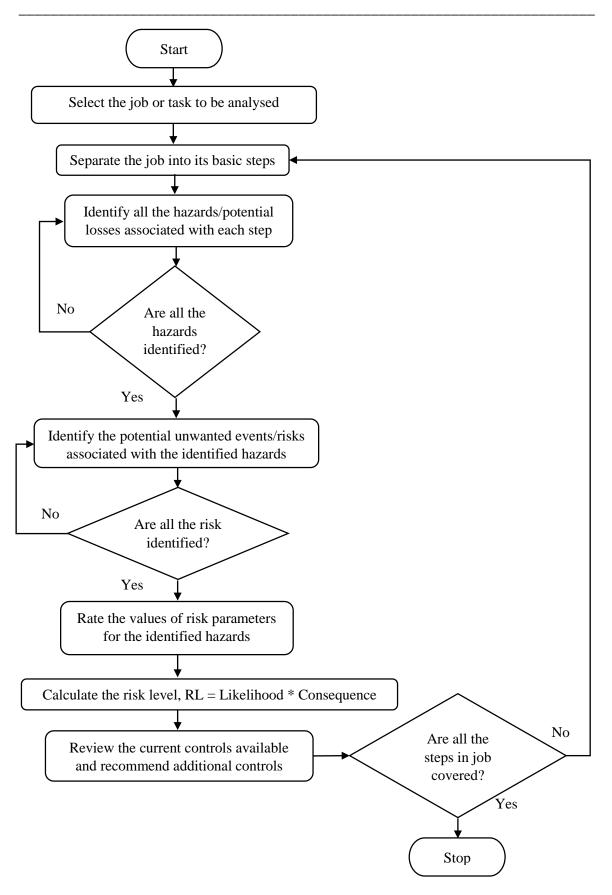


Figure 3.3. Flowchart for conducting WRAC study

3.3. Quantitative Approaches3.3.1. Fault Tree Analysis

FTA is a top-down, deductive technique that focuses on one particular accident event and provides a method for determining the possible combination of causes of that event (Lapp & Powers, 1977). In simple terms, FTA is a risk analysis technique that helps to understand how the undesired event has occurred, to determine the failure rate of the events, and to identify the best way to reduce risk. In FTA, the logical relationships between the events and situations that lead to major undesired events are displayed graphically (NSWDPI, 1997). The general type of events and situations considered in the FTA study are human errors, equipment failures, and external events.

The steps involved in FTA for evaluating risks are shown in Figure 3.4 (Stamatelatos et al., 2002). The construction of the fault tree starts with the definition of the major undesirable (TOP) event, and intermediate events that can lead to the outcome. The fault tree should be logically progressed downwards until the basic events also called as root events are identified. The events are connected using logical connections like "AND" and "OR". The common symbols used in the construction of FTA is represented in Table 3.4.

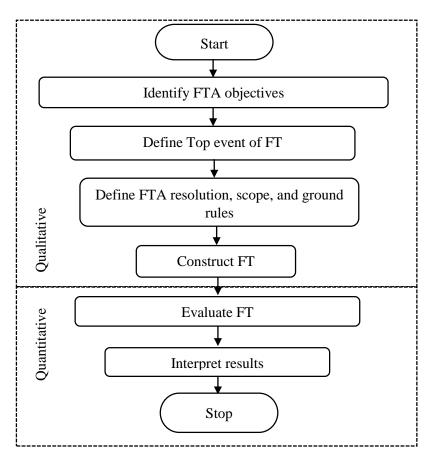


Figure 3.4. Procedure of FTA

	EVENT	The rectangle is used to represent the TOP event and any intermediate fault events in a fault tree
0	BASIC EVENT	A basic initiating fault requiring no further development
\bigcirc	CONDITIONAL EVENT	Specific conditions or restrictions that apply to any logic gate
\diamond	UNDEVELOPED EVENT	An event which is not further developed either because information is unavailable
Ω	"OR" GATE	Output fault occurs if a least one of the input faults occurs
	"AND" GATE	Output fault occurs if all of the input faults occur
\bigcirc	"INHIBIT" GATE	Output fault occurs if the (single) input fault occurs in the presence of an enabling condition (the enabling condition is represented by a CONDITIONING EVENT drawn to the right of the gate)
\bigtriangleup	TRANSFER EVENT	Transfer symbols are used to indicate that the fault tree continues on a different page.

 Table 3.4 Symbols used in the construction of FTA

The basic events are the events that can be used to represent the technical failures that lead to accidents, and the intermediate events are the events that can be used to represent operator errors that may intensify technical failures. The gates of the fault trees can be used to represent several ways in which machine and human failures combine to give rise to the accident. For instance, an AND gate implies that both initial events need to occur in order to give rise to the intermediate event. Conversely, an OR gate means that either of two initial events can give rise to the intermediate event (Reniers et al., 2005).

Once constructed, the FTA provides a system for both qualitative and quantitative evaluation. The qualitative analysis takes account of the calculation of minimal cut sets. A cut set is a set of basic events that can give rise to the TOP event. A minimum cut set is the

one that contains the minimum sets of events sufficient to cause the TOP event and does not contain within itself another cut set. Boolean algebraic approach is commonly used for calculation of the minimum cut set. The rules of Boolean algebra shown in Table 3.5 are used to mathematically transform the logic structure of the original fault tree into equivalent minimal cut set fault tree (Stamatelatos et al., 2002). Customarily, the symbol '·' is used to represent the logical AND gate and the symbol '+' is used to represent the logical OR gate. Quantitative FTA is based on Reliability theory, Boolean algebra, and probability theory (Ericson, 1999).

The minimal cut sets are determined by representing the fault tree as a Boolean equation. This equation is reduced using the laws of Boolean algebra as shown in Table 3.5. Based on the logical AND or logical OR gate symbols the laws of Boolean algebra are applied. This reduction involves replacement of top event with intermediate events and intermediate events with their causes. In the first step, the top event is represented in terms of intermediate events. In the next step, the intermediate events are replaced by their Boolean equivalents. This process of replacing intermediate events is continued until the Boolean representation of the fault tree contains only basic events. The final expression represents the top event in terms of basic events only. Each term is a cut set.

Designation	Mathematical symbolism	Engineering symbolism
Commutative law $X \cap Y = Y \cap X$		X.Y = Y.X
	$X \cup Y = Y \cup X$	X+Y = Y+X
Associative law	$X \cap (Y \cap Z) = (X \cap Y) \cap Z$	X. (Y.Z) = (X.Y).Z
	XU(YUZ) = (XUY)UZ	X+(Y+Z) = (X+Y)+Z
Distributive law	$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$	X.(Y+Z) = X.Y+X.Z
	$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$	X+(Y.Z) = (X+Y).(X+Z)
Idempotent law	$X \cap X = X$	X.X=X
	XUX=X	X+X=X
Law of absorption	$X \cap (X \cup Y) = X$	X.(X+Y)=X
	$X \cup (X \cap Y) = X$	X+X.Y=X
de Morgan's	$(X \cap Y)^l = X^l \cup Y^l$	$(\mathbf{X}.\mathbf{Y})^{l} = \mathbf{X}^{l} + \mathbf{Y}^{l}$
theorem	$(X \cup Y)^{l} = X^{l} \cap Y^{l}$	$(X+Y)^{l}=X^{l}.Y^{l}$

Table 3.5	Rules	of Boolean	algebra
-----------	-------	------------	---------

The advantages of FTA are:

- It is a highly structured method;
- It is easy to understand due to the graphical presentation;
- It can produce qualitative and quantitative results;
- It can be used as an effective root cause analysis;

• Cut set is useful in identifying the simple failure path in complex system.

3.3.2. Event Tree Analysis

Unlike FTA, ETA is an inductive approach. ETA is a forward, bottom up, logical modelling technique that uses decision trees and logically develops visual models of the range of possible outcomes of an initiating event (Diamantidis et al., 2000; Hong et al., 2009). ETA is a graphical representation of the logic model that identifies and quantifies the possible outcomes following the initiating event. In this method, an initiating event such as the failure of equipment or job is considered as the starting point, and the predictable accidental results are considered as the outcomes. The structure of ETA is developed only by including the outcomes that influence the initiating event. An event tress consists of an initiating event, probable subsequent events and final results caused by the sequence of events. Depending on the conditions at the time of the initiating event, the consequences of events vary from no injury to fatal. Probable subsequent events are independent of each other, and the specific final result depends only on the initiating event and the subsequent events following. Therefore, the occurrence probability of a specific path can be obtained by multiplying the probabilities of all subsequent events existing in a path (Marhavilas et al., 2014).

ETA is a tool that makes easy to see what pathway is creating the greatest probability of failure for a specific system. It is common to find single point failures that do not have any intervening events between the initiating event and a failure. With ETA single point failure can be targeted to include an intervening step that will reduce the overall probability of failure and thus reducing the risk of the system. The idea of adding an intervening event can happen anywhere in the system for any pathway that generates too great of a risk, the added intermediate event can reduce the probability and thus reduce the risk. The procedure for performing ETA is shown in Figure 3.5 (Clemens & Simmons, 1998; Ericson, 2005). In this study, ETA was used to determine the consequential events of the different initiating events. The advantages of ETA technique are:

- It is easy to understand due to the graphical presentation;
- It identifies both failure and success events that can cause the initiating event to occur;
- It can produce qualitative and quantitative results.

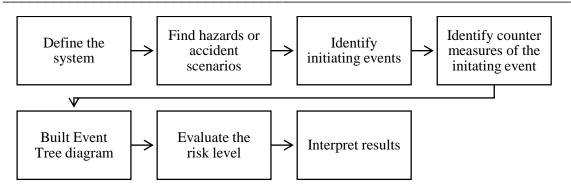


Figure 3.5 Procedure of ETA

3.4. Proposed Methodology

Along with the advantages, there are also some limitations in the employed risk analysis techniques as presented in the literature review chapter (section 2.5.2), which indicate that there is room for improvement. Therefore, a methodology was proposed in this thesis, with an aim to address the limitations of these techniques. The proposed methodology is based on unification of fuzzy logic, VIKOR, and AHP techniques.

Fuzzy logic is based on the theory of fuzzy sets, and it encompasses Artificial Intelligence, information processing and theories from logic to pure and applied mathematics, like graph theory, topology, and optimization (Pappis & Siettos, 2014). In recent years, applications of risk assessment techniques in the fuzzy logic area are increasing as this approach provides an accurate solution even when the data are approximate or uncertain. Fuzzy logic was applied for prediction of roof fall rate (Ghasemi & Ataei, 2013), to develop a novel safety diagnosis method for a coal mine production system (Wang & Zuo, 2012), for qualitative interpretation of acid mine drainage processes (Aroba et al., 2007), and for evaluating failures of belt conveyor elements (Petrović et al., 2014). All the previous applications revealed that fuzzy logic could effectively overcome the uncertainty encountered in the practical applications. Therefore, fuzzy logic was employed to evaluate the risk level of each hazard at the hazardous event level in terms of consequence, exposure, and probability.

In general, the hazards are ranked based on the evaluated risk levels, i.e. the hazard with highest risk level is considered as the highest rank, and the hazard with lowest risk level is considered as the lowest rank. If two or more hazards have equal risk level, then those hazards are given the same rank. Therefore, to ease the ranking procedure, and apply the remedial measures in an orderly manner, the VIKOR method was applied at the hazardous event level. Opricovic and Tzeng (2004) developed the VIKOR method, as a

MCDM method to solve a discrete multi-criteria problem with non-commensurable and conflicting criteria. It is aimed to determine a compromise solution for ranking and selecting considering conflicting criteria. The compromise solution is a feasible solution that is the closest to the ideal solution (Opricovic, 1998). The relative importance of the risk parameters, i.e. Probability (P), Exposure (E), and Consequence (C) is also considered in the VIKOR methodology. Mandal et al. (2015) have applied VIKOR method for ranking human errors in overhead crane operation in an opencast mine. Hayati et al. (2015) have used for determining the optimal block size in a mine.

AHP method was employed to calculate the relative importance of the hazard factors at the hazardous group level. As the contribution of each hazard to the risk of mine is different, the weight of the contribution of each hazard factor should be taken into consideration to represent its relative contribution to the risk level of the overall mine. The weights calculated using AHP indicates the degree of the relative importance of the hazard groups. AHP is one of the most popular analytical technique developed for MCDM problems. AHP aims to provide an expert with a detailed reference for decision-making and to reduce the risk of making the wrong decisions (Saaty, 1990; Wu et al., 2012). In short, it decomposes a complex decision-making problem into a system of hierarchies of objectives, criteria, and alternatives to derive ratio scales from paired comparisons. AHP can effectively deal with subjective as well as objective criteria inputs and allows some small inconsistency in judgement. The ratio scales are developed from the principle Eigenvectors, and the consistency index (C.I) is determined from the principal Eigenvalue. Kursunoglu and Onder (2015) have used AHP method for selecting an appropriate fan for an underground coal mine. Mohsen et al. (2009) have applied the AHP method for selecting an optimum underground mining method. Badri et al. (2013) have proposed using the AHP approach in risk management for underground mines.

The proposed risk assessment model has four major steps. The first step includes hazard identification; the second step involves risk quantification of identified hazards using fuzzy logic; next step consists of prioritization of hazards at event level using VIKOR method and finally prioritization of hazards at the group level and mine level using AHP technique. The illustrative flowchart of the overall methodology is represented in Figure 3.6. The details of the proposed risk assessment model are described in the following sections.

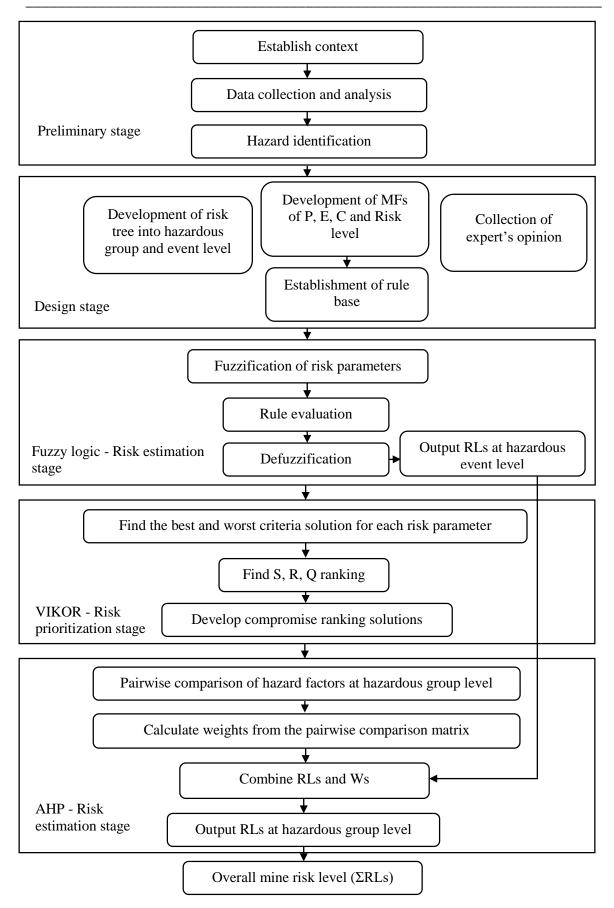


Figure 3.6 The proposed risk assessment methodology

3.4.1. Preliminary stage

The risk assessment process begins with the context establishment. Establishing the context means to define a particular task or issue, its underlying hazards and the requirement for safety at that task. Specific safety requirements of the task should be prepared at different levels, i.e. mine level, hazardous group level and hazardous event level (An et al., 2008). If the task defined in establishing the context step is indicated at the mine level, all the hazard factors of the task are categorized as hazardous group level, and the hazards related to hazard factors are considered as hazardous event level.

The next step in the risk assessment process is data collection and analysis. The goal of data collection and analysis is to gain knowledge on the types of accidents and incidents occurred in a particular mine over the years. If the statistical data are unavailable or uncertain, expert judgement should be applied, which later on will be used in the design phase to define the criteria of linguistic scales and related Membership Functions (MFs) of input risk parameters, i.e. P, E, C, and output RL.

The next step after the data collection is hazard identification. The hazard identification aims to detect all the possible hazards associated with underground coal mine methodically, i.e. identification of hazards at event level and group level after considering their effect on the overall mine safety.

3.4.2. Design stage

Once the data are collected, and hazards were identified in the preliminary stage, the risk assessment process moves from the preliminary stage to the design stage. The first job in the design stage is to develop a risk tree using identified hazards. The risk tree aims to break down the identified hazards into different levels to assess the associated risks of the underground mine effectively. The risk tree is broken down into hazardous event level, hazardous group level, and mine level as shown in Figure 3.7 (An et al., 2008). The hazardous events $E_1, E_2 \dots E_n$ at hazardous event level affects the RL of hazards groups at the hazardous group level; the RLs of hazard group contribute to the overall RL of the underground mine at mine level.

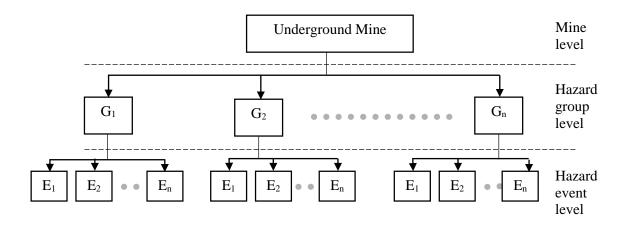


Figure 3.7 Risk tree model

The second job in the design stage is to establish the rule base. The fuzzy rule base is made up of a set of fuzzy IF-THEN statements, using experts' experience or engineering judgement (Xu, 2008). IF-THEN rules were employed to capture the imprecise modes of reasoning, which plays an essential role in the human ability to make decisions in the environments of uncertainty and imprecision. The fuzzy rules can be developed from engineering judgement, experts' opinion, and past data analysis. Combining these approaches is the most efficient way to determine the rule base (An et al., 2008; Ma et al., 2007). A fuzzy rule was developed in terms of linguistic variables of input risk parameters: P, E, C, and the output RL. A person uses a fuzzy linguistic scale as a procedure for measuring real-life situations. The set of scale values of some fuzzy linguistic variables are represented by fuzzy sets that are developed from collected previous accident data, and the fuzzy sets are portrayed by MFs. A typical example of a fuzzy rule in underground mine risk assessment appears as below:

If P is 'Almost certain' and E is 'Frequent' and C is 'Minor', Then RL is 'Medium'.

The next step in the design stage is to seek experts' opinion on values of the risk parameters for each hazard identified at the event level and relative importance/weights of the risk parameters. In the absence of precise data, the experts' opinion on risk parameters was collected using linguistic variables and accordingly they are modelled using fuzzy set theory. The experts' opinion on weights of the risk parameters was collected using the AHP technique. Practically, it is impossible for a single manager or engineer to consider all relevant aspects of an underground mine. Therefore, risk assessment in underground mines includes experts with different backgrounds and experience. Each expert may have a different impact on the final judgement.

Let us consider the number of experts be 'N,' a number of hazards (E) identified be 'm', and the number of hazard factors be 'n'. Let e_{ij} be the judgement of *i* hazard for *j* criteria. Then we get N matrices of type $E = [e_{ij}]_{m*n}$. Then all experts' opinions on risk parameters of each particular event are aggregated to get an overall quantified value (Mandal et al., 2015). The arithmetic mean aggregation (Fasanghari & Roudsari, 2008; Pandey et al., 2012) operator defined on triangular fuzzy numbers (a₁, b₁, c₁), (a₂, b₂, c₂) ... (a_n, b_n, c_n) delivers the result as (x, y, z)

Where,
$$x = 1/n \sum_{k=0}^{n} a_k, y = 1/n \sum_{k=0}^{n} b_k, z = 1/n \sum_{k=0}^{n} c_k$$
 (3.2)

After aggregating the experts' opinion, defuzzification of risk parameters should be done. For defuzzification of triangular fuzzy risk parameters, centroid defuzzification (Narayanamoorthy & Maheswari, 2012; Wang, 2009) method was used. If the aggregated fuzzified output A = (x, y, z), then the formula for the centroid method is as follows:

$$Centroid(A) = \frac{x+y+z}{2}$$
(3.3)

The crisp values obtained after the defuzzification method are used as inputs in the fuzzy logic risk estimation stage to calculate the RLs of the hazards and in VIKOR risk prioritization stage to rank the hazards at the event level.

3.4.3. Fuzzy logic - Risk estimation stage

In the fuzzy logic-risk estimation stage, the RL of each hazard at the hazardous event level is calculated by assessing the risk based on the P, E, and C values. Fuzzy logic allows imprecision or approximate information in the risk analysis process (Ghasemi & Ataei, 2013; Ma et al., 2007). In this methodology, Mamdani fuzzy inference system (Lee, 2006) was used as it is intuitive and well suited for human input. As the in-depth analysis of general fuzzy logic can be found in many works of literature (Ross, 2010; Zadeh, 1965), this section only provides a brief explanation of Mamdani fuzzy logic system. The main phases of the Mamdani fuzzy inference system to calculate RLs at hazardous event level are fuzzification, rule evaluation, defuzzification.

3.4.3.1. Fuzzification

The data collected from the preliminary stage is usually used as input, but if the collected data are uncertain or does not exist, then the experts' opinion gathered from the design stage is used as input data in the fuzzification phase. In many situations, in the mining industry,

the data may not exist, so the experts' opinion collected was considered in this thesis. The input values of hazardous events collected from experts are crisp values. The steps in fuzzification are, the crisp input values are translated into fuzzy sets containing linguistic concepts, and the MFs are applied to the measurements, and a membership value is determined (Ross, 2010). Triangular fuzzy numbers are most generic class fuzzy numbers with linear MFs. For that reason, triangular MFs finds broad application in modelling linear uncertainty problems rather than trapezoidal fuzzy numbers. Also due to simplicity in the mathematical demonstration and easy to computation, Triangular MFs were used in this thesis to represent the input and output parameters graphically. A triangular MF converts the linguistic scales in the range of 0-1 using the equations 3.4 and 3.5.

$$\mu(x; a, b, c) = \begin{cases} 0, \ x < a \\ (x-a)/(b-a), \ a \le x \le b \\ (c-x)/(c-b), \ b \le x \le c \\ 0, \ c < x \end{cases}$$
(3.4)

$$\mu(x;a,b,c) = \left(max\left(min\left(\frac{x-a}{b-a},\frac{c-x}{c-b}\right),0\right) \right)$$
(3.5)

Where a, b, c are the parameters of the linguistic scale and x is the range of the input parameters.

3.4.3.2. Rule evaluation

In the rule evaluation process, the fuzzy inference system maps inputs and rules to calculate the fuzzy output, i.e. RL, using fuzzy set theory. Fuzzy inference mechanism is based on the compositional rule of inference proposed by Zadeh (1965). In this methodology, the 'MIN' operator was used for combination and implication operations. An implication method states how a fuzzy logic controller scales the MFs of an output linguistic variable based on the rule weight of the corresponding rule. The fuzzy outputs were aggregated by using the 'MAX' operator. Aggregation process is where the outputs of each rule are combined into a single fuzzy set (MathWorks, 2015).

3.4.3.3. Defuzzification

The output generated by the fuzzy inference system will always be fuzzy in nature. Therefore, to convert the fuzzy output to crisp output, defuzzification is needed. Centroid defuzzification method was used to get a crisp value from the aggregated fuzzy set. Centroid of area defuzzification method for establishing the output is expressed in equation 3.6.

Centroid of area,
$$z^* = \frac{\int \mu A(z) \cdot z dz}{\int \mu A(z) dz}$$
 (3.6)

Where, z^* is the crisp value for the z output, and $\mu A(z)$ is the aggregated output membership function.

After defuzzification, the fuzzy inference system gives a crisp output value. The crisp values obtained are used to express the RLs of all the identified hazards at the event level. The risk level (RL_{HG}) of a hazard group is determined by the summation of all the RLs (RL_{Ei}) of hazard events of that particular hazard group.

$$RL_{HG} = \sum_{i=1}^{n} RL_{Ei}, i = 1, 2, \dots n$$
(3.7)

Where, RL_E is the risk level at hazardous event level. In the fuzzy reasoning approach, the weight contribution of risk parameters was considered as equal, which is not true in practice. The RL of some hazard events may have same RL as other hazards events, making it hard the prioritize the hazard events. Therefore, to overcome these limitations, the VIKOR method was applied to prioritize all the hazards events.

3.4.4. VIKOR - Risk prioritization stage

The crisp values of experts' opinion and weights obtained in the design phase were used as inputs in the VIKOR risk prioritization stage. The main aim of this stage is to develop a compromise ranking mechanism so that remedial actions can be ordered accordingly. Assuming that each alternative is evaluated according to each criterion function, the compromise ranking could be performed by comparing the measure of closeness to the ideal alternative. The multi-criteria measure for compromise ranking of hazards is developed from L_p matrix. If $E_1, E_2... E_m$ are the various hazards, f_{ij} denotes the rating of *i*th aspect of hazard E_m . E_i for *j* criteria, if we have *n* criteria then, L_p matrix can be defined as follows (Zeleny, 1982):

$$L_{p,i} = \left(\sum_{j=1}^{n} \left[\frac{w_j(f_j^* - f_{ij})}{f_j^* - f_{ij}}\right]^p\right)^{1/p}$$
(3.8)

 $1 \leq p \leq \infty, i = 1, 2, \dots m.$

Within the VIKOR method L_{1,i} (as S_i in equation 3.9) and L_{∞,i} (as R_i in equation 3.10) are used to formulate ranking measure. The solution obtained by $i_i^{min}(S_i)$ is with a maximum group utility, and the solution obtained by $i_i^{min}(R_i)$ is with a minimum individual

regret of the opponent. The compromise ranking algorithm VIKOR has the following steps (Opricovic & Tzeng, 2004):

The first step is to find the best (f_i^*) and worst (f_i^-) criteria solution for all risk parameters. j = 1, 2, 3, ..., n.

$$f_j^* = \lim_{i}^{max} e_{ij}, \quad f_j^- = \lim_{i}^{min} e_{ij}$$
, if the jth function represents a benefit,
 $f_j^* = \lim_{i}^{min} e_{ij}, \quad f_j^- = \lim_{i}^{max} e_{ij}$, if the jth function represents a cost.

In this thesis probability, exposure and consequence were cost criteria. The next step is to calculate the values S_i and R_i using equation 3.8.

$$S_i = \sum_{j=1}^n w_j \frac{(f_j^* - e_{ij})}{(f_j^* - f_j^-)}$$
(3.9)

$$R_{i} = \lim_{i}^{max} w_{j} \frac{(f_{j}^{*} - e_{ij})}{(f_{j}^{*} - f_{j}^{-})}$$
(3.10)

Where, w_j represents the weight of the risk parameters of the *j*th criteria. The next step is to compute the index values of Q_i using equation 3.8.

$$Q_{i} = v \left(\frac{S_{i} - S^{*}}{S^{-} - S^{*}}\right) + (1 - v) \left(\frac{R_{i} - R^{*}}{R^{-} - R^{*}}\right)$$
(3.11)

Where,

$$S^* = \lim_{i} \left(S_i \right) \tag{3.12}$$

$$S^{-} = \lim_{i} (S_i) \tag{3.13}$$

$$R^* = \lim_{i} (R_i) \tag{3.14}$$

$$R^{-} = \max_{i}(R_{i}) \tag{3.15}$$

v is the weight factor for the maximum group utility, usually v = 0.5 is choosen.

Then rank the hazards by arranging the group utility (S), individual regret of the opponent (R), and ideal solution index (Q) values in descending order, which will produce three ranking lists. The final step in this stage is to propose a compromise solution. The hazard E_1 is the best ranked by the measure Q (minimum) if the following two conditions are satisfied:

Condition 1: Acceptable advantage: Q (E₂) - Q (E₁) \ge DQ, where E₂ is the hazard (alternative) having the second position in the ranking list by Q; and DQ = $\frac{1}{(m-1)}$

Condition 2: Acceptable stability in decision making: The hazard E_1 must also be the best ranked by S or/and R. This compromise solution is stable within a decision-making process, which could be "voting by majority rule" (when v > 0.5 is needed), or "by consensus's" (v = 0.5), or "with veto" (v < 0.5).

If one of the above conditions is not satisfied, then a set of compromise solutions is proposed as follows:

- E₁ and E₂ if only the condition '2' is not satisfied or
- E₁, E₂, . . E_m if the condition '1' is not satisfied; E_m is determined by the relation
 Q (E_m) Q (E₁) < DQ for maximum 'm' (the positions of these hazards are 'in closeness').

The minimum value of Q is considered as the hazard with low risk associated with it. The compromise ranking thus developed will have maximum overall group utility and least individual regret. The compromise solution could be the base for negotiations, involving the decision makers' preference by risk parameter's weights.

3.4.5. AHP - Risk estimation stage

After evaluating the RL of all the identified hazards in the hazardous event level and prioritizing them, the proposed risk assessment methodology moves to estimate risk at the hazardous group level. In this stage, AHP was employed to determine the relative importance of each hazard factor, so that the risk assessment can be advanced from hazardous event level to hazardous group level and finally to mine level. AHP calculates weights by carrying out a pairwise comparison of the hazard factors. In general, AHP consists of a questionnaire for comparison of each hazard factor. In pairwise comparison, all the hazard factors are compared with each other to find out which hazard factor is riskier than the other is and how much risk it is in comparison with the other. Pairwise comparisons of the hazard factors at the group level are prepared by using Saaty (1990) ratio scale as shown in Table 3.6.

Intensity of importance in sub-criteria	Explanation	Scale
Equal Importance	Two hazard factors contribute equally	1
Between equal importance and weak importance	When compromise is needed	2
Weak importance	Experience and judgment slightly favour one hazard factor over another	3
Between weak and strong importance	When compromise is needed	4
Strong importance	Experience and judgment strongly favour one hazard factor over another	5
Between strong and very strong importance	When compromise is needed	6
Very strong importance	A hazard factor is favoured very strongly over another	7
Between very strong and absolute importance	When compromise is needed	8
Absolute importance	One hazard factor over another is of the highest possible affirmation	9

Table 3.6 Saaty's AHP scale

Let G_1, G_2, \ldots, G_n , as shown in Figure 3.7, are the hazard factors at the group level, e_{ij} represents the judgement on the hazard factors $G_i, G_{j.}$, then the pairwise matrix e_{ij} yields as follows:

 $\mathbf{e}_{ij} = \begin{bmatrix} 1 & G_{12} \cdots & G_{1n} \\ \vdots & \ddots & \vdots \\ \frac{1}{G_{1n}} & \frac{1}{G_{2n}} \cdots & 1 \end{bmatrix}$

This requires n(n - 1)/2 comparisons, where *n* is the number of hazard factors with the consideration that diagonal hazard factors are 1 and other hazard factors will be the reciprocals of the earlier comparisons. The next step after having a comparison matrix is to calculate the normalized Eigenvector of the matrix, which gives the relative importance (Weight, W) of the various hazard factors being compared. The normalized Eigenvector of the matrix is calculated by dividing each element of the matrix with the sum of its column and averaging across the rows. The C.I and random index (R.I) are utilized to verify the consistency of the comparison matrix (Consistency Ratio, (C.R)). Saaty (1990) has defined C.R as follows:

$$C.R = \frac{C.I}{R.I} \tag{3.16}$$

Where,

$$C.I = \frac{\lambda_{max} - n}{n - 1} \tag{3.17}$$

 λ_{max} is the Principal Eigenvalue. Principal Eigenvalue is the summation of products between each hazard factor of Eigenvector and the sum of columns of the reciprocal matrix. R.I is the average consistency index, which is given by Saaty and Vargas (1991), as presented in Table 3.7. If C.R < 0.1, then the experts' judgement is accepted; otherwise, judgement should be changed until C.R < 0.1.

Table 3.7 R.I values

n	2	3	4	5	6	7	8	
R.I	0	0.52	0.90	1.12	1.24	1.32	1.41	

On obtaining the Ws of hazard factors, the RL_G at the group level are reformed by combining the W_{Gi} and RL_{HG} as shown in equation 3.18.

$$RL_G = \sum_{i=1}^n RL_{HGi} W_{Gi}, i = 1, 2, \dots n$$
(3.18)

Where, W_G is the weight of the hazard factors at group level. The overall RL of the mine level can be calculated by summation of all RL_G obtained from the group level.

$$RL_{MINE} = \sum_{i=1}^{n} RL_{Gi} \tag{3.19}$$

3.5. Study Area

For the present study, six underground coal mines were chosen from the states of Odisha and Madhya Pradesh. Figure 3.8 represents the geological map of Indian with location points of six mines. Mine-1, mine-2 are located in Orient area, mine-3 is located in Talcher area of Mahanadi Coalfields Limited and mine-4, mine-5, mine-6 are located in Johilla area of South Eastern Coalfields Limited. Both the companies are the subsidiary mines of CIL. In this study, mine-1, mine-2, mine-3 were selected based on the dangerous occurrence and geological disturbances present in the mines. Mine-4, mine-5, mine-6 were selected as they were termed as accident prone mines by SECL. The salient geological and mining-related information of all the study areas are shown in Table 3.8.

Bord and pillar method is the most commonly employed technique for coal production in Indian underground coal mines. Bord and pillar mining method comprises two stages i.e., "Development" and "Depillaring". Sometimes both these stages proceed concurrently. In development, pillars are formed by driving a network of galleries, of which one set is generally parallel to the dip and the other set is parallel to the strike cutting the former at right angles. In depillaring, the coal pillars formed are extracted after the development of the mine. Generally, the bord and pillar mining method is carried in one of three ways (Hustrulid & Bullock, 2001), i.e.,

- Develop the entire area into pillars and then extract the pillars starting from the boundary.
- Develop the area into panels and extract pillars subsequently panel-wise. This is called as panel system of mining.
- "Whole" followed by "Broken" working in which the mines is opened out by a few heading only and there after development and depillaring go on simultaneously starting from the boundary.

Figure 3.8 Location of study areas

Most of the Indian underground coal mines are either mechanised or semimechanised. The types of machinery commonly used in underground coal mines are loadhaul-dumpers, side-discharge-loaders, universal drill machines, handheld drill machines, rope haulage, conveyors, ventilation fans, dewatering pumps, shuttle cars and locomotives (DGMS, 2015).

	Mine 1	Mine 2	Mine 3	Mine 4	Mine 5	Mine 6
Year of opening	1968	1955	1928	1983	1944	1884 (1973 came under CIL)
Number of seams worked	4	4	2	2	3	3
Depth of seam (range in meters)	18-282	25-220	94-158	18-150	15-135	15-140
Thickness of seam (range in meters)	18-22	25-30	5-9	2.5-4	8-10.1	3-3.6
Mining method	Bord and pillar	Bord and pillar	Bord and pillar, Depillaring with sand stowing	Depillaring with caving method	Bord and pillar	Bord and pillar
Face mechanization	Semi- mechanized	Semi- mechanized	Semi- mechanized	Semi- mechanized	Semi- mechanized	Semi- mechanized
Out-by coal transportation	Belt conveyor, LHD	Belt conveyor, LHD	Belt conveyor, SDL, haulage	Belt conveyor, SDL	Belt conveyor, SDL, haulage	Belt conveyor, SDL
Roof support	Full column cement grouted bolts	Full column cement grouted bolts	Girders, Roof bolts	Roof bolting	Full grouted roof bolts	Roof bolting
Degree of gassiness	Degree-II	Degree-II	Degree-I	Degree-I	Degree-I Degree-I	
Fire history	Yes	Yes	No	Yes	Yes	No

Table 3.8 Geological and mining-related information of the study areas

3.5.1. Description of Mine-1

The mine-1 is located west of Ib river and is about 2.5 km due north of Brajrajnagar railway station. The leasehold area of the mine is 11.16 sq.km. The physical map of the mine-1 is shown in Figure 3.9. The thickness of the seam is 18–22m and its gradient is 1 in 10.5. The seam is divided into sections 1, 2, 3 and 4. The thickness of the sections is 2.44m, 1.61m, 2.13m, and 2.20m respectively. The depth of the working varies from 18m to 282m.

Method of working is by the bord-and-pillar method using solid blasting technique with wedge cut pattern. P-5 type permitted explosives and delay detonators are used for blasting. LHD machines onto pony/gate belts in the working districts load blasted coal, which in turn discharges coal in the bunkers. After that, this coal is transported to surface bunker through a series of trunk conveyor belts. Materials and equipment that are required for normal functioning of the mine are transported to the underground through a series of haulages, namely direct haulage, tugger haulage and endless haulages. One exhaust type mechanical ventilator is installed on the surface of the mine, and there are four intake airways. The accident statistics of the mine are presented in Table 3.9. The history of dangerous occurrences in the mine are as follows:

Figure 3.9 Mine-1, Orient area, MCL

- There was a history of fire occurrence in the mine due to spontaneous heating in the years 1996, 2005, 2015. In the years, 2005 and 2015, the mine was sealed from the surface and was successfully reopened for production in the later years.
- There is an aquifer strata present at 30m above the seam 1, which if penetrated accidentally/incidentally may lead to a sudden inrush of water.
- A small roof fall at 78L/4th main dip is giving away 400-500 gallons per minute of water throughout the year.

V		Number of accident	
Year	Fatal	Serious	Reportable
2001	0	1	13
2002	0	0	9
2003	0	1	7
2004	0	2	1
2005	0	2	2
2006	1	0	2
2007	0	0	0
2008	0	0	3
2009	0	0	3
2010	0	0	2
2011	1	1	2
2012	0	0	0
2013	0	1	1
2014	0	1	0

Table 3.9 Accident statistics of mine-1

2015	0	0	0
2016	0	0	0

3.5.2. Description of Mine-2

The mine is located about 3.5km on the south of Jharsuguda-Raipur road and about 2km north of Brajrajnagar railway station. The leasehold area of the mine is 18.57 sq. km. The physical map of the mine-2 is shown in Figure 3.10. The average thickness of the seam varies from 25m to 30m including bands. The seam is divided into four sub-seams 1, 2, 3, and 4. The thickness of the sub-seams is 2.59m, 2.22m, 2.69m, and 3m respectively. Mining activities are limited to sub-seam 4 only. The thickness of sub-seam 4 is 3.05m, depth is 160m, and its gradient is 1 in 30.

Figure 3.10 Mine-2, Orient area, MCL

Coal is excavated by the bord-and-pillar method using solid blasting technique with wedge cut pattern. P-5 type permitted explosives and delay detonators are used for blasting. Blasted coal is loaded by LHD machine onto pony/gate belts in the working districts, which in turn discharges coal in the bunkers. After that this coal is transported to surface bunker through a serious of trunk conveyor belts. Materials and equipment that are required for normal functioning of the mine are transported to the underground through a series of haulages, namely direct haulage, tugger haulage and endless haulages. Two exhaust type mechanical ventilators are installed on the surface of the mine. While one main mechanical ventilator provides the adequate ventilation to the workings of the mines, another one is provided as standby. Two auxiliary fans were also installed to provide adequate ventilation at the working face. The following are the two incidents of fire occurrences in the mine:

- In 1980, fire/heating was detected in old sealed off area at 48SL of 7th incline and the area was sealed successfully.
- In 1981, fire/heating was detected at 46 NL of 6th incline and the area was sealed successfully.

3.5.3. Description of Mine-3

The mine is located in Talcher town. The leasehold area of the mine is 11.46 sq. km. The physical map of the mine-3 is shown in Figure 3.11. There are two seams in the mine, i.e. seam-I, seam-II. In seam-I, there are two working sections: bottom section and top section. The thickness of the bottom and top section varies from 5m to 9m and 1.2m to 3.2m respectively. The Rock Mass Rating (RMR) value of the bottom section is 42, and the top section is 51.6. Seam-II is overlying over seam-I, which occurs in two small patches at quarriable depth in the western portion of the mine.

Figure 3.11 Mine-3, Talcher area, MCL

Presently, depillaring with stowing is being carried out at the bottom section, and development work is going on in the top section of the seam-I by SDLs. There are two shafts present in the mine. Shaft-I is electrically operated and is used for coal transportation by skip hoisting. Shaft-II is steam operated and is used for men and material transportation. Blasted coal is loaded by SDL on to belt conveyor, and the belt conveyor loads the coal in mine cars. The mine cars dump the coal on to skip with the help of tub tippler. Finally, skip dumps the coal in Coal Handling Plant (CHP) from where coal will be dispatched through trucks. Some geological features of the mine are given below:

- A major fault of 150m of down throw towards north has passed along the northern side near the mine boundary.
- A fault of 85m of down throw towards south has passed south side of the mine property.
- A fault of 20m down throw towards north has passed over bottom section panels.
- A fault of about 9m down throw towards north has passed near pit bottom.

3.5.4. Description of Mine-4

The mine is situated 2km due south of Birsinghpur railway station. The leasehold area of the mine is 11.58 sq. km. The physical map of the mine-4 is shown in Figure 3.12. The thickness of the seam is 2.5m to 4m. The seam is divided into two sub-seams, i.e. top and bottom. RMR of top and bottom sub-seam is 42 and 48 respectively. The depth of the working varies from 18m to 150m.

Figure 3.12 Mine-4, Johilla area, SECL

Both the sub-seams are completely developed, and depillaring with caving method is adopted for coal excavation. The coal is loaded by SDL machine onto conveyor belts in the working districts, which in turn discharges coal to the surface bunker, from where coal will be dispatched through trucks. Materials and equipment that are required for normal functioning of the mine are transported to the underground through direct haulage. One axial flow type mechanical ventilator is installed on the surface of the mine. Seven faults have been found in the mine having a throw of 5m to 50m that affected both the top and bottom sub-seams. There is one incident of spontaneous heating in 2005; the incident was contained successfully by sealing the panel.

3.5.5. Description of Mine-5

The mine is located in the western side of Johilla river and is about 5km away from Nowrozobad railway station on Katni-Bilaspur main line of South Eastern Central Railway. The leasehold area of the mine is 17.69 sq. km. The physical map of the mine-5 is shown in Figure 3.13. The thickness of the seam is 8-10.1m, and its gradient is 1 in 5. The depth of the working varies from 15m to 135m. The seam is divided into three sub-seams, i.e. 1, 2, and 3. Development work is going on in sub-seam 3 only. The average thickness of sub-seam 3 is 1.5m.

Figure 3.13 Mine-5, Johilla area, SECL

Coal is excavated using the bord-and-pillar method. Blasted coal is loaded by SDL machine onto pony belts in the working districts, which in turn discharges coal in the bunkers. After that this coal is transported to underground bunker through a serious of trunk conveyor belts. From the underground bunker, coal is loaded into tubs and brought to the surface by a series of haulages. From surface, coal is transported to railway siding by tippers. Dispatch to the linked consumers is being carried out through railways.

Water accumulated in the goaved out areas of 3rd sub-seam and old workings of 1 and 2 sub-seams are dewatered regularly by using two 1000 gallons per minute submersible pumps. A fault of about 7m down throw towards east has passed over 2nd sub-seam panels. In this mines, spontaneous heating occurrences were detected in the year 1962, 1964, 1969, 1970, 1971, 1972, 1979, which were successfully contained by sealing off the panels.

3.5.6. Description of Mine-6

The mine is situated near Umaria. Its latitude is N 33^0 30' to N 33^0 33', and its longitude is E 80^0 47' to E 80^0 53'. The physical map of the mine-6 is shown in Figure 3.14.

Figure 3.14 Mine-6, Johilla area, SECL

The seam is divided into three sections 1, 2, and 3. DGMS prohibited the working in section-1 due to heavy seepage of water. The section-2 was developed and depillared by wide and stall method. Development working is going on in section-3 only. Method of working is done by the bord-and-pillar method. Blasted coal is transported with SDL machine and belt conveyors in series. There is no record of the history of dangers occurrences due to inundation, or fire.

3.6. Application of the Developed Methodology

The qualitative and quantitative risk assessment methods presented in this chapter are used for evaluating safety risks in mine-1. In the mine-1, FMEA was used to evaluate hazards related to belt conveyor system, rope haulage system and LHD, and WRAC was used to assess safety hazards related to ground movement, belt conveyor system, rope haulage system, LHD, blasting, electricity, inundation, and dust, gas and other combustible materials. FTA was applied to evaluate the root causes of the accidents occurred in mine-1 and ETA was applied to determine the consequential events of various mining situations. The details of the application of qualitative and quantitative techniques in mine-1 and their results are discussed in Chapter 4.

The proposed methodology presented in this chapter was used to evaluate safety risks in underground coal mines. The development of the preliminary and design stages of the proposed methodology was performed in mine-1. A GUI was developed based on the Mamdani fuzzy logic, VIKOR, and AHP techniques for risk evaluation and prioritization at the hazardous events level, and risk evaluation at the hazardous group level and overall mine level. The GUI was used for evaluating safety risks in mine-1. To further validate the applicability of the proposed methodology to other mines, it was applied to five more mines, i.e. mine-2, mine-3, mine-4, mine-5, and mine-6. The details of the application of the proposed methodology to six underground coal mines and their results are discussed in Chapter 5.

3.7. Chapter Summary

In this chapter, a comprehensive methodology was developed in the form of different sections for evaluating risk in mines. The methodology is divided into two sections: existing risk assessment techniques, i.e. qualitative and quantitative approaches, and the proposed risk assessment method. The procedural steps of both risk assessment techniques and the proposed methodology were presented in this chapter. The information of the studied mines where the developed methodology was applied was also presented in this chapter.

CHAPTER 4

QUALITATIVE AND QUANTITATIVE APPROACHES FOR SAFETY RISK ASSESSMENT IN UNDERGROUND COAL MINES

4.1. Introduction

Risk assessment of a task can be performed using either qualitative, quantitative or both approaches. Due to the lack of extensive application of risk assessment techniques to various mining operations, the type of approaches that were appropriate for risk assessment in the mining industry is not clear. In the previous chapter, the qualitative and quantitative approaches were discussed. In this chapter, the qualitative and quantitative approaches were applied to an underground coal mine and the results obtained were presented.

4.2. Data Collection

As part of data collection, the headquarters of CIL, its subsidiary companies, i.e. MCL, SECL, BCCL headquarters, and DGMS, Dhanbad were visited many times. The DGMS is a governing agency under the Ministry of Labour and Employment in India that deals with matters relating to occupational safety, health and the welfare of persons employed in mines. The purpose of these visits is: (i) to collect accidental data to perform statistical analysis (ii) to gain knowledge on the risk assessment methodologies that are being used in the Indian mines and (iii) to interact with the safety executives, who were trained on risk assessment through the Safety in Mines Testing and Research Station (SIMTARS), Australia.

The mine-1 was also visited a number of times. The purpose of these visits is: (i) to collect the detail accident statistics, incident reports and inspection reports from 2001 to 2016 (ii) to perform the FMEA and WRAC analysis (iii) to develop the rule base for fuzzy inference system and (iv) to conduct questionnaire survey.

4.3. Qualitative Approaches4.3.1. Failure Mode and Effects Analysis

In this study, FMEA was used to evaluate hazards related to mining equipment and machinery. In mine-1, there were 9 belt conveyor systems, 5 LHDs, and 13 haulage systems installed for coal and material transportation.

In the mine-1, a team consisting of a research scholar, a deputy manager and an overman performed FMEA study. The team identified the belt conveyor system, direct and indirect rope haulage system, haulage engine room, and LHD that could be examined by the FMEA tool. The team focused on examining each physical component of all the mining equipment. For each physical component, the possible failure modes were listed, and their effects were identified. Then the team used the DGMS (2002) scales to calculate the risk level based on the probability, exposure and consequence of the identified failure modes. The type of keywords used to identify the failure modes were mechanical, hydraulic, electrical, thermal, and radiation failures. In this study, only the failure modes that cause injury to workers were considered. Other types of effects like increased cost of operation, damage to equipment, damage to the environment, loss of production, process interruption, and reduced quality of production were not considered. The FMEA of belt conveyor, rope haulage, haulage engine room and LHD is presented in Table 4.1. In FMEA, the existing control measures were reviewed, and additional control measures were also documented.

Component	Failure Mode	Failure Effect	Consequence	Exposure	Probability	Risk Score C*E*P	Control measures
		В	elt c	onve	yor		
Belt	Improper belt joining	Injury to the operator, e.g. friction burns, cuts, abrasion impact with the belt, and drawing-in	0.001	1.5	3	0.0045	 Proper belt joining shall be provided and it shall be inspected regularly The operator should stand at a safe distance from the conveyor while it is in motion

Table 4.1 FMEA of mining	machinery in mine-1
--------------------------	---------------------

	Deteriorated belt	Injury to the operator, e.g. friction burns, cuts, abrasion impact with the belt, and drawing-in	0.001	1.5	2	0.003	 Damaged belt shall be replaced immediately The operator should stand at a safe distance from the conveyor while it is in motion
	Fumes from the fire on belt	Chance of suffocation (Asphyxiation)	0.3	0.5	1	0.15	Firefighting equipment shall be providedFire detection alarm system shall be provided
	Loose belt	Slip occurs between the drive pulley and belt causing friction which may ignite coal spillage or belt	0.3	0.5	1	0.15	• Tighten the belt tension whenever required
	Unguarded idlers	Drawing-in, injury to the operator	1	3	10	30	• Guards shall be provided around all the moving machine parts to protect workers
Idlers	Deteriorated idlers	Generate frictional heat which may ignite coal spillage or belt, injury to the operator	100.0	0.5	3	0.0015	 Every idler shall be maintained in good working condition and shall be taken out of use at predetermined intervals according to the manufacturer's recommendations Sufficient stock of spare idlers shall be kept at the mine to permit the periodical inspection and replacement Firefighting equipment shall be provided
	Material build-up	Generate frictional heat which may ignite coal spillage or belt	0.01	2	10	0.2	 Material shall be removed whenever required Firefighting equipment shall be provided
Tensioning arrangement	Unguarded tensioning arrangement	Drawing-in and crushing or injury to the operator while cleaning or maintaining or passing by	0.1	1.5	3	0.45	• The tensioning units shall be kept substantially fenced or guarded so that no person can get caught by the running belt or any moving part

Drive head which comprised the electric motor, coupling, gearing and snub pulleys	Unguarded drive head	Drawing-in and crushing or injury to the operator while cleaning or maintaining or passing by	0.3	1.5	1	0.45	• All the exposed rotating and forming parts of the drive head shall be kept substantially fenced or guarded so that no person can get caught by the running belt or any moving part
ised the electric motor, and snub pulleys	Use of inflammable materials	Chance of fire	5	2.5	2	25	 Within 5m of the drive head, only non-inflammable or fire-resistant materials shall be used for support Only fire-resistant hydraulic fluid coupling shall be used
which comprised t and s	Arc fault on power cables	Chance of ignition of flammable material in the vicinity, the chance of fire	0.3	0.02	2	0.012	• All electrical parts of the conveyor shall be installed properly and maintained regularly
Drive head v	Bearing failure	Leads to overheating which may ignite dust or spillage	0.0001	0.5	3	0.00015	 Coal spillage shall be cleaned regularly and whenever required Drive head shall be inspected and maintained regularly
Tail end	Unguarded tail end	Drawing-in and crushing or injury to the operator while cleaning or maintaining or passing by	0.3	1.5	1	0.45	 The tail end shall be kept substantially fenced or guarded so that no person can get caught by the running belt or any moving part The operator should not wear loose clothing
Chute	Jamming of chute due to improper screening	Chance of fire due to friction between the belt and coal	0.01	0.5	3	0.015	 Chute full detection/ shutdown system shall be provided The proper screen shall be provided
			ope	haula	age		
Rope	Breakage of rope due to wear, rusting or improper splicing	Runaway of tubs, injury to workers	1	2.5	L	17.5	 Rope condition and joints shall be inspected and maintained properly Improper or damaged ropes shall be replaced immediately Overloading of tubs shall not be allowed
Clips or lashing chain	Improper or defective clips or lashing chain	Detachment of tub from the rope, runaway of tubs, injury to workers	1	1.5	3	4.5	 Only approved clips or lashing chain shall be used to attach tubs and rope Clips and lashing chain shall be inspected and maintained regularly

Drawbar	Failure of drawbar	Runaway of tubs, injury to workers	1	2	3	9	 Per ma per Wo dra 	ly approved drawbars ill be used fiodical inspection and intenance shall be formed orn out and defective wbar shall be replaced mediately
Capel or shackles	Defective capel or shackles	Runaway of tubs, injury to workers	0.1	1.5	1	0.15	 Ver ma per We or the second secon	ly approved capel shall be ded iodical inspection and intenance shall be formed orn out and defective capel shackles shall be replaced mediately
Track	Defective laying of track line	Derailment of tubs, injury to workers	0.3	2	10	9	hau	oper maintenance of ilage track shall be formed
Tubs	Improper condition of tubs	Derailment of tubs, injury to workers	0.01	2	7	0.14		oper maintenance of tubs Il be performed
Tub buffers	Non- provision or non- functioning	Getting caught between tubs while coupling & uncoupling	1	0.5	3	1.5		b buffers shall be provided I maintained properly
Sprags	Failure of sprags	Sudden movement of tubs, injury to workers	1	1.5	3	4.5	• A 1	ly good condition sprags Ill be used regular inspection shall be formed
		Ha	aulag	ge eng	gine			
Drum, Surge wheel, Clutch and gears	gears	Hard to control haulage, injury to workers	0.3	0.02	1	0.006	wh be reg	ndition of the drum, surge eel, clutch and gears shall inspected and maintained ularly
Brake (brake wheel and liners)	Failure of brakes	Injury to workers	1	0.02	2	0.04	of and per • De sha	formed regularly fective or improper liners

			L	HD			
Brakes	Parking brake failure	Machine movement causing injury to the operator and other workers, damage to machine	1	0.02	2	0.04	 Parking brakes shall be inspected before starting the operation Preventive maintenance shall be performed periodically When the LHD is parked, the bucket should be lowered to the ground
	Service brake failure	Injury to the operator and other workers	1	0.02	2	0.04	 Service brakes shall be inspected before starting the operation Preventive maintenance shall be performed periodically
Bucket	Improper condition of the bucket	Slippage of bucket tip plate during operation, injury to workers	0.1	0.02	1	0.002	• Checking and maintenance of bucket shall be performed regularly
	Improper condition of lift or tilt cylinder	Injury to workers and operator himself	0.1	0.5	1	0.05	• Checking and maintenance of lift and tilt cylinders shall be performed regularly
	Pilot switch not in order	Electrocution, chance of fire, injury to the operator and other workers	0.3	1.5	2	6.0	• Pilot switch shall be provided and maintained regularly
ystem	Pressure relief valve not in order	Bursting of oil the tank and hoses causing injury to the operator and other workers	0.3	1.5	1	0.45	• All the pressure valves shall be adequately maintained to ensure proper release of the pressure valve
Engine and hydraulic system	Temperature switch or cut-off valve not in order	Damage to the machine, injury to workers	0.3	1.5	2	6.0	 Temperature switch or cut- off valve shall be inspected and maintained regularly Temperature switch settings shall be set as per original equipment manufacturer's recommendations
En	Dump valve not in order	Operational problem and risk associated with uncontrolled movement of the machine	0.1	0.02	1	0.002	• Regular checking and maintenance of dump valve shall be performed
	Oil leakage	Fire, injury to the operator and other workers	0.3	2	3	1.8	• Always maintain oil tank in good condition

	Non- provision or improper canopy	Injury to the operator	0.1	1.5	7	1.05	 The operator shall not be allowed to operate the machine without canopy Canopy shall be inspected for any physical damage and maintain accordingly
Safety features	Head or rear light not working	Injury to the operator and other workers, damage to machine	0.3	1.5	1	0.45	 Head and tail lights shall be checked before starting the operation Head and tail lights shall be replaced whenever required
Safety	Audio- visual alarm or horn not working	Injury to workers	0.3	1.5	1	0.45	 Audio-visual alarm shall be checked before starting the operation Preventive maintenance shall be performed periodically
	Footswitch or dead-man switch not working	Injury to the operator and other workers, damage to machine	0.3	1.5	1	0.45	• Regular checking and maintenance of dead man switch shall be performed
Tires	Bursting of tyre	Accidental dislodging of the wheel, injury to the operator and other workers	0.1	0.5	3	0.15	• Tyre pressure, the physical condition of tyre and condition of nut bolts shall be checked and maintained regularly
Flexible trailing cable	Improper reeling or unreeling	Damage to cable, uncontrolled runaway of the machine causing injury to the operator and other workers	0.3	1.5	2	6.0	 Preventive measures shall be taken to avoid improper reeling and unreeling Cable shall be inspected and maintained regularly Workers shall not be allowed to move along the plying path of the machine
Flexil	Poor or damaged flexible trailing cable	May lead to electrocution	0.3	2	3	1.8	 Flexible trailing cable shall be jointed and maintained properly High strength cables shall be used
Gate-end box	Improper gate-end box earthing	Improper earthing cannot transmit a fault to the tripping mechanism of a switch may lead to electrocution	0.3	0.5	1	0.15	• Earthing shall be performed properly

4.3.3. Workplace Risk Assessment and Control

Unlike FMEA, WRAC tool is not limited to machine design changes. It can be applied to analyse a wide range of operations in mines. In the mine-1, a team consisting a research scholar, a deputy manager and an overman performed WRAC study. The objective of this study was set to identify the safety hazards of various mining situations. The team focused on general hazard identification and job/process mapping discussion aimed at introducing WRAC technique to the mining operations. The 5×5-risk matrix developed in CIL was used to assess the risk level of the identified hazards.

After the instructional aspects of the WRAC had been completed, the team identified critical safety operations that could be mapped and examined by the WRAC tool. The safety operations identified in mine-1 were related to ground movement, conveyor belt system, rope haulage system, LHD, blasting, electricity, inundation, and dust, gas and other combustible materials. The team then examined the activities associated with the safety operations. The safety hazards associated with workers' actions, machines/tools, work methods/ procedures and the overall work environment conditions in the underground coal mine were considered in this study. After examining the activities of the safety operation, the team then listed out the hazards related to all the identified safety operations, attempted to identify the associated risk for each hazard listed out and rank the associated risk. In this study, only the risks that cause injury to workers were considered. The likelihood and consequence were graded based on team personnel's experience. The risk assessment team then identified existing controls and new controls to manage the top associated risk. The WRAC analysis of ground movement, rope haulage system, conveyor belt system, LHD, electricity, blasting, inundation, and dust, gas and other combustible materials are presented in Tables 4.2–4.9 respectively.

		Risk R	anking	
Hazards	Risks	Likelihood Consequence	Score & Level	Control measures

Table 4.2 Risk ranking of hazards related to ground movement using WRAC tool

Geologically disturbed areas or weak old supports	Roof and side may fall causing injuries to workers, chance of inundation	L1	C4	10 Medium	 Identify the geologically disturbed areas and mark them on the mine plan Roof bolting with additional precautions shall be performed in geologically disturbed and weak old support areas
RMR not determined, and SSR not framed properly	Improper support may lead to the roof fall	L1	C4	10 Medium	 RMR shall be determined, on or before opening a new district SSR shall be framed based on RMR
Poor knowledge of approved SSR	Under or over support, injury to workers	L2	C3	9 Medium	 Information shall be imparted by safety talks Supports should be reviewed weekly
Weak roof or side conditions	Roof or side may fall causing injuries to workers	EJ	C4	18 Medium	 If the roof or side conditions deteriorate, additional supporting shall be provided Dressing of roof and sides shall be performed regularly
More height and width of galleries	Unbalanced stress on roof lead to the roof fall, gallery height of more than 3m may also lead to the side fall	L3	C3	13 Medium	 Height and Width are restricted as per DGMS permission Accurate and precise surveying shall be performed Additional supports shall be erected to strengthen the roof Sides shall be supported with mesh and W-Straps
Poorly supported or unsupported roof	Chance of roof fall	L1	C4	10 Medium	 Roof shall be timely supported Additional support shall be provided as and whenever required Support gang shall advance in ascending order
Delay in support of freshly exposed roof	Endangering safety of face workers	L2	C3	9 Medium	 Temporary roof support shall be provided till the roof is supported with permanent supports Proper follow up shall be performed in all three shifts
Poor quality of cement capsule and drill rods	Fake sense of roof support or deterioration of roof leads to roof fall	L4	C3	17 Medium	 Anchorage testing shall be performed regularly Cement capsules and drill rods shall be visually tested Strata monitoring cell shall be formed at unit level as well as subarea level and area level

· ·					
Less than adequate grout in the column	Fake sense of roof support or deterioration of roof leads to roof fall	L4	C3	17 Medium	 Anchorage testing shall be performed regularly Roof bolting shall be performed under close supervision of District In-charge Safety awareness among rock bolting support crew shall be developed
Unavailability of support material	Unsupported workings, chance of roof or side fall	$\Gamma 4$	C3	17 Medium	 Blasting operation shall be halted until support work is completed No work shall be performed without support Buffer stock of at least one-day consumption shall be provided and maintained
Untrained or unskilled support crew	Poor workmanship, injury to support crew	L3	C3	13 Medium	 Proper training to support crew shall be provided Untrained workers shall be deployed in direct supervision of trained workers
Poor supervision	Chance of roof or side fall, risk to the workers deployed under this individual	L4	C4	21 High	 Trained and experienced supervisors shall be deployed No work shall be performed without supervisors Regular training to supervisors and support personnel shall be provided
Improper testing and dressing	Weak layers may fall on working persons causing injuries	L4	C4	21 High	 All outbye galleries shall be tested and dressed weekly Officers shall do random checks to verify and ensure the proper testing and dressing of roof and sides was performed regularly
Non-vertical alignment of galleries	Uneven distribution of stresses may lead to the roof or side fall, crushed floor and pillars	T3	C4	18 Medium	 Verticality of contiguous working shall be maintained by proper surveying Timely extension of the centre line shall be performed
Lack of indicators in strata monitoring	No indication of strata deterioration, unexpected falls	L2	C3	9 Medium	• Load Shell, Tell-tale, spring type convergence recorder, sliding type convergence recorder, borehole extensometer shall be provided for strata monitoring
Water seepage	Roof and sides will become weak causing roof fall or side fall	L4	C2	12 Medium	 Weeping holes shall be made on the roof Regular strata monitoring shall be performed

subsidence cracks and fissures on the	Chance of fire and explosion, chance of inundation, roof and side fall may occur, injury to workers, loss of property		C4	18 Medium	•	Subsidence area shall be monitored regularly Subsidence cracks shall be filled by dozing or concreting if necessary
---	---	--	----	--------------	---	---

		Risł	k Rar	nking	
Hazards	Risks	Likelihood	Consequence	Score & Level	Control measures
Deployment of an unauthorized or untrained trammer or clip-man	Injury to trammer or clip-man and other workers	L2	C2	5 Low	• Only authorized and trained trammers, and clip-man shall be deployed to work
Overloading of tubs	Breakage of rope, injury to workers	L2	C2	5 Low	• Trammers and supervisors shall be educated about the maximum number of tubs or maximum capacity of the material to be loaded
Defective rope or rope splicing	Breakage of rope, injury to workers	L2	C2	5 Low	• Proper care shall be taken in inspection, maintenance and replacement of defective rope and rope splicing
Defective or improper clips or lashing chain	Detachment of tub from the rope, injury to worker	L2	C2	5 Low	 Only approved clips or lashing chain shall be used to attach tubs and rope Clips and lashing chain shall be inspected and maintained regularly
Unexpected movement of tubs	Workers get caught between tubs while coupling and uncoupling	L .2	C2	5 Low	• Tub buffers shall be provided and maintained properly
Failure of drawbar	Runaway of tubs, injury to workers	L3	C3	13 Medium	 Drawbar shall be properly fixed with the chassis of the tub body Good condition drawbars shall be used Lock on drawbar shall be provided
Failure of sprags	Sudden movement of tubs, injury to workers	L2	C2	5 Low	 Only good condition sprags shall be used Regular inspection shall be performed

Non-provision or improper maintenance of safety features like stop block, runaway switch, backstay, drag, catches, safety hooks, jazz rails, tub re-railers	Derailment of tubs, runaway of tubs, injury to workers	L2	C2	5 Low	•	All the safety features shall be provided and maintained regularly
Improper laying and maintenance of track line	Derailment of tubs, injury to workers	T2	C2	5 Low	•	Provision of proper maintenance of track line shall be properly laid and maintained regularly Preventive maintenance of track line shall be performed
Improper maintenance of tubs and their fittings	Injury to workers, derailment of tubs	L2	C2	5 Low	•	Tubs and their fittings shall be inspected and maintained regularly Preventive maintenance shall be performed
Lack of precaution while haulage track line crosses travelling road	Injury to workers	L3	C2	8 Medium	•	Zigzag fencing shall be provided, Crossovers or under bridge shall be provided
Failure of signalling system	Injury to workers	L2	C2	5 Low	•	Regular maintenance of signalling system shall be performed Code of signalling shall be displayed at strategic places Audio-visual alarm shall be provided
	Haula	age en	gine	room		
Deployment of an unauthorized or untrained operator	Injury to workers	L2	C2	5 Low	•	Only authorized and trained operator shall be deployed to work
Improper maintenance of engine room	Failure of haulage, injury to workers	L1	C2	3 Low	•	Engine room shall be inspected and maintained regularly
Non-provision of guards	Injury to haulage operator and other workers	ГЗ	C2	8 Medium	•	Guards or fences shall be provided for rope, coupling and all moving parts
Improper maintenance of braking system	Failure of haulage brake, injury to workers	L1	C3	6 Low	•	Inspection and maintenance of brake liners, lever and linkages shall be performed regularly

		Ris	k Ra	nking	
Hazards	Risks	Likelihood	Consequence	Score & Level	Control measures
Deployment of an unauthorized or untrained operator	Injury to the operator and other workers	EJ	C4	18 Medium	• Only authorized and trained operator shall be deployed to work
Pre-start check not performed by operator	Injury to the operator and other workers, damage to machine	ГЗ	C3	13 Medium	 Before starting the conveyor operation, the operator shall check all the safety devices, the gate-end box, belt joints, motor, coupling guard, and belt The operator shall also communicate through telephone with chute operator
An operator wearing loose dress	Injury to the operator	L3	C3	13 Medium	• Operator shall not be allowed to work with loose clothing
Improper or inadequate cleaning of spillage coal in belt sides, drive heads and tail ends	Injury to the operator engaged for cleaning	L3	C3	13 Medium	 No person shall be allowed to clean belt while the belt is in motion Longhand shovel with 'T' handle shall be provided Fence or guards shall be provided around drive heads and tail ends
Inattentive chute opening	Injury to chute operator due to fall of lump while cleaning the chute	L3	C3	13 Medium	 Long crew-bar shall be provided Proper screen shall be provided Mechanical or hydraulic chute with lump breaker shall be provided
Breaking of coupling or bolts of coupling and non-provision of coupling guard	Injury to workers, damage to machinery	εT	C4	18 Medium	 Regular checking and tightening of bolts shall be performed Coupling guard shall be provided
Inadvertent entry of a person in drive end or tail end or tension or discharge drum	Injury to person	L3	C4	18 Medium	 Guards shall be provided Regular checking and maintenance shall be performed Guards shall be interlocked with belt starter Pre-start alarm shall be provided

Γ			1		
Friction in the running belt due to spillage of coal and belt structure	Chance of fire	L3	C4	18 Medium	 Fire extinguishers shall be provided in operating condition at strategic places Water spraying arrangement shall be provided Fallen coal shall be cleaned regularly Belt shall be regularly checked for proper alignment to prevent rubbing of the belt with the structure
Damaged idlers or rollers	Chance of fire	L3	C3	13 Medium	 Idlers and rollers shall be maintained regularly Damaged idlers or rollers shall be changed regularly Coal spillage shall be cleaned regularly
Worker crossing the belt to the other side or Inadvertent entry of a worker while the belt is moving	Injury to worker due to fall while crossing	L3	C3	13 Medium	 Crossover bridge shall be provided at every six pillar interval Crossover bridge shall be used for crossing the belt
Failure of signalling system	Injury to workers	L3	C3	13 Medium	 Regular maintenance of signalling system shall be performed Code of signalling shall be displayed at strategic places Audio-visual alarm to be provided at every 200m length along the belt conveyor Signalling system shall be interlocked with switch and starter Two-way signalling system with audio-visual alarm shall be provided
Failure of pull cord and lockout switches	Injury to workers	L3	C3	13 Medium	 Pull cord switch shall be checked and maintained regularly Lockout switches shall be used while repairing or maintaining conveyor belt

Table 4.5 Risk ranking of hazards related to LHD using WRAC tool

			k Rar	nking		
Hazards	Risks	Likelihood	Consequence	Score & Level	Control measures	
Deployment of an unauthorized or untrained operator	Injury to the operator and other workers	L3	C3	13 Medium	 Only authorized and trained operator shall be deployed to work Proper training shall be provided for the operator 	

Pre-start check not performed by operator	Injury to the operator and other workers	Г3	C3	13 Medium	 Before starting the loading operation, the operator shall check all the safety devices, engine oil, transmission oil, hydraulic oil, electrical components, tyre, exhaust particulate filter Checklists shall be provided to the operator
Improper condition of brakes	Injury to the operator and other workers	L3	C3	13 Medium	 Preventive maintenance of brakes shall be performed regularly Secondary brakes, i.e. hand brakes shall be provided
Front or rear light not working	Injury to the operator and other workers	L3	C3	13 Medium	 Lights shall be checked and maintained regularly
Audio-visual alarm or Bell not working	Injury to workers	ΕΊ	C3	13 Mediu	• Audio-visual alarm or bell shall be checked and maintained regularly
Footswitch or dead-man switch not working	Injury to workers, damage to machine	L3	C3	13 Medium	• Footswitch or dead-man shall be checked and maintained regularly
Pilot switch not in order	Electrocution, chance of fire, injury to workers	L3	C3	13 Medium	• Pilot switch shall be checked and maintained regularly
Improper oil tank condition	Fire, injury to workers	EJ	C3	13 Medium	• Oil tank shall be regularly inspected for any physical damages and repair shall be performed whenever required
Bad condition of tyre	Bursting of the tyre, accidental dislodging of the wheel, injury to the operator, damage to machine	L3	C3	13 Medium	• Tyre pressure, the physical condition of the tyre, and condition of nut bolts shall be checked and maintained regularly
Parking or standing of the machine at a gradient	Unexpected movement of the machine, injury to workers, damage to machine	L3	C3	13 Medium	 Strict instructions shall be passed not to park machine on gradient floor Brakes shall be maintained regularly The machine shall be parked properly at the parking place, and adequate height & width of the gallery shall be maintained

Plying of the machine in	Flying of coal pieces due to the movement				• Fallen coal shall be cleared, and
disturbed or unsafe areas	of the machine may cause injury to workers	L3	C4	18 Medium	 roadways shall be maintained properly Workers shall not be allowed to move along the plying path of the machine Caution board shall be displayed Dressing of roof and sides shall be performed regularly
Improper condition of lift or tilt cylinders	Injury to workers and operator, chance of fire	L3	C3	13 Medium	 Preventive maintenance of lift and tilt cylinders shall be performed regularly Pre-start check shall be performed
Improper canopy or canopy not provided	Injury to the operator	ГЗ	C3	13 Medium	 Operator shall not be allowed to operate the machine without canopy Canopy shall be inspected for any physical damage and maintain accordingly
Bypass dump valve or dump valve not in order	Operational problem and risks associated with the uncontrolled movement of the machine	EJ	C3	13 Medium	• All the engine parts shall be inspected and maintained regularly
Unexpected movement of flexible tailing cable	Injury to workers	L4	C2	12 Medium	• Inadvertent entry of a LHD helper or other workers along the plying path of the machine shall be restricted

Table 4.6 Risk ranking of hazards related to electricity using WRAC tool

		Risk Ranking		nking	
Hazards	Risks	Likelihood	Consequence	Score & Level	Control measures
Failure of protective devices	Chance of electric shock	L3	C3	13 Medium	 Damaged protective devices shall be repaired and replaced if necessary Systems shall not be used without protective devices
Improper earthing	Chance of electric shock	L1	C4	10 Medium	 Earthing shall be performed properly Proper earthing materials shall be provided
Defective earth pit and neutral pit	Chance of electric shock	L1	C4	10 Medium	• Earth, neutral pits and earth connections shall be inspected regularly and corrected if necessary

			-		
Improper maintenance of flameproof features	Chance of electric fire and explosion	L4	C4	21 High	 Flameproof features of all equipment shall be maintained regularly and properly Leakages shall be rectified immediately Adequate spare parts shall be provided for maintenance of flameproof features
Improper permanent cable joints (compounding)	Chance of fire, short circuit	T3	C3	13 Medium	 All the improper cable joints shall be identified and protected Compounding of entry boxes and cable joints shall be performed properly
Poor insulations	Chance of fire, short circuit	L3	C3	13 Medium	• All the improper insulations shall be identified and rectified
Improper shutdown procedure	Chance of electrocution	L3	C4	18 Medium	 Awareness of proper shutdown procedure shall be improved Proper shutdown procedure shall be followed
Improper fencing of installations	Chance of electrocution	L3	C3	13 Medium	• Temporary fencing arrangements shall be provided around all the installations
Faulty power cables	Chance of electrocution	L3	C3	13 Medium	 Faulty power cables shall be identified by regular inspection Repair and replace faulty power cables as required
Housing of power cable along with signalling cable and lighting cable jointly	Chance of electrocution	L3	C3	13 Medium	• Proper isolation shall be provided between power cable, signalling cable and lighting cables
Improper maintenance of electric apparatus of equipment without proper precaution	Injury to electrician	F3	C3	13 Medium	 Proper maintenance of electric apparatus shall be performed regularly Personal protective equipment shall be used Proper tools in required quantity shall be provided
Unsatisfactory flexible trailing cable	Poor installation, a damaged cable may lead to electrocution	L3	C3	13 Medium	 High strength cable shall be used Flexible trailing cable shall be properly joined and maintained regularly

Improper reeling or unreeling	Damage to cable, uncontrolled runaway of the machine causing injury to the operator and other workers, damage of the machine	L3	C3	13 Medium		Preventive measures shall be taken to avoid improper reeling and unreeling Cable shall be inspected and maintained regularly Workers shall not be allowed to move along the plying path of the machine
-------------------------------------	---	----	----	--------------	--	---

Table 4.7 Risk ranking of hazards related to	blasting operation using WRAC tool
--	------------------------------------

		Risk Ranking				
Hazards	Risks	Likelihood	Consequence	Score & Level	Control measures	
Deployment of an unauthorized or untrained blasting crew	Injury to workers entering the blasting zone, misfire	L3	C3	13 Medium	• Only authorized and trained blasting crew shall be deployed to work	
Not following the blasting card system	Chance of workers entering the blasting zone	L2	C3	9 Medium	 Supervisor shall cross-check the blasting cards during underground visits The supervisor shall also ensure that the blasting cards system is being followed 	
Drivage of joining gallery from both ends	Inadvertent entry of workers into the blasting area, blown out and blown through shots	L4	C3	17 Medium	 Blasting card system shall be strictly implemented Parting register shall be maintained 	
Priming of explosives in unauthorized places	Accidental blasting	L3	C3	13 Medium	 Priming the explosives shall be performed only at face Priming shall be performed under the supervision of Shift In-charge 	
Multiple operations at face while charging	Chance of injuries, accidental blasting	L3	C3	13 Medium	• Charging of explosives shall be performed only when drill machine is removed from the face	
Improper or poorly maintained blasting tools	Accidental blasting	L2	C3	9 Medium	 Blasting tools shall be maintained regularly Proper tools shall be made available in the district 	
Carrying of explosives and detonator together	Accidental blasting	L3	C3	13 Medium	• Proper containers with separate lock and key shall be provided for explosives and detonators	

Shot firing from a source other than the exploder	Accidental blasting	L3	C4	18 Medium	• Only approved exploder shall be used for blasting
Shot firer engaged in other work	Lack of concentration , accidental blasting	L2	C2	5 Low	• Shot firer shall not be overloaded with other work
Improper dealing of misfire	Chance of fire, manual accident	L3	C3	13 Medium	• Misfire shall be dealt as per regulations and various guidelines given by DGMS
Blasting in a gassy seam	Chance of explosion	L3	C5	22 High	 Solid blasting shall be performed as per DGMS permission Checking for the presence of inflammable gases shall be performed regularly Water shall be sprayed before and after blasting

Table 4.8 Risk ranking of hazards related to inundation using WRAC tool

		Ris	k Rar	nking		
Hazards	Risks	Likelihood	Consequence	Score & Level	Control measures	
Inaccurate drivage of face	Chance of inundation	L2	C2	5 Low	 Daily checking shall be performed with reference to survey Rechecking shall be performed every week using survey instruments 	
Insufficient number of pumps or failure of pumps	Chance of inundation	L2	C2	5 Low	 Sufficient sump area shall be provided Sufficient number of high head pumps and standby pumps shall be provided Pumps shall be inspected and maintained regularly 	

		-			
Working near geological disturbances, i.e. faults, folds, slips	Chance of inundation	L2	C2	5 Low	 Geological disturbances shall be demarcated in different plans 15m barrier shall be left against such disturbances Sump area and pumping capacity shall be increased More exploratory boreholes shall be drilled for determining exact geology of strata A hydro-geological survey shall be carried out to find out the presence of the water body
Presence of surface cracks, fissures, subsidence	Chance of inundation	L3	C3	13 Medium	• Surface cracks, fissures, subsidence area shall be filled to avoid any inrush of water to underground
Old boreholes which are not sealed effectively	Chance of inundation	L2	C2	5 Low	 Boreholes shall be sealed, and the 3m barrier shall be maintained around the borehole Boreholes shall be checked for every 3 months
Unexpected heavy rains and power failure	Chance of inundation	L2	C2	5 Low	 Stoppage of working in case of abnormal seepage of water Workers shall be evacuated from underground

Table 4.9 Risk ranking of hazards related to dust, gas and other combustible materials using WRAC tool

		Risk Ranking				
Hazards	Risks	Likelihood	Consequence	Score & Level		Control measures
]	Explos	sion		
Improper sealing of extracted panels	Leakage of ventilation, chance of fire	E.I.	C4	18 Medium	• •	Sectionalisation stopping shall be erected. All the sectionalisation stoppings shall be monitored regularly from the surface by using a Tele Monitoring System Explosion proof stopping shall be provided if CH ₄ exceeds more than 2%

		1	1			
Improper monitoring or inspection of gases in sealed off areas and old working areas which are not sealed off	Chance of explosion	L3	C4	18 Medium	•	Sealed off areas and old workings shall be inspected once in 7 days by a competent person Tele Monitoring System shall be used for monitoring underground operations
Huge coal dust deposition in the return airway	Chance of explosion	L1	C4	10 Medium	•	Return airway shall be properly cleaned Sprinkling of stone dust shall be performed to suppress coal dust
Leakage from sectionalisation stoppings	Chance of fire and explosion	L1	C4	10 Medium	•	Regular monitoring and maintenance of sectionalisation stopping shall be performed Stopping outbye of the previous stopping shall be erected, if required and balance pressure to avoid leakage of stoppings
Inadequate or non- functioning of gas detecting apparatus	Failure to detect gases during early stages may cause fire and explosion	L2	C4	14 Medium	•	Sufficient number of gas detection, and monitoring instruments shall be provided Calibration and maintenance of the instruments shall be performed regularly
Improper sampling of gases by supervisors	Incapability of monitoring the percentage of gases present, chance of fire and explosion	L2	C4	14 Medium	•	Regular sampling shall be performed Supervisors shall be properly trained Retraining shall be provided to supervisors if required
Non-inter coupling of underground power with the main mechanical ventilator fan	Chance of spreading the accumulated igneous, noxious, toxic, inflammable gases to other areas	L1	C3	6 Low	•	Main mechanical ventilator fan shall be inter-coupled with underground power
Gas cutting or welding work near a dusty area or any unauthorized area	Chance of fire and explosion, injury to workers	L2	C3	9 Medium	•	Gas cutting or welding work shall only be allowed after taking prior permission from the manager Gas cutting or welding work shall only be performed under the supervision of a safety officer or colliery engineer Flashback arrester, sand, and water shall be provided near gas cutting or welding workplace
Contrabands	Chance of fire and explosion, injury to workers	L2	C3	9 Medium	•	Body searcher shall be deployed Awareness among workers shall be increased

Stonedustbarriernotprovidedatpanel entry	Chance of explosion	L4	C4	21 High	•	Stone dust barriers shall be provided at panel entry
Accumulation of coal dust at working panel and loading points	fire and explosion	L3	C3	13 Medium	•	Coal dust shall be cleaned regularly, by providing proper ventilation Water spraying and stone dusting shall be performed as a preventive measure
Non-provision of fire stoppings where CH ₄ exceeds 2%	Chance of explosion	L3	C5	22 High	•	Fire stoppings shall be converted into explosion proof stoppings Fire stoppings shall be inspected weekly once by a competent person Gases shall be monitored continuously by Tele Monitoring System
	I		Mine	fire		
Susceptibility of spontaneous heating due to low Cross Point Temperature and high moisture content	Chance of fire, coal seam more susceptible to spontaneous heating	L4	C4	21 High	•	Monitoring shall be performed to early detect fire Panels shall be formed considering the incubation period of the coal so that the panel will finish before incubation period Proper ventilation shall be provided
Shallow depth of cover	Leaking of air from the surface into sealed off areas, special heating	$\mathbf{L4}$	C4	21 High	•	No working shall be allowed beyond less than 15m hardcover line The area demarcated in the underground shall be isolated by providing sectionalisation stoppings
Geological disturbance affecting panel	Chance of fire, coal seam more susceptible to spontaneous heating	L2	C4	14 Medium	•	Adequate support as per SSR shall be provided near the disturbed area Supports shall be monitored continuously 15m barrier shall be left against fault plane The environment at disturbed area shall be monitored regularly
Thick seam	Chance of fire	L3	C4	18 Medium	•	Panels shall be formed considering the incubation period of the coal so that the panel will finish before incubation period Remote control LHD shall be deployed for additional recovery of coal from the panel Proper stowing shall be performed

TT	a 11 /					<u> </u>
Huge	Special heating	m	S	c da	•	Sub panels shall be prepared
depillared area		L3	C5	22 Hig	•	Timely stowing shall be
Non-provision or poor firefighting	Uncontrolled fire, injury to workers	L3	C3	13 Aedium	•	Performed All the firefighting equipment shall be provided and maintained properly
arrangements				N	•	Periodic maintenance shall be
		T	/ entila	tion		carried out
Inadequate	Chance of fire and	`	entila		•	Permanent ventilation stopping
ventilation	risks associated with fire				•	shall be provided Auxiliary fan shall be provided
					•	Pressure quantity survey shall be
				II	-	carried out, and actions shall be
		L3	C4	18 ledium		taken accordingly
				M	•	Mine workings shall be properly
					-	sectionalized Return airway shall be cleaned
					•	regularly to reduce the resistance
						of the mine
Insufficient fan	Inadequate				•	Main mechanical ventilator fan of
capacity	ventilation of mine					sufficient capacity with standby
	working, chance of fire and explosion			II		ventilator shall be installed
	The and explosion	L3	C4	18 Aedium	•	Each district shall be planned with separate intake and return airways
				M	•	Complete sectionalisation of old
						and unused workings shall be
Non-	Accumulation of				•	performed Auxiliary fans shall be maintained
availability or	noxious gases,				•	regularly
improper	exposure of				•	Sufficient number of auxiliary
auxiliary fan	workers to the					fans shall be provided
	accumulated				•	Proper coursing of air shall be
	noxious gases, heat stroke, heat			В		performed using by temporary
	exhaustion, non-	L4	CC	17 Medium		ventilation stopping
	clearance of post-		Ū	Me		
	detonation fumes					
	from working					
	faces, spontaneous heating, chance of					
	fire in old					
	workings					
Obstruction or	Inadequate				•	Return airway shall be inspected
chocking of the return airway	ventilation, accumulation of			ц		regularly
or insufficient	gases, chance of	L3	CC	13 Medium	•	Fallen coal or obstruction shall be removed regularly and completely
intake	fire and explosion	П		Med	•	At least 2 intake airways in every
	*					district shall be maintained

Chapter 4: Qualitative and Quantitative Approaches for Safety Risk Assessment in Underground Coal Mines

			r			
Blind heading	Accumulation of noxious gases, exposure of workers to the accumulated noxious gases, heat stroke, heat exhaustion, non- clearance of post- detonation fumes from working faces, spontaneous heating, chance of fire in old workings	L4	C3	17 Medium	•	Drivage of galleries shall be planned in a way to minimize blind heading Auxiliary fan shall be installed for ventilation of blind heading Proper coursing of air shall be performed using by temporary ventilation stopping Sufficient number of coursing fans with flexible duct shall be provided
Heat and humidity	Heat stroke, work capacity reduces, collapse of workers, fatigue, vomiting, nausea, symptoms of shock, headache	L3	C3	13 Medium	•	Working shall be performed in a panel system with an independent ventilation circuit Double door connection between intake and return airway shall be provided Spot coolers shall be provided Drivage of gallery shall be restricted up to 5 headings (3 intake +2 return)
Lengthy ventilation route	Poor ventilation, heat and humidity leads to uncomfortable working conditions for workers	L3	C3	13 Medium	•	Ventilation of the district shall be planned on the shortest route Duct leakages shall be eliminated, and proper coursing shall be performed

4.4. Results and Discussion

In this study, with the aim of assessing the safety risks qualitatively in the mine-1, FMEA and WRAC techniques were applied. The results of the FMEA study are presented in Table 4.1. In the FMEA study, 14, 10, and 17 hazards were identified by analysing the mechanical components of the belt conveyor system, rope haulage system, and LHD respectively. Some of the components have the possibility of having two or more failure modes. For example, in the belt conveyor system, the component belt has four failure modes, i.e. "improper belt joining", "deteriorated belt", "fumes from the fire on the belt", and "loose belt". Out of 14 failure modes identified in the belt conveyor system, 1 hazard was related to work method/procedure, 10 were machine/tool-related hazards, and 3 were work environmental conditions related hazards. In rope haulage systems and LHD, all the failure modes identified were machine/tool-related hazards.

From Table 4.1, one can observe that most of the identified failure modes of the belt conveyor systems were having "drawing-in of the worker" and "generating frictional heat" as failure effects. "Unguarded idlers" have the highest risk level followed by "use of inflammable materials" among all the other hazards related to the belt conveyor system. Failure to control these hazards may lead to fatal or catastrophic consequences. "Runway of tubs" is the most common failure effect of various component failure in the rope haulage system. Though the failure of haulage components may not have a catastrophic consequence, they often lead to fatal or serious accidents in the underground mines. "Breakage of rope due to wear, rusting or improper splicing" has the highest risk level among the hazards related to rope haulage system. From Table 4.1, one can also observe that the "improper pilot switch" and "oil leakage" from the LHD engine can initiate a fire. Failure to control this effect may lead to catastrophic consequences. "Oil leakage" and "poor or damaged flexible trailing cable" have the highest risk level among the hazards related to LHD. Examination of the existing control measures revealed that "pre-start inspections", "schedule inspections", and "periodical maintenance" were adequate to reduce most of the failure effects of the belt conveyor system, rope haulage system, and LHD.

The results of the WRAC study are presented in Tables 4.2–4.9. In the WRAC analysis, 115 hazards related to ground movement (17), rope haulage system (16), belt conveyor (12), LHD (15), electricity (13), blasting (11), inundation (6), and dust, gas and other combustible materials (25) were identified. Associated risks of each hazard identified were enumerated in the WRAC template, and the identified hazards were ranked based on the likelihood and consequence of the individual hazard. Out of 115 hazards identified, 38 were workers' action, 21 were work methods/procedural, 27 were machine/tool, and 29 were work environment/ managerial related hazards. From the results, it is evident that some of the hazards identified have multiple risks. For example, "geologically disturbed areas" has the chance of inundation, roof and side fall, and the chance of fire as risks and "presence of subsidence cracks and fissures on the surface above development panel" has the chance of fire and explosion, the chance of inundation, roof and side fall as risks.

In the WRAC study, to differentiate relative risks and to help in decision making, a 5×5 -risk matrix was used. The hazards with the highest risk score and risk level should be given utmost priority among all the identified hazards to mitigate or minimize the risk level. The analysis of Tables 4.2–4.9 revealed that out of 115 hazards identified, 20 hazards had

low-risk level, 86 hazards had medium-risk level, and 9 hazards had high-risk level. The hazards "blasting in a gassy seam" related to blasting operation, and "non-provision of fire stoppings where CH₄ exceeds 2%", "huge depillared area" related to dust, gas and other combustible materials with risk score 22 should be given the top priority among the high-risk level hazards. The risk score 22 indicates that these hazards can happen once every 10 to 100 years and the consequences can lead to multiple fatalities. The next priority should be given to the other high-risk level hazards with risk score 21. They were "poor supervision", "improper testing and dressing" related to the ground movement, "improper maintenance of flameproof features" related to the electricity, and "stone dust barrier not provided at panel entry", "susceptibility of spontaneous heating due to low Cross Point Temperature and high moisture content", "shallow depth of cover" related to dust gas and other combustible materials.

The purpose of qualitative risk assessment in the underground coal mines is to determine and prioritize the risk level of identified hazards so that the proper control measures can be implemented to eliminate or mitigate the risks to workers. This study has demonstrated that both the FMEA and WRAC techniques are competent at hazard identification, risk analysis, and risk evaluation in Indian underground coal mines. However, the risk evaluation techniques, i.e. rapid ranking method and 5×5 -risk matrix employed in this study have few limitations as stated earlier.

As previous studies (Bowles & Peláez, 1995; Oraee et al., 2011; Shariati, 2014; Dallat et al., 2017) stated that the different values of probability, exposure, and consequence ratings may produce the same value of risk value, but their hidden risk implications may be very different. DGMS (2002) scales also produced the same risk values in some cases. For example, two different events with values of 1, 5, 3 and 5, 3, 1 for consequence, exposure, and probability respectively, have the same risk value of 15. In the former case, 1, 5, 3 implies one person can die due to frequent exposure to an unusual but possibly occurring hazard. In the latter case, 5, 3, 1 implies several persons can die due to seldom exposure to a conceivable but unlikely occurring hazard.

From the FMEA study (Table 4.1), one can observe that multiple failure modes have the same risk level. In the belt conveyor system, three failure modes, i.e. "unguarded tensioning arrangement", "unguarded drive head", "unguarded tail end" have the same risk level of 0.45 and two failure modes, i.e. "fumes from the fire on belt", "loose belt" have the same risk level of 0.15. In the rope haulage system, two failure modes, i.e. "failure of drawbar", "defective laying of track line" have the same risk level of 6 and two failure modes, i.e. "improper or defective clips or lashing chain", "failure of sprags" have the same risk level of 4.5. In the LHD, two failure modes, i.e. "oil leakage", "poor or damaged flexible trailing cable" have the same risk level of 1.8, three failure modes, i.e. "pilot switch not in order", "temperature switch or cut-off valve not in order", "improper reeling or unreeling" have the same risk level of 0.9. Four failure modes, i.e. "pressure relief valve not in order", "head or rear light not working", "audio-visual alarm or horn not working" "footswitch or dead-man switch not working" have the same risk level of 0.45, two failure modes, i.e. "bursting of tyre", "improper gate-end box earthing" have the same risk level of 0.15. Two failure modes, i.e. "parking brake failure", "service brake failure" have the same risk level of 0.04, and two failure modes, i.e. "improper condition of the bucket", "dump valve not in order" have the same risk level of 0.002. From the above results, it is clear that it is hard to prioritize the failure modes with the same risk level using the rapid ranking method.

Similarly, from the WRAC study (Tables 4.2-4.9), one can also observe that multiple hazards have the same risk score and risk level. In the WRAC analysis of ground movement, 15 hazards have medium, and two have a high-risk level. Among the 15 medium-risk level hazards, three have 9, three have 10, two have 13, three have 17, and three have 18 as a risk score. The two high-risk level hazards, i.e. "poor supervision", "improper testing and dressing" have an equal risk score of 21. In the WRAC analysis of rope haulage system, 13 hazards have low, and 3 have medium-risk level. Among the 13 low-risk level hazards, 11 have 5 as a risk score. Among the 3 medium-risk level hazards, two hazards, i.e. "lack of precaution while haulage track line crosses travelling road", "nonprovision of guards in haulage engine room" have an equal risk score of 8 and "failure of drawbar" has the highest risk score of 13. In the WRAC analysis of belt conveyor system, all the 12 hazards have medium-risk level. Among the 12 medium-risk level hazards, 8 have 13, and 4 have 18 as a risk score. In the WRAC analysis of LHD, all the 15 hazards have medium-risk level. Among the 15 medium-risk level hazards, 13 hazards have 13 as risk score. In the WRAC analysis of electricity, 12 hazards have medium-risk level. Among the 12 medium-risk level hazards, 2 have 10, and 9 have 13 as a risk score. In the WRAC analysis of blasting, 9 hazards have medium-risk level. Among the 9 medium-risk level hazards, 2 have 9, and 5 have 13 as a risk score. In the WRAC analysis of inundation, 5

hazards have low-risk level and 5 as a risk score. In the WRAC analysis of electricity, 12 hazards have medium-risk level. Among the 12 medium-risk level hazards, 2 have 10, and 9 have 13 as a risk score. In the WRAC analysis of dust, gas and other combustible materials, 19 hazards have medium, and 5 have high-risk level. Among the 19 medium-risk level hazards, 2 have 9, 2 have 10, 5 have 13, 3 have 14, 2 have 17, and 5 have 18 as risk score. Among the 5 high-risk level hazards, 3 have 21 as a risk score, and 2 hazards, i.e. "non-provision of fire stoppings where CH₄ exceeds 2%", "huge depillared area" have 22 as a risk score. From the above results, it is clear that it is hard to prioritize the hazards with the same risk level using the 5×5-risk matrix.

4.5. Quantitative Approaches4.5.1. Fault Tree Analysis

FTA is typically useful when the logical structure of the causes of a major unwanted event is not immediately clear. The accident data collected from the mine-1 revealed that two fatal, nine serious accidents have occurred in the mine from 2001 to 2016. A typical accident report consists of the date, time, location, and place of the accident; age, designation, and experience of the victim; nature of injury; description and cause of the accident; conclusion, and enforcement actions. Out of nine serious accidents, the detail accident report of seven accidents was incomplete and not addressed the cause of the accident. Therefore, they were excluded from this study. Based on the review of the collected data, a database was developed as shown in Table 4.10. In this study, Logan Fault and Event Tree Analysis Version 7.2.7 software was used in constructing fault and event trees.

Accident number	Date, time	Designation, age	Description of the accident
Fatal 1	23.06.2006 12.00 pm	Pump khalasi, 58 years	While a gang of ten persons including a pump khalasi were engaged for extension of suction pump in an old unsupported gallery that had recently been exposed from the water. A mass of coal measuring $4.8m \times 4.35m$ and having a thickness of 0.2-0.4m parted from the roof and fell on to the pump khalasi and a fitter from a height of 2.6m. The pump khalasi was trapped beneath the fallen coal, and the fitter was partially buried under the coal. Rest of the workers who were carrying out pipe assembling work further on the dip side of the site of the roof fall escaped unhurt.
Fatal 2	18.11.2011 8.30 pm	Chute operator	While a chute operator was loading tippers by standing near the operating panel located below the bunker, the

Table 4.10 Description of the accidents occurred in mine-1

		25	conical share borner of the burley lists to d for a
		25 years	conical shape hopper of the bunker dislodged from the welded joint with the main bunker and fell over the chute operator causing death.
Serious 1	06.01.2005 5.15 am	Explosive carrier 36 years	At 54LS/34D there was a layer of shale left in the roof that was to be taken. Attempts made to dress down the shale layer were failed. So, it was decided to bring it down by blasting. In this process, eight shot holes were drilled in the roof. The first four holes from the junction (outbye end of the face) were charged and blasted. The blast resulted in the fall of a layer in such a way that the second hole from the dip side of the gallery was destroyed /damaged, a layer of shale measuring about 1feet long remained on the rise side of the gallery, and one piece of shale measuring about 1.5feet remained on the dip side of the gallery, and one piece of the gallery. Attempts were made to dress down the same. However, with no positive result, it was decided to charge the remaining 3 holes. While charging the holes, the shale piece from the rise side suddenly was separated from the roof and side and fell on to the back of the injured explosive carrier's pelvis where cap lamp battery was attached to the body rubbing his back slightly. Due to this, the explosive carrier was thrown forward and fell on to the coal left over due to the previous blasting receiving out on his forehead.
Serious 2	26.11.2005 8.30 pm	Senior overman 54 years	At about 7.00 pm in the 2nd shift one of the tyre of LHD at 12LS district was got punctured. On getting the information from the Communication Dispatch System (CDS) operator, the shift in-charge enquired about the spare tyre. After some time, the shift in-charge was informed by the CDS operator that the spare tyre was not available in the underground, a tyre is at available at the surface, and minimum four persons will be required for taking the tyre. The shift in-charge directed a dresser and general mazdoor from 38LN district to bring the tyre from the surface along with two more workers who will accompany overman from 12LS district. The shift in-charge then instructed the overman of 12LS district to take two workers from his district to the surface and bring the tyre with the help of above four persons. The dresser and general mazdoor came to the surface and asked the CDS operator about the tyre. CDS operator gave then the tyre from the workshop. The dresser and general mazdoor took the tyre up to the mouth of the travelling drift and waited for another two persons. In the meantime, they started to tie the tyre with galvanized iron wire, so that when another two persons from underground reach they could take the tyre immediately. During that process, the tyre started rolling down. The rolling tyre hit the overman who was on the way to surface at the travelling drift.

4.5.1.1. FTA for fatal accident 1

The roof fall was taken as the TOP event for the accident. After that, the different reasons that may cause the top event to occur was studied and analysed. The top event was broken up into two intermediate events. These intermediate events were further broken up to identify the root causes of the accident. Based on the causes mentioned in the accident report, the fault tree was constructed as shown in Figure 4.1.

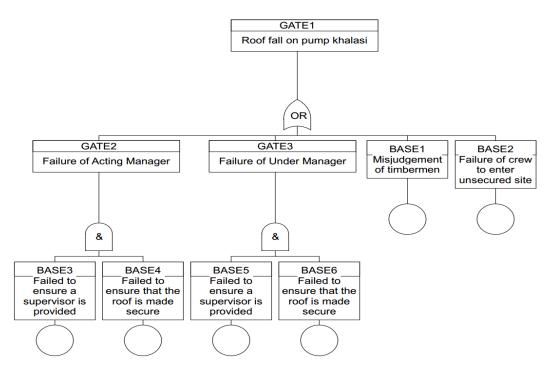


Figure 4.1 Fault tree of roof fall on pump khalasi

Cut sets, Gate1 = Gate2 + Gate3 + Base1 + Base2

= (Base3 · Base4) + (Base5 · Base6) + Base1 + Base2

Cut sets = $\{Base1\}$, $\{Base2\}$, $\{Base3, Base4\}$

Minimal cut sets = {Base1}, {Base2}

4.5.1.2. FTA for fatal accident 2

The fall of CHP bunker was taken as the TOP event for the accident. After that, the different reasons that may cause the top event to occur was studied and analysed. The top event was broken up into four intermediate events. These intermediate events were further broken up to identify the root causes of the accident. Based on the causes mentioned in the accident report, the fault tree was constructed as shown in Figure 4.2.

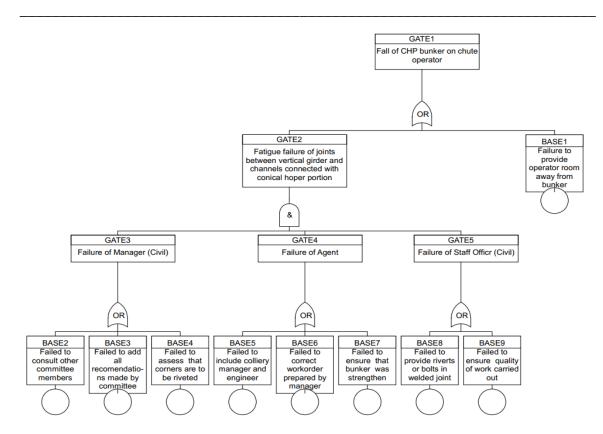


Figure 4.2 Fault tree of fall of CHP bunker

Cut sets, Gate1 = Gate2 + Base1

= (Gate3 · Gate4 · Gate5) + Base1

 $= ((Base2 + Base3 + Base4) \cdot (Base5 + Base6 + Base7) \cdot (Base8 + Base9)) + Base1$

= Base2 · Base5 · Base8 + Base2 · Base6 · Base8 + Base2 · Base7 · Base8 + Base3 · Base5 · Base8 + Base3 · Base6 · Base8 + Base3 · Base7 · Base8 + Base4 · Base5 · Base8 + Base4 · Base6 · Base8 + Base4 · Base7 · Base8 + Base2 · Base5 · Base9 + Base2 · Base6 · Base9 + Base2 · Base7 · Base9 + Base3 · Base5 · Base9 + Base3 · Base6 · Base9 + Base3 · Base7 · Base9 + Base4 · Base5 · Base9 + Base4 · Base6 · Base9 + Base4 · Base7 · Base9 + Base1 Cut sets = {Base1}, {Base2, Base5, Base8}, {Base6, Base9 + Base4 · Base7, Base8}, {Base2, Base7, Base8}, {Base4, Base5, Base8}, {Base4, Base6, Base8}, {Base4, Base6, Base8}, {Base4, Base7, Base8}, {Base4, Base6, Base9}, {

Minimal cut sets = $\{Base1\}$

4.5.1.3. FTA for serious accident 1

The roof fall on an explosive carrier was taken as the TOP event for the accident. After that, the different reasons that may cause the top event to occur was studied and analysed. The top event was broken up into three intermediate events. These intermediate events were further broken up to identify the root causes of the accident. Based on the causes mentioned in the accident report, the fault tree was constructed as shown in Figure 4.3.

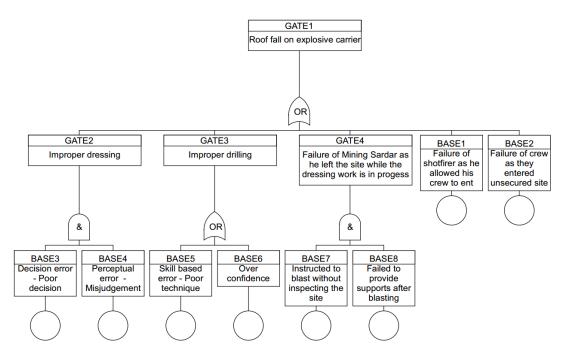


Figure 4.3 Fault tree of roof fall on explosive carrier

Cut sets, Gate1 = Gate2 + Gate3 + Gate4 + Base1 + Base2

= (Base3 · Base4) + (Base5 + Base6) + (Base7 · Base8) + Base1 + Base2

Cut sets = {Base1}, {Base2}, {Base5}, {Base6}, {Base3, Base4}, {Base7, Base8}

Minimal cut sets = {Base1}, {Base2}, {Base5}, {Base6}

4.5.1.4. FTA for serious accident 2

The rolling of LHD tyre accident was taken as the TOP event for the accident. After that, the different reasons that may cause the top event to occur was studied and analysed. The top event was broken up into an intermediate event. This intermediate event was further broken up to identify the root causes of the accident. Based on the causes mentioned in the accident report, the fault tree was constructed as shown in Figure 4.4.

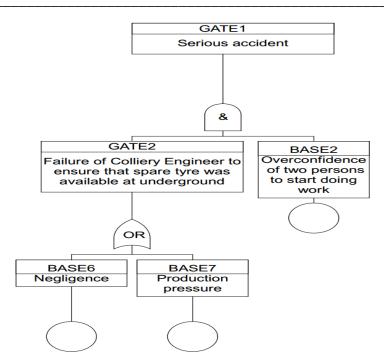


Figure 4.4 Fault tree of rolling of LHD tyre accident

Cut sets, Gate1 = Gate2 \cdot Base2

= (Base6 + Base7) · Base2

= (Base6 · Base2) + (Base7 · Base2)

Minimal cut sets = {Base6, Base2}, {Base7, Base2}

4.5.2. Event Tree Analysis

An ETA is useful in identifying the various possible outcomes of a single hazardous event. From the accident data collected from mine-1, many hazardous events were identified. The event trees constructed for few hazardous events like roof fall due to improper roof dressing, fire in belt conveyor, breakage of haulage rope, and inundation due to barrier thickness failure are presented in Figures 4.5-4.8 respectively.

IE for FSG ET Roof Dressing Frequency = 0.00E+00	TR Improper Training Prob False = 0.00E+00	FI Failure to Identify Geological Disturbance Prob False = 0.00E+00	SD Improper Support Design Prob False = 0.00E+00	Fault Sequence Number	Code	Description
^TTrue ↓False				ETb ETc	DAMAGE INJURY	Limited/No Damage Limited Damage Extensive Injury Death/Extensive Injury

Figure 4.5 Event tree for roof fall due to roof dressing

Chapter 4: Qualitative and Quantitative Approaches for Safety Risk Assessment in Underground Coal Mines

IE for FSG ET Conveyor Belt Fire	FIRE Fire Extingushers	RUBBER Rubber Lagging for drums	THERMAL Thermal Trip Switches with Smoke and Fire Sensors	Fault Sequence Number	Code	Description
Frequency = 0.00E+00	Prob False = 0.00E+00	Prob False = 0.00E+00	Prob False = 0.00E+00	-		
↑ True ↓ False			[ETa ETb ETc ETd ETe	LIMITED LIMIT LIMITED LIMIT EXTENSIV	Limited / NoDamage Limited Damage Limited / NoDamage Limited Damage Extensive Damage
				ETf	DEATH	Death / Injury / Extensive Damage

Figure 4.6 Event tree for the conveyor belt fire

IE for FSG ET Breakage of Haulage Rope Frequency = 0.00E+00	SWITCH Runaway Switch Prob False = 0.00E+0	STOP Stop Block 0 Prob False = 0.0	Stop Block				Description
↑True ↓False		<u> </u>		ETa ETb ETc ETd	EXTENSIV	Limited Damage Extensive Damage Extensive Damage Death/Extensive Damage	

IE for FSG ET Barrier Thickness failure Frequency = 0.00E+00	rrier Thickness failure Pumping Capacity				Fault Code Sequence Number		Description	
↑ True ↓ False					ETa ETb ETc ETd	MAJOR	Limited / No Accident Minor Accident Major Accident Catestrophic Accident	

Figure 4.8 Event tree for inundation due to barrier thickness failure

4.6. Results and Discussion

In this study, with the aim of assessing the safety risks quantitatively in the mine-1, FTA and ETA techniques were applied. Fault trees were constructed by stepping through a series of events logically to determine the causes of failure of the initiating events. The constructed fault trees for the accidents were represented in Figures 4.1 to 4.4. Figure 4.1 was constructed based on the report of fatal accident 1. From the Figure 4.1, it is clear that the fatal accident, i.e. "roof fall on pump khalasi" could have been averted if "timberman has

supported the roof", "the crew would not have entered the unsecured site", or "a supervisor was provided to ensure that the roof was made secure before allowing the crew to enter the worksite".

Figure 4.2 was constructed based on the report of fatal accident 2. From the Figure 4.2, it is clear that the fatal accident, i.e. "fall of CHP bunker on chute operator" could have been averted if "the operator room was provided away from the bunker", "manager (civil) has consulted other committee members", "manager (civil) has added all recommendations made by the committee", "manager (civil) has assessed that hopper corners are to be riveted", "agent has included colliery manager and engineer in the committee", "agent has corrected the work order prepared by the manager (civil)", "agent has corrected the work order prepared by the manager (civil)", "agent has corrected the work order prepared by the manager (civil)", "agent has ensured that the bunker was strengthened", "staff officer (civil) has provided rivets or bolts in welded joints", or "staff officer (civil) has the quality of previous work carried out to strengthen the bunker". The minimum path with which this accident could have been prevented is by "providing the operator room away from the bunker".

Figure 4.3 was constructed based on the report of serious accident 1. From the Figure 4.3, it is clear that the serious accident, i.e. "roof fall on an explosive carrier" could have been averted if "shotfirer had not allowed his crew to enter unsecured site", "crew had not entered unsecured site", "properly dressed the roof by support crew", "properly drilled the holes by blasting crew", "mining sirdar had inspected the site before allowing blast operation", and "mining sirdar had instructed to support the roof after the blast". Figure 4.4 was constructed based on the report of serious accident 2. From the Figure 4.4, it is clear that the serious accident, i.e. "rolling tyre" could have been averted if "the general mazdoor and dresser had waited for the two more persons before starting the work", "spare tyre was made available at underground by the colliery engineer".

Event trees were constructed to determine the possible outcomes of an initiating event. From the Figure 4.5, it is evident that the initiating event, i.e. "improper roof dressing" with subsequent events "improper training", "failure to identify geological disturbance", "improper support design" have the following consequences "no damage", "limited damage", "extensive injury", and "death". From the Figure 4.6, it is evident that the initiating event, i.e. "fire in belt conveyor" with subsequent events "fire extinguishers",

"rubber lagging for drums", "thermal trip switch with smoke and fire sensors" have the following consequences "no damage", "limited damage", "extensive injury", and "death".

From the Figure 4.7, it is evident that the initiating event, i.e. "breakage of rope haulage" with subsequent events "runaway switch", "stop block" have the following consequences "limited damage", "extensive injury", and "death". From the Figure 4.8, it is evident that the initiating event, i.e. "barrier thickness failure" with subsequent events "pump capacity", "escape plan" have the following consequences "no accident", "minor accident", "major accident", and "catastrophic accident".

The objective of FTA is to qualitatively identify the potential causes and pathways to a top event or quantitatively calculate the probability of the top event. The examination of root causes of the fatal and serious accidents considered in FTA study showed that only workers' actions were cited as the cause of all the accidents. Other hazards like procedural or work environment were not considered while conducting the accident investigation. Consequently, only workers' actions were presented as root causes for all the accidents in the FTA study. As is hard to maintain quantitative data on workers' action, the probability data for the workers' action was not available in mines. Therefore, from the application of FTA in an Indian underground coal mine, it can be concluded that only qualitative analysis can be performed in the Indian underground coal mines.

The purpose of ETA is to qualitatively identify the potential scenarios and sequences of events following an initiating event or quantitatively calculate the probability of the top event based on subsequent events. The application of ETA in an Indian underground coal mine revealed that only qualitative analysis could be performed in the Indian underground coal mines due to the lack of probability data of various subsequent events. The study also revealed that due to the presence of a large number of initiating events in the underground mines, it is hard to construct event tree for every initiating event. For example, 115 potential initiating events were identified from the WRAC study; to develop event trees for all the 115 initiating events is difficult and time-consuming.

4.7. Chapter Summary

In this chapter, the analysis and results of FMEA, WRAC, FTA and ETA techniques applied to mine-1 were presented. The applicability of these techniques to Indian underground coal mines was also discussed. From the analysis of the FMEA and WRAC results, few limitations were observed in the currently employed risk evaluation techniques, i.e. rapid ranking method and 5×5 -risk matrix in the Indian mining industry. The inference of the findings of the FTA and ETA analysis were also discussed. From the analysis of the FTA and ETA results, it was noted that quantitative risk assessment could not be performed in Indian underground coal mines in the existing circumstances.

CHAPTER 5 PROPOSED METHODOLOGY FOR SAFETY RISK ASSESSMENT IN UNDERGROUND COAL MINES

5.1. Introduction

The application of risk assessment approaches in the mine-1 revealed that it is hard to prioritize the hazards using qualitative techniques, and quantitative techniques are not suitable for the Indian underground coal mines. Therefore, the proposed methodology was applied to evaluate the safety risks in underground coal mines. In this chapter, the details of the application of the proposed methodology to six underground coal mines (mine-1, mine-2, mine-3, mine-4, mine-5, and mine-6) and their results are presented.

5.2. Development of the Proposed Methodology

The proposed risk assessment methodology comprised of the following stages as represented in Figure 3.6:

- Preliminary stage
- Design stage
- Fuzzy logic risk estimation stage
- VIKOR risk prioritization stage
- AHP risk estimation stage

5.2.1. Preliminary stage

The steps involved in the preliminary stage are context establishment, data collection and analysis, and hazard identification.

5.2.1.1. Establish context

In this study, the aim of the risk assessment was set to assess the safety risk of an underground mine using the proposed methodology. Therefore, underground mine was indicated at the mine level. The hazard factors associated with the underground mine were categorized as hazardous group level, and the hazards associated with the hazard factors were categorized as hazardous event level.

5.2.1.2. Data collection and analysis

The data collection was started with the aim of gaining knowledge on the type of accidents and incidents occurred over the years in Indian mines. In this study, data collection was carried out through the collection of accidents reports from DGMS and CIL subsidiary mine headquarters, and workplace observations during mine visits.

The accident data were collected from 2001 to 2015, from the DGMS and CIL subsidiary mines. The collected accident statistics contained the following details: name of the mine, owner, place of accident, brief cause of the accident, date of the accident, time of the accident, number of persons died, and number of persons seriously injured. Over 7500 incidents were observed over the study period. The mine-1 was also visited for data collection and observations. The observations in the mine were carried out using the DGMS (2015) cause-wise accident classification and ILO (ILO, 1994) mines safety checklists that describe the details to be observed in each district of the mine.

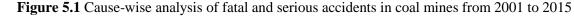
5.2.1.3. Hazard identification

The analysis of the collected statistics revealed that 1609 fatal and 4973 serious accidents have occurred between 2001 and 2015. The cause-wise analysis of these fatal and serious accidents is shown in Figure 5.1. In this study, the causes classified by DGMS (2015), i.e. ground movement, transportation machinery (non-winding), machinery other than transportation machinery, explosives, electricity, other causes (inundation), and dust, gas and other combustible materials were considered as hazard factors and the hazards associated with these hazard factors were considered as hazard events. The hazard events of these hazard factors were identified from the analysis of accident data collected, review of checklists and safety audits present in the mine, and from the hazards identified in WRAC and FMEA analysis performed in chapter 4. A safety hazard database was created to store the hazard events and hazard groups. Specific hazards identified from the literature and after meeting with the mine personnel were also added to the hazard database.

5.2.2. Design stage

The steps involved in the design stage are as follows:

- Development of risk tree into hazardous group and event level,
- Collection of expert's opinion for risk parameters,
- Development of MFs of P, E, C and RL, and


1525 (30.67%)

Serious

- 48 (0,97%) 544 (10.94%) 59 (2,19%) 1103,000 161 (15.06%) 438 (40.97%) 26 (2.43%) 60 (5.61%) 19 (1.78%) 1886 (37.92% 15 (4.21%) Ground movement 894 (17.98%)
- Establishment of a rule base. .

320 (29.93%)

Fatal

Transportation machinery(other

than winding)

Explosive Electricity Gas, Dust etc. Other causes

Machinery other than transportation machinery

5.2.2.1. Development of risk tree into hazardous group and event level

In the hazard identification step, seven hazard groups and 177 hazard events were identified. A risk tree was developed from the identified hazards for effective risk analysis in the mine as shown in Figure 5.2.

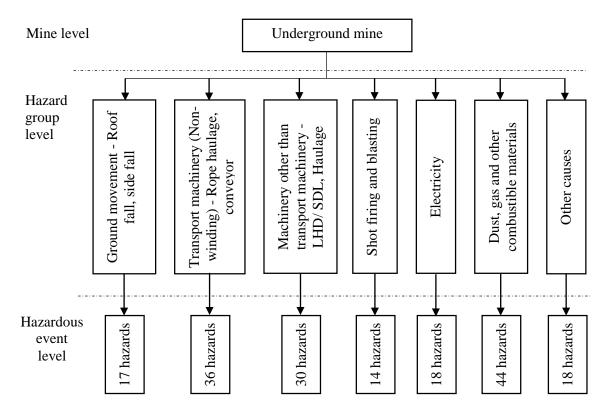


Figure 5.2 Hazard identification at different levels for an underground coal mine

5.2.2.2. Collection of experts' opinion

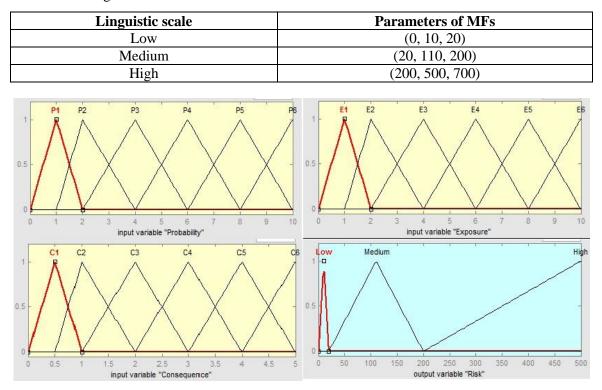
The collected accident data was defined subjectively, the descriptive terms were vague and imprecise, and the risk parameters data for the identified hazards were not available. Therefore, questionnaires were developed to collect the risk parameters data and relative importance. The questionnaires were developed for all the hazard events and hazard groups as shown in Appendix A and Appendix B. In this study, the judgment of experienced safety experts' in the six underground coal mines (mine-1, mine-2, mine-3, mine-4, mine-5, and mine-6) was recorded using the survey questionnaires designed.

5.2.2.2.1. Questionnaire design

The questionnaires in Appendix A were developed based on the retrospective study design. The questionnaires were developed based on guidelines presented by Burgess (2001) and Kothari (2004). The hazard groups, i.e. geo-mechanical (ground movement), mechanical (rope haulage system, belt conveyor system, LHD/SDL), chemical (shot firing and blasting), electrical (electricity), geochemical (dust, gas and other combustible materials), environmental (inundation) and the hazard events related to human, machine/tool, work methods/procedural, and work environment/managerial hazards were included in the questionnaires. All the questionnaires consisted of qualitative type questions and three risk parameters. The measurement type of the three risk parameters, i.e. consequence, exposure, and probability is "Discrete". A six-point Likert scale was used to record the responses of the respondent workers to the questionnaire. The scale values and the expected responses are shown in Table 5.1. A pairwise comparison of risk parameters was also included in the questionnaires to collect the weights of the risk parameters.

The questionnaire in Appendix B is a pairwise comparison matrix of hazard factors. In this questionnaire, the respondents were asked to compare the importance of one hazard factor with all the other hazard factors using the Saaty's AHP scales presented in Table 3.6. For example, in the first row of questionnaire, the respondents were asked to compare the "Ground movement (fall of roof/side)" with "Transport machinery (rope haulage, conveyor)" and asked which criterion with the AHP priorities is more important and how much more on the scale of 1 to 9. A DGMS official vetted the questionnaires developed in this study.

	Probability	Exposure		Consequence	
Scale values	Linguistic scale (Description)	8		Scale values	Linguistic scale (Description)
P1	Practically impossible (One in 1000 years)	E1	Very rare (More than yearly)	C1	Small injury (Minor first aid)
P2	Conceivable but possible (Once every 100 years)	E2	Rare (Yearly)	C2	Minor (Temporary disability, many lost time injuries)
Р3	Only remotely possible (Once every thirty years)	E3	Unusual (Monthly)	C3	Serious (Significant chance of fatality, permanent disability)
P4	Unusual but possible (Once every ten years)	E4	Occasional (Weekly)	C4	Fatality (One fatality)
P5	Quite possible (Once every three years)	E5	Frequent (Daily)	C5	Major fatality (A few fatalities, 1-4 fatalities)
P6	May well be expected (Once a year)	E6	Continuous (Several times daily)	C6	Catastrophic (Many fatalities, > 4 fatalities)


Table 5.1 A six-point scales for indicator responses

5.2.2.3. Development of membership functions and rule base of risk parameters

The rating scales of P, E, C, and RL were developed for risk analysis by modifying the DGMS risk score (DGMS, 2002) and risk matrix (Sabir et al., 2012) used by CIL. Table 5.2 and Table 5.3 presents the linguistic scales and the corresponding fuzzy set value of P, E, C, and RL respectively. The triangular MFs were used in this study to represent the linguistic scales of input and output parameters as shown in Figure 5.3. The triangular MFs were developed based on the expert's judgement. Figure 5.3 is the pictorial representation of the linguistic scales and fuzzy sets of probability, exposure, consequence and risk level. In the figure, linguistic scales of the risk parameters are shown at the top of the triangles. The triangle starts at the lower range and ends at the highest range of the fuzzy set of the corresponding probability, exposure, consequence and risk level values.

Prob	ability	Exp	osure	Consequence		
Linguistic scale	Parameters of MFs	Linguistic scale	Parameters of MFs	Linguistic scale	Parameters of MFs	
P1	(0, 1, 2)	E1	(0, 1, 2)	C1	(0, 0.5, 1)	
P2	(1, 2, 4)	E2	(1, 2, 4)	C2	(0.5, 1, 2)	
P3	(2, 4, 6)	E3	(2, 4, 6)	C3	(1, 2, 3)	
P4	(4, 6, 8)	E4	(4, 6, 8)	C4	(2, 3, 4)	
P5	(6, 8, 10)	E5	(6, 8, 10)	C5	(3, 4, 5)	
P6	(8, 10, 12)	E6	(8, 10, 12)	C6	(4, 5, 6)	

Table 5.2 Rating scale for risk parameters of an event

Table 5.3 Rating scale for risk level of an event

Figure 5.3 The membership functions of probability, exposure, consequence and risk levelBecause there were six linguistic scales for three risk parameters, the rule baseconsisted of 216 (6×6×6) IF-THEN rules. The fuzzy rule base is presented in Appendix C.The first rule of Appendix C would be represented as below:

If P is 'Practically impossible' and E is 'Very Rare' and C is 'Small injury', Then RL is 'Low'

5.2.3. Graphical User Interface

The steps involved in the next stages of the proposed methodology are risk estimation of hazard events using fuzzy logic, risk prioritization of the hazard events using VIKOR, risk estimation of hazard groups using AHP, and evaluating the overall mine risk level. The manual evaluation of risk level using these stages of the proposed methodology requires many man-hours. Therefore, to reduce the calculation time significantly and to increase the speed of the risk assessment process, a GUI was developed. The GUI is referred to as Tool for Risk Assessment in Mines (TRAM). The algorithm of TRAM is represented in Figure 5.4.

Chapter 5: Proposed Methodology for Safety Risk Assessment in Underground Coal Mines

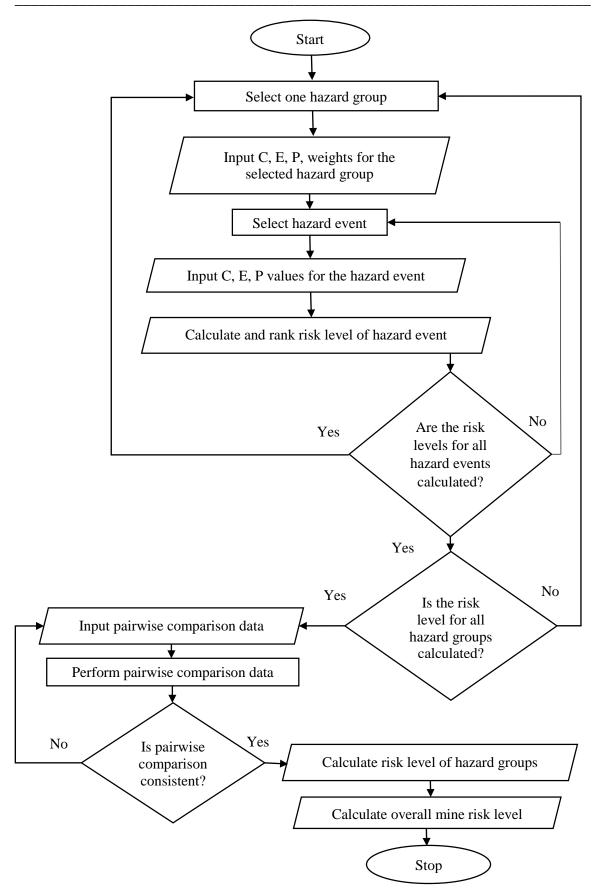


Figure 5.4 Algorithm of TRAM

5.2.3.1. TRAM architecture design

The TRAM is aimed to help the mining risk assessment process through a user-friendly interface, hence requiring no prior knowledge of the proposed methodology. The GUI of TRAM was coded using the C# language through Microsoft Visual Studio 2015 and .Net libraries (Microsoft Docs, 2017). TRAM runs on a Microsoft Windows 7 or higher platform within a .Net 4.0 framework.

TRAM consists of the following main modules: Database layer, Logic layer, User interface. The one tier architecture of the TRAM is presented in Figure 5.5.

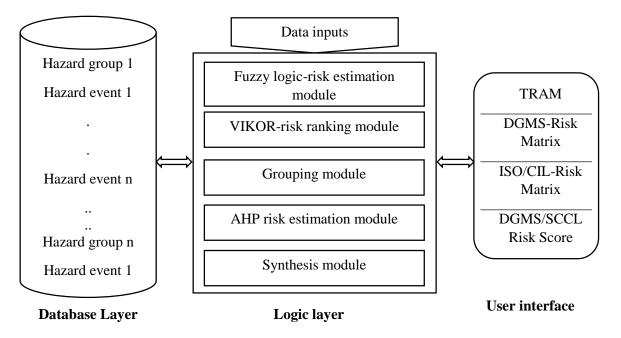


Figure 5.5 Architecture of TRAM

5.2.3.2. Database layer

The hazard groups and their associated hazard events identified from the collected data were set up in a pre-defined format, which can be retrieved and used for risk analysis study. As the XML file format (w3schools, 2006) is portable and simplifies data sharing, data availability, data transport and platform changes, the data was stored in XML files. Seven types of hazard groups and their associated 177 hazard events were incorporated in the overall database. The details of the type of hazard groups and events that were incorporated in the database were presented in Appendix A. As hazard identification is a continuous process, the hazards list can be updated whenever necessary. To facilitate the

modifications/updates of the database, at any stage of the risk analysis process, an 'Admin Tab' was provided.

5.2.3.3. Logic layer

The logic layer comprised of four modules to perform the risk analysis process and to manage data. Fuzzy variables, triangular membership functions for C, E, P, and Risk Level (Figure 5.3), and the rule base in the fuzzy logic-risk estimation module were developed based on the proposed methodology to compute the risk levels of hazard events at the event level. Fuzzy logic-risk estimation module was designed to fuzzify and defuzzify the risk parameters based on the fuzzy rules developed (Appendix C). A snippet of fuzzy logic is presented in Figure 5.6.

```
// Create new fuzzy system
if (fsRank == null)
  _fsRank = CreateSystem();
  if (_fsRank == null)
  {
    return;
  }
}
  // Get variables from the system (for convinience only)
  FuzzyVariable fvProbability = _fsRank.InputByName("probability");
  FuzzyVariable fvExposure = _fsRank.InputByName("exposure");
  FuzzyVariable fvConsequence = _fsRank.InputByName("consequence");
  FuzzyVariable fvRisk = fsRank.OutputByName("risk");
 // Associate input values with input variables
        Dictionary<FuzzyVariable, double> inputValues =
                                       new Dictionary<FuzzyVariable, double>();
  inputValues.Add(fvProbability, (double)nudInputProbability.Value);
  inputValues.Add(fvExposure, (double)nudInputExposure.Value);
  inputValues.Add(fvConsequence, (double)nudInputConsequence.Value);
  // Calculate result: one output value for each output variable
 Dictionary<FuzzyVariable, double> result = _fsRank.Calculate(inputValues);
```

Figure 5.6 A snippet of fuzzy logic

VIKOR-risk ranking module was developed based on the Opricovic (1998) which was designed to develop a ranking solution which will have the maximum group utility and the minimum individual regret of the opponent. The grouping module manages the data and presents the results at the event level. The evaluated hazard events were stored in a data grid view. Based on the fuzzy logic method, the evaluated hazard events were categorized as low (green colour), medium (yellow colour) and high (red colour) and based on the VIKOR method, the evaluated hazard events were arranged dynamically in the descending order of ranks obtained. A snippet of VIKOR ranking method is presented in Figure 5.7.

The AHP risk estimation module was developed based on the Saaty's (1990) work which was designed to determine the weights of the hazard groups. The synthesis module was designed to ensure that the risk analysis is performed from the event level to group level and finally to overall mine level. A snippet of the AHP method is presented in Figure 5.8.

```
//Calculate VIKOR-SQR Values
      pMin = eMin = cMin = 13;
     pMax = eMax = cMax = -1;
         calculateEventRanking = true;
      double sValue = 0;
     double rValue = 0;
     double tempVal1, tempVal2, tempVal3;
      foreach (string hazardEvent in list)
        RiskTableRow rowData = riskTableData[hazardEvent];
sValue = rValue = tempVal1 = (pWeight * (pMin - rowData.Probability) / (pMin - pMax));
        tempVal2 = (eWeight * (eMin - rowData.Exposure) / (eMin - eMax));
        if (tempVal2 > rValue)
        ł
          rValue = tempVal2;
        }
        sValue += tempVal2;
        tempVal3 = (cWeight * (cMin - rowData.Consequence) / (cMin - cMax));
        if (tempVal3 > rValue)
          rValue = tempVal3;
        sValue += tempVal3;
    sValues.Add(hazardEvent, sValue);
                                         rValues.Add(hazardEvent, rValue);
       riskTableData[hazardEvent].S = sValue; riskTableData[hazardEvent].R = rValue;
        if (double.IsNaN(sValue) || double.IsNaN(rValue))
        ł
          calculateEventRanking = false;
        }
      sMax = sValues.Values.Max();
     rMax = rValues.Values.Max();
      sMin = sValues.Values.Min();
      rMin = rValues.Values.Min();
     double sDiff = sMax - sMin;
      double rDiff = rMax - rMin;
      foreach (string hazardEvent in list)
      double qValue = 0.5 * (((sValues[hazardEvent] - sMin) / sDiff) + ((rValues[hazardEvent] - rMin)
rDiff));
        qValues.Add(hazardEvent, qValue);
        riskTableData[hazardEvent].Q = qValue;
        if (double.IsNaN(qValue))
          calculateEventRanking = false;
        }
      }
   }
```

Figure 5.7 A snippet of VIKOR ranking method

```
{
         double[] rowAvg = new double[listHazardNames.Count];
         double[] colSum = new double[listHazardNames.Count];
         double[][] divisionMatrix = new double[listHazardNames.Count][];
         double lambdaMax = 0;
         double[] randomIndex = { 0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49 };
         for (int col = 0; col < listHazardNames.Count; col++)
         ł
           colSum[col] = 0;
           for (int row = 0; row < listHazardNames.Count; row++)
              colSum[col] += ahpMatrix[row][col];
           ł
         for (int row = 0; row < listHazardNames.Count; row++)
           double rowSum = 0;
           divisionMatrix[row] = new double[listHazardNames.Count];
           for (int col = 0; col < listHazardNames.Count; col++)</pre>
              divisionMatrix[row][col] = ahpMatrix[row][col] / colSum[col];
              rowSum += divisionMatrix[row][col];
           ł
           rowAvg[row] = rowSum / listHazardNames.Count:
           lambdaMax += (rowAvg[row] * colSum[row]);
double consistencyIndex = (lambdaMax - listHazardNames.Count)/(listHazardNames.Count-1);
double consistencyRatio = consistencyIndex / randomIndex[listHazardNames.Count];
         if (consistencyRatio < 0.1)
         {
         Dictionary<string, double> groupRisk = new Dictionary<string, double>();
           foreach (IGrouping<string, string> hazardGroup in query)
           ł
              int index = hazardGroup.Key[0] - 49;
              List<string> hazardNames = hazardGroup.ToList<string>();
              double sum = 0:
              foreach (string name in hazardNames)
                sum += riskTableData[name].Risk;
              }
              groupRisk.Add(hazardGroup.Key, sum * rowAvg[index]);
           var bs = new BindingSource():
           bs.DataSource = groupRisk;
           AHPgridTable.DataSource = null;
           AHPgridTable.DataSource = bs;
           DisplayAHPTable();
                                                    }
         else
MessageBox.Show(String.Format("Consistency Ratio = {0}.{1}Please revise the judgement.",
Math.Round(consistencyRatio, 3), System.Environment.NewLine), "Consistency Ratio",
MessageBoxButtons.OK, MessageBoxIcon.Error);
                 }
```

Figure 5.8 A snippet of the AHP method

5.2.3.4. User interface

The user interface offers the user with a user-friendly interface to help the risk analysis process in mines. Using the TRAM, the user can perform the risk analysis of hazards at the event level to group level and can progress to overall mine level. The snapshot of the TRAM is presented in Figure 5.9. The components of the TRAM are menu bar, list of hazard events panel, risk parameters input panel, risk level of hazard events panel, controls of hazard events, AHP input panel, risk level of hazard groups' panel, and overall risk level of mine panel.

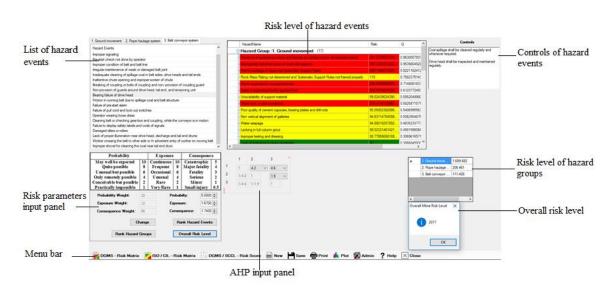


Figure 5.9 Snapshot of TRAM

Current risk assessment techniques followed in the Indian mining industry like DGMS-Risk Matrix, ISO/CIL-Risk Matrix, DGMS/SCCL Risk Score were also included as separate GUI forms in the Menu bar. The GUIs of DGMS-Risk Matrix, ISO/CIL-Risk Matrix, DGMS/SCCL Risk Score is represented in Figure 5.10.

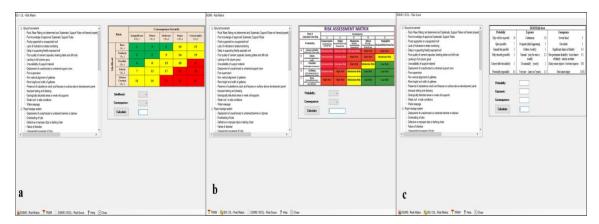


Figure 5.10 GUIs of a) ISO/CIL-Risk Matrix, b) DGMS-Risk Matrix, c) DGMS/SCCL Risk Score

The following are the contents of the menu bar:

- a. DGMS-Risk Matrix: opens a new page with DGMS suggested risk matrix (DGMS, 2002)
- b. **DGMS/SCCL Risk Score:** opens a new page with DGMS suggested risk score (DGMS, 2014a)
- c. **ISO/CIL-Risk Matrix:** opens a new page with CIL suggested risk matrix (Sabir et al., 2012)
- d. New: opens a new TRAM page
- e. Save: saves the risk assessment process in .pdf format.
- f. Print: prints the details, risk levels and rankings of hazard event and hazard group
- g. Plot: plots the contents of hazard event and hazard group as a bar chart
- h. **Admin:** the number of hazard groups and events can be added/removed/modified as shown in Figure 5.11.
- i. Help: provides the user manual
- j. Close: closes TRAM

Admin

Libro to project multination and where weak at a coupling bit is throughing points Delete Improper signaling Failure to display safety labels and code of signals at all the stopping places alon Add Non-provision or improper maintenance of safety appliances like stop blocks, run Failure of sprags Delete Failure of sprags Deployment of unauthorized or untrained operator Add Improper signaling Prestat check not done by operator Improper signaling Prestat check not done by operator Improper signaling Prestat check not done by operator Improper signaling of pillage coal in bet sides, drive heads and tail ends Inatentive chute opening and improper screen of chute Breaking of coupling or bots of coupling and non-provision of guards around drive head, tail end, and tensioning unt Breaking or coupling or bots of coupling and non-provision of guards around drive head, tail end, and tensioning unt Braine of pull cord and lock out switches Operator wearing loose dress Cakr of proper illumination near drive head, discharge and tail end dums Worker crossing the bet to other side or in advertent entry of worker on moving bet Lack of proper illumination near drive head, discharge and tail end dums	Defective rope or rope splicing or rope capel or shackles	Belt conveyor system
Non-provision of safety buffers Add Failure to inspect and maintain haulage road regularly Add Ealure to inspect and maintain haulage road regularly Deployment of unauthorized or untrained operator Improper signaling Pre-stat check not done by operator Improper condition of beit and belt line Imergular maintenance of weak or damaged belt joint Indequate cleaning of spillage coal in belt sides, drive heads and tail ends Imatentive chute opening and improper screen of chute Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Failure of pre-stat alam Failure of pre-stat alam Failure of pre-stat alam Failure of pull cord and lock out switches Operator wearing loose dress Oceaning belt or checking gear-box and coupling, while the conveyor is in motion Failure of pull cord and lock out switches Operator wearing loose dress Cleaning belt or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving l	Lack of proper illumination and white wash at coupling and uncoupling points Improper signaling	Delete Gro
 Non-provision or improper maintenance of safety appliances like stop blocks, run Failure of sprags Failure to inspect and maintain haulage road regularly Bet conveyor system Deployment of unauthorized or untrained operator Improper signaling Pre-start check not done by operator Improper signaling and improper screen of chute Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unit Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unit Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unit Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unit Bearing failure of drive head Friction in running belt due to spillage coal and belt structure Failure of pull cord and lock out switches Operator wearing loose dress Cleaning belt or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advettent entry of worker on moving leiproper illower indowned in the coal near tail end drums 		
Failure of sprags Deployment of unauthorized or untrained operator Deployment of unauthorized or untrained operator Deployment of unauthorized or untrained operator Improper signaling Pre-stat check not done by operator Improper condition of belt and belt line Improper condition of belt and belt line Inegular maintenance of weak or damaged belt joint Improper signaling Inatentive chute opening and improper screen of chute Breaking of coupling or bolts of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Fraction in running bet due to spillage coal and belt structure Breaking of coupling and non- provision of coupling guard Failure of pre-stat alam Failure of pull cord and lock out switches Operator wearing loose dress Cleaning bet or checking gearbox and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or In advertent entry of worker on moving l		
Pailure to inspect and maintain haulage road regularly Palure to inspect and maintain haulage road regularly Deployment of unauthorized or untrained operator Improper signaling Pre-stat check not done by operator Improper condition of bet and bet line Inatentive chute opening and improper screen of chute Inatentive chute opening and improper screen of chute Breaking of couping or bots of couping and non- provision of couping guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Friction in unning bet due to spillage coal and bet structure Failure to display safety labels and code of signals Operator wearing loose dress Cleaning bet or checking gear-box and couping, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or In advertent entry of worker on moving l		Add Eve
Deleter Deployment of unauthorized or untrained operator Improper signaling Pre-stat check not done by operator Improper condition of bet and bet line Inegular maintenance of weak or damaged bet joint Inadequate cleaning of spillage coal in bet sides, drive heads and tail ends Inadequate cleaning of spillage coal in bet sides, drive heads and tail ends Inadequate cleaning of spillage coal and bet structure Bearing failure of drive head Fraitor in running bet due to spillage coal and bet structure Failure of pull cord and lock out switches Operator wearing loose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end dums Worker crossing the bet to other side or In advertent entry of worker on moving I		Deployment of unauthorized or untrained operator
Deployment of unauthorized or untrained operator Improper signaling Pre-start check not done by operator Improper condition of bet and bet line Imeguiar maintenance of weak or damaged bet joint Inadequate cleaning of spillage coal in bet sides, drive heads and tail ends Inattentive chute opening and improper screen of chute Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Friction in running bet due to spillage coal and bet structure Failure of pre-start alarm Failure of pull cord and lock out switches Operator weaning lose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or in advertent entry of worker on moving l		Delete Ev
 Improper signaling Pre-start check not done by operator Improper signaling Improper signaling Pre-start check not done by operator Inattertive chute opening and improper screen of chute Breaking of coupling or bolts of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Failure of pre-start alarm Failure of pull cord and lock out switches Operator weaning loose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or In advertent entry of worker on moving lell		
Pre-stat check not done by operator Improper condition of beit and bet line Imgular maintenance of weak or damaged beit joint Inadequate cleaning of spillage coal in beit sides, drive heads and tail ends Inattentive chute opening and improper screen of chute Breaking of coupling or bolts of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Friction in running beit due to spillage coal and beit structure Failure of pre-stat alam Friction in running beit due to spillage coal and beit structure Failure of pre-stat alam Failure of pre-stat alam Coering beit or checking gearbox and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving I		
 Improper condition of belt and belt line Inatentive chute opening and improper screen of chute Breaking of coupling or bolts of coupling and non- provision of coupling guard Non-provision of guards around drive head, and tensioning unt Bearing failure of drive head Frailure of pulcord and lock out switches Operator wearing loose dress Cleaning belt or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving l 		
Ingular maintenance of weak or damaged belt joint Inadequate cleaning of spillage coal in belt sides, drive heads and tail ends Inattentive chute opening and improper screen of chute Breaking of coupling or bolts of coupling and non- provision of coupling guard Inattentive chute opening and improper screen of chute Breaking of coupling or bolts of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Friction in running belt due to spillage coal and belt structure Failure of drive head Friction in running belt due to spillage coal and belt structure Failure of pre-start alarm Failure of pull cord and lock out switches Operator weaning lose dress Cleaning belt or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving l	Pre-start check not done by operator	
Insertifies coal in bet sides, drive heads and tail ends Inadequate cleaning of spillage coal in bet sides, drive heads and tail ends Inadequate cleaning of spillage coal in bet sides, drive heads and tail ends Inattertive chute opening and improper screen of chute Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unt Bearing failure of drive head Friction in running bet due to spillage coal and bet structure Failure of drive head Friction in running bet due to spillage coal and bet structure Failure of drive head Friction in running bet due to spillage coal and bet structure Failure of drive head Friction in running bet due to spillage coal and bet structure Failure of drive head Friction in running bet due to spillage coal and bet structure Failure of pre-start alam Failure of pre-start alam Coperator wearing loose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or in advertent entry of worker on moving l	Improper condition of belt and belt line	
Inattertive chute opening and improper screen of chute Inattertive chute state around drive head, Inattertive chute state around three head, Inattertive chute state around three Inattertive chute	Irregular maintenance of weak or damaged belt joint	
 Inattentive chute opening and improper screen of chute Breaking of coupling or bots of coupling and non- provision of coupling guard Non-provision of guards around drive head, tail end, and tensioning unit Bearing failure of drive head Friction in running belt due to spillage coal and belt structure Failure of pre-start alarm Failure of pre-start alarm Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving I 	Inadequate cleaning of spillage coal in belt sides, drive heads and tail ends	
Non-provision of guards around drive head, tail end, and tensioning unit Bearing failure of drive head Friction in running bet due to spillage coal and bet structure Failure of pre-stat alam Failure of pull cord and lock out switches Failure of pull cord and lock out switches Operator wearing lose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or in advertent entry of worker on moving l	Inattentive chute opening and improper screen of chute	
Non-provision of guards around drive head, tail end, and tensioning unit Bearing failure of drive head Bearing failure of drive head Friction in running belt due to spillage coal and belt structure Failure of pull cord and lock out switches Failure of pull cord and lock out switches Operator wearing loose dress Operator wearing loose dress Operator wearing loose dress Operator wearing loose dress Operator server and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or in advertent entry of worker on moving l		
Bearing failure of drive head Friction in running belt due to spillage coal and belt structure Failure of pre-stat alam Failure of pre-stat alam Failure of pull cord and lock out switches Operator wearing lose dress Cleaning belt or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or in advertent entry of worker on moving l		
Friction in running belt due to spillage coal and belt structure Failure of pre-stant alami Failure of pull cord and lock out switches Failure of pull cord and lock out switches Operator wearing loose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or in advertent entry of worker on moving l		
Failure of pre-start alam Operator wearing loose dress Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving l	-	
Failure of pull cord and lock out switches Operator wearing loose dress Operator wearing loose dress Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or In advertent entry of worker on moving I		
Tailure to display safety labels and code of signals Operator wearing lose dress Greaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Damaged idlers or rollers Damaged idlers or rollers Date of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or in advertent entry of worker on moving l		
Cleaning bet or checking gear-box and coupling, while the conveyor is in motion Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or In advertent entry of worker on moving I worker crossing the bet to other side or In advertent entry of worker on moving I		
Failure to display safety labels and code of signals Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the bet to other side or In advertent entry of worker on moving I		
Damaged idlers or rollers Lack of proper illumination near drive head, discharge and tail end drums Worker crossing the belt to other side or In advertent entry of worker on moving I		
Lack of prografilumination near drive head, discharge and tail end drums Worker crossing the belt to other side or in advertent entry of worker on moving I		
Worker crossing the belt to other side or in advertent entry of worker on moving I		improper snoven or cleaning the coal neaf tall end drum
Improper phone if a calconing the goal paper tail and down	Worker crossing the belt to other side or In advertent entry of worker on moving I	
Reset Save Update and Exit	Improper shovel for cleaning the coal near tail end drum	Reset Save Update and Exit Ex

Figure 5.11 Admin tab

The active, latent, and indirect causes, which contributed to the mine accident or incident were recorded as hazard events. The list of hazard events was positioned at the top left corner of the user interface. The risk parameters input panel consisted of linguistic scales

used by fuzzy logic in calculating the risk level of hazard events, text boxes for entering risk parameters weights and values, and buttons for calculating hazard events, groups, and overall risk level. The risk parameter weights can be modified using 'Change' button. The risk level of hazard events calculated based on the fuzzy logic and their rankings based on the VIKOR method will be displayed in risk level panel. The hazard events will be presented in the descending order of riskiness, i.e. the hazard event with the highest risk in the hazard group will be at the top of the group, and the hazard event with the lowest risk in the hazard group will be at the bottom of the group.

Based on the risk level of the hazard event, the suggested remedial measure of that event will be displayed in the Control box. The number of pairs in the AHP input panel is equal to the number the hazard groups, and they change dynamically with the change in hazard groups. The overall risk level of mine and risk level of hazard groups calculated considering AHP weights will be displayed in two different panels at the right bottom of the TRAM.

5.3. The Application of the Proposed Methodology

The proposed methodology was applied to six underground coal mines (mine-1, mine-2, mine-3, mine-4, mine-5, and mine-6) to evaluate the safety risk of the mines. The data was collected using the designed survey questionnaires and the collected data was evaluated using the TRAM.

5.3.1. Data collection

The six mines were visited some days during 2017 and 2018 for conducting questionnaire surveys. The questionnaires presented in Appendix A were used to collect the experts' opinion on the risk parameters of the hazard events and the relative importance of risk parameters in the hazard group. The questionnaire presented in Appendix B was used to collect the experts' opinion on the relative importance of hazard factors. Experts' through face-to-face interviews completed the questionnaires. The interviews were conducted during the beginning and the end of the shift hours when the experts could spare time for discussion. A total of 135 experts were interviewed from the six mines for collecting opinion on risk parameters of the hazard events and relative importance of the hazard factors present in their mines. The number of questionnaires considered in this study after excluding the partially filled questionnaires was presented in Table 5.4. The analysis of AHP

questionnaires collected showed that 43 questionnaires have the consistency ratio less than 0.1. Therefore, 43 questionnaires data were considered for determining the relative importance of the hazard groups.

Questionnaires	Risk parameters data	Weights of hazard factors data
Ground movement	110	58
Transportation machinery (non-winding)	106	59
Machinery other than transportation machinery	105	58
Explosives	93	48
Electricity	104	58
Dust, gas and other combustible materials	102	60
Other causes	104	57

Table 5.4 Number of completely filled questionnaires collected

5.3.2. Analysis and Results

5.3.2.1. Risk estimation at the hazardous event level

Once the experts' opinion on the risk parameters of the hazard events and pairwise comparison of risk parameters was collected, the risk parameters data was converted to fuzzy values using the rating scales presented in Table 5.2. Then the fuzzy values were aggregated using equation 3.2, and the aggregated fuzzy values were defuzzified into crisp values using equation 3.3. The defuzzified experts' opinion on risk parameters and the relative importance of the risk parameters of the six mines were presented in Appendix D. The crisp values of P, E, and C of hazard events shown in Appendix D were the inputs used to estimate the risk level of the hazard events. Table 5.5 presents the risk level of the hazard events of the six mines of the risk evaluation in mine-1 using TRAM were presented in Figures 5.12–5.18. The risk level at hazard group was calculated using equation 3.7 as shown in Table 5.6.

Hazard group/ factors	Hazard event	Mine-1	Mine-2	Mine-3	Mine-4	Mine-5	Mine-6
ent – fall	GM1	105.11	108.76	110.00	107.99	106.55	101.14
mer le fz	GM2	109.03	225.27	110.00	166.74	199.59	165.06
movement nd side fall	GM3	324.34	180.80	110.00	288.93	221.75	230.97
	GM4	68.39	96.29	98.27	10.00	97.27	87.72
Ground Roof 2	GM5	204.14	246.47	264.35	110.00	255.40	106.75
R Gr	GM6	86.25	38.65	89.31	10.00	62.91	66.68

Table 5.5 The risk level of hazard events for six mines

	GM7	101.46	88.17	98.40	10.00	92.62	91.65
	GM8	160.71	96.24	98.18	103.44	229.96	75.26
	GM9	94.08	96.72	97.22	99.02	97.96	94.91
	GM10	10.00	72.41	95.55	86.31	97.96	88.29
	GM11	96.24	102.52	98.40	88.02	96.85	90.38
	GM12	10.00	10.00	88.74	10.00	70.16	10.00
	GM13	334.54	321.42	258.02	364.29	303.34	272.42
	GM14	105.93	102.52	98.40	95.82	101.23	99.76
	GM15	361.32	383.33	301.15	340.44	353.70	285.72
	GM16	105.97	222.07	184.61	88.03	100.95	104.56
	GM17	10.00	10.00	92.62	10.00	10.00	43.47
	TM1	72.69	94.24	93.11	33.98	93.36	72.68
	TM2	10.00	10.00	93.82	10.00	92.58	85.70
	TM3	10.00	10.00	10.00	10.00	10.00	10.00
	TM4	91.99	51.09	91.11	48.69	94.59	93.61
	TM5	96.24	96.37	222.23	92.36	101.64	99.02
	TM6	95.99	88.79	96.65	33.66	97.11	77.92
	TM7	10.00	10.00	89.22	10.00	85.31	10.00
or	TM8	149.12	103.51	97.61	93.73	97.96	96.21
vey	TM9	10.00	87.44	84.93	10.00	94.32	92.82
con	TM10	10.00	10.00	83.17	10.00	81.87	74.57
g) - Rope haulage and conveyor	TM11	73.65	94.91	10.00	10.00	10.00	10.00
ge a	TM12	97.81	81.56	96.42	89.01	96.78	96.85
ulag	TM13	10.00	10.00	49.85	10.00	79.75	10.00
e ha	TM14	255.93	270.09	280.27	189.62	110.00	107.59
sop	TM15	101.46	96.05	93.33	10.00	95.70	95.70
- F	TM16	99.35	103.36	92.99	10.00	97.96	102.41
ing	TM17	94.54	36.04	57.68	105.57	89.34	84.56
ind	TM18	10.00	10.00	91.07	46.81	90.39	62.48
n-w	TM19	10.00	79.24	95.48	97.88	67.61	10.00
(no	TM20	103.05	170.17	83.51	94.91	67.61	87.65
ery	TM21	10.00	10.00	10.00	10.00	10.00	10.00
hin	TM22	93.81	103.90	88.24	71.26	90.45	90.90
nac	TM23	10.00	10.00	10.00	10.00	10.00	72.75
ort 1	TM24	10.00	10.00	10.00	10.00	10.00	10.00
odsu	TM25	64.63	84.37	85.73	10.00	10.00	10.00
Tra	TM26	10.00	85.56	10.00	10.00	10.00	10.00
	TM27	215.80	102.04	96.19	106.64	99.88	105.74
	TM28	10.00	88.46	10.00	10.00	10.00	10.00
	TM29	97.21	99.84	56.09	10.00	10.00	10.00
	TM30	99.93	223.30	89.00	99.02	77.92	90.67
	TM30	93.96	94.24	90.05	95.31	85.96	84.87
	TM31 TM32	78.59	95.59	10.00	54.04	10.00	10.00
	TM32 TM33	10.00	10.00	10.00	10.00	10.00	10.00

Chapter 5: Proposed Methodology for Safety Risk Assessment in Underground Coal Mines

	TM34	93.71	88.08	63.85	10.00	10.00	88.75
	TM35	85.56	10.00	10.00	97.42	90.33	78.38
	TM36	10.00	10.00	10.00	10.00	10.00	10.00
	MM1	78.36	99.84	88.19	10.00	98.07	63.70
	MM2	88.29	10.00	97.71	10.00	96.93	93.56
	MM3	91.46	96.05	10.00	10.00	77.13	10.00
	MM4	10.00	10.00	10.00	10.00	84.80	10.00
	MM5	98.48	88.46	103.27	92.85	84.92	93.66
gine	MM6	106.74	110.00	96.88	106.64	104.25	105.88
en e	MM7	70.56	10.00	59.07	10.00	87.91	79.85
lage	MM8	98.09	75.86	87.62	92.61	87.62	98.48
Iau	MM9	98.01	94.24	199.92	93.51	98.07	101.59
L, I	MM10	73.72	10.00	83.10	10.00	92.48	63.16
/SD	MM11	68.92	89.54	10.00	10.00	76.26	10.00
ΗD	MM12	10.00	10.00	10.00	10.00	59.69	10.00
- [L]	MM13	108.20	107.12	96.46	93.26	96.16	92.56
ery .	MM14	62.98	10.00	10.00	10.00	75.76	10.00
hine	MM15	10.00	10.00	98.73	10.00	86.52	90.26
nac	MM16	10.00	62.39	10.00	10.00	10.00	79.29
ort r	MM17	10.00	10.00	74.44	10.00	60.16	26.61
nspc	MM18	10.00	10.00	10.00	10.00	10.00	10.00
ichinery other than transport machinery – LHD/SDL, Haulage engine	MM19	127.55	214.74	86.80	104.83	100.54	157.49
han	MM20	93.66	94.99	90.79	10.00	91.11	99.93
er tl	MM21	93.77	104.77	95.37	93.73	101.90	101.59
oth	MM22	99.33	101.34	96.60	73.69	95.94	97.30
ery	MM23	96.17	106.20	107.52	201.35	101.23	196.51
hin	MM24	104.51	104.98	103.65	269.15	104.78	101.50
Mac	MM25	98.67	99.84	116.60	97.69	97.71	173.07
[MM26	274.77	132.75	151.66	296.71	210.44	141.72
	MM27	106.66	99.84	106.47	96.93	106.28	98.54
	MM28	95.56	92.72	92.99	87.62	10.00	89.22
	MM29	96.37	85.31	102.38	10.00	75.90	96.33
	MM30	10.00	79.67	95.33	10.00	77.98	94.58
_	SF1	100.70	99.02	101.90	95.38	99.02	106.71
anc	SF2	10.00	10.00	10.00	10.00	83.21	86.21
ing	SF3	95.67	99.02	104.85	92.05	103.51	100.70
Explosives - Shot firing and blasting	SF4	101.52	87.48	87.76	94.91	101.14	100.70
Sho sting	SF5	102.19	97.89	103.40	103.23	97.61	101.60
es - Shot f blasting	SF6	97.96	99.02	10.00	97.33	89.62	85.32
sive	SF7	78.46	94.11	95.28	97.33	104.56	97.02
plo	SF8	10.00	10.00	81.99	10.00	83.30	10.00
Ex	SF9	10.00	10.00	65.38	10.00	67.51	78.08
	SF10	10.00	10.00	10.00	92.44	10.00	10.00

Chapter 5: Proposed Methodology for Safety Risk Assessment in Underground Coal Mines

	SF11	95.44	97.81	97.17	97.69	101.14	100.95
	SF12	97.96	94.69	107.54	108.39	107.03	106.90
	SF13	98.34	92.22	92.04	105.05	89.69	99.02
	SF14	105.74	96.24	94.91	106.81	96.14	99.31
	EL1	10.00	65.98	10.00	99.02	10.00	10.00
	EL2	10.00	64.06	10.00	97.69	93.01	10.00
	EL3	93.95	98.02	97.96	107.59	88.46	95.47
	EL4	10.00	88.30	10.00	88.88	10.00	10.00
	EL5	87.98	96.72	61.88	99.02	61.96	86.69
	EL6	88.45	96.24	97.96	10.00	77.08	10.00
	EL7	10.00	10.00	10.00	10.00	10.00	10.00
Ś	EL8	82.04	10.00	99.02	10.00	76.28	10.00
ricit	EL9	10.00	10.00	85.83	10.00	10.00	75.76
Electricity	EL10	10.00	10.00	10.00	10.00	10.00	10.00
E	EL11	10.00	81.07	10.00	10.00	60.88	10.00
	EL12	10.00	10.00	10.00	75.76	10.00	10.00
	EL13	10.00	147.82	10.00	97.33	92.96	88.35
	EL14	10.00	78.11	10.00	50.46	82.40	10.00
	EL15	10.00	10.00	26.06	10.00	10.00	92.79
	EL16	10.00	10.00	66.81	10.00	10.00	68.01
	EL17	10.00	81.40	90.56	96.18	92.33	90.27
	EL18	10.00	10.00	67.08	10.00	77.67	10.00
ïre	EX1	165.64	162.16	255.86	110.00	247.19	132.87
ne f	EX2	107.55	110.00	183.96	100.84	256.56	202.56
mi	EX3	110.00	128.98	99.02	110.00	108.08	94.22
ion,	EX4	197.09	197.41	233.70	208.59	222.88	218.02
entilation, mine fire	EX5	267.47	176.27	259.62	283.93	218.45	263.27
/ent	EX6	110.00	110.00	232.52	106.42	221.25	233.67
'n, v	EX7	102.68	95.34	235.28	87.41	216.22	183.57
oisc	EX8	156.84	153.17	103.30	88.02	217.49	145.50
xple	EX9	274.31	285.99	264.35	234.77	271.41	230.89
Щ I	EX10	354.09	287.68	344.05	203.98	371.81	315.75
als	EX11	139.74	182.93	110.00	108.28	217.72	103.97
uteri	EX12	169.96	110.00	238.87	110.00	244.49	238.07
, mê	EX13	110.00	105.78	104.51	110.00	108.02	105.29
ible	EX14	97.43	106.94	198.76	95.90	289.73	153.64
oust	EX15	284.91	278.52	254.61	308.61	193.01	223.49
Dust, gas and other combustible materials – Explosion, ve	EX16	302.04	132.89	233.31	167.11	262.73	101.82
er ci	EX17	98.54	101.90	104.25	110.00	95.90	100.37
othe	EX18	110.00	110.00	107.81	110.00	104.22	98.03
- pu	EX19	110.00	108.45	110.00	110.00	104.22	108.66
as a	EX20	107.87	105.48	201.85	110.00	100.41	152.31
it, o	EX21	59.38	49.65	82.45	101.66	163.96	81.57
Dus	EX22	95.01	10.00	211.51	86.01	210.55	66.68

Chapter 5: Proposed Methodology for Safety Risk Assessment in Underground Coal Mines

	EX23	116.13	100.05	236.86	213.11	212.74	207.95
	EX24	99.84	102.50	108.88	98.16	99.02	94.11
	EX25	96.29	100.26	99.02	92.13	97.83	103.38
	EX26	184.67	94.91	224.72	172.74	168.28	99.02
	EX27	101.34	94.91	99.02	110.00	94.98	105.79
	EX28	105.16	106.28	110.00	110.00	105.75	103.97
	EX29	101.34	94.91	98.07	100.41	101.06	94.11
	EX30	98.54	98.40	105.35	87.37	102.79	103.17
	EX31	103.90	107.34	107.97	106.57	97.41	102.17
	EX32	105.96	110.00	139.69	110.00	128.08	110.00
	EX33	105.03	103.98	110.00	176.00	110.00	203.12
	EX34	110.00	110.00	110.00	233.22	108.33	107.68
	EX35	10.00	10.00	92.48	10.00	74.48	87.27
	EX36	219.91	108.63	110.00	232.43	178.14	108.83
	EX37	266.68	228.71	268.98	196.42	237.51	230.26
	EX38	275.41	248.05	306.06	301.40	265.39	299.68
	EX39	296.93	301.15	269.22	351.30	332.50	254.05
	EX40	99.84	92.04	100.54	104.83	106.64	105.05
	EX41	271.55	311.20	214.40	273.75	246.55	235.15
	EX42	301.62	228.74	216.11	98.16	235.92	188.84
	EX43	254.07	259.62	270.26	110.00	220.42	239.31
	EX44	257.34	319.53	108.13	290.14	197.24	238.53
	OC1	90.87	208.68	174.61	110.00	97.43	231.74
	OC2	10.00	80.57	86.54	10.00	10.00	10.00
	OC3	216.57	276.13	277.99	257.22	262.93	292.95
pe	OC4	99.76	108.67	221.26	207.88	135.82	103.27
sifi	OC5	97.77	97.89	97.96	99.02	98.54	98.59
clas	OC6	94.11	10.00	95.44	10.00	92.67	10.00
Une	OC7	107.41	102.01	105.83	104.25	103.90	101.56
on,	OC8	75.91	10.00	96.65	35.48	84.50	10.00
dati	OC9	97.61	100.89	102.56	103.11	92.32	94.91
ounu	OC10	170.86	181.57	186.76	107.84	135.85	200.57
- Ir	OC11	109.04	107.73	106.05	96.93	101.34	104.87
Other causes – Inundation, Unclassified	OC12	105.53	102.52	104.73	101.90	96.05	102.22
cau	OC13	269.25	325.40	271.23	218.06	278.99	227.53
her	OC14	98.59	165.75	192.41	99.02	92.24	110.00
Otl	OC15	97.30	91.13	85.89	94.03	86.68	10.00
	OC16	103.92	104.40	100.51	99.02	106.79	107.11
	OC17	97.61	102.77	92.62	76.47	94.55	95.70
	OC18	257.12	236.15	107.81	103.51	96.11	104.62

Chapter 5: Proposed Methodology for Safety Risk Assessment in Underground Coal Mines

. Ground movement - Roof fall, side fall 2. Transport machinery (Non-winding) - F		HazardName	Risk	Q
Hazard Events		Hazard Group :1. Ground movement - Roof fall, side fall (17)	Thian.	a
Rock Mass Rating not determined and Systematic Support Rules not framed properly				
Poor knowledge of approved Systematic Support Rules		- Geologically disturbed areas or weak old supports	361.3176027767	1
Poorly supported or unsupported roof		 Poorly supported or unsupported roof 	324.3386621907	0.7110500239
Lack of indicators in strata monitoring		Presence of subsidence cracks and fissures on surface above development panel	334.5357833255	0.6965268306
Delay in supporting freshly exposed roof		Poor knowledge of approved Systematic Support Rules	109.0322617107	0.6530968095
Poor quality of cement capsules, bearing plates and drill rods				
Less than adequate grout in the column		- Delay in supporting freshly exposed roof	204.1353153733	0.481806914
Unavailability of support material		- Improper testing and dressing	105.9303942744	0.4709996449
Deployment of an unauthorized or untrained support crew		- Weak roof or side conditions	105.9665378627	0.4257316710
Poor supervision		Less there a descent a set of the set of	101 4578632375	0.2218005588
Non vertical alignment of galleries		- Less than adequate grout in the column		
More height and width of galleries		- Unavailability of support material	160.7100746063	0.1975377211
Presence of subsidence cracks and fissures on surface above development panel		- Lack of indicators in strata monitoring	68.38911421356	0.1862684380
Improper testing and dressing		- Rock Mass Rating not determined and Systematic Support Rules not framed properly	105.1140139502	0.1610921378
Geologically disturbed areas or weak old supports	<u> </u>			
Weak roof or side conditions		 Poor quality of cement capsules, bearing plates and drill rods 	86.25297769151	0.1541117577
Water seepage		- Deployment of an unauthorized or untrained support crew	94.07808555600	0.0948251056
		Non vertical alignment of galleries	96 24454148471	0.0631475467

Figure 5.12 Risk evaluation of ground movement

Risk	Ran	kina	App	licatio	n

2. Transport machinery (Non-winding) - Rope haulage, conveyor 3. Machinery oth		HazardName	Risk	0 ^
Hazard Events				-
Improper signaling by conveyor operator		Hazard Group :2. Transport machinery (Non-winding) - Rope ha		r (36)
Pre-start check not performed by the conveyor operator		 Non-provision or improper maintenance of safety appliances like stop blocks, runway 	255.9305189613	1
Improper condition of belt and belt line		- Friction in the running belt due to spillage coal and belt structure	215.7993706185	0.9368000082
Irregular maintenance of a weak or damaged belt joint		Failure to display safety labels and code of signals at all stopping places along the roa	97.80568407138	0.8465049664
Inadequate cleaning of spillage coal in belt sides, drive heads and tail ends		Unexpected movement of tubs	96 24454148471	0.6818617751
Inattentive chute opening and improper screen of chute				
Breaking of coupling or bolts of coupling and non- provision of coupling guard		- Improper laying and maintenance of track line	95.99088391508	0.6792404902
Non-provision of guards around drive head, tail end, and tensioning unit		Deployment of an unauthorized or untrained conveyor operator	94.54133969909	0.5989289856
Bearing failure of drive head		- Improper signaling	73.65305185865	0.5438751178
Friction in the running belt due to spillage coal and belt structure		Operator wearing loose clothing	99.93007699310	0.5299104341
Failure of pre-start alarm	<u> </u>			
Failure of pull cord and lock out switches		- Failure of pull cord and lock out switches	97.21342743515	0.5106494320
Operator wearing loose clothing		 Worker crossing the belt to the other side or In advertent entry of worker while the bel 	85.56059364154	0.4778799110
Cleaning belt or checking gear-box and coupling, while the conveyor is in motion		Improper condition of belt and belt line	103.0501972012	0.4575195539
Failure to display safety labels and code of signals near conveyor		- Inadequate cleaning of spillage coal in belt sides, drive heads and tail ends	93.80836356367	0.4544928636
Damaged idlers or rollers	<u> </u>		33.0003030307	
Lack of proper illumination near drive head, discharge and tail end drums		- Failure of pre-start alarm	10	0.4332002281
Worker crossing the belt to the other side or In advertent entry of worker while the belt		- Improper shovel for cleaning the coal near tail end drum	10 00000000000	0 4086119063 *
Improper shovel for cleaning the coal near tail end drum \lor	<			>

Figure 5.13 Risk evaluation of transport machinery

achinery other than transport machinery - LHD/ SDL, Haulage engine 4. Sho 4 +	HazardName	Risk	Q
ard Events	Hazard Group :3. Machinery other than	transport machinery - I HD/ SDL Hauk	ae engine
bassed dump valve or dump valve not in order	Improper maintenance of engine room	104.5098009516	-
provision of lock out warning tags on the machine			
r condition of front or rear frame	 Improper condition or maintenance of brakes 	274.7691707473	0.89273378
t switch not in order	- Non-provision of guards around all moving parts	98.66509555511	0.83854035
ssure relief valve not in order	- Deployment of an unauthorized or untrained haulage en	pgine operator 96.17131004109.	0.74579348
ng of machine in disturbed or unsafe areas			
nperature switch not in order	- Workers standing around the machine or unexpected m	novement of a trailing cable 127.5514180889	0.62162508
rkers standing around the machine or unexpected movement of a trailing cable	 Improper condition or maintenance of haulage engine 	106.6550967136	0.58295918
r condition of bucket	Non-provision of lock out warning tags on the machine	108.1992836734	0.56312457
eakage or damage of steering mechanism	- Pre-start check not performed by the operator	88 28895775579	0.51866405
roper condition of machine engine			
oloyment of an unauthorized or untrained haulage engine operator	 Improper condition or maintenance of drum, surge whee 	al, clutch, and gears 95.56149163830	0.44899080
roper maintenance of engine room	- Pilot switch not in order	10.0000000000	0.43785366
provision of guards around all moving parts	- Deployment of an unauthorized or untrained operator	78.36199355767	0.40765961
roper condition or maintenance of brakes		70 71057670400	
roper condition or maintenance of haulage engine	- Improper condition of lift or tilt cylinder	73.71957672423	0.40684960
roper condition or maintenance of drum, surge wheel, clutch, and gears	 Pressure relief valve not in order 	10	0.37378040
roper condition of automatic catches and buffers	Poor condition of front or rear frame	62 98381407142	0 36314049

Figure 5.14 Risk evaluation of machinery other than transport machinery

Shot firing and blasting 5. Electricity 6. Dust, Gas and other combustible mate	HazardName	Risk	Q
Hazard Events	Hazard Group :4. Shot firing and blasting (14)	T BOR	ŭ
Deployment of an unauthorized or untrained blasting crew		105 7050111101	
Non following the blasting card system	- Failure to recover cartridge or detonator, in case of misfire	105.7356111401	1
Drivage of joining gallery from both ends	 Priming of explosives in unauthorized places 	101.5151513535	0.8450718486
Priming of explosives in unauthorized places	 Deployment of an unauthorized or untrained blasting crew 	100.6976868361	0.7562714614
Multiple operations at face while charging	- Multiple operations at face while charging	102.1874971400	0.7079327687
Improper or poorly maintained blasting tools Carrying of explosives and detonator together	- Failure to spray water before and after blasting	97 95810552341	0.6984167600
Shot firing from source other than the exploder	Failure to cover entrance with fence, in case of misfire	98.33692983108	0 685021684
Shot firer engaged in other work	Improper or poorly maintained blasting tools		0.669763103
mproper drilling, cleaning, charging and stemming of shot holes			
Failure to warn before blasting	- Failure to warn before blasting	95.44302801833	0.516848061
Failure to spray water before and after blasting	 Drivage of joining gallery from both ends 	95.66894695063	0.5101359950
Failure to cover entrance with fence, in case of misfire	- Canying of explosives and detonator together	78.45635601097	0.374310152
Failure to recover cartridge or detonator, in case of misfire	- Non following the blasting card system	10	0.283947117
	- Improper drilling, cleaning, charging and stemming of shot holes	10	0.1527480243
	- Shot firer engaged in other work	9.9999999999999	0.0567798294
	Shot firing from source other than the evoloder	10	0

Figure 5.15 Risk evaluation of explosives - shot firing and blasting

. Shot firing and blasting 5. Electricity 6. Dust, Gas and other combustible mate		HazardName	Risk	Q
Hazard Events		Hazard Group :5. Electricity (18)		
Failure of protective devices		Improper maintenance of flame proof features of machinery	93.94563611040	1
mproper earthing system or earth pit and neutral pit	1			
mproper maintenance of flame proof features of machinery		Improper shutdown procedure	88.44710730023	. 0.877874308
mproper insulation of electric cables		- Improper earthing system or earth pit and neutral pit	10.0000000000	0.714704748
mproper permanent cable joints (compounding) mproper shutdown procedure		Improper reeling or unreeling of trailing cable	9.9999999999999	0.702093752
mproper fencing of installations		Improper condition of signaling wires and its clamping	9.9999999999999	0.672286610
Faulty power cables		Non-intrinsic signaling and telephonic communication circuits	10	0.621186887
mproper maintenance of electric apparatus of equipment's (without proper precaution)		Improper permanent cable joints (compounding)	87.97736428494	0.586514875
Housing of power cable along with signaling cable and lighting cable jointly		- Unsatisfactory flexible trailing cable	10	0.555754621
Unsatisfactory flexible trailing cable			10	
mproper reeling or unreeling of trailing cable		Improper insulation of electric cables	10	0.530798925
Failure to display danger boards on all electrical equipment's		- Failure to display danger boards on all electrical equipment's	10.0000000000	0.522295724
Failure to inspect all the electrical parts of the energized machines daily for frayed cords,.		Failure to connect plugs or sockets to gate end box	10	0.518887500
Non-intrinsic signaling and telephonic communication circuits			10	
mproper condition of signaling wires and its clamping		- Failure of protective devices	10	0.498959992
mproper condition of gate end circuit breaker		- Housing of power cable along with signaling cable and lighting cable jointly	10	0.467720494
Failure to connect plugs or sockets to gate end box		Failure to inspect all the electrical parts of the energized machines daily for fra	red cor 10.000000000	0 410503172

Figure 5.16 Risk evaluation of electricity

Electricity 6. Dust, Gas and other combustible materials 7. Other Causes		HazardName	Risk	Q
lazard Events		Hazard Group :6. Dust, Gas and other combustible materials	14)	
eakage in ducts			296 9345083698	0.9974893618
ack of dust suppression arrangements		- Geological disturbance affecting panel		
lon-provision of interlocking arrangement of auxiliary fans		- Huge depillared area	275.4094411630	0.9629219360
mproper condition or maintenance of stoppings		- Accumulation of coal dust at working panel and loading points	354.0898399970	0.9591380521
Ion-provision of a fire resistant mechanical ventilator, ducts, ventilation doors and air		- Failure to clean fallen coal, wood cuttings, oil and greasy waste	271.5476644678	0.8408327347
ailure to check speed, amperage and fan drift				
Ion-provision or improper maintenance of firefighting equipment's		- Improper panel size	301.6161210479	0.7994063808
on-provision of access for the inspection of stoppings, doors, airways and air crossin		- Irregular stone dusting	302.0430884918	0.7962641401
ailure to clean fallen coal or debris in return airway		- Presence of fissures, surface cracks, subsidence	284.9068920334	0.7763691602
mproper condition or maintenance of safety lamp			254 0659065069	0 7699316596
usceptibility of spontaneous heating due to low Cross Point Temperature and high m		- Improper monitoring of fire stoppings		
hallow depth of cover		 Stone dust barrier not provided at panel entry 	274.3085432531	0.7177221812
uge depillared area		- Improper sampling of gases by supervisors	267.4675578319	0.7126114405
eological disturbance affecting panel		- Shallow depth of cover	266 6759206511	0 6991160153
hick seam				
ailure to clean fallen coal, wood cuttings, oil and greasy waste		 Improper early fire detection system 	257.3350352302	0.6873535437
nproper panel size		- Susceptibility of spontaneous heating due to low Cross Point Temperature and high m	219.9071786591	0.6678901624
nproper monitoring of fire stoppings		- Deployment of untrained supervisors	197 0922448045	0 5841407760
mproper early fire detection system	<			\ \

Figure 5.17 Risk evaluation of dust, gas and other combustible materials

Risk Ranking Application				
5. Electricity 6. Dust, Gas and other combustible materials 7. Other Causes		HazardName	Risk	Q
Hazard Events	e	Hazard Group :7. Other Causes (18)		
Inaccurate drivage of face		Presence of old water lodged areas or abandoned workings	269.2515909306	0.9965876225
Insufficient number of pumps or failure of pumps				
Working near geological disturbance faults, folds, slips etc.		Failure to prepare or distribute Safe Operating Procedure documents	103.9236062289	0.9671513950
Presence of surface cracks, fissures, subsidence		Improper or faulty surveying of workings	257.1171698747	0.9225333709
Old borehole which are not sealed effectively		Working near geological disturbance faults, folds, slips etc.	216 5696984066	0.8625023811
Borehole not marked in underground plan				
Unexpected heavy rains and power failure		Failure of water dams	109.0390783352	0.778932765
Failure of barriers		Insufficient sump area	170.8556982774	0.680379259
Non-provision of side drains		Failure of telephone communication system or signaling system	97.60519300704	0.538531668
Insufficient sump area		Presence of surface cracks, fissures, subsidence	99 76110107863	0.526129425
Failure of water dams				
Failure to prepare and regularly update water danger plan		Non-provision of personal protective equipment's to workers	98.58578652505	0.4876096895
Presence of old water lodged areas or abandoned workings		Failure to prepare and regularly update water danger plan	105.5330601763	0.4358059356
Non-provision of personal protective equipment's to workers		Inaccurate drivage of face	90.87101856951	0.4210139236
Workers not wearing personal protective equipment's				
Failure to prepare or distribute Safe Operating Procedure documents		Workers not wearing personal protective equipment's	97.30406752346	0.3441927217
Failure of telephone communication system or signaling system		Failure of barriers	75.90692313115	0.3440179851
Improper or faulty surveying of workings		Old borehole which are not sealed effectively	97 77308542860	0 2098489290
	<			>

Figure 5.18 Risk evaluation of other causes - inundation

Hazard group	Mine-1	Mine-2	Mine-3	Mine-4	Mine-5	Mine-6
	RL _{HG1}	RL _{HG2}	RL _{HG3}	RL _{HG4}	RL _{HG5}	RL _{HG6}
Ground movement	2287.51	2401.64	2293.22	1989.03	2498.20	2014.74
Transport machinery (non-	2405.02	2638.24	2571.60	1639.91	2208.42	2081.83
winding)						
Machinery other than transport	2400.83	2230.65	2401.55	1960.57	2560.54	2496.38
machinery						
Explosives	1013.98	997.50	1062.22	1120.61	1233.48	1182.52
Electricity	492.42	977.72	783.16	901.93	883.03	707.34
Dust, gas and other combustible	7112.10	6440.75	7675.35	6639.67	7967.36	6975.66
materials						
Other causes	2199.23	2412.26	2506.85	1933.74	2066.71	2015.64

Table 5.6 The risk level of hazard groups (RL_{HG}) at hazardous group levels

5.3.2.2. Risk prioritization at the hazardous event level

Concurrently, the average of the pairwise comparison of risk parameters data was calculated, and weights were determined using the AHP method. The crisp values of P, E, and C of hazard events shown in Appendix D were the inputs used to prioritize the hazard events. Table 5.7 presents the prioritization of the hazard events of the six mines calculated using the TRAM. In this study, the prioritization presented was based on the ideal solution (Q index) values of VIKOR technique.

Table 5.7 Ranking of hazard events for six mines

	GM1	0.162	11	0.230	6	0.177	11	0.269	8	0.282	10	0.319	8
	GM2	0.653	4	0.760	5	0.832	3	0.963	2	0.684	5	0.560	4
	GM3	0.711	2	0.764	7	0.935	2	0.942	3	0.866	2	0.674	2
	GM4	0.187	10	0.235	8	0.275	8	0.048	14	0.309	6	0.179	11
	GM5	0.482	2	0.894	2	0.752	4	0.895	7	0.807	3	0.535	2
e fall	9M6	0.154	12	0.146	10	0.000	17	0.031	15	0.182	15	0.051	16
of and side	GM7	0.222	8	0.017	16	0.147	13	0.091	12	0.238	12	0.220	6
Ground movement – Roof and side fall	GM8	0.198	6	0.141	11	0.256	6	0.231	6	0.386	8	0.121	13
ind mover	6M9	0.095	13	0.034	15	0.071	15	0.195	10	0.275	11	0.173	12
Grou	GM10	0.039	16	0.008	17	0.138	14	0.106	11	0.213	13	0.111	14
	GM11	0.063	14	0.100	12	0.047	16	0.087	13	0.130	16	0.181	10
	GM12	0.046	15	0.075	14	0.199	10	0.00	16	0.190	14	0.000	17
	GM13	0.697	3	0.839	3	0.712	5	0.894	5	0.750	4	0.629	3
	GM14	0.471	9	0.368	L	0.448	9	0.418	9	0.486	9	0.474	L
	GM15	1.000	1	1.000	1	1.000	1	0.991	1	1.000	1	1.000	1

	GM16	0.426	L	0.490	9	0.361	L	0.341	L	0.434	L	0.494	6
	GM17	000.0	17	0.092	13	0.153	12	0.005	17	000.0	17	0.062	15
	TM1	0.182	26	0.302	16	0.301	24	0.247	20	0.308	18	0.154	29
	TM2	0.102	33	0.020	35	0.395	17	0.092	32	0.248	25	0.242	25
	TM3	0.153	31	0.221	20	680.0	34	0.104	30	0.197	30	0.046	34
onveyor	TM4	0.212	24	0.000	36	0.367	20	0.235	21	0.280	21	0.360	14
lage and co	TM5	0.682	4	0.203	23	0.779	2	0.593	3	0.815	2	0.821	3
Rope hau	TM6	629.0	5	0.212	21	0.767	3	0.360	14	0.688	2	0.535	5
vinding) -	LMT	0.180	27	0.238	18	0.272	28	0.114	29	0.221	28	0.145	30
Transport machinery (non-winding) - Rope haulage and conveyor	TM8	0.395	15	0.664	8	0.450	13	0.302	17	66£.0	12	0.355	15
rt machine	TM9	0.095	34	0.280	17	0.293	26	0.094	31	0.334	17	0.309	18
Transpo	TM10	0.066	35	0.184	28	0.290	27	0.042	35	0.210	29	0.242	23
	TM11	0.544	7	0.186	27	0.488	10	0.488	8	0.380	14	0.469	9
	TM12	0.847	3	0.199	24	0.705	4	0.528	5	0.689	7	0.772	4
	TM13	0.143	32	0.350	12	0.248	29	0.194	25	0.239	26	0.070	32

TM14	1.000	1	0.711	5	1.000	1	1.000	1	1.000	1	1.000	1
TM15	0.297	21	0.551	9	0.366	21	0.133	28	0.373	15	0.339	17
TM16	0.390	16	1.000	1	0.385	18	0.345	15	0.371	16	0.452	8
TM17	0.599	9	0.321	14	0.520	8	0.588	4	0.537	9	0.442	6
TM18	0.368	18	0.197	25	0.354	22	0.188	26	0.249	24	0.193	27
TM19	0.159	30	0.208	22	0.406	16	0.373	12	0.250	23	0.199	26
TM20	0.458	11	0.516	7	0.298	25	0.370	13	0.250	23	0.266	21
TM21	0.174	28	0.099	31	0.000	36	0.053	34	0.069	33	0.00	36
TM22	0.454	12	0.308	15	0.457	12	0.505	L	0.431	8	0.398	13
TM23	0.329	20	0.131	30	0.233	30	0.467	6	0.287	20	0.297	20
TM24	0.223	23	0.234	19	0.192	31	0.207	23	0.127	31	0.255	22
TM25	0.332	19	0.193	26	0.517	6	0.059	33	0.270	22	0.341	16
TM26	0.166	50	0.085	32	0.141	33	0.013	36	0.031	34	0.031	35
TM27	0.937	2	0.652	4	0.667	5	0.895	7	0.717	3	0.945	2
TM28	0.433	13	0.330	13	0.534	7	0.299	18	0.296	19	0.300	19

	TM29	0.511	6	0.353	11	0.636	9	0.320	16	0.453	7	0.430	10
-	TM30	0.530	8	0.605	5	0.327	23	0.528	L	0.401	10	0.402	12
	TM31	0.382	17	0.407	6	0.368	19	0.430	10	0.400	11	0.242	24
	TM32	0.187	25	0.361	10	0.144	32	0.219	22	0.081	32	0.098	31
	TM33	0.000	36	0.156	29	0.021	35	0.186	27	0.026	35	0.048	33
	TM34	0.250	22	0.510	8	0.422	14	0.268	19	0.233	27	0.169	28
	TM35	0.478	10	0.068	33	0.410	15	0.392	11	0.409	6	0.413	11
	TM36	0.408	14	0.065	34	0.472	11	0.195	24	0.387	13	0.466	L
Iaulage	MM1	0.408	11	0.536	10	0.224	19	0.470	11	0.240	21	0.355	14
ID/SDL, H	MM2	0.519	8	0.516	11	0.364	12	0.105	27	0.208	22	0.410	10
nery – LF	MM3	0.212	21	0.237	23	0.110	23	0.311	19	0.372	14	0.034	27
port machi engine	MM4	0.061	27	0.165	26	0.071	24	0.287	23	0.263	19	0.124	24
than transf	MM5	0.108	24	0.269	19	0.225	18	0.565	8	0.467	10	0.070	26
Machinery other than transport machinery – LHD/SDL, Haulage engine	MM6	0.127	23	0.353	17	0.158	22	0.930	1	0.798	4	0.254	21
Machin	MM7	0.085	26	0.242	22	0.064	25	0.033	28	0.128	27	0.283	18

MM8	0.270	17	0.617	9	0.264	16	0.483	10	0.549	7	0.246	22
6MM	0.256	18	0.616	L	0.614	5	0.598	L	0.675	5	0.377	12
MM10	0.407	12	0.491	13	0.488	6	0.111	26	0.159	25	0.532	9
11MM	0.232	19	0.274	18	0.013	28	0.328	18	0.160	54	0.022	29
MM12	0.052	28	0.063	28	0.006	30	0.248	24	0.019	29	0.032	28
MM13	0.563	7	0.802	3	0.532	9	0.436	14	0.168	23	0.440	6
MM14	0.363	14	0.468	14	0.185	21	0.027	29	0.065	28	0.265	19
MM15	0.438	10	0.786	4	0.515	7	0.000	30	0.158	26	0.461	7
MM16	0.374	13	0.248	20	0.270	15	0.299	21	0.242	20	0.328	15
MM17	0.000	30	0.039	29	0.246	17	0.310	20	0.387	13	0.137	23
MM18	0.087	25	0.073	27	0.008	29	0.118	25	0.004	30	0.303	17
MM19	0.622	5	1.000	1	0.442	11	0.619	9	0.617	9	0.682	4
MM20	0.181	22	0.384	15	0.277	14	0.290	22	0.459	11	0.379	11
MM21	0.044	29	0.172	25	0.051	26	0.877	3	0.832	3	0.117	25
MM22	0.280	16	0.551	6	0.218	20	0.442	13	0.508	8	0.308	16

	MM23	0.746	4	0.694	5	1.000	1	0.677	4	0.500	6	0.905	3
	MM24	1.000	1	0.825	2	0.831	3	0.420	16	0.363	15	1.000	1
	MM25	0.839	3	0.591	8	0.866	2	0.341	17	0.343	17	0.912	2
	MM26	0.893	2	0.497	12	0.807	4	0.894	2	1.000	1	0.669	5
	MM27	0.583	9	0.220	24	0.490	8	0.664	2	0.889	2	0.444	8
	MM28	0.449	6	0.370	16	0.470	10	0.539	6	0.332	18	0.360	13
	MM29	0.332	15	0.020	30	0.312	13	0.468	12	0.426	12	0.260	20
	MM30	0.228	20	0.244	21	0.029	72	0.421	15	0.351	16	0.000	30
	SF1	0.756	3	0.885	3	0.741	4	0.845	4	197	4	0.966	2
ting	SF2	0.284	11	0.274	11	0.239	12	0.270	12	0.407	6	0.326	11
g and blast	SF3	0.510	6	1.000	1	0.838	2	0.491	10	0.846	2	669.0	5
Shot firing	SF4	0.845	2	0.549	6	0.468	6	0.647	9	0.762	9	0.768	3
Explosives - Shot firing and blasting	SF5	0.708	4	0.719	5	0.773	3	0.826	5	0.519	8	0.720	4
ExI	SF6	0.670	L	0.803	4	0.286	11	0.445	11	0.279	12	0.328	10
	SF7	0.374	10	0.587	L	0.525	9	0.616	8	0.791	5	0.583	6

	SF8	0.000	14	0.011	14	0.011	13	0.000	14	0.000	14	0.000	14
	SF9	0.057	13	0.029	13	0.006	14	0.087	13	0.288	11	0.175	12
	SF10	0.153	12	0.224	12	0.347	10	0.555	6	0.234	13	0.051	13
	SF11	0.517	8	0.640	9	0.500	8	0.617	L	862.0	8	0.688	9
	SF12	0.698	2	0.550	8	1.000	1	1.000	1	1.000	1	1.000	1
	SF13	0.685	9	0.510	10	0.504	L	0.868	8	0.373	10	0.648	8
	SF14	1.000	1	0.887	2	0.571	5	0.948	2	0.557	7	0.685	7
	EL1	0.499	12	0.380	6	0.283	12	0.652	2	0.482	8	0.517	9
	EL2	0.715	8	0.274	12	095.0	5	0.559	8	0.711	8	0.358	8
	EL3	1.000	1	0.541	4	0.947	2	1.000	1	1.000	1	1.000	1
ricity	EL4	0.531	6	0.526	5	0.267	13	0.313	13	0.231	14	0.331	11
Electricity	EL5	0.587	L	0.671	3	0.455	L	0.545	7	0.492	L	0.353	6
	EL6	0.878	2	662.0	2	1.000	1	0.369	11	0.506	9	0.343	10
	EL7	0.000	18	0.141	16	0.000	18	0.133	16	0.069	17	0.019	17
	EL8	0.330	15	0.266	13	0.435	6	0.204	15	0.132	16	0.194	12

	EL9	0.072	17	0.321	11	0.226	15	0.000	18	0.000	18	0.154	13
	EL10	0.467	13	0.146	15	0.223	16	0.334	12	0.301	12	0.000	18
	EL11	0.556	8	0.451	9	0.298	11	0.371	10	0.529	2	0.150	15
	EL12	0.702	7	0.379	10	0.509	9	0.455	9	08/.0	2	0.663	4
	EL13	0.522	10	1.000	1	0.440	8	0.372	6	0.442	6	0.801	3
	EL14	0.411	14	0.404	L	0.253	14	0.221	14	0.389	10	0.153	14
	EL15	0.621	9	0.135	17	0.339	10	0.391	8	0.576	7	0.813	2
	EL16	0.672	2	0.047	18	0.607	4	0.106	17	0.292	13	0.662	5
	EL17	0.240	16	0.387	8	0.109	17	0.401	L	0.217	15	0.145	16
	EL18	0.519	11	0.248	14	0.615	3	0.463	2	0.338	11	0.514	7
terials	EX1	0.549	16	069.0	15	0.587	13	0.723	18	0.958	4	0.815	8
ustible ma	EX2	0.350	27	0.775	6	0.443	24	0.447	33	0.968	2	0.758	17
Dust, gas and other combustible materials	EX3	0.520	17	0.696	14	0.194	35	0.863	7	0.574	17	0.380	38
gas and ot	EX4	0.584	14	0.674	17	0.502	17	0.531	30	0.280	35	0.557	32
Dust,	EX5	0.713	10	0.634	19	0.771	4	0.756	15	0.269	36	0.773	12

EX6	0.427	23	0.702	13	0.662	7	0.682	21	0.379	30	0.692	21
EX7	0.300	31	0.343	37	0.536	15	0.265	39	0.411	27	0.939	3
EX8	0.518	18	0.452	32	0.616	10	0.080	43	0.238	38	0.634	28
EX9	0.718	6	0.611	22	0.698	5	0.633	24	0.758	7	0.889	4
EX10	0.959	3	0.594	23	1.000	1	0.446	34	0.780	5	0.769	14
EX11	0.502	19	0.670	18	0.302	29	0.662	22	0.778	6	0.571	30
EX12	0.564	15	0.748	10	0.594	12	0.904	3	0960	3	0.978	2
EX13	0.285	33	0.567	26	0.317	27	0.726	17	0.594	15	0.641	26
EX14	0.432	22	0.495	30	0.476	21	0.204	42	0.515	19	0.433	36
EX15	0.776	7	0.905	4	0.598	11	0.887	5	0.697	10	0.814	6
EX16	0.796	9	0.689	16	0.530	16	0.565	27	0.411	26	0.569	31
EX17	0.032	43	0.485	32	0.069	41	0.846	8	0.190	41	0.516	34
EX18	0.225	34	0.790	8	0.140	37	0.938	1	0.411	24	0.431	37
EX19	0.285	32	0.741	11	0.259	33	0.796	10	0.411	25	0.729	19
EX20	0.311	29	0.614	21	0.467	23	0.705	20	0.281	34	0.636	27

EX21	0.366	26	0.033	43	0.295	30	0.315	38	0.369	31	0.000	44
EX22	0.203	35	0.158	41	0.483	20	0.208	41	0.199	40	0.186	43
EX23	0.492	20	0.480	33	0.543	14	0.754	16	0.559	18	0.775	11
EX24	0.000	44	0.493	31	0.081	39	0.520	31	0.318	33	0.325	40
EX25	0.164	38	0.454	34	0.077	40	0.244	40	0.099	43	0.646	25
EX26	0.473	21	0.149	42	0.484	19	0.318	37	0.261	37	0.228	42
EX27	0.109	39	0.328	39	0.000	44	0.721	19	0.146	42	0.650	24
EX28	0.175	37	0.531	28	0.275	31	0.811	6	0.477	22	0.620	29
EX29	0.107	40	0.333	38	0.106	38	0.417	36	0.322	32	0.377	39
EX30	0.077	42	0.574	24	0.056	43	0.561	28	0.497	21	0.760	16
EX31	0.081	41	0.570	25	0.142	36	0.560	29	0.200	39	0.540	33
EX32	0.316	28	906.0	3	0.380	26	0.771	14	0.697	6	0.837	L
EX33	0.407	24	0.527	29	0.268	32	0.639	23	0.674	12	0.795	10
EX34	0.386	25	0.851	L	0.258	34	0.891	4	0.680	11	0.730	18
EX35	0.182	36	0.000	44	0.066	42	0.000	44	0.000	44	0.245	41

	EX36	0.668	13	0.910	2	0.469	22	0.875	6	0.729	8	0.844	6
	EX37	0.699	11	0.431	36	0.651	8	0.612	26	0.383	29	0.474	35
	EX38	0.963	2	0.546	27	0.849	3	0.613	25	0.426	23	0.766	15
	EX39	0.997	1	0.867	5	0.898	2	0.919	2	0.981	1	1.000	1
	EX40	0.304	30	0.274	40	0.313	28	0.504	32	0.586	16	0.772	13
	EX41	0.841	4	0.733	12	0.683	9	0.776	13	0.502	20	0.689	22
	EX42	0.799	5	0.625	20	0.494	18	0.438	35	0.384	28	0.879	5
	EX43	0.770	8	0.964	1	0.646	6	0.779	12	0.603	14	0.677	23
	EX44	0.687	12	0.862	9	0.425	25	0.794	11	0.668	13	0.714	20
	OC1	0.421	11	0.634	9	0.639	6	0.571	9	0.498	8	0.726	5
ıclassified	OC2	0.029	17	0.000	18	0.085	14	0.037	17	0.064	17	0.000	18
dation, Ur	0C3	0.863	4	006.0	3	1.000	1	1.000	1	0.606	4	1.000	1
Other causes – Inundation, Unclassified	OC4	0.526	8	0.479	6	0.729	9	0.812	4	0.632	3	0.577	8
Other caus	OC5	0.210	14	0.119	14	0.001	18	0.259	13	0.499	L	0.208	14
_	OC6	0.205	15	0.342	13	0.027	15	0.000	18	0.223	16	0.272	12

0C7	0.061	16	0.113	15	0.020	16	0.290	11	0.565	2	0.140	15
OC8	0.344	13	0.354	12	0.307	12	0.120	16	0.413	13	0.366	11
620	0.000	18	0.077	17	0.140	13	0.278	12	0.396	14	0.089	17
0C10	0.680	9	0.577	L	0.653	8	0.492	6	0.468	6	0.683	L
0C11	0.779	2	0.644	5	0.848	4	0.568	L	0.832	2	0.691	9
0C12	0.435	10	0.396	11	0.389	11	0.337	10	0.460	10	0.257	13
0C13	766.0	1	1.000	1	0.975	2	0.922	2	1.000	1	0.749	4
0C14	0.487	6	0.554	8	0.667	L	0.560	8	0.437	11	0.574	6
0C15	0.344	13	960.0	16	0.011	17	0.227	14	0.000	18	0.134	16
0C16	0.967	2	0.838	4	0.894	3	0.576	5	0.354	15	0.975	2
OC17	0.538	L	0.425	10	0.545	10	0.176	15	0.435	12	0.518	10
OC18	0.922	3	0.941	2	0.840	5	0.878	3	0.519	9	0.758	3

5.3.2.3. Risk evaluation at the hazardous group level and mine level

Once the experts' opinion on the relative importance of the hazard groups was collected, the pairwise comparison of hazard groups data collected was averaged. The average of pairwise data collected from the six mines was presented in Appendix E. The pairwise comparison data shown in Appendix E were the inputs used to evaluate the relative importance of the hazard groups. Table 5.8 presents the weights of hazard groups of six mines calculated using

the AHP method in TRAM. The consistency of the data was verified by calculating the consistency ratio as shown in Table 5.9.

Hazard group	Mine-1	Mine-2	Mine-3	Mine-4	Mine-5	Mine-6
inizar a group	W_1	\mathbf{W}_2	W_3	W_4	W_5	W_6
Ground movement	0.35	0.30	0.37	0.30	0.40	0.32
Transport machinery (non- winding)	0.17	0.24	0.21	0.24	0.18	0.21
Machinery other than transport machinery	0.11	0.12	0.15	0.15	0.10	0.14
Explosives	0.12	0.12	0.12	0.09	0.07	0.11
Electricity	0.05	0.09	0.06	0.05	0.06	0.04
Dust, gas and other combustible materials	0.14	0.09	0.06	0.11	0.13	0.11
Other causes	0.06	0.05	0.04	0.06	0.06	0.06

Table 5.8 The weights of hazard factors at the hazardous group level

Table 5.9 The consistency ratios of the risk parameters data

	Mine-1	Mine-2	Mine-3	Mine-4	Mine-5	Mine-6
λ_{max}	7.48	7.44	7.45	7.38	7.25	7.39
C.I	0.08	0.07	0.07	0.06	0.04	0.06
C.R	0.06	0.05	0.05	0.04	0.03	0.04

The risk levels of hazards factors at group level calculated as shown in Table 5.6 does not consider the weight contribution of hazard factors. Therefore, weights of hazard groups were calculated using AHP method and combined with the obtained risk levels of hazard groups of Table 5.6 to obtain the improved risk levels at the group level as presented in Table 5.10. Table 5.11 presents the overall risk level of mine calculated using equation 3.19.

	Mine-1	Mine-2	Mine-3	Mine-4	Mine-5	Mine-6
Hazard group	RL _{HG1}	RL _{HG2}	RL _{HG3}	RL _{HG4}	RL _{HG5}	RL _{HG6}
	$\times W_1$	$\times W_2$	$\times W_3$	$\times W_4$	$\times W_5$	$\times W_6$
Ground movement	800.63	720.49	848.49	596.71	999.28	644.72
Transport machinery (non- winding)	408.85	633.18	540.04	393.58	397.52	437.18
Machinery other than transport machinery	264.09	267.68	360.23	294.09	256.05	349.49
Explosives	121.68	119.70	127.47	100.85	86.34	130.08
Electricity	24.62	87.99	46.99	45.10	52.98	28.29
Dust, gas and other combustible materials	995.69	579.67	460.52	730.36	1035.7 6	767.32
Other causes	131.95	120.61	100.27	116.02	124.00	120.94

 Table 5.10 Improved risk levels with weights at the hazardous group level

Mine Name	Overall risk level in the mine				
Mine-1	2747.51				
Mine-2	2529.32				
Mine-3	2484.01				
Mine-4	2276.71				
Mine-5	2951.93				
Mine-6	2478.02				

The comparison of risk level of hazard factors evaluated using the proposed methodology with the DGMS (2002) suggested rapid ranking method in mines is presented in Table 5.12. At the time of the study, the risk evaluation using the rapid ranking method was not completed in the mine-3 and mine-4.

 Table 5.12 Comparison of risk levels evaluated using proposed methodology and rapid ranking method

	Collected from								
Hazard group	Mine-1	TRAM	Mine-2	TRAM	Mine-5	TRAM	Mine-6	TRAM	
Ground movement	350	800.63	350	720.49	350	999.28	350	644.72	
Transport machinery (non-winding)	175	408.85	175	633.18	350	397.52	175	437.18	
Machinery other than transport machinery	75	264.09	35	267.68	350	256.05	350	349.49	
Explosives	175	121.68	175	119.7	350	86.34	150	130.08	
Electricity	175	24.62	35	87.99	350	52.98	350	28.29	
Dust, gas and other combustible materials	350	995.69	350	579.67	350	1035.7 6	125	767.32	
Other causes	5	131.95	350	120.61	350	124	350	120.94	

5.4. Discussion

In this study, 7 hazard groups and 177 hazard events were identified from the accident data collected from the DGMS, observations in mines, FMEA and WRAC study, and literature survey. Questionnaires were designed from the identified hazards to evaluate the (i) risk parameters of the hazard events (ii) relative importance/weights of the risk parameters and (iii) relative importance/weights of the hazard factors. TRAM was developed to ease the calculations and reduce the man-hours required for risk analysis. Risk evaluation using TRAM involves (i) Mamdani fuzzy inference system for evaluating the risk levels of the hazard events (ii) VIKOR method for prioritizing the hazard events (iii) AHP method for evaluating relative importance of hazard groups and (iv) the synthesis module for ensuring

that the risk analysis is being performed from the event level to group level and finally to overall mine level.

5.4.1. Risk estimation and prioritization at the hazardous event level

The risk levels of the hazard events calculated using the Mamdani fuzzy inference system are presented in Table 5.5. The risk levels of hazard groups at the group level are shown in Table 5.6. From Table 5.6, it is clear that the hazard group "dust, gas and other combustible materials" has the highest risk level and hazard group "electricity" has the lowest risk level in all the six mines.

The rankings of hazard events at the hazardous event level were presented in Table 5.7. The Q index values range from 0 to 1, in which 0 has the lowest risk and 1 has the highest risk. The ranking was done based on the Q index. The rank 1 has the highest risk associated with it when compared with the other ranks. From Table 5.7, one can observe that, in the hazard group "Ground movement", the hazard event "geologically disturbed areas or weak old support" has the highest rank in all the six mines. In the hazard group "Transport machinery", the hazard event "non-provision or improper maintenance of safety appliances" has the highest rank in mine-1, mine-3, mine-4, mine-5, and mine-6. "failure to inspect and maintain haulage road regularly" has the highest rank in mine-2. In the hazard group "Machinery other than transport machinery", the hazard event "improper maintenance of engine room" has the highest rank in mine-1 and mine-6. "Workers standing around the machine" has the highest rank in mine-2, "deployment of unauthorized or untrained haulage engine operator" has the highest rank in mine-3, "improper oil tank condition" has the highest rank in mine-4, and "improper condition or maintenance of brakes" has the highest rank in mine-5. In the hazard group "Explosives", the hazard event "failure to recover cartridge or detonator, in case of misfire" has the highest rank in mine-1, "drivage of joining gallery from both ends" has the highest rank in mine-2, and "failure to spray water before and after blasting" has the highest rank in mine-3, mine-4, mine-5 and mine-6. In the hazard group "Electricity", the hazard event "improper maintenance of flameproof features of machinery" has the highest rank in mine-1, mine-4, mine-5, and mine-6, "failure to display danger boards on all electrical equipment's" has the highest rank in mine-2, and "improper shutdown procedure" has the highest rank in mine-3. In the hazard group "Dust, gas and other combustible materials", the hazard event "geological disturbance

affecting panel" has the highest rank in mine-1, mine-5, and mine-6. "Improper monitoring of fire stoppings" has the highest rank in mine-2, "accumulation of coal dust at working panel and loading points" has the highest rank in mine-3, and "inadequate ventilation" has the highest rank in mine-4. In the hazard group "Other causes", the hazard event "presence of old water lodged area or abandoned workings" has the highest rank in mine-1, mine-2, and mine-5, and "working near geological disturbances" has the highest rank in mine-3, mine-4, and mine-6.

5.4.2. Risk evaluation at the hazardous group level and mine level

The determined relative importance of the hazard groups obtained using AHP method is shown in Table 5.8. The reformed risk levels at the hazardous group level are presented in Table 5.10. From Table 5.10, it is clear that the hazard group "dust, gas and other combustible materials" has the highest risk in mine-1, mine-4, mine-5, mine-6, and hazard group "electricity" has the lowest risk level in all the six mines. The risk level ranking order after considering weight contribution in mine-1, mine-4, and mine-5 is dust, gas and other combustible materials > ground movement > transport machinery (non-winding) > machinery other than transport machinery > other causes > explosives > electricity. There was a history of spontaneous heating and geological disturbances recorded in mine-1, mine-4, and mine-5. This justifies the highest rank to the hazard group "dust, gas and other combustible materials" in mine-1, mine-4, and mine-5. The risk level ranking order in mine-2 is ground movement > transport machinery (non-winding) > dust, gas and other combustible materials > machinery other than transport machinery > other causes >explosives > electricity. The risk level ranking order after considering weight contribution in mine-3 is ground movement > transport machinery (non-winding) > dust, gas and other combustible materials > machinery other than transport machinery > explosives > other causes > electricity. The risk level ranking order after considering weight contribution in mine-6 is dust, gas and other combustible materials > ground movement > transport machinery (non-winding) > machinery other than transport machinery > explosives > other causes > electricity.

From Table 5.11, it is clear that mine-5 has the highest risk level among the evaluated mines. The ranking order of the mines based on the overall risk level is mine-5 >mine-1 >mine-2 >mine-3 >mine-6 >mine-4. Based on the results the mine management

should focus on the mine-5 to reduce the risk level of the mine. In mine-5, the primary importance should be given to dust, gas and other combustible materials, followed by ground movement, transport machinery (non-winding), machinery other than transport machinery, other causes, explosives, and electricity.

It can be seen from Table 5.12 that the risk level of hazard groups evaluated using the DGMS (2002) suggested rapid ranking method in mines have produced same risk level for multiple hazard groups, which makes it hard to prioritize. In mine-5, it is clear that the risk level of all the hazard groups have produced equal risk level (350). This contradicts the basic aim of the risk assessment process to evaluate, prioritize and implement control measures based on the evaluated risk value. Whereas the risk evaluated using the TRAM, have each hazard group with different risk level, which makes it easier to prioritize based on the risk level values.

From the results of the proposed methodology, it is clear that the prioritization can be done based on the risk level values evaluated at the hazardous event level, hazardous group level and overall mine level. The mines should allocate resources based on the order of risk rankings. As all the mines are subsidy of CIL, CIL should focus on mine-5 to reduce the risk level of the mine. Mine-1, mine-4, mine-5, and mine-6 should give priority to the hazard group "dust, gas and other combustible materials", and mine-2, mine-3 should give priority to the hazard group "ground movement" to eliminate or mitigate the risk level of the hazard group. Correspondingly, all the six mines should give priority to the hazard event with the highest rank. These results will provide beneficial information to the safety officers, mine managers, mining engineers and other personnel to enhance safety management and establish safety standards as per the requirement. The results will also be helpful in preparing the safe operating practices and code of practices in mines. The proposed methodology possesses the following advantages over other qualitative and quantitative approaches:

- The hazard events with values of probability, exposure, and consequence are evaluated based on the rule base created.
- ▶ It is easy to evaluate and rank the hazard events, hazard groups and overall mines.
- The relative importance of the risk parameters and hazard groups are considered in the evaluation process.
- Linguistic expressions can be directly used for evaluation.

- Uncertain, imprecise or vague data and both qualitative and quantitative data can be used as inputs in the evaluation process.
- > Precise output can be obtained.
- > The computational time can be drastically reduced by using TRAM.

It can be foreseen that the proposed methodology could be utilized by not only mining engineers and safety officers but also for equipment designers and manufacturers. It can help them to focus on specific problem areas of the assessed equipment.

5.5. Chapter Summary

In this chapter, the development of hazard database, questionnaires, membership functions, rule base, and a GUI tool were presented. Citing the limitations of the qualitative and quantitative techniques, a methodology was proposed to evaluate the safety risks in underground coal mines. The analysis and results of the proposed methodology applied to six Indian underground coal mines were also discussed. From the results, it was found that the proposed methodology provides enhanced evaluation than the rapid ranking method. From the results, it was also found that each hazard event, hazard group, and overall mine has different ranking, which makes it easier to prioritize based on the ranking. The advantages of the proposed methodology and its implications to mines are also presented.

CHAPTER 6

CONCLUSIONS

In this thesis, FMEA, WRAC, FTA, and ETA approaches were applied to an underground coal mine (mine-1) to evaluate the safety risks in both qualitative and quantitative ways. Further, addressing the limitations of the qualitative and quantitative approaches, a methodology was proposed for safety risk assessment in underground coal mines. Based on the proposed methodology a user-friendly GUI was developed. The proposed methodology was applied to six underground coal mines to evaluate the safety risks in underground coal mines. The conclusions obtained from the present research investigations are summarized below:

- From the FMEA and WRAC analysis, it could be inferred that qualitative techniques are appropriate to evaluate safety risk in Indian underground mines. However, it could be noticed that the results produced are mainly subjective.
- From the FMEA and WRAC analysis, 41 hazards events related to 3 hazard groups, i.e. belt conveyor system, rope haulage system and LHD, and 115 hazard events related to 8 hazard groups, i.e. ground movement, rope haulage system, conveyor belt system, LHD, electricity, blasting, inundation, and dust, gas and other combustible materials were identified.
- The WRAC analysis revealed that out of 115 hazards identified, 20 hazards had low, 86 hazards had medium and 9 hazards had high risk levels.
- The limitations observed from the FMEA and WRAC analysis results were:
 - Different values of probability, exposure, and consequence ratings may produce the same value of risk value, but their hidden risk implications may be very different.
 - Multiple hazards have the same risk score and risk level, which makes it hard to prioritize.
- From the FTA and ETA analysis, it could be inferred that the quantitative analysis could not be performed in Indian underground coal mines in the existing conditions due to non-availability of risk parameters data.
- The ETA analysis revealed that it is hard to construct event tree for underground mines due to the presence of a large number of initiating events.

- The results of risk level of hazard events evaluated using Mamdani fuzzy inference system matched closely with the history of spontaneous heating and geological disturbances recorded in the mines. Therefore, Mamdani fuzzy inference system can be used evaluate the risk level of the hazard events in the Indian underground coal mines.
- The prioritization of hazard events at hazardous event level showed that VIKOR method provides better rankings as compared to FMEA and WRAC.
- AHP method was used to determine the relative importance. The relative importance of probability, exposure, consequence, and hazard groups was considered in the proposed methodology. The relative importance of the risk parameters was not considered in the evaluation of risk level using FMEA and WRAC.
- The evaluation of safety risks in six underground coal mines using the proposed methodology revealed that:
 - *At overall mine level:* mine-5 has the highest risk level among the evaluated mines.
 - *At hazardous group level:* dust, gas and other combustible materials has the highest risk level in mine-1, mine-4, mine-5, mine-6, and ground movement has the highest risk level in mine-2, mine-3.
- The comparison of risk levels of hazard groups indicated that the proposed methodology presents enhanced evaluation than DGMS (2002) proposed rapid ranking method.
- As the proposed methodology is generic in nature, it can be applied to all types of mines in the Indian mining industry.
- TRAM can be easily applied in the mines for evaluation of safety risks. TRAM reduced the computational time and increased the speed of the risk assessment process.
- TRAM can be applied to all the mines in the Indian mining industry by updating the hazard database in the TRAM, as per the requirement of the mine.
- The results obtained using the proposed methodology will be useful to the mine management in improving the safety in the workplace by helping in
 - Identifying unsafe acts, unsafe working methods, unsafe machinery, and an unsafe working environment.

- Developing safe operating procedures, code of practices, SMP, and control measures.
- Prioritizing the available resources based on the risk level of the hazards.
- Checking the existing safety standards within the mine.
- Reviewing high-risk areas, machinery or system in the mine.
- In applying appropriate risk treatment approach from hierarchy of controls.

6.1. Contributions of the Thesis

The contribution of the thesis can be listed as follows:

- Safety risk assessment technique aims to evaluate the hazards and control the hazards being evaluated based on the risk level. The use of rapid ranking technique and 5×5-risk matrix suggested by DGMS and CIL breaks the primary aim of the risk assessment by having multiple hazards with the same risk level or risk score. The proposed methodology provides the risk level and rankings for the hazard events, hazard groups and overall mine.
- The commonly used risk assessment techniques like FMEA, WRAC can only be used to evaluate single equipment or operation at a time, while the proposed methodology can be used to evaluate various equipment or operations at a time.
- 177 hazard events related to 7 hazard groups/factors, i.e. ground movement (fall of roof/ side), transport machinery (rope haulage, conveyor), machinery other than transport machinery (LHD, haulage engine), explosives (shot firing and blasting), electricity, dust, gas and other combustible materials, and other causes (inundation) of underground coal mines were identified.
- The current risk assessment techniques followed in the Indian coal mining industry like DGMS-Risk Matrix, ISO/CIL-Risk Matrix, DGMS/SCCL Risk Score (rapid ranking method) were also provided in the TRAM for enabling comparison with the proposed methodology.

6.2. Limitations and Future Scope of the Research

Although this study bridges a certain gap in the existing risk assessment approaches literature, it has some limitations as follows:

• FMEA was used to evaluate hazards related to mining equipment and machinery only.

• Individual hazard factors namely life-style, mental health, demographic, and socioeconomic factors were not considered in this study.

The following are the directions for future research:

- Sensitivity analysis of the proposed methodology can be carried out.
- Bayesian network in Artificial intelligence can be employed in the proposed methodology to develop an advanced risk assessment approach.

REFERENCES

- An, M., Chen, Y., & Baker, C. (2008). Development of an intelligent system for railway risk analysis. In 3rd International Conference on System Safety (pp. 1–6). Birmingham, UK.
- An, M., Chen, Y., & Baker, C. J. (2011). A fuzzy reasoning and fuzzy-analytical hierarchy process based approach to the process of railway risk information: A railway risk management system. *Information Sciences*, *181*(18), 3946–3966. http://doi.org/10.1016/j.ins.2011.04.051
- Aroba, J., Grande, J. A., Andújar, J. M., de la Torre, M. L., & Riquelme, J. C. (2007). Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes. *Environmental Geology*, 53(1), 135–145. http://doi.org/10.1007/s00254-006-0627-0
- Arunraj, N. S., & Maiti, J. (2007). Risk-based maintenance-Techniques and applications. *Journal of Hazardous Materials*, 142(3), 653–661. http://doi.org/10.1016/j.jhazmat.2006.06.069
- AS/NZS. (2004). *Risk management (4360)*. Sydney, New South Wales: Standards Australia International.
- Ashworth, S. G. E., Peake, A. V., Greben, J. M., & Elphinstone, C. (1997). *Development and evaluation of a prototype decision support system for management of occupational safety risk*. South Africa: Safety in Mines Research Advisory Committee.
- Asia Monitor Resource Centre. (2010). Occupational Health and Safety needs assessment in the coal mines of Dhanbad, Jharkhand, India. Retrieved from https://amrc.org.hk/sites/default/files/Mines.pdf
- Ayyub, B. M. (2014). Risk analysis in engineering and economics. Florida: CRC Press.
- Băbuţ, G., Moraru, R., & Cioca, L. (2011). Kinney type methods: Useful or harmful tools in the risk assessment and management Process? In *International Conference on Manufacturing Science* and Education (pp. 1–4). Sibiu, Romania.
- Badri, A., Nadeau, S., & Gbodossou, A. (2013). A new practical approach to risk management for underground mining project in Quebec. *Journal of Loss Prevention in the Process Industries*, 26(6), 1145–1158. http://doi.org/10.1016/j.jlp.2013.04.014
- Bagherpour, R., Yarahmadi, R., & Khademian, A. (2015). Safety risk assessment of Iran's underground coal mines based on preventive and preparative measures. *Human and Ecological Risk Assessment: An International Journal*, 21(8), 2223–2238. http://doi.org/10.1080/10807039.2015.1046418
- Bahr, N. J. (2014). *System safety engineering and risk assessment: A practical approach* (2nd ed.). Florida: CRC Press.
- Beamish, B., Sutherland, T., Coull, M., Walker, D., Day, G., Shales, C., ... Smith, J. (2010). Application of fault tree analysis to coal spontaneous combustion. In *10th Underground Coal Operators' Conference* (pp. 269–273). University of Wollongong & the Australasian Institute of Mining and Metallurgy.
- Behraftar, S., Hossaini, S. M. F., & Bakhtavar, E. (2017). MRPN technique for assessment of working risks in underground coal mines. *Journal of the Geological Society of India*, 90(2), 196–200. http://doi.org/10.1007/s12594-017-0699-3
- Beim, G. K., & Hobbs, B. F. (1997). Event tree analysis of lock closure risks. *Journal of Water Resources Planning and Management*, 123(3), 169–178.
- Bhattacherjee, A., Kunar, B. M., Baumann, M., Chau, N., & Group, L. (2011). Associations between occupational factors and occupational injury and the interplay of personal factors in Indian and French coal miners. In *34th International Conference of Safety in Mines Research Institutes*. Delhi, India.

- Biswas, K., & Zipf, R. K. (2003). Root causes of ground fall related incidents in US mining industry. In 22nd International Conference on Ground Control in Mining. Morgantown, USA.
- Bowles, J. B., & Peláez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. *Reliability Engineering and System Safety*, 50(2), 203–213. http://doi.org/10.1016/0951-8320(95)00068-D
- BSI. (1991a). Reliability of systems, equipment and components Part 5: Guide to failure modes, effects and criticality analysis (FMEA and FMECA) (BS 5760-5). London: British Standards Institution.
- BSI. (1991b). Reliability of systems, equipment and components Part 7: Guide to fault tree analysis (BS 5760-7). London: British Standards Institution.
- Bullock, M. G. (1979). Work Process Control Guide (No. DOE/SSDC-76-45/15; SSDC-15). Idaho Falls (USA): Department of Energy.
- Burgess-Limerick, R. (2006). Equipment related injuries in NSW underground coal mines. In J. Talbot (Ed.), *In 42nd Annual Human Factors and Ergonomics Society of Australia Conference*. Sydney: The Human Factors and Ergonomics Society of Australia.
- Burgess-Limerick, R. (2011). Injuries associated with underground coal mining equipment in Australia. *The Ergonomics Open Journal*, 4(2), 62–73.
- Burgess-limerick, R., Horberry, T., & Steiner, L. (2014). Bow-tie analysis of a fatal underground coal mine collision. *Ergonomics Australia*, 10(2), 1–5.
- Burgess-Limerick, R., & Steiner, L. (2006). Injuries associated with continuous miners, shuttle cars, load–haul–dump and personnel transport in New South Wales underground coal mines. *Mining Technology*, 115(4), 160–168. http://doi.org/10.1179/174328606X151033
- Burgess-Limerick, R., & Steiner, L. (2007). Preventing equipment related injuries in underground US coal mines. *Mining Engineering*, 59(10), 20–32.
- Burgess, T. F. (2001). Guide to the design of questionnaires. A General Introduction to the Design of Questionnaires for Survey Research, 1–27. Retrieved from http://www.alicechristie.org/classes/593/survey.pdf
- Calizaya, F., Nelson, M. G., & Shriwas, M. (2014). Risk assessment for the use of booster fans in underground coal mines. *Mining Engineering*, 66(3), 52–57.
- CAN/CSA. (2000). *Risk management: Guideline for decision makers (CAN/CSA Q850-97)*. Ontario, Canada: Canadian Standards Association.
- CCOHS. (2017). Effective workplace inspections: OSH answers. Retrieved from http://www.ccohs.ca/oshanswers/prevention/effectiv.html
- Chen, H., Qi, H., Long, R., & Zhang, M. (2012). Research on 10-year tendency of China coal mine accidents and the characteristics of human factors. *Safety Science*, *50*(4), 745–750. http://doi.org/10.1016/j.ssci.2011.08.040
- Clemens, P. L., & Simmons, R. J. (1998). *System safety and risk management*. US: Department of Health and Human Services.
- CMEWA. (2003). *Review of the Mine Safety and Inspection Act of 1994*. Western Australia: Chamber of Mines and Energy.
- Cooley, W. L., & Hill, H. W. (1981). Develop grounding practices for metal/non-metal mines (USBM OFR 154–81, NTIS PB 82–137–308). Washington, DC: United States Bureau of Mines.
- Curtis, P., & Carey, M. (2012). Risk assessment in practice. UK: Deloitte & Touche LLP.
- Dallat, C., Salmon, P. M., & Goode, N. (2017). Risky systems versus risky people: To what extent do risk assessment methods consider the systems approach to accident causation? A review of

the literature. Safety Science. http://doi.org/10.1016/j.ssci.2017.03.012

- Dash, A. K., Bhattacharjee, R. M., & Paul, P. S. (2016). Lessons learnt from Indian inundation disasters: An analysis of case studies. *International Journal of Disaster Risk Reduction*, 20, 93–102. http://doi.org/10.1016/j.ijdrr.2016.10.013
- Dash, A. K., Bhattacharjee, R. M., Singh, C. S., Aftab, A., & Sagesh, K. M. R. (2017). A decision can be a disaster: A descriptive analysis of a case study. *International Journal of Applied Environmental Sciences*, 12(10), 1803–1820.
- Dash, A. K., Bhattcharjee, R. M., Paul, P. S., & Tikader, M. (2015). Study and analysis of accidents due to wheeled trackless transportation machinery in Indian coal mines – Identification of gap in current investigation system. *Procedia Earth and Planetary Science*, 11, 539–547. http://doi.org/10.1016/j.proeps.2015.06.056
- DGMS. (2000). *Recommendations of the ninth conference on safety in mines*. New Delhi, India. Retrieved from https://elibrarywcl.files.wordpress.com/2015/02/recommendation-of-9th-safety-conference.pdf
- DGMS. (2002). Safety Management System A guideline for implementation (Technical Circular 13 of 2002). Dhanbad, India: Directorate General of Mines Safety. Retrieved from https://elibrarywcl.files.wordpress.com/2015/02/dgms-all-circular-2002.pdf
- DGMS. (2007). *Recommendations of the tenth conference on safety in mines*. New Delhi, India. Retrieved from https://elibrarywcl.files.wordpress.com/2015/02/recommendation-of-10th-safety-conference.pdf
- DGMS. (2011). Safety Management System Provison for auditing and review (Technical Circular 2 of 2011). Dhanbad, India: Directorate General of Mines Safety.
- DGMS. (2013). *Recommendations of 11th conference on safety in mines*. New Delhi, India. Retrieved from https://elibrarywcl.files.wordpress.com/2015/02/recommendation-of-11th-safety-conference.pdf
- DGMS. (2014a). *Campaign on risk calculator (Technical Circular 1 of 2014)*. Dhanbad, India: Directorate General of Mines Safety.
- DGMS. (2014b). *TAKE 5 (Personal risk assessment) (Technical Circular 2 of 2014)*. Dhanbad, India: Directorate General of Mines Safety.
- DGMS. (2015). *Statistics of mines in India Volume-I (Coal)*. Dhanbad, India: Directorate General of Mines Safety. Retrieved from http://dgms.gov.in/writereaddata/UploadFile/Coal_2015.pdf
- DGMS. (2016). Integrated approach for development of Safety Management Plan for coal and metalliferous mines (Technical Circular 5 of 2016). Dhanbad, India: Directorate General of Mines Safety.
- DGMS. (2018). *Standard note, 01.01.2018*. Dhanbad, India: Directorate General of Mines Safety. Retrieved from http://dgms.gov.in/writereaddata/UploadFile/Standard_Note_2018.pdf
- Dhillon, B. S. (1992). Failure modes and effects analysis Bibliography. *Microelectronics Reliability*, 32(5), 719–731. http://doi.org/10.1016/0026-2714(92)90630-4
- Dhillon, B. S. (2009). Mining equipment safety: a review, analysis methods and improvement strategies. *International Journal of Mining, Reclamation and Environment*, 23(3), 168–179. http://doi.org/10.1080/17480930902916239
- Diamantidis, D., Zuccarelli, F., & Westhäuser, A. (2000). Safety of long railway tunnels. *Reliability* Engineering & System Safety, 67(2), 135–145. http://doi.org/10.1016/S0951-8320(99)00059-9
- Domínguez, C. R., Martínez, I. V., Peña, P. M. P., & Ochoa, A. R. (2019). Analysis and evaluation of risks in underground mining using the decision matrix risk-assessment (DMRA) technique, in Guanajuato, Mexico. *Journal of Sustainable Mining*, *18*(1), 52-59.

- Donoghue, A. M. (2001). The design of hazard risk assessment matrices for raking occupational health risks and their application in mining and minerals processing. *Occupational Medicine*, *51*(2), 118–123. http://doi.org/10.1093/occmed/51.2.118
- Donoghue, A. M. (2004). Occupational health hazards in mining: An overview. Occupational Medicine, 54(5), 283–289. http://doi.org/10.1093/occmed/kqh072
- Düzgün, H. S. B. (2005). Analysis of roof fall hazards and risk assessment for Zonguldak coal basin underground mines. *International Journal of Coal Geology*, 64(1–2), 104–115. http://doi.org/10.1016/j.coal.2005.03.008
- Düzgün, H. S. B., & Einstein, H. H. (2004). Assessment and management of roof fall risks in underground coal mines. *Safety Science*, 42(1), 23–41. http://doi.org/10.1016/S0925-7535(02)00067-X
- Ericson, C. A. (1999). Fault tree analysis A history. In *The 17th International System Safety Conference* (pp. 1–9). Orlando, Florida. Retrieved from http://www.fault-tree.net
- Ericson, C. A. (2005). *Hazard analysis techniques for system safety*. Hoboken, New Jersey: John Wiley & Sons.
- Escande, J., Proust, C., & Le Coze, J. C. (2016). Limitations of current risk assessment methods to foresee emerging risks: Towards a new methodology? *Journal of Loss Prevention in the Process Industries*, 43, 730–735. http://doi.org/10.1016/j.jlp.2016.06.008
- Fan, X., Yi, J., & Bao, Z. (2011). Research on safety input research model for preventing coal gas
explosion. *Procedia Engineering*, 26, 2012–2017.
http://doi.org/10.1016/j.proeng.2011.11.2398
- Fasanghari, M., & Roudsari, F. H. (2008). The fuzzy evaluation of e-commerce customer satisfaction. *World Applied Sciences Journal*, 4(2), 164–168.
- Fera, M., & Macchiaroli, R. (2009). Proposal of a quali-quantitative assessment model for the SMEs health and safety. *Safety and Security Engineering*, *3*, 117–126. http://doi.org/10.2495/SAFE090121
- Fera, M., & Macchiaroli, R. (2010). Appraisal of a new risk assessment model for SME. *Safety Science*, 48(10), 1361–1368. http://doi.org/10.1016/j.ssci.2010.05.009
- Fine, W. T. (1971). *Mathematical evaluations for controlling hazards (No. NOLTR-71-31)*. White Oak, Maryland: Naval Ordnance Lab.
- Foster, P. J., Rose, H. J. M., & Talbot, C. F. (1998). Risk assessment: An opportunity to change health and safety performance. *The Journal of The South African Institute of Mining and Metallurgy*, 98, 333–338.
- Frosdick, S. (1997). The techniques of risk analysis are insufficient in themselves. *Disaster Prevention and Management: An International Journal*, 6(3), 165–177. http://doi.org/10.1108/09653569710172937
- Ghasemi, E., & Ataei, M. (2013). Application of fuzzy logic for predicting roof fall rate in coal mines. *Neural Computing and Applications*, 22(1), 311–321. http://doi.org/10.1007/s00521-012-0819-3
- Ghosh, A. K. (2010). Risk assessment of occupational injuries in underground coal mines. *Journal* of Mines, Metals and Fuels, 58(9), 343–348.
- Glossop, M., Loannides, A., & Gould, J. (2000). *Review of hazard identification techniques* (*HSL/2005/58*). UK: Health & Safety Laboratory.
- GOA. (2003). Occupational Health and Safety Regulations. Canada: Government of Alberta. Retrieved from http://www.qp.alberta.ca/1266.cfm?page=2003_062.cfm&leg_type=Regs&isbncln=9780779 776221&display=html

- GOA. (2009). Occupational Health and Safety code. Canada: Government of Alberta. Retrieved from https://work.alberta.ca/documents/WHS-LEG_ohsc_2009.pdf
- Grayson, R. L., Kinilakodi, H., & Kecojevic, V. (2009). Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data. *Safety Science*, *47*(10), 1371–1378. http://doi.org/10.1016/j.ssci.2009.03.004
- Greene, M. R., & Trieschmann, J. S. (1981). *Risk and insurance*. Cincinnati, OH: South-Western Pub. Co.
- Guha, R., & Gangopadhyay, S. K. (2001). Safety management system for Indian mines: the first step. *Journal of Mines, Metals and Fuels*, 49(3&4), 58–63.
- Gul, M., & Ak, M. F. (2018). A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. *Journal of Cleaner Production*, 196, 653–664. http://doi.org/10.1016/j.jclepro.2018.06.106
- Gul, M., Guven, B., & Guneri, A. F. (2017). A new Fine-Kinney-based risk assessment framework using FAHP- FVIKOR incorporation. *Journal of Loss Prevention in the Process Industries*, 53, 3–16. http://doi.org/10.1016/j.jlp.2017.08.014
- Gupta, S., Ramkrishna, N., & Bhattacharya, J. (2006). Replacement and maintenance analysis of longwall shearer using fault tree technique. *Mining Technology*, 115(2), 49–58. http://doi.org/10.1179/174328606X111433
- Hammer, W. (1972). Handbook of system and product safety. Englewood Cliffs, NJ: Prentice-Hall.
- Harms-Ringdahl, L. (2003). Safety analysis: Principles and practice in occupational safety (2nd ed.). London: CRC Press.
- Hayati, M., Rajabzadeh, R., & Darabi, M. (2015). Determination of optimal block size in Angouran mine using VIKOR method. *Journal of Materials and Environmental Science*, 6(11), 3236–3244.
- HB 436. (2004). *Risk management guidelines companion to AS/NZS 4360:2004*. Sydney, New South Wales: Standards Australia International.
- Helander, M. G., Krohn, G. S., & Curtin, R. (1983). Safety of roof-bolting operations in underground coal mines. *Journal of Occupational Accidents*, 5(3), 161–175.
- Hill, H. W., & Stanek, K. W. (1981). *Mine power systems safety and reliability improvement (USBM OFR 46–85, NTIS PB 85–200–962)*. Washington, DC: United States Bureau of Mines.
- HIRA. (2003). South African mining industry guide to hazard identification and risk assessment. Johannesburg, South Africa: Chamber of Mines.
- Hong, E. S., Lee, I. M., Shin, H. S., Nam, S. W., & Kong, J. S. (2009). Quantitative risk evaluation based on event tree analysis technique: Application to the design of shield TBM. *Tunnelling* and Underground Space Technology, 24(3), 269–277. http://doi.org/10.1016/j.tust.2008.09.004
- Hossaini, M., & Behraftar, S. (2009). Geotechnical risk assessment in Kerman coal mine-central Iran. In *Proceedings of the 2009 Coal Operators' Conference* (pp. 319–327). University of Wollongong & the Australasian Institute of Mining and Metallurgy, Australia.
- HSE. (2014). *The Mines Regulation 2014*. U.K: Health and Safety Executive. Retrieved from http://www.hse.gov.uk/pubns/priced/1149.pdf
- Hustrulid, W. A., & Bullock, R. L. (Eds.). (2001). Underground mining methods: Engineering fundamentals and international case studies. SME.
- Iannacchione, A. T., & Mark, C. (2009). Major hazard risk assessment applied to pillar recovery operations. In *Proceedings of the 28th International Conference on Ground Control in Mining*. Morgantown, West Virginia University, USA.

- Iannacchione, A. T., Prosser, L. J., Esterhuizen, G., & Bajpayee, T. S. (2007). Methods for determining roof fall risk in underground mines. *Mining Engineering*, 59(11), 47–53.
- Iannacchione, A. T., Varley, F., & Brady, T. (2008). The application of Major Hazard Risk Assessment (MHRA) to eliminate multiple fatality occurrences in the minerals industry (IC 9508). US: National Institute for Occupational Safety and Health.
- IEC 31010. (2009). *Risk Management Risk assessment techniques*. Retrieved from https://www.iso.org/standard/51073.html
- ILO. (1994). Mines safety checklist pack (Report No. RAS/90/M17/FRG). India: ILO.
- ILO. (2009). *Safety and health in underground coal mines*. Geneva, Switzerland. Retrieved from http://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/--- safework/documents/normativeinstrument/wcms_110254.pdf
- ILO. (2013). Training package on workplace risk assessment and management for small and medium-sized enterprises. Retrieved from http://www.ilo.org/safework/info/instr/WCMS_215344/lang--en/index.htm
- ILO. (2018). Safety and health at work. Retrieved from http://www.ilo.org/global/topics/safety-and-health-at-work/lang--en/index.htm
- Iphar, M., & Cukurluoz, A. K. (2018). Fuzzy risk assessment for mechanized underground coal mines in Turkey. *International Journal of Occupational Safety and Ergonomics*, 1–16. http://doi.org/10.1080/10803548.2018.1426804
- IS 18001. (2007). Occupational Health and Safety Management Systems Requirements with guidance for use. India : Bureau of Indian Standards.
- ISO 31000. (2009). *Risk management -- Principles and guidelines*. Retrieved from https://www.iso.org/iso-31000-risk-management.html
- ISO 31000. (2018). *Risk management Guidelines*. Retrieved from https://www.iso.org/standard/65694.html
- ISO Guide 73. (2009). *Risk management Vocabulary*. Retrieved from https://www.iso.org/standard/44651.html
- Iverson, S., Kerkering, J. C., Coleman, P., & Spokane, W. A. (2001). Using fault tree analysis to focus mine safety research. In *Proceedings of the 108th annual meeting of the Society for mining, metallurgy, and exploration*. Denver: SME Annual Meeting.
- Javadi, M., Saeedi, G., & Shahriar, K. (2017). Developing a new probabilistic approach for risk analysis, application in underground coal mining. *Journal of Failure Analysis and Prevention*, 17(5), 989–1010. http://doi.org/10.1007/s11668-017-0325-0
- Jiang, W., Qu, F., & Zhang, L. (2012). Quantitative identification and analysis on hazard sources of roof fall accident in coal mine. *Procedia Engineering*, 45, 83–88. http://doi.org/10.1016/j.proeng.2012.08.125
- Jianmin, C., & Renshu, Y. (2011). Analysis of mine water inrush accident based on FTA. *Procedia Environmental Sciences*, 11, 1550–1554. http://doi.org/10.1016/j.proenv.2011.12.233
- Joy, J. (1994). *CCH/Alara workplace risk assessment & control manual*. North Ryde, N.S.W: CCH Australia.
- Joy, J. (2004). Occupational safety risk management in Australian mining. *Occupational Medicine*, 54(5), 311–315. http://doi.org/10.1093/occmed/kqh074
- Joy, J., & Griffiths, D. (2007). *National minerals industry safety and health risk assessment guideline*. Australia: Minerals Council of Australia and Minerals Industry Safety and Health Centre.
- Kecojevic, V., & Md-Nor, Z. (2009). Hazard identification for equipment-related fatal incidents in

the U.S. underground coal mining. Journal of Coal Science & Engineering, 15(1), 1–6.

- Kecojevic, V., Md-Nor, Z. A., Komljenovic, D., & Groves, W. (2008). Risk assessment for belt conveyor-related fatal incidents in the US mining industry. *Bulk Solids Powder Science & Technology*, 3(2), 63–73.
- Kecojevic, V., Md-Nor, Z. A., Komljenovic, D., Groves, W., & Grayson, R. L. (2008). Risk Assessment for continuous miner-related fatal incidents in the US underground mining. *The International Journal of Mineral Resources Engineering*, 13(2), 49–60.
- Kejriwal, B. K. (2002). Safety in mines: A survey of accidents, their causes and prevention (1901 to 2000) (2nd ed.). Dhanbad, India: Lovely Prakashan.
- Kerkering, J. C., & Mcwilliams, P. C. (1987). *Indices of mine safety resulting from the application of the Poisson distribution to mine accident data*. Washington, DC: US Department of the Interior, Bureau of Mines.
- Khanzode, V. V. (2010). *Modeling risk of occupational injury*. Doctoral Dissertation, IIT Kharagpur.
- Khanzode, V. V., Maiti, J., & Ray, P. K. (2011a). A methodology for evaluation and monitoring of recurring hazards in underground coal mining. *Safety Science*, 49(8–9), 1172–1179. http://doi.org/10.1016/j.ssci.2011.03.009
- Khanzode, V. V., Maiti, J., & Ray, P. K. (2011b). Injury count model for quantification of risk of occupational injury. *International Journal of Injury Control and Safety Promotion*, 18(2), 151– 162. http://doi.org/10.1080/17457300.2010.540332
- Kirsch, P., Shi, M., & Sprott, D. (2014). RISKGATE: Industry sharing risk controls across Australian coal operations. *Australian Journal of Multi-Disciplinary Engineering*, 11(1), 47– 58. http://doi.org/10.7158/14488388.2014.11464882
- Kizil, G. V., & Joy, J. (2005). The development and implementation of a minerals industry risk management gateway. In *Application of Computers and Operations Research in the Mineral Industry* (pp. 427–433). Tucson, Arizona, USA: A A Balkema Publishers.
- Komljenovic, D., Groves, W. A., & Kecojevic, V. J. (2008). Injuries in U.S. mining operations A preliminary risk analysis. Safety Science, 46(5), 792–801. http://doi.org/10.1016/j.ssci.2007.01.012
- Komljenovic, D., & Kecojevic, V. J. (2007). Risk management programme for occupational safety and health in surface mining operations. *International Journal of Risk Assessment and Management*, 7(5), 620–638.
- Kothari, C. R. (2004). *Research methodology: Methods and Techniques* (2nd ed.). New Delhi, India: New Age International.
- Krause, E., & Krzemień, K. (2014). Methane risk assessment in underground mines by means of a Survey by the Panel of Experts (SOPE). *Journal of Sustainable Mining*, 13(2), 6–13. http://doi.org/10.7424/jsm140202
- Kumamoto, H., & Henlye, E. J. (1996). Probabilistic risk assessment and management for engineers and scientists. IEEE Press (2nd ed.). NY: IEEE Press.
- Kumar, N. P. (2014). Risk analysis by using failure mode and effects analysis for safe mining. *International Journal of Science and Research*, *3*(11), 2512–2515.
- Kumar, R., & Ghosh, A. K. (2017). Mines systems safety improvement using an integrated event tree and fault tree analysis. *Journal of The Institution of Engineers (India): Series D*, 98(1), 101–108. http://doi.org/10.1007/s40033-016-0121-0
- Kunar, B. M., Bhattacherjee, A., & Chau, N. (2008). Relationships of job hazards, lack of knowledge, alcohol use, health status and risk taking behavior to work injury of coal miners: A case-control study in India. *Journal of Occupational Health*, 50(3), 236–244.

- Kunar, B. M., Bhattacherjee, A., & Chau, N. (2010). A matched case-control study of occupational injury in underground coalmine workers. *Journal of the South African Institute of Mining and Metallurgy*, 110(1), 1–9.
- Kursunoglu, N., & Onder, M. (2015). Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process. *Tunnelling and Underground Space Technology*, 48, 101–109. http://doi.org/10.1016/J.TUST.2015.02.005
- Lang, L., & Fu-bao, Z. (2010). A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. *International Journal of Coal Geology*, 82(1–2), 27–36. http://doi.org/10.1016/j.coal.2010.01.014
- Lapp, S. A., & Powers, G. J. (1977). Computer-aided synthesis of fault-trees. *IEEE Transactions on Reliability*, R-26(1), 2–13.
- Lee, K. H. (2006). *First course on fuzzy theory and applications*. Germany: Springer Science & Business Media.
- Lee, W. S., Grosh, D. L., Tillman, F. A., & Lie, C. H. (1985). Fault tree analysis, methods, and applications A review. *IEEE Transactions on Reliability*, 34(3), 194–203. http://doi.org/10.1109/TR.1985.5222114
- Leigh, J., Mulder, H. B., Want, G. V., Farnsworth, N. P., & Morgan, G. G. (1990). Personal and environmental factors in coal mining accidents. *Journal of Occupational Accidents*, *13*(3), 233–250. http://doi.org/10.1016/0376-6349(90)90023-O
- Lind, G. H. (2005). Risk management of underground coal pillar extraction in South Africa. *International Journal of Surface Mining, Reclamation and Environment, 19*(3), 218–233. http://doi.org/10.1080/13895260500238739
- Liu, C., & Xue, L. (2014). Fault analysis and solution on bucket dropping accident in hoisting system. *Sensors & Transducers*, 163(1), 204–209.
- Luo, H. X., & Liu, B. (2010). Risk analysis of accidents in coal mines The case of Kenbo Mining flooding accident. In 2010 International Conference on Management and Service Science. Wuhan: Wuhan: IEEE. http://doi.org/10.1109/ICMSS.2010.5576687
- Ma, J., Ruan, D., Xu, Y., & Zhang, G. (2007). A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision making. *International Journal of Approximate Reasoning*, 44(2), 165–181. http://doi.org/10.1016/j.ijar.2006.07.007
- Mahdevari, S., Shahriar, K., & Esfahanipour, A. (2014). Human health and safety risks management in underground coal mines using fuzzy TOPSIS. *Science of the Total Environment*, 488–489, 85–99. http://doi.org/10.1016/j.scitotenv.2014.04.076
- Maiti, J. (2003). Development of risk indices for underground coal mine workers in India. *Mining Technology*, *112*(2), 119–124. http://doi.org/10.1179/037178403225001674
- Maiti, J., & Bhattacherjee, A. (1999). Evaluation of risk of occupational injuries among underground coal mine workers through multinomial logit analysis. *Journal of Safety Research*, *30*(2), 93–101. http://doi.org/10.1016/S0022-4375(99)00003-1
- Maiti, J., & Khanzode, V. V. (2009). Development of a relative risk model for roof and side fall fatal accidents in underground coal mines in India. *Safety Science*, 47(8), 1068–1076. http://doi.org/10.1016/j.ssci.2008.12.003
- Mandal, A., & Sengupta, D. (2000). The analysis of fatal accidents in Indian coal mines. *Calcutta Statistical Association Bulletin*, 50(1–2), 95–120. http://doi.org/10.1177/0008068320000109
- Mandal, S., Singh, K., Behera, R. K., Sahu, S. K., Raj, N., & Maiti, J. (2015). Human error identification and risk prioritization in overhead crane operations using HTA, SHERPA and fuzzy VIKOR method. *Expert Systems with Applications*, 42(20), 7195–7206. http://doi.org/10.1016/j.eswa.2015.05.033

- Mannan, S. (2012). Lees' Loss prevention in the process industries: Hazard identification, assessment and control (4th ed.). UK: Butterworth-Heinemann.
- Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000-2009. *Journal of Loss Prevention in the Process Industries*, 24(5), 477–523. http://doi.org/10.1016/j.jlp.2011.03.004
- Marhavilas, P. K., Koulouriotis, D., & Mitrakas, C. (2014). Fault and event-tree techniques in occupational health-safety systems part I: Integrated risk-evaluation scheme. *Environmental Engineering and Management Journal*, *13*(8), 2097–2108.
- MathWorks. (2015). Build Mamdani systems using fuzzy logic designer. Retrieved from http://in.mathworks.com/help/fuzzy/building-systems-with-fuzzy-logic-toolbox-software.html?s tid=srchtitle
- Md-Nor, Z. A., Kecojevic, V., Komijenivic, D., & Groves, W. (2008a). Risk assessment for haul truck-related fatalities in mining. *Mining Engineering*, 60(3), 43–49.
- Md-Nor, Z. A., Kecojevic, V., Komijenivic, D., & Groves, W. (2008b). Risk assessment for loaderand dozer-related fatal incidents in U.S. mining. *International Journal of Injury Control and Safety Promotion*, *15*(2), 65–75. http://doi.org/10.1080/17457300801977261
- Microsoft Docs. (2017). C# Guide. Retrieved from https://docs.microsoft.com/en-us/dotnet/csharp/
- MIL-STD. (1980). *Procedures for performing a failure mode, effects and criticality analysis (1629 A)*. Springfield, US: Department of Defense.
- Ministry of Labour and Employment. (2017). *The Coal Mines Regulations, 2017*. Dhanbad, India: Directorate General of Mines Safety. Retrieved from http://www.dgms.net/Coal Mines Regulation 2017.pdf
- Mishra, M. D., Singh, R. K., Mishra, V., & Singh, R. K. (2018). Eliminating the risk in evacuation of coal in UG mine A case study of SMP. *The Indian Mining & Engineering Journal*, 57(2), 14–19.
- Mishra, R. K., & Rinne, M. (2014). Guidelines to design the scope of a geotechnical risk assessment for underground mines. *Journal of Mining Science*, 50(4), 745. http://doi.org/10.1134/S1062739114040152
- Mohsen, J., Mohammad, A., Farhang, S., & Esmaeil, J. S. M. (2009). The application of AHP approach to selection of optimum underground mining method, case study: Jajarm bauxite mine (Iran). *Archives of Mining Sciences*, 54(1), 103–117.
- Mullai, A. (2006). *Risk Management System Risk assessment frameworks and techniques (Vol. 5, No. 2006)*. Turku, Finland: DaGoB Publication Series.
- Narayanamoorthy, S., & Maheswari, S. (2012). Fuzzy Critical Path Method (FCPM) based on Sanguansat and Chen ranking method and Centroid method. *International Journal of Mathematical Archive*, *3*(11), 4737–4743.
- Nelson, H. E. (1986). Qualitative analysis of the inherent fire safety/fire risk in a coal mine (No. PB-87-152344/XAB; NBSIR-86/3502). Washington, DC: National Bureau of Standards, Center for Fire Research.
- Niczyporuk, Z. T. (1996). Safety management in coal mines—Risk assessment. *International Journal of Occupational Safety and Ergonomics*, 2(3), 243–250. http://doi.org/10.1080/10803548.1996.11076352
- NSWDPI. (1997). Risk management handbook for the mining industry: How to conduct a risk assessment of mine operations and equipment and how to manage risk (MDG 1010). New South Wales: Department of Primary Industries.
- NSWDTI. (2011). Minerals industry safety and health risk management guideline (MDG 1010).

New South Wales: Department of Trade and Investment. Retrieved from https://www.resourcesandenergy.nsw.gov.au/__data/assets/pdf_file/0010/419518/MDG-1010-Guideline-for-Minerals-Industry-Safety-and-Health-Risk-Management-Updated-Jan-2011.pdf

- NSWDTI. (2014). Safety management systems in mines. New South Wales: Department of Trade and Investment. Retrieved from https://www.resourcesandenergy.nsw.gov.au/__data/assets/pdf_file/0008/543941/NSWcode-of-practice-Safety-managment-systems-in-mines.pdf
- Opricovic, S. (1998). *Multicriteria optimization of civil engineering systems*. Doctoral Dissertation, University of Belgrade.
- Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. *European Journal of Operational Research*, 156(2), 445–455. http://doi.org/10.1016/S0377-2217(03)00020-1
- Oraee, S., Yazdani-Chamzini, A., & Basiri, M. (2011). Evaluating underground mining hazards by fuzzy FMEA. In *SME Annual Meeting* (pp. 1–5). Denver, Colorado.
- Orsulak, M., Kecojevic, V., Grayson, L., & Nieto, A. (2010). Risk assessment of safety violations for coal mines. *International Journal of Mining, Reclamation and Environment*, 24(3), 244– 254. http://doi.org/10.1080/17480931003654901
- OSHA. (2017). Susan Harwood training grant program. Retrieved from https://www.osha.gov/dte/grant_materials/fy10/sh-20839-10/circle_chart.pdf
- Padhi, S. N. (2004). Mines safety in India Control of accidents and disasters in 21st century. Journal of the Society of Geoscientists and Allied Technologists Bulletin, 5(1), 1–9.
- Paliwal, R., & Jain, M. L. (2001). Assessment and management of risk An overview. *The Indian Mining and Engineering Journal*, 40(10), 79–86.
- Pandey, M., Khare, N., & Shrivastava, S. C. (2012). New aggregation operator for triangular fuzzy numbers based on the arithmetic means of the slopes of the L-and R-membership functions. *International Journal of Computer Science and Information Technologies*, 3(2), 3775–3777.
- Pappis, C. P., & Siettos, C. I. (2014). Search methodologies -Introductory tutorials in optimization and decision support techniques. In E. K. Burke & G. Kendall (Eds.), (2nd ed., pp. 519–556). Springer US.
- Paul, P. S., & Maiti, J. (2005). Development and test of a sociotechnical model for accident/injury occurrences in underground coalmines. *Journal of the South African Institute of Mining and Metallurgy*, 105(1), 43–53.
- Paul, P. S., & Maiti, J. (2008). The synergic role of sociotechnical and personal characteristics on work injuries in mines. *Ergonomics*, 51(5), 737–767. http://doi.org/10.1080/00140130701747483
- Pejic, L. M., Torrent, J. G., Querol, E., & Lebecki, K. (2013). A new simple methodology for evaluation of explosion risk in underground coal mines. *Journal of Loss Prevention in the Process Industries*, 26(6), 1524–1529. http://doi.org/10.1016/j.jlp.2013.08.021
- Petrovic', D. V., Tanasijevic', M., Milic', V., Lilic', N., Stojadinovic', S., & Svrkota, I. (2014). Risk assessment model of mining equipment failure based on fuzzy logic. *Expert Systems with Applications*, 41(18), 8157–8164. http://doi.org/10.1016/j.eswa.2014.06.042
- Pidgeon, N. F. (1988). Risk assessment and accident analysis. *Acta Psychologica*, 68(1–3), 355–368.
- Pillay, M. (2015). Accident causation, prevention and safety management: A review of the state-of-the-art. *Procedia Manufacturing*, *3*, 1838–1845. http://doi.org/10.1016/j.promfg.2015.07.224
- QDME. (1998). Recognised standard for mine safety management systems. Brisbane, Australia:

Queensland Department of Mines and Energy.

- QMC. (1999). Information paper Safety and health management for Queensland mines and quarries. Brisbane, Australia: Queensland Department of Mines and Energy and the Queensland Mining Council.
- Raman, R. (2003). *Underground mine safety-Are we doing enough*. Sydney: Kellogg Brown & Root Pty Ltd.
- Ramona, S. E. (2011). Advantages and disadvantages of quantitative and qualitative information risk approaches. *Chinese Business Review*, *10*(12), 1106–1110.
- Rasche, T. (2001a). Establishing preventative safety and maintenance strategies by risk based management The tools of the trade. Australia: Minerals Industry Safety and Health Centre, University of Queensland.
- Rasche, T. (2001b). *Risk analysis methods A brief review*. Australia: Minerals Industry Safety and Health Centre, University of Queensland.
- Rasche, T., & Knights, P. (2012). The case for quantitative risk analysis in the mining industry. In *In Proceedings of Queensland mining industry health & safety conference* (pp. 1–10). Townsville, Australia.
- Rasche, T., Smith, M. L., Joy, J., & Klinge, T. (2006). Application of quantitative probabilistic risk assessment in the minerals industry. *South African Journal of Industrial Engineering*, *17*(1), 103–113.
- Reniers, G. L. L., Dullaert, W., Ale, B. J. M., & Soudan, K. (2005). Developing an external domino accident prevention framework: Hazwim. *Journal of Loss Prevention in the Process Industries*, 18(3), 127–138. http://doi.org/10.1016/j.jlp.2005.03.002
- Ridley, J., & Channing, J. (Eds.). (2003). *Safety at work* (6th ed.). Butterworth-Heinemann. Retrieved from http://iums.ac.ir/uploads/Safety_at_Work_6E_95721.pdf
- Robertson, A. M., & Shaw, S. (2009). Risk management for major geotechnical structures on mines. Retrieved from https://robertsongeoconsultants.com/files/publications/cami03risk.pdf
- Ross, T. J. (2010). Fuzzy logic with engineering applications (3rd ed.). UK: John Wiley & Sons.
- Ruff, T., Coleman, P., & Martini, L. (2011). Machine-related injuries in the US mining industry and priorities for safety research. *International Journal of Injury Control and Safety Promotion*, 18(1), 11–20. http://doi.org/10.1080/17457300.2010.487154
- Ryjov, A. (2003). Fuzzy linguistic scales: Definition, properties and applications. In L. Reznik & V. Kreinovich (Eds.), *Soft computing in measurement and information acquisition* (1st ed., pp. 23–38). Springer-Verlag Berlin Heidelberg. http://doi.org/10.1007/978-3-540-36216-6
- Saaty, T. L. (1990). How to make a decision: The Analytic Hierarchy Process. *European Journal of Operational Research*, 48(1), 9–26.
- Saaty, T. L., & Vargas, L. G. (1991). Prediction, projection, and forecasting: Applications of the Analytic Hierarchy Process in economics, finance, politics, games, and sports. Kluwer Academic Pub.
- Sabir, M., Chowdhury, K. B., & Srinivas, J. V. (2012). *Fundamentals of risk management*. Kolkata, India: S&R Division, Coal India Limited.
- Sahu, H. B., & Pal, B. K. (2000). Improving safety standard in coal mining operations. *Journal of Mines, Metals and Fuels*, 48(1–2), 28–33.
- Samantra, C., Datta, S., & Mahapatra, S. S. (2017). A risk-based decision support framework for selection of appropriate safety measure system for underground coal mines. *International Journal of Injury Control and Safety Promotion*, 24(1), 54–68. http://doi.org/10.1080/17457300.2015.1061561

- Sari, M., Selcuk, A. S., Karpuz, C., & Düzgün, H. S. B. (2009). Stochastic modeling of accident risks associated with an underground coal mine in Turkey. *Safety Science*, 47(1), 78–87. http://doi.org/10.1016/j.ssci.2007.12.004
- Selçuk, A. S., Karpuz, C., Düzgün, H. S. B., & Sari, M. (2000). Analysis of Tunçbilek underground coal mine accidents based on risk analysis techniques. In A. K. Mehrotra & R. K. Singhal (Eds.), Proceedings of the 6th International Conference on Environmental Issues and Management of Waste in Energy and Mineral Production (pp. 237–243). Calgary, Alberta, Canada: CRC Press.
- Shahriar, K., & Bakhtavar, E. (2009). Geotechnical risks in underground coal mines. *Journal of Applied Sciences*, 9(11), 2137–2143. http://doi.org/10.3923/jas.2009.2137.2143
- Shao-jie, Z. (2013). Application of fault tree analysis in coal mine fire accidents. *Journal of Convergence Information Technology*, 8(7), 674–681.
- Shariati, S. (2014). Underground mine risk assessment by using FMEA in the presence of uncertainty. *Decision Science Letters*, 3(3), 295–304. http://doi.org/10.5267/j.dsl.2014.4.002
- Shi, L., Wang, J., Zhang, G., Cheng, X., & Zhao, X. (2017). A risk assessment method to quantitatively investigate the methane explosion in underground coal mine. *Process Safety and Environmental Protection*, 107, 317–333. http://doi.org/10.1016/j.psep.2017.02.023
- SIMTARS. (2001). RiskAssess 3D A user-friendly tool to assist teaching and conducting risk assessment and risk management. Occupational Health & Safety Innovation Awards. Retrieved from http://www.mirmgate.com.au/docs/Qld_Innovations/2001/Simtars_3d_Risk_Assess_2001.pd f
- Singh, B. N., & Sen, A. K. (2001). Safety and heatlth hazards in Mines. *The Indian Mining & Engineering Journal*, (Special Issue on DGMS Dhanbad), 29–32.
- Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., & Railsback, J. (2002). *Fault tree handbook with aerospace applications*. Washington, DC: NASA.
- Stamatis, D. H. (2003). *Failure Mode and Effect Analysis: FMEA from theory to execution* (2nd ed.). Milwaukee, Wisconsin: ASQ Quality Press.
- Suddle, S. (2009). The weighted risk analysis. *Safety Science*, 47(5), 668–679. http://doi.org/10.1016/j.ssci.2008.09.005
- Tchankova, L. (2002). Risk identification basic stage in risk management. *Environmental Management and Health*, 13(3), 290–297. http://doi.org/10.1108/09566160210431088
- Thompson, S. (1999). Risk assessment for mines. In *Proceedings of Queensland Mining Industry Health and Safety Conference* (pp. 89–98). Queensland, Australia.
- Tixier, J., Dusserre, G., Salvi, O., & Gaston, D. (2002). Review of 62 risk analysis methodologies of industrial plants. *Journal of Loss Prevention in the Process Industries*, *15*(4), 291–303.
- Tripathy, D. P. (1999). Safety risk analysis and hazard prevention. *Journal of Mines, Metals and Fuels*, 47(11), 279–281.
- Tripathy, D. P. (2010). Methodologies for assessment of safety risk in mines. *The Indian Mining* and Engineering Journal, 49(9), 166–173.
- Tripathy, D. P. (2014). Safety risk analysis and risk management in mines. In *International* Symposium on New Equipment, New Technology, Management and Safety in Mining and Mineral based Industries. Bhubaneswar, India.
- Tripathy, D. P., & Patra, A. K. (1998). Safety risk assessment in mines. *The Indian Mining and Engineering Journal*, 37(1), 120–122.
- Verma, S., & Chaudhari, S. (2014). Integration of Fuzzy Reasoning Approach (FRA) and Fuzzy

Analytic Hierarchy Process (FAHP) for risk assessment in mining industry. *Journal of Industrial Engineering and Management*, 7(5), 1347–1367. http://doi.org/10.3926/jiem.948

- Verma, S., & Chaudhari, S. (2016a). Fuzzy Reasoning Approach (FRA) for assessment of workers safety in manganese mines. In M. Pant, K. Deep, J. Bansal, A. Nagar, & K. Das (Eds.), *Proceedings of Fifth International Conference on Soft Computing for Problem Solving* (Vol. 437, pp. 135–143). Singapore: Springer. http://doi.org/10.1007/978-981-10-0451-3_14
- Verma, S., & Chaudhari, S. (2016b). Highlights from the literature on risk assessment techniques adopted in the mining industry: A review of past contributions, recent developments and future scope. *International Journal of Mining Science and Technology*, 26(4), 691–702. http://doi.org/10.1016/j.ijmst.2016.05.023
- Verma, S., & Gupta, M. (2013). Risk assessment in mining industry. *International Journal of Mining and Mineral Engineering*, 4(4), 312–332. http://doi.org/10.1504/IJMME.2013.056857
- Vesely, W. E., Goldberg, F. F., Roberts, N. H., & Haasl, D. F. (1981). *Fault tree handbook (No. NUREG-0492)*. Washington, DC: Nuclear Regulatory Commission.
- Vivek, S., Karthikeyan, N., & Balan, A. V. (2015). Risk assessment and control measures for cold rolling mill in steel industry. *International Journal of Mechanical Engineering and Research*, 5(1), 63–71.
- w3schools. (2006). XML Tutorial. Retrieved from https://www.w3schools.com/xml/default.asp
- Wang, S., & Zuo, H. Y. (2012). Safety diagnosis on coal mine production system based on fuzzy logic inference. *Journal of Central South University*, 19(2), 477–481.
- Wang, Y. M. (2009). Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets. *Computers & Industrial Engineering*, 57(1), 228–236. http://doi.org/10.1016/j.cie.2008.11.014
- Wilson, R., & Crouch, E. A. C. (1987). Risk assessment and comparisons: An introduction. *Science*, 236(4799), 267–270.
- Wu, H. Y., Chen, J. K., Chen, I. S., & Zhuo, H. H. (2012). Ranking universities based on performance evaluation by a hybrid MCDM model. *Measurement*, 45(5), 856–880. http://doi.org/10.1016/j.measurement.2012.02.009
- Xin-chun, L., & Xue-feng, S. (2009). Study on the essential management system of the coal mines. *Procedia Earth and Planetary Science*, 1(1), 1705–1711. http://doi.org/10.1016/j.proeps.2009.09.261
- Xu, Z. (2008). Group decision making based on multiple types of linguistic preference relations. *Information Sciences*, *178*(2), 452–467. http://doi.org/10.1016/j.ins.2007.05.018
- Xue, S., Reece, D., & Yarlagadda, S. (2010). Hazard identification and risk management (CSIRO Report No: EP106662). Australia: CSIRO Earth Science and Resource Engineering.
- Zadeh, L. A. (1965). Fuzzy sets. *Information and Control*, 8(3), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X
- Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw-Hill.
- Zeng, J., An, M., & Smith, N. J. (2007). Application of a fuzzy based decision making methodology to construction project risk assessment. *International Journal of Project Management*, 26(5), 589–600. http://doi.org/10.1016/j.ijproman.2007.02.006
- Zhang, C., Wei, Y., Li, Z., & Zhao, Y. (2018). Hazard-based design of the bow-tie method to prevent and mitigate mine accidents. *Journal of Failure Analysis and Prevention*, 18(1), 29–40. http://doi.org/doi:10.1007/s11668-017-0367-3

APPENDIX A: Questionnaires

Questionnaire

Hazard Evaluation Form

General Information	on		
Full Name:		 	
Designation:			
Mine Name:			

Consequence: The mo	st probable results of a potential accident
Scale values	Description
C1	Small injury (Minor first aid)
C2	Minor (Temporary disability, many lost time injuries)
C3	Serious (Significant chance of fatality, permanent disability)
C4	Fatality (One fatality)
C5	Major fatality (A few fatalities, 1-4 fatalities)
C6	Catastrophic (Many fatalities, > 4 fatalities)

Exposure: Frequency	of occurrence of the hazard-event
Scale values	Description
E1	Very Rare (More than yearly)
E2	Rare (Yearly)
E3	Unusual (Monthly)
E4	Occasional (Weekly)
E5	Frequent (Daily)
E6	Continuous (Several times daily)

Probability: Chance	that the personnel will be harmed
Scale values	Description
P1	Practically impossible (One in 1000 years)
P2	Conceivable but possible (Once every 100 years)
P3	Only remotely possible (Once every thirty years)
P4	Unusual but possible (Once every ten years)
P5	Quite possible (Once every three years)
P6	May well be expected (Once a year)

	GROU	ND M	OVE	MENT	- R (DOF A	ND S	IDE I	FALL	S		
Please select ($$) the appro	opriate	e Cons	equen	ce, Ex	posur	e and	Probał	oility s	scales	for the	e
following hazar	ds											
	Rock Mas	s Rati	ing no	t deter	mine	d and	Syster	natic S	Suppo	ort Rul	es not	i
	properly	~ .		~-		~-		~ .		~-		~ -
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Poor knov	0	e of ap	-	-				ules			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM3.	Poorly su		ed or u		oorted							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM4.	Lack of in		ors in		moni	toring						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM5.	Delay in s	uppor	ting f	reshly	expos	sed roo	of					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM6.	Poor qual	ity of	cemer	nt caps	ules,	bearin	g plat	es and	drill	rods		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM7.	Less than	adequ	iate gi	rout in	the c	olumn	l					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM8.	Unavailat	oility o	of supp	oort m	ateria	ıl						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM9.	Deployme	ent of a	an una	author	ized o	or untr	ained	suppo	ort cre	ew		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM10.	Poor supe	rvisio	n									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

GM11.	Non verti	cal ali	gnmei	nt of g	allerie	es						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM12.	More hei	ght an	d widt	th of g	allerie	es						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM13.	Presence	of sub	sidenc	e crac	ks an	d fissu	res on	ı surfa	ce ab	ove de	velop	ment
panel												
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM14.	Improper	r testin	g and	dress	ing							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM15.	Geologica	ally dis	turbe	d area	s or w	veak ol	d sup	ports				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM16.	Weak roo	of or s	ided c	onditi	ons							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
GM17.	Water se	epage										
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

	Consequence	Exposure	Probability
Consequence			
Exposure			
Probability			

TRANSPORT MACHINERY (NON-WINDING) - ROPE HAULAGE

Please select ($\sqrt{}$) the appropriate Consequence, Exposure and Probability scales for the following hazards

TM1. I	Deployme	ent of a	an una	author	ized o	or untr	ained	tram	mer o	r clipn	nan	
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM2.	Overload	ling of	tubs									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM3. I	Defective	or im	prope	r clips	or las	shing o	chain					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM4. F	ailure of	draw	bar									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM5. U	Jnexpecte		vemen		DS							
				00	_	00		C^{1}	_			0
Consequence:		C1		C2		C3		C4		C5		C6
Consequence: Exposure:		E1		E2		E3		E4		E5		C6 E6
-							_		_		_	
Exposure: Probability:		E1 P1 laying		E2 P2 nainte		E3 P3 of trac		E4 P4		E5 P5		E6 P6
Exposure: Probability:		E1 P1 laying C1		E2 P2 nainte C2		E3 P3 of trac C3		E4 P4		E5 P5 C5		E6 P6 C6
Exposure: Probability: TM6. I Consequence: Exposure:	□ □ mproper	E1 P1 laying C1 E1	and r	E2 P2 mainter C2 E2	□ □ nance	E3 P3 of trac C3 E3	 □ ck line	E4 P4 C4 E4		E5 P5 C5 E5		E6 P6 C6 E6
Exposure: Probability: TM6. I Consequence: Exposure: Probability:	mproper	E1 P1 laying C1 E1 P1	and r	E2 P2 mainter C2 E2 P2	nance	E3 P3 of trac C3 E3 P3	 Ck line 	E4 P4 C4 E4 P4		E5 P5 C5		E6 P6 C6
Exposure: Probability: TM6. I Consequence: Exposure: Probability:	mproper	E1 P1 laying C1 E1 P1 maint	and r	E2 P2 nainte C2 E2 P2 e of tu	nance	E3 P3 of trac C3 E3 P3 I their	 Ck line 	E4 P4 C4 E4 P4 gs		E5 P5 C5 E5 P5		E6 P6 C6 E6 P6
Exposure: Probability: TM6. I Consequence: Exposure: Probability:	mproper	E1 P1 laying C1 E1 P1 maint C1	and r	E2 P2 mainter C2 E2 P2 e of tul C2	nance	E3 P3 of trac C3 E3 P3 I their C3	 Ck line 	E4 P4 C4 E4 P4 gs C4		E5 P5 C5 E5 P5 C5		E6 P6 C6 E6 P6 C6
Exposure: Probability: TM6. I Consequence: Exposure: Probability: TM7. I	mproper	E1 P1 laying C1 E1 P1 maint	and r	E2 P2 nainter C2 E2 P2 e of tul C2 E2	nance	E3 P3 of trac C3 E3 P3 I their C3 E3	ck line	E4 P4 C4 E4 P4 gs		E5 P5 C5 E5 P5		E6 P6 C6 E6 P6
Exposure: Probability: TM6. I Consequence: Exposure: Probability: TM7. I Consequence:	mproper	E1 P1 laying C1 E1 P1 maint C1	and r	E2 P2 mainter C2 E2 P2 e of tul C2	nance	E3 P3 of trac C3 E3 P3 I their C3	ck line	E4 P4 C4 E4 P4 gs C4		E5 P5 C5 E5 P5 C5		E6 P6 C6 E6 P6 C6
Exposure: Probability: TM6. I Consequence: Exposure: Probability: TM7. I Consequence: Exposure: Probability:	mproper	E1 P1 laying C1 E1 P1 maint C1 E1 P1 recaut	and r and r enanc	E2 P2 mainter C2 E2 P2 e of tul C2 E2 P2 P2 nile hau	nance	E3 P3 of trac C3 E3 P3 their C3 E3 P3 track I	ck line	E4 P4 C4 E4 P4 c5 C4 E4 P4 osses t		E5 P5 C5 E5 P5 C5 E5 P5 ing roa		E6 P6 E6 P6 C6 E6 P6
Exposure: Probability: TM6. I Consequence: Exposure: Probability: TM7. I Consequence: Exposure: Probability:	mproper	E1 P1 laying C1 E1 P1 maint C1 E1 P1 recauti	and r and r enanc	E2 P2 nainter C2 E2 P2 e of tul C2 E2 P2 ille hau C2	nance	E3 P3 of trac C3 E3 P3 their C3 E3 P3 track I C3	ck line	E4 P4 C4 E4 P4 5 C4 E4 E4 P4		E5 P5 C5 E5 P5 C5 E5 P5 ing roa C5		E6 P6 E6 P6 C6 E6 P6 C6
Exposure: Probability: TM6. I Consequence: Exposure: Probability: TM7. I Consequence: Exposure: Probability: TM8. I	mproper	E1 P1 laying C1 E1 P1 maint C1 E1 P1 recaut	and r and r a enance	E2 P2 mainter C2 E2 P2 e of tul C2 E2 P2 nile han C2 E2	nance	E3 P3 of trac C3 E3 P3 their C3 E3 P3 track I C3 E3	ck line	E4 P4 C4 E4 P4 c5 C4 E4 P4 osses t		E5 P5 C5 E5 P5 C5 E5 P5 ing roa		E6 P6 E6 P6 C6 E6 P6
Exposure: Probability: TM6. I Consequence: Exposure: Probability: TM7. I Consequence: Exposure: Probability: TM8. I Consequence:	mproper	E1 P1 laying C1 E1 P1 maint C1 E1 P1 recauti	and r and r enanc a ion wh	E2 P2 nainter C2 E2 P2 e of tul C2 E2 P2 ille hau C2	bs and ulage f	E3 P3 of trac C3 E3 P3 their C3 E3 P3 track I C3	ck line	E4 P4 C4 E4 P4 55 C4 E4 P4 055555 tr C4		E5 P5 C5 E5 P5 C5 E5 P5 ing roa C5		E6 P6 E6 P6 C6 E6 P6 C6

ТМ9.	Defecti	ve ro	pe, ro	pe spl	licing,	rope o	capel o	r shac	kles				
Consequence	: [C1		C2		C3		C4		C5		C6
Exposure:	C		E1		E2		E3		E4		E5		E6
Probability:	C		P1		P2		P3		P4		P5		P6
TM10.	Lack of	i prop	per ill	umina	ation a	nd wh	ite was	sh at c	ouplin	g and	uncou	pling	points
Consequence	: [C1		C2		C3		C4		C5		C6
Exposure:			E1		E2		E3		E4		E5		E6
Probability:	C		P1		P2		P3		P4		P5		P6
TM11.	Improp	oer si	gnaliı	ng									
Consequence	: [C1		C2		C3		C4		C5		C6
Exposure:	C		E1		E2		E3		E4		E5		E6
Probability:	C		P1		P2		P3		P4		P5		P6
TM12.	Failure	to di	isplay	safet	y label	s and	code o	f sign	als at a	all stoj	pping	places	along
the roa	•		~ .		~-		~-		~ .		~-		~ .
Consequence			C1		C2		C3		C4		C5		C6
Exposure:	Ľ	_	E1		E2		E3		E4		E5		E6
Probability:	-	_	P1		P2		P3		P4		P5		P6
TM13.	Non-pr			safety		rs							
Consequence	: [_	C1		C2		C3		C4		C5		C6
Exposure:	Ľ		E1		E2		E3		E4		E5		E6
Probability:	Ľ		P1		P2		P3		P4		P5		P6
TM14.	Non-pr			-	-							-	
	y switch	es, ba	acksta	ıy, dra	igs, cat	ches,	safety	hooks	, jazz	rails, f	friction	ı rolle	rs, re-
railers Consequence		-	C1	_	C2		C3		C4		C5		C6
Exposure:	_	_	E1		E2		E3		E4		E5		E6
Probability:	_		P1		P2		P3		P4		P5		P6
TM15.	_				ГΖ		F 3		Γ4		ГJ		ru
Consequence	Failure	-	C1		C2		C3	П	C4		C5	П	C6
Exposure:			E1		E2		E3		E4		E5		E6
Probability:		_	P1		P2		P3		P4		P5	-	P6
•		_		_		_		-		-	ГJ		ru
TM16. Consequence	Failure		spect C1	and n	naintai C2	In nat	nage ro C3	bad re	c4	у □	C5		C6
Exposure:	_	_	E1	_	E2		E3		E4		E5		E6
Probability:	-		P1		E2 P2		ES P3		E4 P4		Е5 Р5	-	E0 P6
1 I UDADIIILY:	L		11		1 4		15		14		15		10

	Consequence	Exposure	Probability
Consequence			
Exposure			
Probability			

TR	RANSPOR	T MA	CHIN	NERY	(NOI	N-WIN	NDIN	G) - C	ONV	EYOR	R	
Please select (V) the appro	opriate	e Cons	sequen	ce, Ex	posure	e and	Probał	oility s	scales	for the	e
following haza	rds											
TM17.	Deployme	ent of	an un		rized	or un	traine	ed con	veyor	opera	tor	
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM18.	Improper	: signa	alling	by cor	iveyo	r oper	ator					
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM19.	Pre-start	check	x not p	oerfor	med b	y the	conve	yor oj	perato	or		
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM20.	Improper	cond	lition (of belt	and	belt liı	ne					
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM21.	Irregular	main	tenan	ce of a	a weal	k or da	amag	ed bel	t joint	t		
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM22.	Inadequa	te cle	aning	of spi	llage	coal in	belt	sides,	drive	heads	and	tail
ends	-		0	-	0							
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM23.	Inattentiv	e chu	te ope	ning a	nd im	prope	r scre	en of c	hute			
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM24.	Breaking	of cou	pling	or bol	ts of c	ouplin	ng and	l non-p	provis	ion of	coupl	ing
guard												
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM25.	Non-prov	ision (of gua		ound		nead, t		d, and	l tensio	oning	unit
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM26.	Bearing fa		of dri		d							
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

TM27. F	riction i	n the r	unnir	ıg belt	due t	o spilla	age co	al and	belt s	structu	ire	
Consequence:		C1		C2		Č3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM28. Fa	ailure of	f pre-s	tart a	larm								
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM29. Fa	ailure of	f pull c	cord a	nd loc	k out :	switch	es					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM30. O	perator	weari	ng loo	se clot	hing							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM31. C	leaning	belt or	r chec	king g	ear-bo	ox and	coup	ling, w	hile t	he con	veyor	is in
motion												
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
TM32. Fa	ailure to	-	ay safe	•	els an		e of sig		near tl		veyor	
Consequence:	ailure to	displ a C1	ay safe □	C2	els an □	d code C3	e of sig □	C4	near tl □	C5	veyor	C6
		C1 E1	-	•		C3 E3		C4 E4		C5 E5	•	E6
Consequence: Exposure: Probability:		C1 E1 P1		C2 E2 P2		C3		C4		C5		
Consequence: Exposure: Probability: TM33. D		C1 E1 P1 idlers		C2 E2 P2 Illers		C3 E3 P3		C4 E4 P4		C5 E5 P5		E6 P6
Consequence: Exposure: Probability:		C1 E1 P1		C2 E2 P2 Ilers C2		C3 E3 P3 C3		C4 E4 P4 C4		C5 E5 P5 C5		E6 P6 C6
Consequence: Exposure: Probability: TM33. D	□ □ amaged	C1 E1 P1 idlers C1 E1	□ □ or ro	C2 E2 P2 Ilers C2 E2		C3 E3 P3 C3 E3		C4 E4 P4 C4 E4		C5 E5 P5 C5 E5		E6 P6 C6 E6
Consequence: Exposure: Probability: TM33. D Consequence:	□ □ amaged	C1 E1 P1 idlers C1	or ro	C2 E2 P2 Ilers C2		C3 E3 P3 C3		C4 E4 P4 C4		C5 E5 P5 C5		E6 P6 C6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. La	amaged	C1 E1 P1 idlers C1 E1 P1	0 0 0 0 0	C2 E2 P2 Ilers C2 E2 P2		C3 E3 P3 C3 E3 P3		C4 E4 P4 C4 E4 P4		C5 E5 P5 C5 E5 P5		E6 P6 C6 E6 P6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. La Consequence:	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1	0 0 0 0 0	C2 E2 P2 Ilers C2 E2 P2 natior C2		C3 E3 P3 C3 E3 P3 drive C3		C4 E4 P4 C4 E4 P4 discha C4		C5 E5 P5 C5 E5 P5 nd tail C5		E6 P6 C6 E6 P6 Irums C6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure:	amaged	CÎ E1 P1 idlers C1 E1 P1 roper C1 E1	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2		C3 E3 P3 C3 E3 P3 drive C3 E3		C4 E4 P4 C4 E4 P4 discha C4 E4	□ □ □ □ □ arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5		E6 P6 C6 E6 P6 Irums C6 E6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. La Consequence: Exposure: Probability:	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1 E1 P1	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 E2 P2	 	C3 E3 P3 C3 E3 P3 drive C3 E3 P3	 	C4 E4 P4 C4 E4 P4 discha C4 E4 P4	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5		E6 P6 E6 P6 Irums C6 E6 P6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Probability: TM35. W	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1 E1 P1 rossin	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 E2 P2	 	C3 E3 P3 C3 E3 P3 drive C3 E3 P3	 	C4 E4 P4 C4 E4 P4 discha C4 E4 P4	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5		E6 P6 E6 P6 Irums C6 E6 P6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Exposure: Probability: TM35. W while the	amaged	CÎ E1 P1 idlerss C1 E1 P1 roper C1 E1 P1 rossin noving	or ro	C2 E2 P2 Ilers C2 E2 P2 mation C2 E2 P2 P2 belt to	a near	C3 E3 P3 C3 E3 P3 drive C3 E3 P3 cher sid	 	C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadvo	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry	 	E6 P6 E6 P6 drums C6 E6 P6 vorker
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Probability: TM35. W while the Consequence:	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1 E1 P1 rossin noving C1	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 P2 E2 P2 belt to	n near	C3 E3 P3 C3 E3 P3 drive C3 E3 P3 cher sid		C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadvo	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry C5	end of a w	E6 P6 E6 P6 Irums C6 E6 P6 vorker
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Probability: TM35. W while the Consequence: Exposure:	amaged	C1 E1 P1 idlerss C1 E1 P1 roper C1 E1 P1 rossin noving C1 E1	or ro	C2 E2 P2 Ilers C2 E2 P2 mation C2 E2 P2 belt to C2 E2 P2		C3 E3 P3 C3 E3 P3 drive C3 E3 P3 cher sid	 	C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadva C4 E4	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry C5 E5	end of a w	E6 P6 E6 P6 Irums C6 E6 P6 vorker C6 E6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. La Consequence: Exposure: Probability: TM35. W while the Consequence: Exposure: Probability:	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1 E1 P1 rossin noving C1 E1 P1	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 P2 belt to C2 E2 P2 belt to		C3 E3 P3 C3 E3 P3 drive C3 E3 P3 cher sid C3 E3 P3		C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadvo C4 E4 P4	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry C5 E5 P5	end of a w	E6 P6 E6 P6 Irums C6 E6 P6 vorker
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Probability: TM35. W while the Consequence: Exposure: Probability: TM36. In	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1 E1 P1 c1 E1 P1 e1 P1	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 P2 belt to C2 E2 P2 belt to	in near in near in the of in a set th	C3 E3 P3 C3 E3 P3 drive C3 E3 P3 cher sid C3 E3 P3 coal n	 	C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadvo C4 E4 P4 il end	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry C5 E5 P5	end of a w	E6 P6 E6 P6 Irums C6 E6 P6 vorker C6 E6 P6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Probability: TM35. W while the Consequence: Exposure: Exposure: Probability: TM36. In Consequence:	amaged	C1 E1 P1 idlerss C1 E1 P1 roper C1 E1 P1 c1 E1 P1 c1 E1 P1 c1 c1	g the l	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 P2 belt to C2 E2 P2 belt to C2 E2 P2	the of	C3 E3 P3 C3 E3 P3 drive C3 E3 P3 coal n C3		C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadvo C4 E4 P4 il end C4	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry C5 E5 P5 C5	end o	E6 P6 E6 P6 Hrums C6 E6 P6 vorker C6 E6 P6 P6 C6 E6 P6
Consequence: Exposure: Probability: TM33. D Consequence: Exposure: Probability: TM34. L Consequence: Exposure: Probability: TM35. W while the Consequence: Exposure: Probability: TM36. In	amaged	C1 E1 P1 idlers C1 E1 P1 roper C1 E1 P1 c1 E1 P1 e1 P1	or ro	C2 E2 P2 Ilers C2 E2 P2 ination C2 E2 P2 belt to C2 E2 P2 belt to	in near in near in the of in a set th	C3 E3 P3 C3 E3 P3 drive C3 E3 P3 cher sid C3 E3 P3 coal n	 	C4 E4 P4 C4 E4 P4 discha C4 E4 P4 Inadvo C4 E4 P4 il end	arge a	C5 E5 P5 C5 E5 P5 nd tail C5 E5 P5 entry C5 E5 P5	end of a w	E6 P6 E6 P6 Irums C6 E6 P6 vorker C6 E6 P6

MACHIN	ERY O'	THER	THA	N TR	ANSP	ORT	MAC	HINE	RY –	LHD	/ SDL	
Please select ($$)	the appr	opriate	e Cons	sequen	ce, Ex	posure	e and	Probab	oility s	scales	for the	
following hazards	8											
MM1. D	eploym		an un		rized o		ained	-	tor			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM2. P	re-start		-		ned by	-	perato					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	ront or		0		king							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	udio vis					0		~ 4		~-		9.4
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	oot swit							C 4	_	05	_	O.
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	nprope	r oil ta C1				C^{2}	_	C_{4}	_	C5	_	C6
Consequence:				C2		C3 E3		C4		C5 E5		C6 E6
Exposure:		E1		E2 P2				E4 D4				
Probability:		P1	C			P3		P4		P5		P6
MM7. B Consequence:	ad cond □	C1	n tyre □	s / cra C2	wier	C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:				P2	_	P3		Р4		P5		P6
U								• •		РJ		FO
MM8. Ir Consequence:	npropei	C1		п рагк С2	ung or □	C3		C4	П	C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
Ũ	ت arking o				_					15		10
Consequence:		C1		C2		C3		C4	П	C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
•	nprope				-					10		10
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4	П	P5		P6
·	proper				_		d		<u> </u>		_	
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

MM12.	Bypass du	ımp va	lve or	dump	valve	not in	order	•				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM13.	Non-provi	ision o	f lock	out wa	rning	tags o	n the	machi	ne			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM14.	Poor cond	lition o	f fron	t or rea	ar fra	me						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM15.	Pilot swite	ch not	in ord	er								
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM16.	Pressure 1	relief v	alve n	ot in o	rder							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM17.	Plying of 1		ne in d		ed or		areas					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM18.	Temperat		itch n		rder							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Workers s	standir	ng aro	und th	e mac	hine o	r unex	pected	d mov	ement	of a tr	ailing
cable	_	C 1	_	\mathbf{C}	_	~	_	C 1	_	05	_	06
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Poor cond				_	C^{2}	_	C_{4}	_	C 5	_	06
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Oil leakag	-	-		0			C 4	_	05	_	00
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Improper			-		C 2	_	C1	_	05	_	Cr.
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

MACHINERY OTHER THAN TRANSPORT MACHINERY – HAULAGE ENGINE

Please select ($\sqrt{}$) the appropriate Consequence, Exposure and Probability scales for the following hazards

MM23.	Deployme	nt of a	n una	uthoriz	zed or	untra	ined h	aulage	e engi	ne ope	rator	
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM24.	Improper	maint	enanc	e of en	gine r	oom						
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM25.	Non-provi	sion of	f guar	ds aro	und al	l movi	ng pa	rts				
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM26.	Improper	condit	ion or	· maint	enanc	e of bi	rakes					
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
MM27.	Turnanan	aandit	ion or	main	onon	o of he	مموليد	engin	Δ			
	Improper	conun	1011 01	mann	enand	e of ha	aulage	, engin	C			
Consequence		C1		C2		C3		C4		C5		C6
							0	0		C5 E5		C6 E6
Consequence	•	C1		C2		C3		C4				
Consequence Exposure:		C1 E1 P1		C2 E2 P2		C3 E3 P3		C4 E4 P4		E5 P5		E6 P6
Consequence Exposure: Probability:	: □ □ Improper	C1 E1 P1		C2 E2 P2		C3 E3 P3		C4 E4 P4		E5 P5		E6 P6
Consequence Exposure: Probability: MM28.	: □ □ Improper	C1 E1 P1 condit	□ □ □ ion or	C2 E2 P2 maint		C3 E3 P3 ce of di	un, s	C4 E4 P4 urge v	□ □ □ vheel,	E5 P5 clutch	□ □ , and	E6 P6 gears
Consequence Exposure: Probability: MM28. Consequence	Improper	C1 E1 P1 condit C1	□ □ ion or	C2 E2 P2 maint C2	Cenanc	C3 E3 P3 ce of du C3		C4 E4 P4 urge v C4	□ □ vheel,	E5 P5 clutch C5	□ □ , and ;	E6 P6 gears C6
Consequence Exposure: Probability: MM28. Consequence Exposure:	:	C1 E1 P1 condit C1 E1 P1	 	C2 E2 P2 maint C2 E2 P2	cenanc	C3 E3 P3 e of du C3 E3 P3	rum, s	C4 E4 P4 urge v C4 E4 P4	□ □ vheel, □ □	E5 P5 clutch C5 E5	□ □ , and ; □	E6 P6 gears C6 E6
Consequence Exposure: Probability: MM28. Consequence Exposure: Probability:	Improper	C1 E1 P1 condit C1 E1 P1	 	C2 E2 P2 maint C2 E2 P2	cenanc	C3 E3 P3 e of du C3 E3 P3	rum, s	C4 E4 P4 urge v C4 E4 P4	□ □ vheel, □ □	E5 P5 clutch C5 E5	□ □ , and ; □	E6 P6 gears C6 E6
Consequence Exposure: Probability: MM28. Consequence Exposure: Probability: MM29.	Improper	C1 E1 P1 condit C1 E1 P1 condit	ion or	C2 E2 P2 maint C2 E2 P2	enance atic c	C3 E3 P3 ee of du C3 E3 P3 atches	rum, s	C4 E4 P4 urge v C4 E4 P4 ouffers	□ □ vheel, □ □	E5 P5 clutch C5 E5 P5	, and ;	E6 P6 gears C6 E6 P6
Consequence Exposure: Probability: MM28. Consequence Exposure: Probability: MM29. Consequence	:	C1 E1 P1 condit C1 E1 P1 condit C1	 	C2 E2 P2 maint C2 E2 P2 autom C2	eenance aatic c	C3 E3 P3 ee of du C3 E3 P3 atches C3	rum, s	C4 E4 P4 C4 E4 P4 P4 ouffers C4	□ □ vheel, □ □	E5 P5 clutch C5 E5 P5 C5	, and ;	E6 P6 gears C6 E6 P6 C6
Consequence Exposure: Probability: MM28. Consequence Exposure: Probability: MM29. Consequence Exposure:	: [] Improper : [] Improper : []	C1 E1 P1 condit C1 E1 P1 condit C1 E1 P1	ion or	C2 E2 P2 maint C2 E2 P2 autom C2 E2 P2 eed lim	enance aatic c	C3 E3 P3 e of du C3 E3 P3 atches C3 E3 P3 tch and	rum, s	C4 E4 P4 C4 E4 P4 Ouffers C4 E4 P4 P4 ance in	vheel,	E5 P5 clutch C5 E5 P5 C5 E5 P5	, and ;	E6 P6 gears C6 E6 P6 C6 E6
Consequence Exposure: Probability: MM28. Consequence Exposure: Probability: MM29. Consequence Exposure: Probability:	: [] Improper : [] Improper : [] Non-funct	C1 E1 P1 condit C1 E1 P1 condit C1 E1 P1	ion or	C2 E2 P2 maint C2 E2 P2 autom C2 E2 E2 P2	enance aatic c	C3 E3 P3 ee of du C3 E3 P3 atches C3 E3 P3	rum, s	C4 E4 P4 Urge v C4 E4 P4 Ouffers C4 E4 P4	vheel,	E5 P5 clutch C5 E5 P5 C5 E5 P5	, and ;	E6 P6 gears C6 E6 P6 C6 E6
Consequence Exposure: Probability: MM28. Consequence Exposure: Probability: MM29. Consequence Exposure: Probability: MM30.	: [] Improper : [] Improper : [] Non-funct	C1 E1 P1 Condit C1 E1 P1 C1 E1 P1 ioning	ion of	C2 E2 P2 maint C2 E2 P2 autom C2 E2 P2 eed lim	eenand aatic c	C3 E3 P3 e of du C3 E3 P3 atches C3 E3 P3 tch and	rum, s	C4 E4 P4 C4 E4 P4 Ouffers C4 E4 P4 P4 ance in	vheel,	E5 P5 clutch C5 E5 P5 C5 E5 P5 P5	, and ;	E6 P6 C6 E6 P6 C6 E6 E6 P6

	Consequence	Exposure	Probability
Consequence			
Exposure			
Probability			

	EX	PLOSI	VES -	SHOT	r fir	ING A	ND B	LAST	ING			
Please select () the app	oropriate	e Cons	equenc	e, Exp	posure	and P	robabi	lity sc	ales fo	r the	
following haza												
SF1.	Deployn		an una		zed or		ined h		g crew	7		
Consequence				C2		C3		C4		C5		C6
Exposure:] E1		E2		E3		E4		E5		E6
Probability:] P1		P2		P3		P4		P5		P6
SF2.	Non foll	owing o	of the b	-	, card	system	n					
Consequence	e: 🗆] Č1		C2		C3		C4		C5		C6
Exposure:] E1		E2		E3		E4		E5		E6
Probability:] P1		P2		P3		P4		P5		P6
SF3.	Drivage	•	ing gal	-	om bo		S					
Consequence	e: 🗆	-		C2		C3		C4		C5		C6
Exposure:		-		E2		E3		E4		E5		E6
Probability:		•		P2		P3		P4		P5		P6
SF4.	Priming	·	osives		uthori	-	aces					
Consequence	e: 🗆	-		C2		C3		C4		C5		C6
Exposure:		•		E2		E3		E4		E5		E6
Probability:				P2		P3		P4		P5		P6
SF5.	Multiple	-				0	0	-		-		-
Consequence	e: 🗆	•		C2		C3		C4		C5		C6
Exposure:		•		E2		E3		E4		E5		E6
Probability:				P2		P3		P4		P5		P6
SF6.	Imprope		-			-		~ ·	_	~-	_	<u> </u>
Consequence		-		C2		C3		C4		C5		C6
Exposure:		•		E2		E3		E4		E5		E6
Probability:				P2		P3		P4		P5		P6
SF7.	Carryin	ٽ _ھ ر				-	-		_	~~	_	01
Consequence		-		C2		C3		C4		C5		C6
Exposure:		•		E2		E3		E4 D4		E5		E6
Probability:] P1		P2		P3		P4		P5		P6
SF8.	Shot firi	0					-		_	CF	_	C4
Consequence Exposure:		•		C2 E2		C3 E3		C4 E4		C5 E5		C6 E6
Exposure:				E2 P2		E3 P3		E4 D4		E5 P5		E6 P6
Probability:	Chot fine	•	and in .	P2		P3		P4		P5		P6
SF9. Consequence	Shot fire	~ ~ ~	0	other v C2		C3		C4		C5		C6
Exposure:				E2		E3		E4		E5		C6 E6
Exposure: Probability:				E2 P2		Е3 Р3		E4 P4		Е5 Р5		eo P6
SF10.	Improp	•										ΓU
SF 10. Consequence	Imprope	~ .	ng, cle	aning, C2	cnarg □	ng an C3	a sten	nming C4	or sho	t noies C5		C6
Exposure:				E2		E3		E4		E5		E6
Exposure: Probability:		-		E2 P2		ES P3		E4 P4		Е5 Р5		P6
SF11.	⊔ Failure t	•				13		14		IJ		гU
SF11. Consequence		~ .	\square	e blasti C2	ing	C3		C4		C5		C6
Exposure:				E2		E3		E4		E5		E6
Probability:				P2		P3		P4		Е5 Р5		P6
i i obubility.		1 11		1 <i>4</i>		15		т т		15		10

SF12.	Failure to	spray	water	befor	e and	after b	lastin	g			
Consequence:		C1		C2		C3		C4		C5	C6
Exposure:		E1		E2		E3		E4		E5	E6
Probability:		P1		P2		P3		P4		P5	P6
SF13.	Failure to	cover	entrai	nce wi	th feno	ce, in c	ase of	misfir	·e		
Consequence:		C1		C2		C3		C4		C5	C6
Exposure:		E1		E2		E3		E4		E5	E6
Probability:		P1		P2		P3		P4		P5	P6
SF14.	Failure to	recov	er cart	ridge	or det	onator	r, in ca	se of r	nisfire		
Consequence:		C1		C2		C3		C4		C5	C6
Exposure:		E1		E2		E3		E4		E5	E6
Probability:		P1		P2		P3		P4		P5	P6

	Consequence	Exposure	Probability
Consequence			
Exposure			
Probability			

5	Т	5	C'	Ľ	D	1	\sim	4	N	V
12		1 17	U.			•				

Please select ($$) the appropriate Consequence, Exposure and Probability scales for the
following hazards

ionowing naza												
EL1.	Failure o	of prote	ective	device	5							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL2.	Imprope	er earth	ing sy	stem o	or ear	th pit a	and no	eutral	pit			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL3.	Imprope	er main	tenan	ce of fl	ame p	oroof f	eatur	es of m	nachin	nery		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL4.	Imprope	er insul	ation	of elect	tric ca	bles						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL5.	Imprope	er perm	anent	cable	joints	s (comj	pound	ling)				
Consequence:		C1		C2		C3		Ċ4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL6.	Imprope	er shuto	lown j	proced	ure							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL7.	Imprope	er fenci	ng of i	installa	ations							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL8.	Faulty p	ower ca	ables									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL9.	Imprope	er main	tenan	ce of e	lectric	c appa	ratus	of equ	ipmer	nt's (w	ithout	;
proper	precaution											
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Housing	of pow	ver cał	ole aloi	ng wit	h sign	aling	cable a	and lig	ghting	cable	
jointly												
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

EL11.	Unsatisfa	ctory f	lexibl	e traili	ing ca	ble						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL12.	Improper	reelin	ig or u	ınreeli	ng of	trailin	g cabl	le				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL13.	Failure to	displa	ay dan	iger bo	oards	on all	electr	ical eq	uipm	ent's		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL14.	Failure to	-			ctrica	l parts	s of the	e energ	gized	machi	nes da	ily for
•	cords, ind		, arcin	0								
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL15.	Non-intri		gnalin	0	telepł				ion ci			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL16.	Improper		tion o	0	ling v		nd its	-	ing			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL17.	Improper		tion o	0	end ci		break	er				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EL18.	Failure to	conne	ect plu	igs or s	socket	ts to ga	ate en	d box				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

	Consequence	Exposure	Probability
Consequence			
Exposure			
Probability			

DUG				COM) nh +			
	F, GAS AN											
Please select (·	opriate	Conse	equenc	e, Exp	osure	and P	robabil	lity sca	ales to	r the	
following haza			0									
EX1.	Improper		0		-			~ (~ -		9.4
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX2.	Leakage f		ectiona		n stop	pings						
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX3.	Inadequa	te or n	o <mark>n-fu</mark> n	ctioni	ng of g	gas det	tecting	g appai	ratus			
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX4.	Deployme	ent of u	ntrain	ned sup	oervis	ors						
Consequence	: □	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX5.	Improper	[.] sampl	ing of	gases	by sup	oerviso	ors					
Consequence	: □	CI		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX6.	Non-inter	[.] coupli	ng of	under	groun	d powe	er witl	ı the n	1ain m	nine ve	ntilato	or fans
Consequence		CĪ		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX7.	Gas cutti	ng and	weldii	ng wor	·k nea	r a dus	sty are	ea or a	ny una	author	rized a	rea
Consequence		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX8.	Failure to	provid	le san	d and	water	near g	gas cut	ting a	nd we	lding v	vorkp	lace
Consequence		C1		C2		C3	,	C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

EX9.	Stone dust	t barri	er not	provi	ded at	panel	entry					
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX10.	Accumula	tion of	f coal d	lust at	work	ing pa	nel an	d load	ing po	oints		
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX11.	Non-provi	sion o	f explo	sion p	roof s	toppin	igs wh	ere CH	I ₄ exc	eeds 29	%	
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX12.	Improper	monit	oring o	or insp	ection	of gas	ses in s	ealed o	off are	eas and	l old w	orking
	which are n		ed off									
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX13.	Failure to		ine rate		nissior	0	s ever	y mont	th			
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX14.	Contraba	nds										
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX15.	Presence of		ires, su		cracks	·	idence	9				
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX16.	Irregular	stone	dusting	g								
Consequence	: 🗆	C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

DUST	GAS AND	OTH	F P C	OMPI	STID	TEM	ATE		VFN	TTA	TION	
Please select ($$												
following hazar	· • •	Prince	201150	-140110	•, ມ _ິ ງ							
0	Insufficie	nt fan 4	canaci	tv								
Consequence:		C1	p 	C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX18.	Inadequa	te vent	ilation	1							_	
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX19.	Non avail	ability	or im	proper	cond	ition o	f auxi	liary fa	ans			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX20.	Blind hea	ding										
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX21.	Heat and		ity									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Lengthy v		ion ro									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Irregular			-		~		~ 4		~-		9.6
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3				P5		P6
	Obstructi				·					C.F.	_	CC
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
	Improper	condit C1		c maint C2		ce of m C3		echani C4		C5		C6
Consequence:	_	E1		E2		E3		E4		E5		
Exposure: Probability:		EI P1		E2 P2		E3 P3		E4 P4		Е5 Р5		E6 P6
I FODADIIILY:		r i		ГΖ		гЭ		Г4		гэ		ΓU

EX26.	Leakage i	n ducts	5									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX27.	Lack of d	ust sup	pressi	ion arr	angen	nents						
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX28.	Non-prov	ision of	f inter	lockin	g arra	ngeme	ent of a	auxilia	ry far	ıs		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX29.	Improper	condit	ion or	maint	tenanc	e of st	opping	gs				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX30.	Non-prov	ision of	f a fire	e resist	ant m	echani	cal ve	ntilato	r, duo	ets, ver	ntilatio	n
	nd air cro	0										
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
			-			10	1 .64					
EX31.	Failure to		speed	•	erage a		n drift					
Consequence:		check C1	speed	, ampe C2	erage a	and fai C3	n drift	C4		C5		C6
			-	C2 E2	0	C3 E3				C5 E5		C6 E6
Consequence:		C1		C2		C3		C4				
Consequence: Exposure: Probability:		C1 E1 P1 ision o		C2 E2 P2 coper r		C3 E3 P3 mance		C4 E4 P4 efighti		E5 P5 Jipmer		E6 P6
Consequence: Exposure: Probability:	□ □ Non-prov	C1 E1 P1		C2 E2 P2 coper r C2		C3 E3 P3		C4 E4 P4		E5 P5		E6 P6 C6
Consequence: Exposure: Probability: EX32.	□ □ Non-prov	C1 E1 P1 ision o	□ □ □ r impr	C2 E2 P2 coper r	□ □ □ nainte	C3 E3 P3 mance	□ □ □ of fire	C4 E4 P4 efighti	□ □ ng equ	E5 P5 Jipmer	□ □ nt's	E6 P6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability:	□ □ Non-prov □ □	C1 E1 P1 ision of C1 E1 P1	r impr	C2 E2 P2 coper r C2 E2 P2	nainte	C3 E3 P3 mance C3 E3 P3	of fire	C4 E4 P4 efightin C4 E4 P4	ng equ	E5 P5 uipmer C5 E5 P5	nt's	E6 P6 C6 E6 P6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33.	Non-prov	C1 E1 P1 ision of C1 E1 P1	r impr	C2 E2 P2 coper r C2 E2 P2	nainte	C3 E3 P3 mance C3 E3 P3	of fire	C4 E4 P4 efightin C4 E4 P4	ng equ	E5 P5 uipmer C5 E5 P5	nt's	E6 P6 C6 E6 P6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross	Non-prov	C1 E1 P1 ision of C1 E1 P1 ision of	r impr f acces	C2 E2 P2 coper r C2 E2 P2 Ss for t	nainte	C3 E3 P3 mance C3 E3 P3 pection	of fire	C4 E4 P4 efightin C4 E4 P4 opping	ng equ	E5 P5 Jipmer C5 E5 P5 Ors, air	nt's	E6 P6 C6 E6 P6 and
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence:	Non-prov	C1 E1 P1 ision of C1 E1 P1 ision of C1	r impr	C2 E2 P2 coper r C2 E2 P2 ss for t C2	nainte	C3 E3 P3 mance C3 E3 P3 pection C3	of fire	C4 E4 P4 efightin C4 E4 P4 opping C4	ng equ	E5 P5 iipme r C5 E5 P5 ors, air C5	nt's	E6 P6 C6 E6 P6 and C6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cros Consequence: Exposure:	Non-prov	C1 E1 P1 ision of C1 E1 P1 ision of C1 E1	r impr f acces	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 E2	nainte	C3 E3 P3 mance C3 E3 P3 pection C3 E3	of fire	C4 E4 P4 efightin C4 E4 P4 opping C4 E4	ng equ	E5 P5 iipmer C5 E5 P5 ors, air C5 E5	nt's	E6 P6 E6 P6 and C6 E6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence: Exposure: Probability:	Non-prov Ssing	C1 E1 P1 ision of C1 E1 ision of C1 E1 P1	r impr f acces	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 E2 E2 E2 P2	nainte	C3 E3 P3 mance C3 E3 P3 pection C3 E3 P3	of fire	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4	ng equ	E5 P5 iipme r C5 E5 P5 ors, air C5	nt's	E6 P6 C6 E6 P6 and C6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence: Exposure: Probability: EX34.	Non-prov Non-prov sing	C1 E1 P1 ision of C1 E1 P1 C1 E1 P1 clean	r impr f acces	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 P2 C2 E2 P2 coal or	nainte	C3 E3 P3 E3 E3 P3 pection C3 E3 P3 is in re	of fire	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4 airway	ng equ s, doc	E5 P5 iipmer C5 F5 prs, air C5 E5 P5		E6 P6 E6 P6 and C6 E6 P6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence: Exposure: Probability: EX34. Consequence:	Non-prov Sing	C1 E1 P1 ision of C1 E1 P1 ision of C1 E1 P1 clean : C1	r impr f acces fallen	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 P2 coal or C2	he ins	C3 E3 P3 mance C3 E3 P3 pection C3 E3 P3 is in re C3	of fire	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4 airway C4	ng equ	E5 P5 iipmer C5 E5 P5 ors, air C5 E5 P5 C5	nt's	E6 P6 E6 P6 and C6 E6 P6 C6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence: Exposure: Probability: EX34. Consequence: Exposure:	□ Non-prov □ Non-prov sing □ Failure to □	C1 E1 P1 ision of C1 E1 P1 ision of C1 E1 P1 clean f C1 E1	r impr f acces fallen	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 P2 coal or C2 E2 E2	he ins	C3 E3 P3 E3 E3 P3 pection C3 E3 P3 is in re C3 E3	of fire	C4 E4 P4 efightin C4 E4 P4 C4 E4 P4 airway C4 E4	ng equ	E5 P5 iipmer C5 P5 ors, air C5 E5 P5 C5 E5	ways	E6 P6 E6 P6 and C6 E6 P6 C6 E6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cros Consequence: Exposure: Probability: EX34. Consequence: Exposure: Probability:	Non-prov Sing	C1 E1 P1 ision of C1 E1 P1 clean 2 C1 E1 P1	r impr f acces	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 P2 coal or C2 E2 P2 coal or C2 E2 P2	he ins	C3 E3 P3 mance C3 E3 P3 pection C3 E3 P3 is in re C3 E3 P3	of fire	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4 airway C4 E4 P4	ng equ	E5 P5 iipmer C5 E5 P5 ors, air C5 E5 P5 C5	nt's	E6 P6 E6 P6 and C6 E6 P6 C6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence: Exposure: Probability: EX34. Consequence: Exposure: Probability: EX35.	Non-prov Sing	C1 E1 P1 ision of C1 E1 P1 ision of C1 E1 P1 clean : C1 E1 P1 condit	r impr f acces fallen	C2 E2 P2 roper r C2 E2 P2 ss for t C2 E2 P2 coal or C2 E2 P2 coal or C2 E2 P2	he ins	C3 E3 P3 mance C3 E3 P3 pection C3 E3 P3 is in ro C3 E3 P3 ec of sa	of fire of fire of ste of ste ste of ste ste of ste of ste of ste of ste of ste	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4 eirway C4 E4 P4 amp	ng equ	E5 P5 iipmer C5 E5 P5 ors, air C5 E5 P5 C5 E5 P5		E6 P6 E6 P6 and C6 E6 P6 C6 E6 P6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cros Consequence: Exposure: Probability: EX34. Consequence: Exposure: Probability: EX35. Consequence:	Non-prove	C1 E1 P1 ision of C1 E1 P1 ision of C1 E1 P1 clean = C1 E1 P1 condit C1	fallen	C2 E2 P2 coper r C2 E2 P2 ss for t C2 E2 P2 coal of C2 E2 P2 coal of C2 E2 P2 coal of C2 E2 P2	nainte	C3 E3 P3 mance C3 E3 P3 pection C3 E3 P3 is in rc C3 E3 P3 cc of sa C3	of fire of fire of ste of ste curn :	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4 airway C4 E4 P4 amp C4	ng equ ng equ s, doc	E5 P5 iipmer C5 F5 ors, air C5 E5 P5 C5 E5 P5 C5	• • • • • • • • • • • • • • • • • • •	E6 P6 E6 P6 and C6 E6 P6 C6 E6 P6 C6
Consequence: Exposure: Probability: EX32. Consequence: Exposure: Probability: EX33. air cross Consequence: Exposure: Probability: EX34. Consequence: Exposure: Probability: EX35.	Non-prov Sing	C1 E1 P1 ision of C1 E1 P1 ision of C1 E1 P1 clean : C1 E1 P1 condit	r impr f acces fallen	C2 E2 P2 roper r C2 E2 P2 ss for t C2 E2 P2 coal or C2 E2 P2 coal or C2 E2 P2	he ins	C3 E3 P3 mance C3 E3 P3 pection C3 E3 P3 is in ro C3 E3 P3 ec of sa	of fire of fire of ste of ste ste of ste ste of ste of ste of ste of ste of ste	C4 E4 P4 efightin C4 E4 P4 opping C4 E4 P4 eirway C4 E4 P4 amp	ng equ	E5 P5 iipmer C5 E5 P5 ors, air C5 E5 P5 C5 E5 P5		E6 P6 E6 P6 and C6 E6 P6 C6 E6 P6

DUST	CAS AND	OTHER	COMBUSTIBLE	MATERIAL -	MINE FIRE
DUDI.			COMPOSITIVE		

Please select ($\sqrt{}$) the appropriate Consequence, Exposure and Probability scales for the following hazards

				taneou	is hea	ting	due to l	low Cr	oss P	oint Te	emper	ature
and high n	10istur		ent									
Consequence:		C1		C2		C3	_	C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX37. Sha	allow d	-	of cove									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX38. Hu	ge dep	illared	l area									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX39. Ge	ologica	ıl distu	irban	ce affe	cting _]	pane	l					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX40. Th	ick sea	m										
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX41. Fai	ilure to	o clean	faller	ı coal,	wood	cutt	ings, oil	l and g	reasy	v waste		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX42. Im	proper	[.] panel	size									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX43. Im	proper		toring	of fire	e stopj	ping	s					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
EX44. Im	proper	•	fire d		on syst							
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
Pairwise compariso	n for p	aram	eter w	eights								
			Cons	equen	ce		Exp	osure		Pr	obabi	lity
Consequence												
Exposure												

Probability

		ОТ	HER	CAUS	ES - 1	INUNI	DATI	ON				
Please select ($$) the appro								lity sc	ales fo	r the	
following hazar	ds				-							
OC1 .	Inaccurat	e driva	age of	face								
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC2.	Insufficie	nt num	ber of	f pump	os or f	ailure	of pur	nps				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC3.	Working	near g	eologi	cal dist	turbai	nce, i.e	. fault	s, folds	s, slips	s etc.		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC4.	Presence	of surf	ace cr	acks, fi	issure	s, subs	idenco	e				
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC5.	Old boreh	nole wh	nich ar	e not s	sealed	effecti	vely					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC6.	Borehole	not ma	rked i	in und	ergrou	und pla	an					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC7.	Unexpecte	ed heav	vy raiı	ns and	powe	r failu	re					
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC8.	Failure of	barrie	ers									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC9.	Non-prov		f side	drains								
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6

OC10.	Insufficien	t sum	p area	L								
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC11.	Failure of	water	dams									
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC12.	Failure to	prepa	re and	l regul	arly u	pdate	water	dange	r plar	1		
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC13.	Presence o		water 1	0	area		ndone		kings			
Consequence:		C1		C2		C3		C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
-												
				CAUSE					•	1 0	.1	
Please select (v	· ·	priate	Conse	equenc	e, Exp	osure	and P	robabil	lity sc	ales to	r the	
following hazar			0									
OC14.	Non-provis	sion o C1	-	onal pr C2		ve equ C3	-	nt's to C4		ers C5	_	C6
Consequence:												
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3	□.	P4		P5		P6
OC15. Consequence:	Workers n	ot wea		person C2	-	C3	e equij	pment [*] C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		С0 Еб
Probability:		P1		P2		P3		P4		Е5 Р5		P6
OC16.												ru
Consequence:	Failure to	prepa C1		C2	\Box	c3	eratinş	c4		C5		C6
Exposure:						E3			-	E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC17.	□ Failure of				_		_		_			10
Consequence:		C1		C2		C3		C4	inig sj □	C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
OC18.	Improper									10		10
Consequence:		C1	 □	C2		C3	,5	C4		C5		C6
Exposure:		E1		E2		E3		E4		E5		E6
Probability:		P1		P2		P3		P4		P5		P6
Pairwise comp	arison for p		eter w									
	A			sequen	ce		Exp	osure		Pro	babili	ity
Consequ	ience											
Exposi	ure											
Probab												
	-											

When compromise is needed

When compromise is needed

When compromise is needed

the highest possible affirmation

strongly over another.

A hazard factor is favoured very

One hazard factor over another is of

Experience and judgment strongly

favour one hazard factor over another

Scale

 $\frac{1}{2}$

3

4

5

6

7

8

9

ATTENDIX D. ATT Question	mant
Intensity of importance in sub criteria	Explanation
Equal Importance	Two hazard factor contribute equally
Between equal importance and weak	When compromise is needed
importance	
Weak importance	Experience and judgment slightly favour one hazard factor over another

APPENDIX B: AHP Questionnaire

Between weak and strong importance

Between strong and very strong importance

Between very strong and absolute importance

Pairwise Comparison

Absolute importance

Strong importance

Very strong importance

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	Dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1						
Transport machinery (rope haulage, conveyor)		1					
Machinery other than transport machinery (LHD, SDL, haulage engine)			1				
Explosives (shot firing and blasting)				1			
Electricity					1		
Dust, gas and other combustible materials						1	
Other causes (inundation)							1

APPENDIX C: Fuzzy Rule Base

In index format: <input MFs>, <output MFs>, (<weight>) : <logical operator - 1(AND), 2(OR)>

1 1 1, 1 (1) : 1	2 1 1, 1 (1) : 1	3 1 1, 1 (1) : 1	4 1 1, 1 (1) : 1	5 1 1, 1 (1) : 1	611,1(1):1
1 1 2, 1 (1) : 1	2 1 2, 1 (1) : 1	3 1 2, 1 (1) : 1	4 1 2, 1 (1) : 1	5 1 2, 1 (1) : 1	612,1(1):1
1 1 3, 1 (1) : 1	2 1 3, 1 (1) : 1	3 1 3, 1 (1) : 1	4 1 3, 1 (1) : 1	5 1 3, 1 (1) : 1	613,2(1):1
1 1 4, 1 (1) : 1	2 1 4, 1 (1) : 1	3 1 4, 1 (1) : 1	4 1 4, 1 (1) : 1	514,1(1):1	614,2(1):1
1 1 5, 1 (1) : 1	2 1 5, 1 (1) : 1	3 1 5, 1 (1) : 1	4 1 5, 1 (1) : 1	5 1 5, 2 (1) : 1	6 1 5, 3 (1) : 1
1 1 6, 1 (1) : 1	2 1 6, 1 (1) : 1	316,1(1):1	416,1(1):1	5 1 6, 2 (1) : 1	616,3(1):1
1 2 1, 1 (1) : 1	221,1(1):1	3 2 1, 1 (1) : 1	421,1(1):1	521,1(1):1	621,1(1):1
1 2 2, 1 (1) : 1	2 2 2, 1 (1) : 1	3 2 2, 1 (1) : 1	4 2 2, 1 (1) : 1	5 2 2, 1 (1) : 1	622,1(1):1
1 2 3, 1 (1) : 1	2 2 3, 1 (1) : 1	3 2 3, 1 (1) : 1	4 2 3, 1 (1) : 1	5 2 3, 1 (1) : 1	623,2(1):1
124,1(1):1	224,1(1):1	324,1(1):1	424,1(1):1	524,1(1):1	624,2(1):1
1 2 5, 1 (1) : 1	2 2 5, 1 (1) : 1	3 2 5, 1 (1) : 1	425,2(1):1	5 2 5, 2 (1) : 1	625,3(1):1
126,1(1):1	2 2 6, 1 (1) : 1	3 2 6, 1 (1) : 1	426,2(1):1	526,2(1):1	626,3(1):1
1 3 1, 1 (1) : 1	231,1(1):1	3 3 1, 1 (1) : 1	431,1(1):1	531,1(1):1	631,1(1):1
1 3 2, 1 (1) : 1	2 3 2, 1 (1) : 1	3 3 2, 1 (1) : 1	4 3 2, 1 (1) : 1	5 3 2, 1 (1) : 1	632,2(1):1
1 3 3, 1 (1) : 1	2 3 3, 1 (1) : 1	3 3 3, 1 (1) : 1	433,1(1):1	5 3 3, 1 (1) : 1	633,2(1):1
1 3 4, 1 (1) : 1	234,1(1):1	3 3 4, 1 (1) : 1	434,1(1):1	534,2(1):1	634,3(1):1
1 3 5, 1 (1) : 1	2 3 5, 2 (1) : 1	3 3 5, 1 (1) : 1	435,2(1):1	5 3 5, 2 (1) : 1	635,3(1):1
1 3 6, 1 (1) : 1	2 3 6, 2 (1) : 1	3 3 6, 1 (1) : 1	436,2(1):1	5 3 6, 2 (1) : 1	636,3(1):1
1 4 1, 1 (1) : 1	2 4 1, 1 (1) : 1	3 4 1, 1 (1) : 1	441,1(1):1	541,1(1):1	641,2(1):1
1 4 2, 1 (1) : 1	2 4 2, 1 (1) : 1	3 4 2, 1 (1) : 1	442,1(1):1	5 4 2, 1 (1) : 1	642,2(1):1
1 4 3, 1 (1) : 1	2 4 3, 1 (1) : 1	3 4 3, 1 (1) : 1	443,1(1):1	543,2(1):1	643,2(1):1
1 4 4, 1 (1) : 1	2 4 4, 1 (1) : 1	3 4 4, 1 (1) : 1	444,2(1):1	544,2(1):1	644,3(1):1
1 4 5, 1 (1) : 1	2 4 5, 2 (1) : 1	3 4 5, 2 (1) : 1	445,2(1):1	5 4 5, 3 (1) : 1	645,3(1):1
146,1(1):1	246,2(1):1	346,2(1):1	446,2(1):1	546,3(1):1	646,3(1):1
151,1(1):1	251,1(1):1	351,1(1):1	451,1(1):1	551,1(1):1	651,2(1):1
1 5 2, 1 (1) : 1	2 5 2, 1 (1) : 1	3 5 2, 1 (1) : 1	4 5 2, 1 (1) : 1	5 5 2, 2 (1) : 1	652,2(1):1
153,1(1):1	253,1(1):1	3 5 3, 1 (1) : 1	453,1(1):1	5 5 3, 2 (1) : 1	653,3(1):1
154,1(1):1	254,1(1):1	354,1(1):1	454,2(1):1	554,2(1):1	654,3(1):1
155,2(1):1	255,2(1):1	3 5 5, 2 (1) : 1	455,2(1):1	5 5 5, 3 (1) : 1	655,3(1):1
156,2(1):1	256,2(1):1	356,2(1):1	456,2(1):1	5 5 6, 3 (1) : 1	656,3(1):1
1 6 1, 1 (1) : 1	261,1(1):1	361,1(1):1	461,1(1):1	561,2(1):1	661,2(1):1
1 6 2, 1 (1) : 1	2 6 2, 1 (1) : 1	3 6 2, 1 (1) : 1	4 6 2, 1 (1) : 1	5 6 2, 2 (1) : 1	662,3(1):1
1 6 3, 1 (1) : 1	2 6 3, 1 (1) : 1	3 6 3, 1 (1) : 1	4 6 3, 1 (1) : 1	5 6 3, 2 (1) : 1	663,3(1):1
1 6 4, 1 (1) : 1	2 6 4, 1 (1) : 1	3 6 4, 1 (1) : 1	4 6 4, 2 (1) : 1	5 6 4, 3 (1) : 1	664,3(1):1
1 6 5, 2 (1) : 1	265,2(1):1	3 6 5, 2 (1) : 1	4 6 5, 2 (1) : 1	5 6 5, 3 (1) : 1	665,3(1):1
166,2(1):1	266,2(1):1	366,2(1):1	466,3(1):1	566,3(1):1	666,3(1):1

APPENDIX D: Defuzzified Experts' Opinion Collected from the Mines

Hazard number	С	Ε	Р
G	round movement	– Roof and side fall	
GM1	3.79	3.49	7.00
GM2	3.54	7.08	5.92
GM3	3.75	6.75	7.75
GM4	2.07	4.08	7.17
GM5	3.38	6.04	6.33
GM6	2.76	4.36	6.33
GM7	2.72	4.33	7.17
GM8	3.25	4.17	7.00
GM9	2.55	3.90	6.58
GM10	2.40	3.90	6.00
GM11	3.38	3.69	5.92
GM12	1.69	4.07	5.92
GM13	4.08	6.68	7.58
GM14	2.35	5.60	7.92
GM15	4.17	8.25	7.75
GM16	3.00	5.63	6.83
GM17	2.42	3.68	5.92
Risk factors weights	0.12	0.65	0.23
Transport mach	ninery (non-windi	ng) - Rope haulage and	conveyor
TM1	2.08	3.75	7.13
TM2	1.98	2.33	6.88
TM3	1.81	2.71	7.50
TM4	2.27	2.48	7.00
TM5	3.19	3.29	6.75
TM6	3.19	2.71	6.88
TM7	1.95	3.52	7.38
TM8	2.32	5.50	8.13
TM9	1.92	3.69	6.75
TM10	1.91	3.13	6.63
TM11	3.09	2.17	5.50
TM12	3.44	2.48	7.63
TM13	1.75	3.94	7.38
TM14	3.69	4.83	7.38
TM15	2.27	5.17	7.50
TM16	2.51	6.65	6.75
TM17	3.00	4.65	6.59
TM18	2.71	3.88	5.41
TM19	2.25	3.24	6.00

Table D1. Defuzzified experts' opinion collected from the mine-1

2.66	4.33	7.29
2.34	3.00	5.53
2.76	3.24	6.59
2.66	3.43	5.29
2.42	2.73	5.76
2.58	3.22	6.12
2.27	3.45	5.88
3.65	5.37	6.47
2.88	2.75	5.29
2.83	3.69	6.82
2.83	4.04	7.06
2.59	4.33	6.59
2.26	3.78	6.24
1.96	3.16	5.88
2.36	4.59	6.24
2.82	3.63	6.35
2.79	3.59	5.41
0.65	0.11	0.24
r than transport n	nachinery - LHD, Haula	age engine
		6.24
		6.94
		6.00
		5.65
		6.00
4.18	2.35	5.65
2.11	2.16	6.71
3.29	2.90	7.18
		7.06
2.09		7.18
2.77	3.00	6.14
2.83	2.29	5.88
2.90	3.82	8.00
2.11	3.51	6.12
1.75	3.57	7.76
2.88	3.57	5.33
2.78	2.27	5.29
2.10	2.63	5.88
3.12	4.06	7.53
3.06	2.71	6.59
3.82	2.25	4.61
2.71	3.02	7.18
	4.75	5.76
2.04	1.75	
2.84	5.45	6.71
	$\begin{array}{c} 2.34\\ 2.76\\ 2.66\\ 2.42\\ 2.58\\ 2.27\\ 3.65\\ 2.88\\ 2.83\\ 2.83\\ 2.83\\ 2.83\\ 2.83\\ 2.83\\ 2.59\\ 2.26\\ 1.96\\ 2.36\\ 2.82\\ 2.79\\ \textbf{0.65}\\ \hline \textbf{than transport n}\\ 2.76\\ 2.19\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.24\\ 2.88\\ 3.47\\ 4.18\\ 2.11\\ 3.29\\ 3.29\\ 2.09\\ 2.77\\ 2.83\\ 2.90\\ 2.77\\ 2.83\\ 2.90\\ 2.11\\ 1.75\\ 2.88\\ 2.78\\ 2.10\\ 3.12\\ 3.06\\ 3.82\\ \hline \end{array}$	2.34 3.00 2.76 3.24 2.66 3.43 2.42 2.73 2.58 3.22 2.27 3.45 3.65 5.37 2.83 2.69 2.83 4.04 2.59 4.33 2.26 3.78 1.96 3.16 2.36 4.59 2.82 3.63 2.79 3.59 0.65 0.11 than transport machinery - LHD, Haula 2.76 3.57 2.19 3.90 3.24 2.90 2.88 2.49 3.47 2.47 4.18 2.35 2.11 2.16 3.29 2.88 2.09 3.51 2.77 3.00 2.83 2.29 2.90 3.82 2.11 3.51 1.75 3.57 2.88 3.57

EX1	4.16	4.16	7.26
		ials – Explosion, ventilat	
Risk factors weights	0.70	0.15	0.15
EL18	2.67	2.49	5.52
EL17	2.22	2.37	6.00
EL16	2.86	2.49	5.81
EL15	2.82	2.43	5.52
EL13 EL14	2.44	1.86	6.57
EL12 EL13	2.68	2.48	5.43
EL12	2.90	3.11	5.43
EL10 EL11	2.58	2.50	6.00
EL9 EL10	2.58	2.56	5.62
EL9	1.91	3.10	5.81
EL8	2.22	4.29	6.19
EL7	1.84	2.06	5.81
EL5 EL6	3.19	2.89	5.24
EL4 EL5	2.63	3.30	6.38
EL3 EL4	2.67	2.30	5.71
EL2 EL3	3.29	3.06	5.90
EL1 EL2	2.03	2.59	5.81
EL1	2.63	2.33	5.71
Risk factors weights	0.02 Electr		0.20
SF14 Bisk feature weights	0.62	0.18	0.20
SF13	3.30	3.44	5.56
SF12	3.44	3.28	4.91
SF11	3.33	3.39	5.56
SF10	2.83 3.33	3.02 2.85	5.00
SF9	2.65	2.78	5.33
SF8	2.63	2.63	5.13
SF7	3.11	2.78	5.67
SF6	3.44	3.17	5.56
SF5	3.61	2.65	5.22
SF4	3.61	3.06	6.56
SF3	3.33	3.02	4.67
SF2	2.94	3.06	5.67
SF1	3.56	3.19	5.56
		iring and blasting	-
Risk factors weights	0.12	0.67	0.21
MM30	2.95	3.08	5.33
MM29	3.47	3.45	4.73
MM28	3.06	3.61	6.71
MM27	3.82	4.00	6.47
MM26		4.94	

Risk factors weights	0.16	0.62	0.22
EX44	3.79	4.82	7.26
EX43	4.00	5.21	6.74
EX42	3.84	5.25	7.47
EX41	3.84	5.51	6.95
EX40	3.53	3.42	6.44
EX39	4.32	6.02	7.16
EX38	3.47	6.04	7.37
EX37	3.47	4.91	7.47
EX36	4.05	4.82	6.42
EX35	2.96	3.23	5.37
EX34	4.11	3.67	6.21
EX33	3.74	3.93	5.68
EX32	4.21	3.46	5.58
EX31	3.68	2.58	5.68
EX30	3.95	2.47	4.95
EX29	3.58	2.61	6.21
EX28	3.79	2.96	5.58
EX27	3.58	2.65	6.11
EX26	3.27	4.19	6.42
EX25	3.26	2.84	6.74
EX24	3.63	2.09	5.05
EX23	3.89	4.02	7.05
EX22	3.32	3.18	5.68
EX21	2.86	3.89	6.11
EX20	3.89	3.35	6.53
EX19	4.63	3.11	6.21
EX18	4.00	2.98	6.42
EX17	3.68	2.39	4.95
EX16	3.79	5.28	7.26
EX15	3.95	5.05	7.89
EX13	3.42	3.93	6.74
EX12	4.00	3.00	7.37
EX12	4.05	4.19	7.58
EX10	4.00	4.07	6.84
EX9 EX10	3.84	5.81	8.11
EX8 EX9	3.74	5.00	7.05
EX7 EX8	3.37	4.14	7.68
EX6	3.63	3.44	6.11
EX5	4.16	3.70	6.95
EX4	3.74 3.95	4.35 4.96	7.58
EX3	4.00	3.96	7.89
EX2	3.89	3.42	7.05

Other causes – Inundation, Unclassified			
OC1	3.25	3.59	6.48
OC2	2.86	2.67	6.00
OC3	3.71	4.48	7.62
OC4	3.52	3.73	6.95
OC5	3.43	2.94	6.67
OC6	2.97	3.00	6.57
OC7	4.00	2.68	5.75
OC8	3.10	3.46	6.19
OC9	3.43	2.03	6.67
OC10	3.43	4.19	6.86
OC11	4.19	4.60	5.90
OC12	3.76	3.68	6.00
OC13	4.33	4.89	7.14
OC14	3.43	3.63	6.95
OC15	2.41	3.38	6.86
OC16	2.72	4.90	7.52
OC17	3.43	4.05	5.83
OC18	3.40	4.84	6.93
Risk factors weights	0.12	0.63	0.25

Hazard number	С	Ε	Р
	Ground movemen	nt – Roof and side fall	
GM1	3.94	3.44	7.88
GM2	3.31	6.40	6.50
GM3	3.13	6.19	7.75
GM4	2.39	4.27	6.75
GM5	3.88	6.88	6.63
GM6	2.75	4.04	5.88
GM7	2.56	3.31	6.38
GM8	3.38	3.92	6.13
GM9	2.64	3.04	6.75
GM10	2.08	3.19	6.50
GM11	3.63	3.88	5.38
GM12	1.98	3.77	6.13
GM13	3.70	6.38	8.13
GM14	2.75	4.69	7.25
GM15	4.38	7.00	8.00
GM16	3.25	5.15	7.25
GM17	2.59	3.83	5.88
Risk factors weights	0.09	0.69	0.22
	nachinery (non-win	ding) - Rope haulage and	conveyor
TM1	2.32	3.60	7.58
TM2	1.90	2.28	6.84
TM3	1.93	3.40	7.47
TM4	2.33	2.07	6.53
TM5	2.90	3.12	6.74
TM6	3.21	2.40	7.47
TM7	1.86	3.53	7.37
TM8	1.94	5.33	7.58
TM9	2.18	3.61	7.26
TM10	1.81	2.95	7.79
TM11	3.33	2.67	6.00
TM12	2.80	2.28	7.79
TM13	1.76	3.96	7.79
TM14	3.63	4.98	7.26
TM15	2.32	4.74	7.37
TM16	1.99	6.84	7.37
TM17	2.71	4.04	5.28
TM18	2.35	3.65	5.16
TM19	2.42	3.44	6.23
TM20	2.60	4.30	8.21
TM21	2.22	3.26	5.16
TM22	2.69	3.53	7.37

Table D2. Defuzzified experts' opinion collected from the mine-2

1		
2.49	3.28	5.26
2.53	3.70	5.37
2.24	3.42	6.32
2.32	2.91	6.32
3.05	5.21	6.00
3.21	3.82	5.58
2.53	3.72	7.68
3.37	4.47	7.89
2.84	4.07	6.63
2.33	3.96	7.05
2.32	3.39	5.58
2.18	4.93	5.89
2.58	2.88	5.68
2.59	3.02	4.96
0.19	0.61	0.20
other than transport	machinery - LHD, Haul	age engine
2.74	3.60	7.05
1.88	3.77	7.05
3.37	3.28	6.00
2.63	1.98	6.11
3.21	2.39	6.32
4.00	2.32	6.53
1.96	2.67	6.32
3.11	2.19	7.58
3.21	2.63	7.47
1.90	3.84	6.95
2.39	2.44	6.42
2.64	2.30	5.68
3.26	3.70	7.89
1.49	3.18	7.05
1.89	3.72	8.00
2.54	3.46	6.11
2.80	2.72	5.39
2.07	2.81	5.68
2.95	4.68	8.42
2.75	3.07	6.63
3.79	3.32	5.47
2.75	3.33	7.16
2.96	5.65	7.16
2.59	5.53	7.68
2.54	4.65	7.05
3.79	4.07	6.63
3.53	3.47	5.79
3.05	3.16	6.53
	$\begin{array}{c ccccc} 2.53 \\ 2.24 \\ 2.32 \\ 3.05 \\ 3.21 \\ 2.53 \\ 3.37 \\ 2.84 \\ 2.33 \\ 2.32 \\ 2.18 \\ 2.58 \\ 2.59 \\ 0.19 \\ \hline \end{tabular}$	2.53 3.70 2.24 3.42 2.32 2.91 3.05 5.21 3.21 3.82 2.53 3.72 3.37 4.47 2.84 4.07 2.33 3.96 2.32 3.39 2.18 4.93 2.58 2.88 2.59 3.02 0.19 0.61 other than transport machinery - LHD, Haule 2.74 3.60 1.88 3.77 3.37 3.28 2.63 1.98 3.21 2.39 4.00 2.32 1.96 2.67 3.11 2.19 3.21 2.63 1.90 3.84 2.39 2.44 2.64 2.30 3.26 3.70 1.49 3.18 1.89 3.72 2.54 3.46 2.80 2.72 2.07 2.81 2.95 4.68 2.75 3.33 2.96 5.65 2.59 5.53 2.54 4.65 3.79 4.07 3.53 3.47

MM29	3.16	2.28	5.16
MM30	3.11	2.95	6.12
Risk factors weights	0.13	0.32	0.55
	Explosives - Shot		
SF1	3.75	2.79	5.00
SF2	2.88	2.52	5.75
SF3	3.88	3.02	5.00
SF4	3.13	3.33	6.38
SF5	3.44	2.92	5.88
SF6	3.50	3.90	5.75
SF7	3.31	2.60	5.75
SF8	2.76	2.94	4.50
SF9	2.67	2.04	5.13
SF10	2.94	2.71	5.25
SF11	3.44	2.56	5.27
SF12	3.31	3.17	5.15
SF13	3.25	2.90	5.40
SF14	3.75	3.42	4.75
Risk factors weights	0.63	0.11	0.26
	Elect	ricity	
EL1	2.94	2.83	6.13
EL2	3.06	2.42	5.88
EL3	3.44	3.02	6.13
EL4	3.06	2.92	6.38
EL5	2.52	3.60	6.75
EL6	3.13	4.00	6.75
EL7	2.22	2.02	6.00
EL8	2.51	3.81	5.88
EL9	2.40	4.00	6.00
EL10	3.00	2.98	5.00
EL11	3.00	2.85	6.25
EL12	3.00	3.48	6.00
EL13	3.20	4.13	7.13
EL14	2.11	2.54	6.50
EL15	2.77	2.33	5.75
EL16	2.67	3.00	5.38
EL17	2.56	2.94	6.25
EL18	3.00	3.00	5.63
Risk factors weights	0.30	0.22	0.48
		rials – Explosion, ventila	
EX1	3.93	4.16	6.67
EX2	4.20	3.16	6.93
EX3	3.93	4.04	7.07
EX4	3.80	4.33	8.00

2.62 3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00 5.36 4.51 5.38 0.28 Unclassified 4.46	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40 7.33 7.07 6.80 7.47 0.13
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00 5.36 4.51 5.38 0.28 Unclassified	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40 7.33 7.07 6.80 7.47 0.13
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00 5.36 4.51 5.38 5.38	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40 7.33 7.07 6.80 7.47
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00 5.36 4.51 5.31	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40 7.33 7.07 6.80
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00 5.36 4.51 5.31	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40 7.33 7.07
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00 5.36	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40 7.33
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64 2.00	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20 6.40
3.18 2.96 3.93 2.53 5.38 5.00 6.40 5.64	6.00 6.13 6.13 5.33 5.87 7.07 6.67 7.20
3.18 2.96 3.93 2.53 5.38 5.00 6.40	6.00 6.13 6.13 5.33 5.87 7.07 6.67
3.18 2.96 3.93 2.53 5.38 5.00	6.00 6.13 6.13 5.33 5.87 7.07
3.18 2.96 3.93 2.53 5.38	6.00 6.13 6.13 5.33 5.87
3.18 2.96 3.93 2.53	6.00 6.13 6.13 5.33
3.18 2.96 3.93	6.00 6.13 6.13
3.18 2.96	6.00 6.13
3.18	6.00
2.02	0.00
2.62	6.00
2.69	4.93
2.62	6.40
2.02	5.60
2.60	6.27
3.71	6.67
3.09	7.73
2.98	6.00
3.47	6.93
3.44	5.60
4.07	5.47
3.60	7.07
3.07	5.87
3.80	6.40
2.62	5.20
4.07	7.87
4.98	7.47
3.98	7.73
2.51	7.20
3.00	7.33
4.22	6.93
5.20	8.13
5.07	7.87
3.47	8.13
	5.87
	7.87 6.67
	5.07 5.20 4.22 3.00 2.51 3.98 4.98 4.07 2.62 3.80 3.07 3.60 4.07 3.44 3.47 2.98 3.09 3.71

OC3	3.50	5.21	7.63
OC4	3.94	3.85	7.25
OC5	3.44	2.92	5.88
OC6	2.94	3.69	5.88
OC7	3.63	2.90	5.75
OC8	2.85	3.75	5.77
OC9	3.56	2.35	6.38
OC10	3.69	4.23	7.00
OC11	4.00	4.58	5.77
OC12	3.63	3.81	5.77
OC13	4.31	5.46	7.63
OC14	3.69	4.19	6.75
OC15	2.24	2.71	6.50
OC16	2.75	5.06	7.75
OC17	3.64	3.96	5.38
OC18	4.00	5.43	6.60
Risk factors weights	0.10	0.67	0.23

Hazard number	С	E	Р
	Ground movement	t – Roof and side fall	
GM1	4.13	3.51	7.60
GM2	3.00	6.53	6.67
GM3	3.00	6.53	7.87
GM4	2.48	4.91	6.53
GM5	3.40	6.13	7.07
GM6	2.53	4.09	6.40
GM7	2.53	4.40	6.93
GM8	2.87	4.91	6.13
GM9	2.53	4.20	6.80
GM10	2.53	4.44	6.67
GM11	3.47	4.27	5.87
GM12	2.09	4.76	6.40
GM13	3.40	5.87	7.60
GM14	2.33	5.36	6.93
GM15	3.93	6.80	7.20
GM16	3.13	4.96	7.07
GM17	2.23	4.56	6.56
Risk factors weights	0.11	0.65	0.24
Transport r	nachinery (non-wind	ling) - Rope haulage and	conveyor
TM1	2.12	4.62	6.57
TM2	2.44	3.35	6.57
TM3	1.79	2.95	6.00
TM4	2.37	3.65	6.48
TM5	3.24	4.59	6.95
TM6	3.39	3.33	6.10
TM7	2.05	4.41	6.76
TM8	2.35	4.86	7.71
TM9	2.17	4.46	6.00
TM10	2.13	4.30	6.48
TM11	2.86	2.68	5.16
TM12	3.14	3.75	6.76
TM13	2.03	4.92	5.90
TM14	3.71	5.06	7.14
TM15	2.27	4.14	7.05
TM16	2.21	6.00	6.57
TM17	2.78	3.54	6.10
TM18	2.36	3.32	6.48
TM19	2.45	3.49	6.67
TM20	2.15	4.11	6.57
TM21	1.56	2.41	5.81
TM22	2.63	3.17	6.38

Table D3. Defuzzified experts' opinion collected from the mine-3

	-	-	
TM23	2.16	4.00	4.95
TM24	2.13	2.46	5.43
TM25	2.76	4.35	5.52
TM26	1.87	3.78	5.81
TM27	3.06	4.75	5.90
TM28	2.90	2.70	5.81
TM29	3.05	3.90	5.90
TM30	2.20	4.87	6.19
TM31	2.34	4.44	6.10
TM32	1.79	4.25	6.00
TM33	1.49	3.48	5.71
TM34	2.52	4.11	5.81
TM35	2.53	3.52	5.90
TM36	2.69	3.98	5.43
Risk factors weights	0.62	0.19	0.19
Machinery	other than transport	machinery - SDL, Haula	age engine
MM1	3.10	3.19	6.38
MM2	2.45	3.68	6.86
MM3	3.00	3.02	5.43
MM4	2.82	2.94	5.33
MM5	3.67	3.24	5.63
MM6	3.38	3.03	5.81
MM7	2.37	2.76	6.10
MM8	3.19	3.37	6.10
MM9	3.62	4.37	6.57
MM10	2.63	4.17	6.29
MM11	2.56	2.67	5.71
MM12	2.50	2.56	5.81
MM13	2.37	4.22	7.05
MM14	2.44	3.25	6.00
MM15	2.48	4.03	7.62
MM16	2.95	3.56	5.44
MM17	3.10	3.40	5.71
MM18	2.36	2.81	5.33
MM19	3.19	3.92	6.29
MM20	3.24	3.38	6.19
MM21	3.33	2.73	5.14
MM22	3.38	3.16	6.19
MM23	2.87	5.94	5.81
MM24	2.71	5.06	7.52
MM25	3.02	5.35	6.38
MM26	4.19	5.00	6.10
MM27	3.81	3.95	6.38
MM28	3.29	4.00	6.29

MM29	3.62	3.52	5.71
MM30	3.34	2.52	5.25
Risk factors weights	0.13	0.67	0.20
	Explosives - Shot f		
SF1	3.67	3.33	5.20
SF2	3.00	3.18	5.73
SF3	3.73	3.40	5.87
SF4	3.20	3.56	6.27
SF5	3.67	3.29	5.87
SF6	3.00	3.33	5.87
SF7	3.33	3.18	6.27
SF8	2.61	2.64	6.27
SF9	2.81	2.27	6.13
SF10	2.94	3.56	6.00
SF11	3.40	3.09	5.09
SF12	3.87	3.71	6.27
SF13	3.27	3.49	6.13
SF14	3.33	3.73	5.89
Risk factors weights	0.60	0.29	0.11
8	Elect	ricity	
EL1	2.63	2.85	5.56
EL2	3.00	2.69	5.89
EL3	3.44	3.93	5.44
EL4	2.56	3.09	5.91
EL5	2.73	3.94	6.11
EL6	3.44	4.43	5.89
EL7	2.21	2.54	5.89
EL8	2.51	4.59	7.00
EL9	2.36	3.74	6.33
EL10	2.57	2.63	5.44
EL11	2.68	2.56	5.56
EL12	2.89	3.24	5.78
EL13	2.74	3.85	5.78
EL14	2.58	2.83	5.67
EL15	2.68	2.87	6.02
EL16	3.06	2.83	5.67
EL17	2.22	2.85	6.67
EL18	3.06	3.11	5.44
Risk factors weights	0.65	0.23	0.12
Dust, gas and other	combustible mater	rials – Explosion, ventila	ntion, mine fire
EX1	3.90	4.70	7.00
EX2	3.60	4.25	7.00
EX3	3.50	3.55	6.20
EX4	3.45	4.55	6.70

EX5	4.05	5.37	6.80
EX6	3.30	5.15	6.70
EX7	3.85	4.55	6.90
EX8	2.75	4.95	7.40
EX9	4.25	5.07	6.80
EX10	3.95	6.03	7.60
EX10	4.15	3.78	6.30
EX11 EX12	3.65	4.65	7.60
EX12 EX13	3.75	3.75	7.10
EX13	3.40	4.55	6.30
EX14 EX15	4.00	4.70	7.10
EX15	3.56	4.57	7.00
EX10 EX17	3.75	2.98	6.00
EX17 EX18	3.90	3.17	6.50
EX18 EX19	4.05	3.57	6.70
EX19 EX20	3.65	4.37	6.80
EX20	3.02	3.98	6.30
EX21 EX22	3.72	4.45	6.60
EX22 EX23	3.86	4.62	6.70
EX23	3.95	2.85	6.00
EX24 EX25	3.50	2.97	6.50
EX26	3.21	4.53	6.70
EX20	3.50	2.68	6.00
EX28	4.05	3.67	6.50
EX29	3.45	2.87	6.80
EX30	3.80	3.02	5.60
EX31	4.00	3.35	5.80
EX32	4.15	4.08	6.20
EX32	4.10	3.63	6.50
EX34	4.15	3.65	6.20
EX35	3.21	3.02	6.50
EX36	4.10	4.45	6.00
EX37	3.50	4.97	7.20
EX38	3.75	5.60	7.30
EX39	3.95	5.82	6.90
EX40	3.55	3.98	6.10
EX41	3.90	5.17	6.40
EX42	3.60	4.45	6.90
EX43	3.70	4.95	7.00
EX44	3.90	4.33	6.00
Risk factors weights	0.14	0.66	0.20
	Other causes – Inun		
OC1	3.78	4.22	6.67
OC2	3.17	2.93	6.00

Risk factors weights	0.13	0.66	0.21
OC18	3.90	4.83	6.00
OC17	3.28	4.15	5.80
OC16	2.56	4.93	7.11
OC15	2.19	2.74	6.33
OC14	3.89	4.31	6.46
OC13	4.11	4.91	7.78
OC12	3.72	3.72	5.67
OC11	4.50	4.85	5.67
OC10	3.39	4.26	6.89
OC9	3.67	2.96	6.44
OC8	3.39	3.50	5.91
OC7	3.89	2.61	5.57
OC6	3.34	2.78	5.89
OC5	3.44	2.52	6.11
OC4	4.00	4.39	7.00
OC3	3.78	5.00	7.78

Hazard number	С	Ε	Р
	Ground movemen	nt – Roof and side fall	
GM1	3.92	3.00	7.75
GM2	3.67	7.33	6.17
GM3	3.58	7.00	8.50
GM4	1.94	2.97	6.83
GM5	3.67	7.00	6.00
GM6	2.50	2.69	5.83
GM7	2.43	3.19	5.83
GM8	3.67	3.31	6.17
GM9	2.50	3.56	7.33
GM10	2.43	3.22	6.33
GM11	3.18	2.56	5.00
GM12	1.81	2.97	5.53
GM13	4.17	6.67	7.83
GM14	2.78	4.72	6.50
GM15	3.92	7.25	7.67
GM16	2.67	4.39	6.17
GM17	2.04	2.89	5.53
Risk factors weights	0.21	0.67	0.12
Transport	machinery (non-win	ding) - Rope haulage and	conveyor
TM1	2.02	3.09	7.45
TM2	1.71	2.03	6.73
TM3	1.42	2.12	7.27
TM4	2.17	2.06	7.09
TM5	3.00	3.73	6.55
TM6	2.59	2.03	6.18
TM7	1.50	2.55	7.09
TM8	1.88	4.61	7.64
TM9	1.50	2.91	6.73
TM10	1.50	2.39	6.39
TM11	3.00	2.21	5.30
TM12	2.91	2.39	7.09
TM13	1.91	2.58	7.27
TM14	3.91	4.30	7.64
TM15	1.80	3.64	6.18
TM16	1.86	5.85	5.82
TM17	2.83	4.25	7.53
TM18	2.03	2.94	6.33
TM19	2.43	2.97	7.17
TM20	2.33	3.36	7.67
TM21	1.43	2.67	6.50
TM22	2.83	3.44	6.17

Table D4. Defuzzified experts' opinion collected from the mine-4

	1		
TM23	2.83	3.25	5.33
TM24	2.28	2.44	4.83
TM25	1.72	3.08	5.83
TM26	1.78	2.31	4.83
TM27	3.67	5.86	5.67
TM28	2.50	2.33	5.17
TM29	2.51	2.58	5.33
TM30	2.83	3.22	7.00
TM31	2.58	3.44	6.67
TM32	2.04	3.61	6.33
TM33	1.93	2.97	7.00
TM34	2.35	3.19	5.00
TM35	2.50	2.81	7.17
TM36	2.14	2.53	5.83
Risk factors weights	0.59	0.24	0.17
Machinery	other than transport	machinery - SDL, Haula	age engine
MM1	2.91	3.42	5.82
MM2	1.86	3.36	6.91
MM3	2.64	2.39	5.64
MM4	2.55	2.64	5.82
MM5	3.27	2.39	5.27
MM6	4.18	2.15	5.64
MM7	1.97	2.18	5.82
MM8	3.00	2.64	6.55
MM9	3.27	3.03	5.64
MM10	2.11	2.64	6.00
MM11	2.73	2.15	4.97
MM12	2.55	1.91	5.30
MM13	2.83	3.12	6.55
MM14	1.94	2.48	5.33
MM15	1.74	2.42	6.73
MM16	2.64	2.45	4.64
MM17	2.64	2.55	5.12
MM18	2.21	2.15	4.94
MM19	3.18	3.76	7.45
MM20	2.56	2.55	5.82
MM20 MM21	4.09	2.12	4.61
MM22	2.91	2.67	6.18
MM22 MM23	3.30	4.27	6.60
MM23 MM24	2.50	5.03	9.00
MM25	2.42	4.67	7.00
MM25 MM26	3.70	5.23	7.40
MM20 MM27	3.30	3.90	6.80
MM28	3.20	2.23	6.03
IVIIVIZO	5.20	2.23	0.03

MM29	3.00	2.87	4.83
MM30	2.90	2.73	4.80
Risk factors weights	0.69	0.22	0.09
Hisk fuctors weights		firing and blasting	
SF1	3.83	2.53	4.69
SF2	2.83	2.97	4.67
SF3	3.25	2.25	5.17
SF4	3.33	3.33	6.50
SF5	3.67	3.22	6.00
SF6	2.92	3.97	6.83
SF7	3.42	2.42	5.67
SF8	2.28	2.86	5.50
SF9	2.46	3.14	5.50
SF10	3.25	2.97	5.83
SF11	3.42	2.75	5.00
SF12	3.92	3.53	6.17
SF13	3.75	3.33	5.50
SF14	3.83	3.50	6.17
Risk factors weights	0.72	0.17	0.11
	Elec	tricity	
EL1	3.10	3.20	7.00
EL2	2.90	2.83	7.00
EL3	3.90	3.50	7.00
EL4	2.40	2.40	6.40
EL5	2.80	4.07	7.00
EL6	2.60	2.77	5.40
EL7	1.85	2.23	6.20
EL8	1.93	3.10	6.60
EL9	1.70	2.33	5.00
EL10	2.60	2.27	4.80
EL11	2.60	2.53	5.60
EL12	2.70	3.33	6.20
EL13	2.42	3.33	7.20
EL14	2.03	2.27	6.80
EL15	2.80	1.97	4.23
EL16	2.07	1.83	5.03
EL17	2.50	2.70	7.40
EL18	2.90	2.60	4.63
Risk factors weights	0.70	0.09	0.21
Dust, gas and oth		rials – Explosion, ventil	
EX1	4.00	3.70	7.27
EX2	3.56	2.82	6.55
EX3	4.27	3.73	7.27
EX4	3.55	4.33	8.00

OC2	2.80	2.00	5.03
OC1	4.20	3.40	7.20
		dation, Unclassified	
Risk factors weights	0.63	0.26	0.11
EX44	4.00	5.09	7.82
EX43	4.09	3.85	7.45
EX42	3.45	3.97	6.18
EX41	4.00	5.03	6.91
EX40	3.73	2.52	5.64
EX39	4.18	5.67	8.18
EX38	3.64	5.33	7.45
EX37	3.73	4.33	7.27
EX36	4.18	5.30	6.55
EX35	2.65	2.55	6.00
EX34	4.27	4.55	6.73
EX33	3.82	4.24	6.36
EX32	4.20	2.94	6.18
EX31	3.82	2.45	6.36
EX30	3.91	2.18	4.39
EX29	3.55	2.18	6.91
EX28	4.27	3.03	6.00
EX27	4.09	3.09	6.00
EX26	3.09	4.73	6.18
EX25	3.18	2.52	6.73
EX24	3.82	2.12	4.91
EX22 EX23	4.00	4.39	7.27
EX21 EX22	3.02	3.76	6.36
EX21	2.82	5.18	6.55
EX20	4.00	3.58	6.55
EX18	4.18	3.45	6.73
EX17 EX18	4.45	3.52	6.73
EX10	4.36	2.70	6.18
EX15 EX16	3.64	4.18	7.64
EX14 EX15	4.18	5.30	7.27
EX13	2.92	3.91	6.73
EX12	4.09	2.73	7.27
EX11	4.36	3.67	7.09
EX10	3.91	3.70	6.39
EX9	3.38	4.61	8.00
EX8	3.73		7.82
EX7	3.18 2.83	3.21 2.97	6.18 6.36
EX6	4.00	3.39	5.64
	1.00	2.20	7 1

Risk factors weights	0.26	0.56	0.18
OC18	3.67	4.67	5.33
OC17	3.10	2.63	4.83
OC16	2.60	3.80	7.00
OC15	2.62	2.73	6.60
OC14	3.40	3.57	7.00
OC13	4.20	4.47	7.60
OC12	4.00	2.57	5.20
OC11	4.30	3.60	4.80
OC10	3.90	3.20	7.40
OC9	3.70	2.10	7.00
OC8	3.02	2.40	4.83
OC7	4.00	2.13	5.40
OC6	2.13	2.13	5.80
OC5	3.50	2.40	6.40
OC4	4.10	4.07	8.40
OC3	3.90	4.80	7.40

Hazard number	С	Ε	Р
	Ground movemen	t – Roof and side fall	
GM1	3.83	3.26	7.33
GM2	3.28	6.22	6.33
GM3	3.22	6.78	7.89
GM4	2.41	4.44	6.89
GM5	3.33	6.67	7.00
GM6	2.62	3.94	6.11
GM7	2.83	4.07	6.56
GM8	3.56	4.54	7.00
GM9	2.56	4.24	6.89
GM10	2.72	3.74	6.89
GM11	3.39	3.13	5.78
GM12	2.15	4.17	5.78
GM13	3.83	6.22	7.22
GM14	2.84	5.17	7.11
GM15	3.89	7.24	8.11
GM16	2.89	5.13	6.11
GM17	2.17	3.30	5.46
Risk factors weights	0.15	0.61	0.24
Transport	machinery (non-wine	ding) - Rope haulage and	conveyor
TM1	2.36	4.14	6.57
TM2	2.25	3.05	6.67
TM3	1.98	2.76	6.86
TM4	2.31	3.14	6.76
TM5	3.48	3.76	7.24
TM6	3.39	3.02	6.19
TM7	2.17	3.81	6.57
TM8	2.44	4.78	7.14
TM9	2.30	4.19	7.14
TM10	2.20	3.62	6.29
TM11	2.76	2.44	5.71
TM12	3.38	2.92	6.29
TM13	2.12	4.21	6.76
TM14	4.05	5.38	6.00
TM15	2.36	4.10	7.33
TM16	2.44	5.70	6.48
TM17	2.94	3.78	6.44
TM18	2.29	3.20	6.44
TM19	2.34	3.44	7.33
TM20	2.06	3.39	7.00
TM21	1.88	2.43	6.22
TM22	2.72	3.19	6.44

Table D5. Defuzzified experts' opinion collected from the mine-5

TM23	2.45	3.19	6.00
TM24	2.25	2.20	5.24
TM25	2.49	3.52	5.44
TM26	1.91	3.02	5.67
TM27	3.44	5.06	5.67
TM28	2.68	2.61	5.00
TM29	2.89	3.19	5.78
TM30	2.68	3.44	6.22
TM31	2.62	4.13	6.33
TM32	1.90	3.69	6.11
TM33	1.50	2.83	6.33
TM34	2.30	3.74	6.00
TM35	2.67	3.22	6.44
TM36	2.73	3.87	5.57
Risk factors weights	0.66	0.10	0.24
Machine	ry other than transport	machinery - SDL, Haula	age engine
MM1	2.63	3.70	6.90
MM2	2.40	3.90	7.20
MM3	2.95	3.02	6.20
MM4	2.75	3.05	6.30
MM5	3.15	2.98	5.80
MM6	3.70	3.43	5.80
MM7	2.18	3.42	7.10
MM8	3.20	3.78	6.40
MM9	3.45	3.82	6.00
MM10	2.51	3.88	6.50
MM11	2.61	2.52	6.20
MM12	2.32	2.42	6.10
MM13	2.36	3.32	7.10
MM14	2.33	3.42	6.20
MM15	2.10	4.35	7.30
MM16	2.75	3.60	5.52
MM17	3.05	2.73	5.50
MM18	2.37	2.75	5.70
MM19	3.25	3.97	7.10
MM20	3.05	3.50	6.50
MM21	3.85	2.70	5.20
MM22	3.15	2.90	6.70
MM23	3.10	5.15	5.70
MM24	2.75	5.50	6.80
MM25	2.78	4.87	6.40
MM26	3.90	5.32	6.40
MM27	3.80	4.37	5.90
MM28	2.95	2.67	5.60

MM29	3.10	3.38	5.30
MM30	3.12	2.02	4.42
Risk factors weights	0.65	0.15	0.20
Hisk fuctors weights		firing and blasting	
SF1	3.71	2.74	5.00
SF2	3.14	3.24	5.29
SF3	3.71	2.98	5.57
SF4	3.57	3.19	5.71
SF5	3.43	2.24	5.31
SF6	2.87	3.29	6.43
SF7	3.71	2.43	5.86
SF8	2.61	2.50	6.29
SF9	3.07	2.50	6.00
SF10	2.86	3.21	5.86
SF11	3.64	3.19	5.14
SF12	3.86	3.26	5.71
SF13	3.21	2.64	4.74
SF14	3.36	3.10	5.14
Risk factors weights	0.70	0.20	0.10
	Elec	etricity	
EL1	2.63	3.09	5.79
EL2	2.84	3.05	6.53
EL3	3.21	3.61	6.00
EL4	2.33	2.98	5.79
EL5	2.58	3.77	6.11
EL6	2.64	2.72	6.21
EL7	2.10	3.14	6.00
EL8	2.13	3.47	6.21
EL9	1.99	3.30	5.58
EL10	2.48	2.49	5.37
EL11	2.69	2.44	6.11
EL12	3.00	3.30	5.58
EL13	2.54	2.70	6.53
EL14	2.47	2.26	6.74
EL15	2.79	2.75	5.49
EL16	2.44	2.75	5.58
EL17	2.26	2.70	6.53
EL18	2.43	2.86	6.21
Risk factors weights	0.73	0.10	0.17
		erials – Explosion, ventil	-
EX1	4.36	4.65	7.18
EX2	3.86	4.77	7.36
EX3	3.91	3.26	6.73
EX4	3.23	4.98	7.45

3.95 0.64 Dther causes – Inu 3.32 2.54	4.95 0.25 Indation, Unclassified 3.96 2.25	6.27 0.11 6.84 5.39	
0.64 Other causes – Inv	0.25 Indation, Unclassified	0.11	
0.64	0.25		
3.86		6.45	
		6.73	
		6.73	
3.91	4.17	5.64	
4.32	5.55	7.82	
3.55	5.50	6.91	
3.55	4.65	6.64	
4.05	4.98	6.18	
3.09	3.15	5.64	
4.05	4.06	5.82	
3.45	3.67	6.27	
4.05	4.05	6.55	
3.41	3.06	5.82	
3.86	2.98	5.36	
3.59	3.05	5.73	
3.77	3.65	5.91	
3.45	2.89	6.45	
3.32	4.86	6.18	
3.23	2.85	7.00	
3.50	2.65	5.55	
3.82	4.50	6.45	
3.23	4.48	6.27	
2.83	4.59	6.18	
3.55	4.29	5.73	
4.18	3.62	5.45	
3.73	2.89	5.64	
3.36	3.56	5.82	
3.55	4.89	7.73	
4.00	4.29	7.36	
		7.27	
		7.18	
		7.27	
		6.55	
		7.82	
		7.45	
		7.00	
		6.82	
		7.27 6.91	
	$\begin{array}{r} 3.55 \\ 3.36 \\ 3.73 \\ 4.18 \\ 3.55 \\ 2.83 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.50 \\ 3.23 \\ 3.50 \\ 3.23 \\ 3.32 \\ 3.45 \\ 3.50 \\ 3.45 \\ 3.77 \\ 3.59 \\ 3.86 \\ 3.41 \\ 4.05 \\ 3.45 \\ 4.05 \\ 3.45 \\ 4.05 \\ 3.45 \\ 4.05 \\ 3.55 \\ 3.55 \\ 3.55 \\ 3.55 \\ 3.55 \\ 3.55 \\ 3.55 \\ 3.55 \\ 3.86 \\ 3.86 \end{array}$	4.05 5.95 3.59 4.47 3.23 4.70 4.05 4.91 4.00 5.94 4.14 4.45 4.36 4.65 3.91 3.45 3.68 5.17 4.00 4.29 3.55 4.89 3.36 3.56 3.73 2.89 4.18 3.62 3.55 4.29 2.83 4.59 3.23 4.48 3.82 4.50 3.50 2.65 3.23 2.85 3.32 4.86 3.45 2.89 3.77 3.65 3.23 2.85 3.32 4.86 3.45 2.89 3.77 3.65 3.59 3.05 3.86 2.98 3.41 3.06 4.05 4.05 4.05 4.05 3.09 3.15 4.05 4.98 3.55 5.50 4.32 5.55 3.91 4.17 3.68 5.18 3.55 4.62 3.86 4.80	

OC3	3.43	4.88	7.68
OC4	3.58	4.07	7.68
OC5	3.47	2.72	6.42
OC6	2.76	3.18	6.53
OC7	3.68	2.60	5.58
OC8	3.17	3.98	5.70
OC9	3.27	2.32	6.42
OC10	3.22	4.09	7.05
OC11	4.16	4.26	5.16
OC12	3.37	3.37	5.26
OC13	4.37	4.98	7.37
OC14	3.26	3.33	6.32
OC15	2.18	2.56	6.74
OC16	2.84	4.68	7.89
OC17	3.32	3.25	5.35
OC18	3.33	4.74	5.78
Risk factors weights	0.67	0.22	0.11

Hazard number	С	E	Р
	Ground movemen	t – Roof and side fall	
GM1	3.57	3.79	7.14
GM2	3.10	5.71	6.19
GM3	3.24	5.92	6.95
GM4	2.33	4.30	6.38
GM5	3.29	5.67	5.90
GM6	2.45	4.13	5.24
GM7	2.31	4.51	6.29
GM8	3.10	4.19	5.62
GM9	2.67	3.59	6.67
GM10	2.58	3.52	6.38
GM11	3.24	4.40	5.62
GM12	1.84	3.75	5.83
GM13	3.48	5.71	6.95
GM14	2.44	5.25	7.05
GM15	3.86	7.05	7.05
GM16	2.82	5.43	6.48
GM17	2.51	4.05	5.65
Risk factors weights	0.14	0.62	0.24
Transport 1	nachinery (non-wind	ling) - Rope haulage and	conveyor
TM1	1.94	4.19	6.33
TM2	2.23	3.31	6.33
TM3	1.76	2.57	6.00
TM4	2.46	3.11	6.56
TM5	3.39	3.80	7.00
TM6	2.89	3.35	6.22
TM7	1.94	3.59	6.33
TM8	2.36	4.63	6.89
TM9	2.31	4.48	6.56
TM10	2.09	3.52	6.78
TM11	2.83	2.54	5.78
TM12	3.33	3.13	6.78
TM13	1.79	4.02	6.00
TM14	3.89	5.19	6.00
TM15	2.35	4.31	6.78
TM16	2.62	6.50	6.22
TM17	2.68	4.31	6.11
TM18	2.16	3.33	6.11
TM19	2.19	3.41	6.00
TM20	2.19	3.89	6.78
TM21	1.70	1.89	5.89
TM22	2.56	3.04	6.44

Table D6. Defuzzified experts' opinion collected from the mine-6

[1		l .
TM23	2.44	4.17	5.56
TM24	2.44	2.50	5.24
TM25	2.56	3.78	5.46
TM26	1.78	3.70	5.78
TM27	3.78	5.44	5.89
TM28	2.54	2.81	5.22
TM29	2.74	3.35	5.67
TM30	2.56	3.67	6.44
TM31	2.22	3.70	6.33
TM32	1.98	3.94	5.78
TM33	1.68	2.76	6.11
TM34	2.22	4.39	5.11
TM35	2.62	3.44	6.22
TM36	2.80	3.63	5.78
Risk factors weights	0.71	0.09	0.20
Machinery o	ther than transport	machinery - SDL, Haula	age engine
MM1	2.72	3.35	6.12
MM2	2.33	3.49	6.59
MM3	2.82	2.39	5.53
MM4	2.50	2.73	5.76
MM5	3.29	2.55	5.29
MM6	3.82	2.98	5.76
MM7	2.34	3.16	6.24
MM8	3.47	2.94	6.12
MM9	3.59	3.47	5.18
MM10	2.26	3.94	6.12
MM11	2.60	2.47	5.33
MM12	2.43	2.20	5.88
MM13	2.27	3.59	6.59
MM14	2.31	3.18	5.76
MM15	2.23	3.55	7.31
MM16	3.12	3.35	5.29
MM17	3.01	2.78	5.29
MM18	2.46	3.27	5.78
MM19	3.53	4.16	6.82
MM20	3.41	3.06	5.65
MM21	3.88	2.65	5.18
MM22 MM22	3.41	3.14	6.12
MM23	3.22	4.95	6.32
MM24	2.59	5.18	7.16
MM25	3.11	4.96	6.42
MM25 MM26	3.68	4.21	6.11
MM20 MM27	3.47	3.56	6.00
MM28	3.21	3.33	6.00
1111120	5.21	5.55	0.00

MM29	3.37	3.14	5.16
MM30	3.32	2.39	4.65
Risk factors weights	0.09	0.69	0.22
	Explosives - Shot		
SF1	3.83	3.39	5.78
SF2	3.17	3.17	5.44
SF3	3.56	3.59	5.56
SF4	3.56	3.41	6.22
SF5	3.61	3.07	5.44
SF6	3.01	3.43	6.33
SF7	3.39	3.06	6.00
SF8	2.84	2.37	5.33
SF9	2.75	2.69	6.22
SF10	2.73	3.48	5.67
SF11	3.61	3.17	5.13
SF12	3.83	3.63	6.02
SF13	3.50	3.46	5.57
SF14	3.51	4.07	5.67
Risk factors weights	0.70	0.08	0.22
	Elect	ricity	
EL1	2.85	3.32	5.90
EL2	2.75	2.63	5.40
EL3	3.35	3.92	6.20
EL4	2.70	2.78	5.50
EL5	2.52	4.33	6.20
EL6	2.67	3.37	5.50
EL7	2.20	3.08	5.90
EL8	2.32	3.93	5.80
EL9	2.33	3.52	6.20
EL10	2.28	2.90	5.50
EL11	2.51	2.68	5.30
EL12	3.00	3.52	6.00
EL13	3.15	3.37	6.40
EL14	2.51	2.28	5.90
EL15	3.26	2.95	5.40
EL16	3.07	3.05	5.50
EL17	2.23	3.55	6.70
EL18	2.85	3.80	5.20
Risk factors weights	0.66	0.22	0.12
		rials – Explosion, ventil	
EX1	4.00	4.06	6.25
EX2	3.88	4.50	6.38
EX3	3.31	3.33	6.25
EX4	3.50	4.46	6.75

EX5	3.81	5.17	6.88	
EX6	3.69	4.54	7.00	
EX7	4.19	4.52	6.25	
EX8	3.50 4.08		7.88	
EX9	4.06	4.83	6.50	
EX10	3.69	5.42	7.75	
EX10	3.69	3.79	5.63	
EX12	4.19	4.58	6.75	
EX12 EX13	3.75	3.54	6.13	
EX13	3.38	4.42	6.13	
EX15	3.88	4.46	7.13	
EX16	3.63	4.94	5.75	
EX17	3.56	3.02	6.13	
EX18	3.45	2.38	6.13	
EX19	3.94	3.23	5.88	
EX20	3.69	4.96	6.13	
EX21	2.51	4.04	6.25	
EX22	3.02	3.02	6.13	
EX23	3.88	4.40	6.63	
EX24	3.31	2.56	5.75	
EX25	3.70	3.08	6.75	
EX26	2.89	3.96	7.00	
EX27	3.81	3.08	5.88	
EX28	3.69	3.46	6.38	
EX29	3.31	2.35	6.50	
EX30	4.06	2.92	5.38	
EX31	3.63	2.85	6.00	
EX32	4.06	3.77	6.13	
EX33	3.94	4.44	6.38	
EX34	3.88	3.69	6.25	
EX35	3.07	3.40	6.38	
EX36	4.06	4.85	5.90	
EX37	3.38	4.90	6.52	
EX38	3.75	5.29	7.25	
EX39	4.19	5.54	6.75	
EX40	4.00	4.67	5.50	
EX41	3.69	5.65	6.63	
EX42	4.06	5.21	6.25	
EX43	3.69	5.10	6.63	
EX44	3.75	4.65	6.75	
Risk factors weights	0.62	0.11	0.27	
0	Other causes – Inun	dation, Unclassified		
OC1	3.48	4.56	6.95	
OC2	2.90	2.37	5.05	

OC3	3.57	5.33	7.81
OC4	3.62	3.98	7.33
OC5	3.48	2.95	6.10
OC6	2.99	3.27	5.71
OC7	3.90	2.83	5.17
OC8	2.71	3.65	5.46
OC9	3.33	2.29	6.19
OC10	3.52	4.32	7.52
OC11	4.43	4.57	5.52
OC12	3.62	3.19	5.52
OC13	3.86	4.54	7.33
OC14	4.00	4.14	6.00
OC15	1.83	2.46	6.76
OC16	2.86	5.33	7.71
OC17	3.36	4.03	5.90
OC18	3.75	4.86	5.50
Risk factors weights	0.13	0.64	0.23

APPENDIX E: Average Pairwise Comparison Data Collected from the Mines

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	Dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1.00	3.50	4.00	3.83	5.33	1.45	5.38
Transport machinery (rope haulage, conveyor)	0.29	1.00	1.75	2.01	4.17	1.81	1.65
Machinery other than transport machinery	0.25	0.57	1.00	1.81	1.83	1.27	1.28
Explosives (shot firing and blasting)	0.26	0.50	0.55	1.00	2.58	1.68	2.26
Electricity	0.19	0.24	0.55	0.39	1.00	0.46	0.93
Dust, gas and other combustible materials	0.69	0.55	0.79	0.59	2.16	1.00	4.33
Other causes (inundation)	0.19	0.61	0.78	0.44	1.07	0.23	1.00

 Table E1. Average pairwise comparison data collected from the mine-1

Table E2. Average pairwise compariso	on data collected from the mine-2
--------------------------------------	-----------------------------------

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	Dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1.00	1.71	3.14	3.93	3.86	2.36	3.90
Transport machinery (rope haulage, conveyor)	0.58	1.00	2.00	2.74	3.86	2.98	4.08
Machinery other than transport machinery	0.32	0.50	1.00	1.54	1.56	0.98	2.64
Explosives (shot firing and blasting)	0.25	0.36	0.65	1.00	1.90	2.54	3.02
Electricity	0.26	0.26	0.64	0.53	1.00	2.04	2.65
Dust, gas and other combustible materials	0.42	0.34	1.02	0.39	0.49	1.00	2.43
Other causes (inundation)	0.26	0.25	0.38	0.33	0.38	0.41	1.00

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1.00	3.00	3.44	4.00	5.44	5.22	6.11
Transport machinery (rope haulage, conveyor)	0.33	1.00	1.72	2.98	4.11	3.68	4.44
Machinery other than transport machinery	0.29	0.58	1.00	2.37	3.44	3.13	2.89
Explosives (shot firing and blasting)	0.25	0.34	0.42	1.00	4.11	2.83	2.78
Electricity	0.18	0.24	0.29	0.24	1.00	1.42	1.65
Dust, gas and other combustible materials	0.19	0.27	0.32	0.35	0.71	1.00	2.15
Other causes (inundation)	0.16	0.23	0.35	0.36	0.61	0.47	1.00

Tuble Det I teluge puil (156 comparison data conceted from the mine 5	Table E3. Average	pairwise of	comparison	data	collected	from the	mine-3
--	-------------------	-------------	------------	------	-----------	----------	--------

Table E4. Average pairwise comparison data collected from the mine-4

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1.00	1.86	3.00	3.50	6.57	1.98	3.00
Transport machinery (rope haulage, conveyor)	0.54	1.00	2.71	3.50	5.00	2.16	3.05
Machinery other than transport machinery	0.33	0.37	1.00	2.21	3.43	1.62	3.32
Explosives (shot firing and blasting)	0.29	0.29	0.45	1.00	2.00	1.06	1.87
Electricity	0.15	0.20	0.29	0.50	1.00	0.49	1.85
Dust, gas and other combustible materials	0.51	0.46	0.62	0.94	2.04	1.00	2.57
Other causes (inundation)	0.33	0.33	0.30	0.53	0.54	0.39	1.00

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1.00	3.83	5.00	6.33	5.67	2.97	4.06
Transport machinery (rope haulage, conveyor)	0.26	1.00	2.00	3.83	2.83	1.11	3.62
Machinery other than transport machinery	0.20	0.50	1.00	1.83	1.83	0.90	1.73
Explosives (shot firing and blasting)	0.16	0.26	0.55	1.00	1.58	0.59	1.45
Electricity	0.18	0.35	0.55	0.63	1.00	0.41	1.16
Dust, gas and other combustible materials	0.34	0.90	1.12	1.69	2.43	1.00	2.25
Other causes (inundation)	0.25	0.28	0.58	0.69	0.86	0.44	1.00

Table E5. Average pairwise comparison data collected from the mine-5

Table E6. Average pairwise comparison data collected from the mine-6

	Ground movement (fall of roof/ side)	Transport machinery (rope haulage, conveyor)	Machinery other than transport machinery	Explosives (shot firing and blasting)	Electricity	dust, gas and other combustible materials	Other causes (inundation)
Ground movement (fall of roof/ side)	1.00	2.38	3.13	3.75	5.88	1.91	3.50
Transport machinery (rope haulage, conveyor)	0.42	1.00	2.00	3.29	5.25	1.70	2.56
Machinery other than transport machinery	0.32	0.50	1.00	1.88	3.38	1.75	2.69
Explosives (shot firing and blasting)	0.27	0.30	0.53	1.00	2.63	1.83	2.68
Electricity	0.17	0.19	0.30	0.38	1.00	0.43	0.81
Dust, gas and other combustible materials	0.52	0.59	0.57	0.55	2.31	1.00	2.69
Other causes (inundation)	0.29	0.39	0.37	0.37	1.23	0.37	1.00

LIST OF PUBLICATIONS

Internationally indexed journals

- 1. Ala, C. K., & Tripathy, D. P. (2016). Qualitative assessment of strata control in an Indian underground coal mine. *Journal of The Institution of Engineers (India): Series D*, 97(1), 99–104. http://doi.org/10.1007/s40033-015-0082-8
- Tripathy, D. P., & Ala, C. K. (2018). Identification of safety hazards in Indian underground coal mines. *Journal of Sustainable Mining*, 17(4), 175–183. http://doi.org/10.1016/j.jsm.2018.07.005
- 3. Tripathy, D. P., & Ala, C. K. (2018). Risk assessment in underground coalmines using fuzzy logic in the presence of uncertainty. *Journal of The Institution of Engineers (India): Series D*, *99*(1), 157–163. http://doi.org/10.1007/s40033-018-0154-7

Other journals

1. Tripathy, D. P., & Ala, C. K. (2015). Investigation of equipment related fatal accidents in Indian coal mines. *Safety Equipment Review*, *16*(6), 14–19.

Conferences

1. Ala, C. K., & Tripathy, D. P. (2016). A novel methodology for risk assessment in underground coal mines. In *Proceedings of Risk and Resilience Mining Solutions* (pp. 91-116). Vancouver, Canada: InfoMine.