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Abstract—This paper assesses the potential for mechanised
assistance in the formulation of schedulability tests. The novel
idea is to use evolutionary algorithms to semi-automate the
process of deriving response time analysis equations. The proof
of concept presented in this paper focuses on the synthesis
of mathematical expressions for the schedulability analysis of
messages on Controller Area Network (CAN). This problem is
of particular interest, since the original analysis developed in the
early 1990s was later found to be flawed. Further, as well as
known exact tests that have been formally proven, there are a
number of useful sufficient tests of pseudo-polynomial complexity
and closed-form polynomial-time upper bounds on response times
that provide useful comparisons.

Index Terms—real-time systems, schedulability analysis, evo-
lutionary algorithms, Controller Area Network

I. INTRODUCTION

Real-time systems are characterised by the need for both

functional and timing correctness. Verifying the timing cor-

rectness of a real-time system is typically framed as a two

step process: timing analysis seeks to characterise the amount

of time that each task can take to execute, or each message

can take to be transmitted. Using this information, schedula-

bility analysis aims to characterise the worst-case end-to-end

response time of functionality involving one or more tasks

or messages, taking into account the way in which they are

scheduled and any interference between them. An upper bound

on the worst-case response time can then be compared to the

deadline to determine if timing requirements can be met.

It is interesting to consider how schedulability tests are

typically devised. Usually this is a creative manual process.

Researchers try to determine the worst-case possible sce-

nario(s) given a model of the behaviour of the system, its

tasks, messages, and scheduling policies. Often these worst-

case scenarios are derived via pencil-and-paper or white-

board examination of how the system may behave, with

schedules depicted for a small number of tasks or messages.

In some cases, theorems and proofs are derived proving prop-

erties of the worst-case scenario(s). From a consideration of

these worst-case scenarios, researchers then look to construct

schedulability tests or response time analyses that upper bound

the response times for any valid scenario. Thus providing some

form of guarantee that each task or message will always meet

its deadline, provided of course that the system behaves as

modelled, and the assumed worst-case scenario really does

represent the worst-case. Informal proofs of the correctness of

schedulability tests are often made via hand-crafted logical

arguments checked by co-authors and reviewed by peers.

Further efforts at validation are usually done via simulation.

While simulation of large numbers of synthetically generated

task or message sets cannot prove correctness, since not every

scenario can be considered, they can sometimes show that

an analysis technique is flawed (i.e. optimistic) by revealing

a counter-example. Such corner-cases can be very rare, and

may not always be revealed by this form of verification.

The research literature on real-time scheduling is littered

with the bodies of flawed proofs of theorems that appeared

to the authors, peer reviewers, and many readers to be correct

when first published, but were later found to be incorrect. High

profile examples include the original analysis for Controller

Area Network (CAN) published by Tindell et al. [33]–[35]

in 1994-5 that was subsequently shown to be incorrect by

Bril et al. [7] in 2006 and comprehensively refuted, revisited,

and revised by Davis et al. [11] in 2007. (Interestingly, Di

Natale and Zeng [22] showed that this flaw is exposed by only

around one-in-a-million synthetically generated message sets).

More recently, in 2015, Nelissen et al. [23] discovered flaws in

scheduling theory for self-suspending tasks [18] published in

2010, with a subsequent critical review by Chen et al. [9]

in 2018 felling a whole swathe of subsequent research in

this area. Another example is the early analysis of wormhole

routing on a Network-on-Chip (NoC) by Shi and Burns [32]

published in 2008. This analysis was shown to be optimistic

by Xiong et al. [39] in 2016. They presented a revised

analysis, only for that method to be proven optimistic by

Indrusiak et al. [14] later that same year. In response to these

problems, recent efforts at mechanised formal proofs for real-

time analysis [8] are beginning to gain traction, with recent

work on the PROSA project1 aiming to formally prove the

revised CAN schedulability analysis [11].

In this paper we address a related aspect of the overall prob-

lem of schedulability analysis. System models are gradually

improving in their fidelity and thus taking into account more

detailed behaviours; however, this is making both worst-case

scenarios and sound response time equations more difficult

to derive. The main contribution of this paper is to propose

1http://prosa.mpi-sws.org/



mechanised assistance to researchers in the formulation of

schedulability tests. Specifically, we propose the use of evo-

lutionary algorithms to semi-automate the process of deriving

response time analysis equations. While the research effort on

PROSA seeks to provide a means of proof-assistance for use

in real-time scheduling problems, we aim to complement that

by providing a means of formulation-assistance.

Utilising the proposed semi-automated formulation assis-

tance, the overall work flow for a particular scheduling prob-

lem can be summarised as follows. First, researchers consider

the system model and scheduling policies used, and determine

a set of symbols and operators forming a grammar that can be

used to express response time analysis equations that could po-

tentially provide solutions to the problem. Second, they obtain

a set of verification vectors. Each verification vector represents

a concrete system, and provides the parameter values for all

of the entities that are scheduled in that system, as well as

their indicative response times. The indicative response times

are guaranteed lower bounds on the worst-case response time,

and are typically obtained via measurements taken from: (i)

a real system, (ii) a cycle-accurate simulation of the system,

or (iii) a simulation using an appropriate high level model.

The grammar and the verification vectors are used as inputs

into the formulation assistant. The formulation assistant uses

an evolutionary algorithm to create populations of candidate

response time equations that comply with the grammar. Each

candidate equation is evaluated against the data for every

entity in the set of verification vectors, resulting in a set of

computed response times. The fitness of the candidate equation

is then determined by comparing the set of computed response

times that it produces with the set indicative response times.

High fitness implies that the computed response times provide

a tight upper bound on the indicative response times. The

evolutionary algorithm creates subsequent generations of can-

didate equations by recombining and mutating candidates from

the previous generation that are selected with a probability

depending on their fitness. This selection pressure ensures that

the overall fitness of the population increases over a number

of generations, and the algorithm is able to find individual

candidates with high fitness. The best candidate equations are

returned as the output of the formulation assistant.

The aim of using a formulation assistant to provide sugges-

tions for response time equations is not to supplant researchers

in this area, but rather to help them in finding effective

response time analyses that can be explored in more detail,

including being subject to both informal and formal proof,

which remains the responsibility of the researcher. The overall

processes is illustrated in Figure 1, which depicts researchers

taking a system model and using it to create a grammar

and a set of verification vectors that form the inputs to

the formulation assistant. The formulation assistant produces

candidate equations that can be checked and refined by the

researcher. In a final step, the resulting candidate analysis may

be checked via a proof assistant to provide the final proven

schedulability analysis.

One of the benefits of using an evolutionary approach to
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Fig. 1. Overall process of deriving proven analysis.

assist researchers in this way is that it can potentially find a

range of equations from simple yet effective tests that may

be useful for fast design space exploration, to more complex

tests that provide more precise results. The approach is flexible

and can potentially be seeded with equations that are known

to be correct for simplified versions of the problem, enabling

exploration of a family of similar scheduling problems. Fur-

ther, it removes the need for researchers to implement multiple

different candidate schedulability tests, since each one is tested

automatically against the verification vectors.

This use of verification vectors is both a potential pitfall

and an advantage. If there are corner cases and worst-case

scenarios that are not captured in the set of verification vectors,

then there is clearly the potentially for the equations produced

to be optimistic, as indeed is the case with an entirely manual

process. However, whenever such corner cases are found they

can simply be added to the set of verification vectors and the

process re-run to find better solutions that correctly account

for those scenarios. As future work, not explored in this paper,

we also envisage the co-evolution of verification vectors along

with the candidate equations.

The main contribution of this paper is in introducing the

concept of a formulation assistant, based on an evolutionary

algorithm that can be used to find effective schedulability

tests (i.e. response time analysis) for real-time systems. We

provide a proof-of-concept implementation and evaluation of

this idea based on the problem of schedulability analysis

for Controller Area Network (CAN). This particular research

area was chosen as an exemplar for a number of reasons:

The correct response time analysis equations are not entirely

obvious, as evidenced by the original publication of a flawed

approach [33]–[35]. Further, the equations lend themselves to

simplification, with many different formulae providing valid

upper bounds with varying degrees of pessimism. Finally,

since message transmission times can easily be calculated

(unlike the WCET problem for tasks) and network time is

measured in units of bit times, simulations or proven exact

analysis can be used to accurately capture indicative response

times. Exploring this area also leaves open possible extensions

and variations on the basic behaviour, for example looking at

the different response time equations that would be needed

for systems where nodes on the network use FIFO queues

[13], or where the message in the transmit buffer cannot

be aborted [16], [21]. Both of these mechanisms impact the

overall scheduling policy and hence the response times of

messages.



In the real-time domain, evolutionary algorithms have pre-

viously been applied on a variety of problems including:

(i) Task mapping and allocation for distributed [24], [20]

and Network-on-Chip [19], [27]–[30] systems;

(ii) Test data generation aimed at finding worst-case execu-

tion times [36]–[38], [2]; and

(iii) Stress-testing reactive real-time systems with the aim

of finding task arrival patterns that result in missed

deadlines [5], [6].

Although employing evolutionary techniques, all of these

works differ from the research reported in this paper in

terms of both the type of problem addressed and the type

of evolutionary methods used. To the best of our knowledge,

the research reported here represents the first application of

evolutionary techniques (specifically genetic programming /

grammatical evolution) to the problem of finding schedulabil-

ity tests for real-time systems. (A preliminary publication of

our concept and ideas appeared in arXiv [15]).

II. BACKGROUND

In this section, we provide a brief background on Symbolic

Regression, Genetic Programming, and Grammatical Evolu-

tion.

Symbolic Regression is a form of regression analysis that

searches the space of mathematical expressions to find a

formula that best fits the measurement data provided. As

a simple example of symbolic regression, one might try to

determine the mathematical expression or formula for the

remaining area A of an ellipse which has a semi-minor axis

of length x, a semi-major axis of length y, and a circular

area removed from it of radius x, based on the following data

set (x, y,A): (1, 1, 0), (1, 2, 3.14), (1, 3, 6.28), (1, 4, 9.42),
(2, 2, 0), (2, 3, 6.28), (2, 4, 12.57). Note, the correct formula

is (xy − x2)π. While symbolic regression has long been

the province of mathematicians, during the 1990s effective

computerized approaches were developed based on Genetic

Programming [17] and Grammatical Evolution [25], [26].

Genetic Programming introduced by Koza [17] in the early

1990s is based on the concept of an evolutionary algorithm

which operates on a population of candidate computer pro-

grams. Each candidate program is represented by a tree

structure, i.e. a graph with nodes, edges, and terminals (leaves),

where the nodes are functions (for example +, −, ∗, /,

min, max) and the terminals are symbols (for example x,

y, 1, π). By contrast genetic algorithms typically represent

candidate solutions via fixed-length coded strings of numbers.

With Genetic Programming the population is first initialised

with a randomly generated set of candidate programs, with

tree structures occupied by combinations of the available

functions and symbols. The fitness of each candidate program

is then evaluated by executing it using the input values from

the measurement data provided, and comparing the resulting

output to the reference value associated with those inputs.

The smaller the deviation from the reference value the greater

the fitness. Subsequent generations of candidate programs are

created via evolution by recombining and mutating candidate

programs from the previous generation that are selected on the

basis of their fitness. This selection pressure acts to improve

the overall fitness of the population over the generations.

Hence, after a number of generations the method is typi-

cally able to find candidate programs with high fitness. Re-

combination involves selecting a node at random on each

of two candidates and then swapping the sub-trees at that

point. Mutation, on the other hand, selects a node or a

terminal at random and replaces it with a randomly selected

function or symbol. Alternatively, a randomly selected sub-

tree may be replaced by another randomly generated sub-tree.

For example, using prefix notation, two possible candidates

aimed at computing the remaining area A of the ellipse

mentioned earlier are: (∗ π (− (∗ y y) (∗ x x))) and

(∗ π (+ (∗ x y) (∗ y y))). Via re-combining, the next

generation might include (∗ π (+ (∗ x y) (∗ x x))) with

further mutation giving (∗ π (− (∗ x y) (∗ x x))), which

is in fact the correct solution. For an introduction to the

main principles of Genetic Programming, including detailed

illustrative examples, see the work of Sette and Boullart [31].

Grammatical Evolution introduced by Ryan and O’Neill

[25], [26] in the late 1990s retains the fundamental concepts

of Genetic Programming; however, rather than performing the

evolutionary process on the actual programs, Grammatical

Evolution represents candidate programs as expressions in the

form of variable length strings encoded according to a gram-

mar defined in Backus–Naur Form (BNF). These strings are

then evolved via re-combination and mutation operations that

respect the specific rules of the defined grammar. Grammatical

Evolution has the advantage that the rules of the grammar

provide direct control over precisely how the functions and

symbols may be combined. It permits implementation in any

programming language, and produces solutions that can be

translated into an arbitrary programming language or simply

interpreted as mathematical expressions.

For the proof-of-concept formulation assistant described in

this paper, we make use of an approach based on Grammatical

Evolution. We selected an evolutionary approach in preference

to Tabu Search or Simulated Annealing because the mutation

and crossover operators can easily be applied over grammar

trees, and the population-based approach supports parallelism.

Further, with Grammatical Evolution the grammar rules pro-

vide control over how functions and symbols are combined

which is useful in applying domain knowledge to the problem.

III. CONTROLLER AREA NETWORK

Controller Area Network (CAN) [3], [4] is a broadcast com-

munications bus that is widely used for in-vehicle networks

in the automotive and commercial vehicle industries. It is

also used in building, home, and factory automation; and in

computer integrated manufacturing. CAN is an asynchronous

multi-master serial data bus that uses Carrier Sense Multiple

Access / Collision Resolution (CSMA/CR). The CAN protocol

requires that nodes wait for a bus idle period before attempting

to transmit. If two or more nodes attempt to transmit messages

at the same time, then the node with the highest priority



message will win arbitration and continue to send its message.

The other nodes will cease transmitting and wait for the bus

to become idle again before attempting to re-transmit their

messages. (Full details of the CAN physical layer protocol

are given in [3]). In effect CAN messages are sent according

to fixed priority non-pre-emptive scheduling.

A. Background Research on CAN

In 1994-5, Tindell et al. [33]–[35] showed how research into

fixed priority scheduling for single processor systems could be

applied to the scheduling of messages on CAN. The analysis

of Tindell et al. provides a method of calculating the maximum

queuing delay and hence the worst-case response time of each

message on the network. In 2007, Davis et al. [11] corrected

significant flaws in this early analysis that could potentially

result in it providing guarantees for messages that could subse-

quently miss their deadlines during operation. As with all fixed

priority systems, appropriate priority assignment is essential to

achieve schedulability at high bus utilisations. Davis et al. [11]

also showed that Deadline minus Jitter Monotonic Priority

Order, claimed by Tindell et al. to be optimal for CAN, is

not optimal with respect to exact schedulability tests; and that

Audsleys Optimal Priority Assignment (OPA) algorithm [1]

is required in this case. Subsequently, Davis and Burns [10]

introduced the concept of robust priority ordering, able to best

tolerate additional interference due to errors on the bus.

B. System Model

In this section we describe the system model and nota-

tion used to analyse the worst-case response times of CAN

messages. The system is assumed to consist of a number of

nodes connected to each other via a CAN bus. Each node is

assumed to ensure that whenever arbitration starts on the bus,

the highest priority message queued at that node is entered

into arbitration. A fixed set of hard real-time messages are

transmitted over the network. Each message i has a unique

priority and is transmitted by a single node. We overload i
to mean either message i or priority i as appropriate. We use

hp(i) to denote the set of messages with priorities higher than

i, and lp(i) to denote those with priorities lower than i. Each

message i has a maximum transmission time of Ci. The event

that triggers queuing of an instance of message i is assumed

to occur with a minimum inter-arrival time of Ti, referred to

as the message period. Each message i has a hard deadline

Di, corresponding to the maximum time allowed from the

initiating event for an instance of the message to the end of

its transmission, at which point the message data is available

on the receiving nodes that require it. The deadline of each

message is constrained to be less than or equal to its period

(Di ≤ Ti). Each message i is assumed to be placed in a queue

and available for transmission in a bounded time Ji after its

initiating event, where Ji is the release jitter of the message.

The worst-case response time Ri of message i is defined as

the maximum possible delay from the initiating event for an

instance of that message, until it is received at the receiving

nodes. A message is schedulable if its worst-case response

time is less than or equal to its deadline (Ri ≤ Di). A system

is schedulable if all of its messages are schedulable.

C. Existing Schedulability Analysis

In this section we recapitulate the exact and sufficient

schedulability analysis for CAN given by Davis et al. [11].

The worst-case response time of message i can be determined

by examining the response time of all instances of message

i that occur within a priority level-i busy period; assuming

that message i and all higher priority messages are released

with their maximum jitter at the start of the busy period, and

then subsequently re-released as soon as possible. Further,

immediately before the initial release of these messages, the

longest message of lower priority than i begins transmission.

Bi is the blocking factor at priority i, equivalent to the longest

transmission time of any message of lower priority:

Bi = max
k∈lp(i)

(Ck) (1)

In the following, we use the index variable q to represent

an instance of message i. The first instance, released at the

start of the busy period corresponds to q = 0. The longest

time from the start of the busy period to instance q beginning

transmission is given by the solution to the following fixed

point equation:

wm+1
i (q) = Bi+qCi+

∑

k∈hp(i)

⌈

wm
i (q) + Jk + τbit

Tk

⌉

Ck (2)

Note τbit is the time for one bit to be transmitted on the

bus. The summation term represents interference from higher

priority messages that can win arbitration over message i
and so delay its transmission. Iteration starts with a value

of w0
i (q) = Bi + qCi, and ends on convergence when

wn+1
i (q) = wn

i (q), or when Ji+wn+1
i (q)− qTi+Ci > Di in

which case the message is unschedulable. The response time

of instance q is given by:

Ri(q) = Ji + wi(q)− qTi + Ci (3)

and the worst-case response time of message i is given by:

Ri = max
q=0...Qi−1

(Ri(q)) (4)

where Qi is the number of instances of message i in the

priority level-i busy period (see [11] for details of how Qi

is computed). For ease of reference, we refer to the exact

schedulability test given by (2), (3), and (4) as E1.

As shown by Davis et al. [11], when messages have con-

strained deadlines, an upper bound on the worst-case response

time of message i may be found by computing the maximum

queuing delay wi using the following fixed point iteration,

where the revised blocking term max(Bi, Ci) accounts for

push-through blocking from previous instances of the same

message:

wn+1
i = max(Bi, Ci) +

∑

k∈hp(i)

⌈

wn
i + Jk + τbit

Tk

⌉

Ck (5)



Here, iteration starts with a suitable initial value such as w0
i =

max(Bi, Ci), and ends when wn+1
i + Ji +Ci > Di in which

case the message is unschedulable, or when wn+1
i = wn

i in

which case the message is schedulable and an upper bound on

its worst-case response time is given by:

Ri = Ji + wi + Ci (6)

This sufficient test is used in commercial schedulability anal-

ysis tools, for example Mentor Graphics Volcano Network

Architect toolset2, due to its ease of implementation, speed

of operation, and extensibility [12].

D. Simplifying the Schedulability Tests

Below, we re-arrange the sufficient test given by (5) and (6)

removing the queuing delay wi which is in effect a working

variable. Since we measure time in units of τbit, this value can

be replaced by 1. Further, since ∀k Ck > τbit then ⌈(x+1)/y⌉
can be replaced by ⌊x/y⌋+1 to give an equivalent formulation.

We refer to this sufficient test as S1.

Ri =Ji + Ci +max(Bi, Ci)+
∑

k∈hp(i)

(⌊

Ri − Ji − Ci + Jk
Tk

⌋

+ 1

)

Ck
(7)

We note that due to the fixed point iteration required to find a

solution, this equation has pseudo-polynomial time complex-

ity. It can be simplified to give a closed-form polynomial time

over-approximation by substituting Di for Ri on the right hand

side. Thus we have sufficient test S2:

Ri =Ji + Ci +max(Bi, Ci)+
∑

k∈hp(i)

(⌊

Di − Ji − Ci + Jk
Tk

⌋

+ 1

)

Ck
(8)

Further simplifications are possible, retaining sufficiency at the

cost of a further degradation in precision. For example, since

−Ji −Ci within the floor function can only reduce the value

obtained this can be removed, hence we have sufficient test

S3:

Ri = Ji+Ci+max(Bi, Ci)+
∑

k∈hp(i)

(⌊

Di + Jk
Tk

⌋

+ 1

)

Ck

(9)

Finally, the original flawed schedulability test of Tindell et

al. [33]–[35] can be expressed as follows. We refer to this test

as F1:

Ri = Ji+Ci+Bi+
∑

k∈hp(i)

(⌊

Ri − Ji − Ci + Jk
Tk

⌋

+ 1

)

Ck

(10)

Note the close similarity between S1 and F1, which differ only

in the blocking term, with Bi substituted for max(Bi, Ci).

We use schedulability tests S1, S2, S3, F1, and the exact

test E1 as a basis for comparisons in Section V.

2http://www.mentor.com/products/vnd/communication-management/vna/

IV. FORMULATION-ASSISTANT

In this section, we describe the generic framework used

to implement a formulation assistant aimed at helping re-

searchers to find effective schedulability tests for real-time

systems, in the form of response time analysis equations.

The idea of a formulation assistant starts from an underlying

assumption that for a system composed of n entities that are

scheduled, a sound upper bound on the worst-case response

time of each entity i can be formulated as an equation in

the canonical form: Ri = <expr>, where <expr> is a

complex expression composed, via an appropriate grammar,

from further nested expressions, operators, and terminals

comprising symbols representing the parameters of the system.

The set of available symbols and operators must be defined

by the researcher, with due consideration for the schedul-

ing problem at hand, and the dimensionality of the results

produced (see Section IV-B). The symbols and operators

provide the fundamental building blocks from which appro-

priate response time analysis equations can be constructed.

Symbols can include various parameters (Xi) of entity i, such

as its period (Ti) and deadline (Di), and parameters of the

system itself, such as the number of processors. Operators can

include simple arithmetic functions with two arguments such

as addition, subtraction, max, and min, as well as compound

operators made up of multiplication, ceiling, and floor. More

complex operators are also possible including summation that

iterates over sub-sets of entities, with an additional index

variable k permitting the use of further symbols (e.g. Xk)

pertaining to each of these. Further, recursive equations are

possible, since the symbol Ri may also appear in expressions

on the right hand side of the equation (see Section IV-D for

details of how these are evaluated). Finally, since response

times are measured in integer units of processor or network

clock cycles, we assume that all values used are integers, and

all operators use integers as their input and output values.

We note that when designing a grammar, it is essential that

the set of operators fulfil the closure property, meaning that

each operator is able to process all possible values generated

by other operators and the symbols (i.e parameters). Further,

the grammar must also be sufficient in the sense that it must

be possible to solve the problem using the proposed set of op-

erators and symbols [31]. As well as an appropriate grammar,

the method relies on a set of verification vectors. Each vector

provides the parameter values for all of the scheduled entities

in a concrete system, as well as their indicative response times.

The indicative response times are guaranteed lower bounds

on the worst-case response time of that entity, and may be

obtained via measurements taken from: (i) a real system, (ii)

a cycle-accurate simulation of the system, or (iii) a simulation

using an appropriate high level model.

The formulation assistant uses an evolutionary algorithm

which makes use of the grammar and the verification vectors to

find response time equations that compute tight upper bounds

on the indicative response times given in the verification

vectors. The evolutionary algorithm first creates an initial



population of candidate equations at random and evaluates

their fitness. The fitness of a candidate equation determines the

probability that it will be selected to produce new candidates

in the next generation via recombination with other candidates

and mutation. The idea is that this selection pressure ensures

that the overall fitness of the population increases over a num-

ber of generations, and the algorithm is able to find individual

candidate equations with high fitness, i.e. good solutions to

the optimisation problem considered. The objective or fitness

function is key to this.

The fitness of each candidate equation is determined with

respect to the set of verification vectors. Each candidate

equation is evaluated for each entity in each verification vector,

using the parameter values stored in the vector. This results

in a computed response time. The computed response times

are compared to the indicative response times to determine the

overall fitness of the candidate equation.

A. Fitness Function

The fitness function compares the indicative response times

from the verification vectors with the computed response times

produced by a candidate equation. The design of the fitness

function is vitally important in finding good quality solutions

to the optimisation problem considered.

For a given candidate equation, fitness is computed for each

of the n entities in each of the V verification vectors. The

overall fitness is then simply the sum of these nV fitness

values. For each entity, the pair of indicative Rindic
i and

computed Rcomp
i response times are compared, and the fitness

function defined as follows:

F =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 Rcomp
i = Rindic

i

min
(

100,
(

Rcomp

i

Rindic
i

− 1
))

Rcomp
i > Rindic

i

W
(

1−
Rcomp

i

Rindic
i

)

Rcomp
i < Rindic

i

(11)

If the computed response time is equal to its indicative

counterpart, then the equation provides perfect analysis, and

the contribution to the fitness function is zero. Alternatively,

if the computed response time is greater than its indicative

counterpart, then the candidate equation at least provides a

sound analysis, even though it may not be a good one. In this

case, the fitness depends on the degree of over-approximation

up to a limit (a 100-fold over-approximation). Finally, if

the computed response time is smaller than its indicative

counterpart, then the equation does not provide sound analysis.

In this case, the fitness depends on both the degree of under-

approximation, and the weighting factor (W > 1) used to

penalise unsound results. Here, the largest value that can

be obtained is F = W , which occurs when the computed

response time is zero.

As the evolutionary algorithm iterates over a number of

generations, the weighting factor W used in the fitness

function is varied to adjust the amount of tolerance given

to unsound equations. Initially, W = 1 giving a balance

between under and over-approximation. Assuming there are

G generations in total, then W is increased exponentially

Fitness 

W 

0 (100+1) 

10000 

1 

100 

10 

Fig. 2. Fitness function

for the first G/2 generations up to W = 10000, meaning

that a single under-approximation (Rcomp
i = 0) contributes a

fitness score equal to having a two-fold (Rcomp
i = 2Rindic

i )

over-approximation for 10,000 entities. (More precisely, for

generation g = 0 . . . G/2, W = 10000(2g/G)). For the second

G/2 generations, W = 10000 permitting the algorithm to

refine the resulting expressions against an unchanging fitness

function. Figure 2 illustrates how the fitness function varies

with the value of Rcomp
i and the weighting factor used to

penalise under-approximation of Rindic
i .

Note that although the fitness function was derived ac-

cording to the arguments given above, and refined via the

evaluation of different variants (see Section VI), a systematic

study of the most appropriate fitness functions to use remains

an avenue for future work.

B. Dimensionality and Scale-Invariance

It is important that the grammar is designed to ensure

that the expressions generated have the correct dimensionality,

i.e. produce values in the same units as the response time Ri.

This ensures that the candidate equations produced are also

scale-invariant, meaning that it does not matter what scale the

unit of measurement has, provided that it is used consistently

throughout. These properties can be achieved by ensuring that

all of the operators produce outputs that are of the same type

and dimensionality as their inputs.

Since parameters such as the period Ti, deadline Di and

response time Ri are measured in the same units of time,

expressions such as Ri = Di are dimensionally correct. By

contrast, an expression such as Ri = Di ∗Di is dimensionally

incorrect, since the right hand side evaluates to a quantity

that is in units of time squared. Assigning such a value to

Ri would be both incorrect and meaningless. The operators

add, subtract, min, max, and summation all result in the same

units (dimensionality) for their outputs as their inputs, whereas

multiply and divide (including floor and ceiling) do not. To

preserve the correct dimensionality of the resulting expression,

every multiply operation has to be exactly matched by a

corresponding divide (either floor or ceiling) and vice-versa.

To ensure that this is the case in our proof-of-concept imple-

mentation we make use of compound operators, effectively

⌈A/B⌉C and ⌊A/B⌋C rather than individual ceiling, floor,

and multiply operators. This approach has the advantage that

all of the expressions produced are dimensionally correct, and

therefore meaningful. Further, it greatly reduces the size of the

potential search space by eliminating all of the dimensionally

incorrect expressions that could otherwise occur.



C. Grammar Operators and Symbols

In this subsection, we outline the grammar used to describe

response time equations. The basic grammar given below

is appropriate for problems of fixed priority preemptive or

non-preemptive scheduling on a single processor or network.

The set of operators fulfil the essential closure property,

meaning that each operator is able to process all possible

values generated by other operators and the terminal symbols

(i.e parameters). The canonical form of the candidate equations

is: Ri = <expr>, where <expr> is expressed in Backus–

Naur Form in the text box at the end of this sub-section.

Note in this grammar, we use the symbols * and $, and *
and / to represent multiply combined with ceiling, and mul-

tiply combined with floor as follows: C*(A$B) = ⌈A/B⌉C,

C*(A/B) = ⌊A/B⌋C. Further, ˜ and _ are used to represent

the max and min operators, thus (A˜B) = max(A,B) and

(A_B) = min(A,B). Finally, the sigma operator evaluates

the summation of its second operand over the set of values

specified by its first operand (<range>), which can indicate

values of k from the sets lp(i), lep(i), hp(i), hep(i), and all(i)
i.e. all priorities.

The grammar is designed to constrain the complexity

of the expressions that can be produced in a number of

ways. Firstly, sigma (i.e. summation) terms are not per-

mitted to nest inside other summations. This is enforced by

<exprInSum> which does not include sigma expressions.

Similarly, the compound operators for multiply combined with

ceiling and multiply combined with floor are not permitted

to nest inside floor or ceiling expressions. This is enforced

by <exprInFloorCeil>. The grammar further enforces

that parameters indexed by k, the iterator in summations, are

only permitted within summations. This is enforced via the

use of <kVar> and <kNumDenVar>. Further, the response

time can only be composed of multiples of the parameters

representing blocking Bi, release jitter Ji, transmission time

(or execution time) Ci, and interference Ck. Other parameters

such as Ti, Tk, and Jk can only contribute to the values of

the multipliers. This is enforced via the separation between

<iVar> and <iNumDenVar>, and between <kVar> and

<kNumDenVar>.

For experiments seeking to find non-recursive expressions,

the grammar permits the use of the deadline Di as a proxy for

the response time on the right hand side of the expressions. In

the grammar for recursive expressions this is simply replaced

by Ri in the definition of <iNumDenVar>. Note that the

deadlines of other entities (e.g. Dk) have no impact on the

response time, since deadlines are in effect arbitrary points in

time, that do not affect the actual schedule produced. Hence

Dk does not appear in the grammar.

With the exception of deadlines, explained above, all of

the message parameters from the system model used for the

analysis of CAN (see section III) are included in the grammar.

Note, the blocking factor Bi is also included even though it

is a simple compound term. This is done because formulation

assistance requires domain knowledge, and it is reasonable to

assume that researchers would know that blocking is important

in any form of fixed priority scheduling.

Note that although many of the CAN schedulability analysis

equations, for example (7) to (10) include the term “+1” in

addition to a floor function, we do not permit the constant 1 in

the grammar. This is because the constant 1 is a dimensionless

quantity, and its use would prevent expressions from being

dimensionally correct and scale-invariant. Instead, we note that

the addition of the denominator to the numerator in a floor or

ceiling function is the same as “+1”, i.e. ⌊(A+B)/B⌋ =
⌊A/B⌋ + 1 hence use of the constant 1 or indeed any other

value that is not derived from the set of parameters is not

essential in the derivation of correct equations.

<test> ::= Ri = <expr>

<expr>::=

(<expr><op><expr>)|<iVar>|

<expr>*(<exprInFloorCeil>$<exprInFloorCeil>)|

<expr>*(<exprInFloorCeil>/<exprInFloorCeil>)|

sigma(<range>)(<exprInSum>)|((<expr>)˜(<expr>))|

((<expr>)_(<expr>))

<exprInSum>::=

(<exprInSum><op><exprInSum>)|<iVar>|<kVar>|

<exprInSum>*(<exprInSumFloorCeil>$<exprInSumFloorCeil>)|

<exprInSum>*(<exprInSumFloorCeil>/<exprInSumFloorCeil>)|

((<exprInSum>)˜(<exprInSum>))|

((<exprInSum>)_(<exprInSum>))

<exprInFloorCeil>::=

(<exprInFloorCeil><op><exprInFloorCeil>)|<iVar>|

<iNumDenVar>|sigma(<range>)(<exprInSumFloorCeil>)|

((<exprInFloorCeil>)˜(<exprInFloorCeil>))|

((<exprInFloorCeil>)_(<exprInFloorCeil>))

<exprInSumFloorCeil>::=

(<exprInSumFloorCeil><op><exprInSumFloorCeil>)|

<iVar>|<kVar>|<iNumDenVar>|<kNumDenVar>|

((<exprInSumFloorCeil>)˜(<exprInSumFloorCeil>))|

((<exprInSumFloorCeil>)_(<exprInSumFloorCeil>))

<op>::=+|-

<range>::=forall_k_InLp_i|forall_k_InLep_i|forall_k_InHp_i|

forall_k_InHep_i|forall_k

<iVar>::=Bi|Ci|Ji

<kVar>::=Ck

<iNumDenVar>::=Ti|Di (or in the recursive case ::=Ti|Ri)

<kNumDenVar>::=Tk|Jk

D. Recursive Equations

Since candidate equations may include the symbol Ri on

the right hand side (RHS) they are assumed to be potentially

recursive and therefore to require iterative evaluation. Iterative

evaluation starts using an initial value, equivalent to the

response time without any interference (i.e. Ji + Ci) for any

Ri symbols on the RHS of the equation. The equation is then

evaluated, producing a new value for Ri. This value is then

substituted for any Ri symbols on the RHS ready for the next

iteration, and so on. The intermediate results of evaluating the

equation are monitored on each iteration, and a number of

rules and constraints are applied to ensure viable behaviour.

These rules are designed to permit the evolution of equations

that converge towards a solution in either a monotonic or non-

monotonic way (for example, similar to the behaviour of a

binary search). The rules are as follows: (i) If the result is the

same on two consecutive iterations, then it has converged and

iteration is terminated. All equations without Ri on the RHS

converge like this after two iterations, since all other parameter

values are fixed. (ii) If iteration does not converge, then it is

limited to at most N steps, where N is a suitably large number



defined by the researcher. We note that a reasonable limit is

required in practice to avoid excessive run times. A limit of

100 iterations is used in our proof-of-concept experiments. (iii)

If a negative value, divide by zero, or too large an integer

is produced, then iteration is terminated. In the case of a

negative value, the result is assumed to be zero, which is a

very poor value from the perspective of the fitness function.

In the case of a divide by zero, or too large an integer, the

final result is assumed to be the largest integer represented by

the implementation. Again, this is also a poor value from the

perspective of the fitness function.

V. PROOF-OF-CONCEPT EVALUATION

In this section, we describe evaluation of the proof-of-

concept formulation assistant on the problem of CAN schedu-

lability analysis. Here, we aim to evolve simple but effective

analysis formulated as a single expression that is directly

comparable to existing schedulability tests S1, S2, S3, and

F1 for CAN. We note that the exact test E1 is more complex,

requiring a two stage process. Evolving such tests is beyond

the scope of this initial investigation.

A. Verification Vectors

The verification vectors for the proof-of-concept implemen-

tation were obtained assuming a CAN bus using 11-bit mes-

sage identifiers. First, we randomly generated 100 verification

vectors of 20 messages each as follows: The period Ti of each

message was chosen at random according to a log-uniform

distribution from the range 5 to 500ms; thus generating an

equal number of messages in each time band (e.g. 5 to 50ms,

50 to 500 ms etc.). The deadline of each message was chosen

at random according to a uniform distribution in the range

0.5Ti to Ti. Thus all messages had constrained deadlines,

with a minimum deadline of 2.5ms, and a maximum deadline

of 500ms. The release jitter of each message was chosen at

random according to a uniform distribution in the range 0

to 0.5Di. The number of data bytes was chosen at random

according to a uniform distribution in the range 1 to 8 bytes.

The priorities of the messages were assigned in Deadline

minus Jitter (Di − Ji) monotonic priority order.

The timing characteristics of each verification vector (mes-

sage set) were adjusted to obtain the desired total network

utilisation. This was done by scaling the period, deadline,

and release jitter of every message by the same factor. Five

message sets were thus obtained for each of the 20 utilisation

levels from 50% to 97.5% in steps of 2.5%. (This equates

to a variety of bus speeds in the range 66KBits/sec to

250KBits/sec).

In addition, a further 25 verification vectors were generated

(5 for each of the 5 utilisation levels from 25% to 35% in

steps of 2.5%) using the same parameters as described above,

but with their priorities assigned at random. (See section VI

for a discussion as to why we added these vectors).

Finally, we also generated 10 verification vectors that high-

light the flaw in the original analysis of CAN. These message

sets were deemed schedulable by the schedulability test F1, but

are in fact unschedulable according to the exact test E1. Due to

the difficulty in generating such message sets, each comprised

10 messages, with 8 data bytes, implicit deadlines (Di = Ti),

zero release jitter, and utilisation levels from 95% to 99.5%.

Priorities were assigned in Deadline Monotonic order. The 10

message sets revealing this flaw were found from a total of

approx. 100,000 message sets with these characteristics.

In experiments 1-3 we determined the indicative response

times (Rindic
i ) using exact analysis. This gives the evolutionary

algorithm the best possible data to work from3. We then

relaxed the quality of this data in experiment 4 to see if the

evolutionary algorithm could still produce high quality candi-

date equations from imperfect data, similar to that produced

via simulation or measurement in cases where the worst-case

scenario(s) are unknown. Note, we did not use simulation to

generate indicative response times, since to do so would raise

the question of what to simulate. As the worst-case scenario

is known for CAN, simulation of that scenario would only

serve to provide a slow means of finding the exact worst-case

response times. Instead we used the analytical form of exact

analysis, as that provides a ground truth to compare against,

and can be evaluated quickly. We then controlled the degree

of approximation of the indicative response times fed into the

evolutionary algorithm, as described in the following section.

Note that since all message sets considered in our proof-of-

concept evaluation had a total utilisation of strictly less than

1, we were able to use exact analysis to calculate the exact

response time for each message irrespective of whether it was

schedulable or not. This was achieved by only terminating the

fixed point iteration in (2) on convergence, rather than when

the deadline was exceeded.

B. Parameter Settings for the Grammatical Evolution

We used the EpochX open source genetic programming

framework (v1.4.1) to implement Grammatical Evolution. The

basic parameter settings used were as follows: population size

1000, number of generations 2000, mutation rate 0.1 (with

mutation of a small number of symbols permitted at the same

time). The form of selection used was Fitness Proportionate

Selection, where the probability of selecting each candidate for

re-combination is determined in proportion to the reciprocal4

of it fitness value. We repeated each experiment 500 times,

recording the single best result from each run. We then took

the 50 top results from this set (see Section VI for a discussion

as to why we did this). The verification vectors used contained

100 message sets in Deadline minus Jitter monotonic priority

order, of which 43 were schedulable; 25 message sets in

random priority order, of which 7 were schedulable, and 10

message sets that reveal the flaw in test F1, none of which

were schedulable. The parameters of the message sets were as

described in Section V-A.

3This is representative of problems where exact response times can be
found by simulating over the hyperperiod, but efficient schedulability tests
are unknown.

4The reciprocal of the fitness value is used, since in our experiments smaller
fitness values represent better fitness.



C. Results

To assess the quality of the results produced, we made use

of a larger set of assessment vectors that were not used in the

evolutionary process. These were generated in the same way

as the verification vectors, but contained 10 times as many

message sets. The assessment vectors contained 1000 message

sets with priorities in Deadline minus Jitter monotonic priority

order, of which 421 were schedulable; 250 message sets in

random priority order, of which 48 were schedulable, and 100

message sets that highlighted the flaw in test F1, none of

which were schedulable. Note, the fitness values referred to in

the remainder of the paper are with respect to the assessment

vectors (i.e. Assessment Fitness).

Test Assessment Fitness Num. of optimistic R
comp

i

S1 1702 0
S2 12038 3
S3 16445 0
F1 244889 100
E1 0 0
Ri = 0 260000000 26000
Ri = Di 3681912 5038

TABLE I
ASSESSMENT FITNESS OF EXISTING SCHEDULABILITY TESTS

Table I gives the fitness values for the existing schedulability

tests, including the sufficient tests: S1, S2, and S3, the flawed

test F1, and the exact test E1. Also shown is the fitness for

Ri = 0 and Ri = Di. Note that the exact test E1 has a fitness

of zero, as it provides perfect results. The flawed test F1 has a

fitness score of 1501, slightly better than that of test S1 (1582),

if the assessment vectors that expose the flaw are omitted;

however, adding those vectors increases its fitness score to

244889 due to 100 optimistic values of Rcomp
i . Note, test S2

also results in 3 optimistic values for Rcomp
i , this may seem

surprising since the test is sufficient; however, the optimistic

values occur for cases where the message is unschedulable

(Rindic
i > Rcomp

i > Di) and is correctly identified as such by

the test. Assuming Ri = 0 results in the maximum (i.e. worst

possible) fitness score of 260000000, since the response time

of every one of the 2600 messages in the assessment vectors

is underestimated by the maximum amount. Assuming that

Ri = Di also results in poor fitness due to the fitness function

heavily penalising the unschedulable cases (Rindic
i > Di).

1) Experiment 1: Baseline: As a baseline, we used the

formulation assistant with no recursion permitted (i.e. Ri

excluded from the grammar), precise indicative response times

acting as a ground truth, and none of the corner cases that

expose the flaw in test F1. The best candidate expression

that was found is shown below, and then repeated after

simplification as an equation. The fitness of this equation is

12624, which is comparable to the fitness (12038) of test S2

that also does not include Ri in its formulation. This equation

did not result in underestimation of response times for any

messages in the assessment vectors.

((Ji+sigma_(forall_k_InHp_i)

(((Ci)˜(Ck*(((Tk+(Ci+(Jk-(Ji-Di))))-Tk)$Tk)))))+(Bi+Ci))

Ri =Ji + Ci +Bi+
∑

k∈hp(i)

max

(

Ci,

⌈

Di − Ji + Ci + Jk
Tk

⌉

Ck

)

(12)

The mean fitness of the top 50 results in this experiment

was 21651 and the mean number of optimistic Rcomp
i values

was 8.84, with 7 expressions producing no optimistic values,

and 9 others producing 3 or fewer optimistic values, similar

to test S2.

2) Experiment 2: Adding Recursion: Here, we added the

possibility of recursion to the baseline settings by including Ri

instead of Di in the grammar. The best candidate expression

that was found is shown below, and then repeated after

simplification as an equation. The fitness of this equation is

3084, which is a substantial improvement over the fitness

(12038) of test S2, while still some way from the fitness

(1702) of test S1 that also includes Ri in its formulation. This

equation did not result in underestimation of response times

for any messages in the assessment vectors.

((((Ji+(Bi+(Ci+sigma_(forall_k_InHp_i)(Ck)))))˜(Bi))

+sigma_(forall_k_InHp_i)(Ck*(((Ri-(Ji-Jk))

-((((Tk)˜(Ck)))˜(((Jk)˜((Bi+((Tk-Ji)-Ck)))))))$Tk)))

Ri =Ji + Ci +Bi+
∑

k∈hp(i)

⌈

Ri − Ji + Jk −max(0, Bi − Ji − Ck)

Tk

⌉

Ck

(13)

The mean fitness of the top 50 results in this experiment

was 27918 and the mean number of optimistic Rcomp
i values

was 8.98, with 13 expressions producing no optimistic values.

Note, it would appear that the small amount of pessimism

in both (12) and (13) is enough to avoid / obscure incorrect

classification of the corner cases, even though these equations

were generated without regard to them.

3) Experiment 3: Adding Corner Cases: Here, we added

extra verification vectors that reveal the flaw in test F1. Again,

recursion was permitted, and precise indicative response times

provided a ground truth. The best candidate expression that

was found is shown below, and then repeated after simplifica-

tion as an equation. The fitness of this equation is 3096, which

is very similar to the fitness (3084) of the best expression from

experiment 2, while still some way from the fitness (1702) of

test S1 that also includes Ri in its formulation. This equation

did not result in underestimation of response times for any

messages in the assessment vectors.

(Bi+(Ci+(Ji+sigma_(forall_k_InHp_i)

(Ck*((((((((Ri)_(Tk)))˜(Ck)))_(Jk))+(Ri-Ji))$Tk)))))

Ri =Ji + Ci +Bi+
∑

k∈hp(i)

⌈

Ri − Ji +min(max(Ri, Ck), Jk)

Tk

⌉

Ck
(14)

The mean fitness of the top 50 results in this experiment

was 20816 and the mean number of optimistic Rcomp
i was

6.32, with 20 expressions producing no optimistic values.

These improvements over experiment 2 are most likely due

to exposure to corner cases in the verification vectors helping

to avoid underestimation of response times in those cases.



4) Experiment 4: Adding Approximation: This experiment

was the same as experiment 3, except that we approximated

the indicative response times with respect to the ground

truth. Approximate indicative response times used values

chosen at random from a uniform distribution in the range

[0.8Rexact
i , Rexact

i ]. Note, in the case of unschedulable mes-

sages (with Rexact
i > Di), this could potentially cause them

to appear to be schedulable.

The best candidate expression that was found is shown

below, and then repeated after simplification as an equation.

The fitness of this equation is 4710, which is worse that the

fitness of the best expressions from experiments 2 and 3 (3084

and 3096), but still considerably better than the fitness of the

polynomial time tests S2 and S3. Again, this equation did not

result in underestimation of response times for any messages

in the assessment vectors.

((Ji+(Bi+Ci))+sigma_(forall_k_InHp_i)

(Ck*((((Ci+Ri)+Jk)-Ji)$Tk)))

Ri =Ji + Ci +Bi+
∑

k∈hp(i)

⌈

Ri − Ji + Ci + Jk
Tk

⌉

Ck
(15)

The mean fitness of the top 50 results in this experiment was

27575 and the mean number of optimistic Rcomp
i was 29.02,

with only 6 expressions producing no optimistic values. This

degradation in performance with respect to experiment 3 is

due to the use of less precise indicative response times.

It is interesting to note that there is substantial common-

ality in the resulting expressions from experiments 1–4. In

particular, certain building blocks often occur, for example

Ji+Ci+Bi and the summation over hp(i) with Ck multiplied

by some factor in the numerator and Tk in the denominator.

Further, Ri, +Jk, and −Ji often appeared in this multiplier.

These building blocks are present in the known sufficient

tests. (Note ⌈X+1
Y ⌉ = ⌊X

Y ⌋ + 1 when X and Y are positive

integers, thus floor and ceiling operators can be interchanged

in approximate formulae where all parameters are positive

integers).

5) Experiment 5: Random Search: Finally, we note that

a purely random search is ineffective at generating useful

formulae. Repeating experiment 3 for 50 runs with purely

random generation of 2,000,000 expressions that comply with

the grammar resulted in a best expression with a fitness of

56477, compared to a best of 3096 for the evolutionary algo-

rithm. The best expression found via random search is shown

below, and then repeated after simplification as an equation.

We note that in common with other expressions found by

random search, this equation returns values no smaller than

the message period, which is an easy but inaccurate way of

avoiding underestimating the response time in the majority of

cases, but also deems almost every message unschedulable,

since all messages have constrained deadlines (Di ≤ Ti).

(((((((((((Ji)˜(Bi)))˜(Bi*(Ci$Ri))))˜(Ci*(Ti$Ci))))˜(Ji)))˜

(Ji))+sigma_(forall_k_InHp_i)(Ck))

Ri =

⌈

Ti

Ci

⌉

Ci +
∑

k∈hp(i)

Ck (16)

VI. LESSONS LEARNED

In this section we discuss the lessons learned in developing

a proof-of-concept formulation assistant that can be used

to derive expressions for response time analysis of CAN

messages. During development we made improvements in four

main areas:

1. Improving the grammar:

a) Dimensionality: We restricted the use of ceiling, floor,

and multiply to only appear as compound operations. This

ensured that all expressions produced were scale invariant

and dimensionally correct, and therefore meaningful.

b) Nesting restrictions: We constrained the use of the sum-

mation operator preventing it from being nested within

another summation, since this led to expressions that were

very complex and slow to evaluate. Similarly, we prevented

ceiling and floor functions from nesting within other ceiling

or floor functions.

c) Symbol restrictions: We noted that due to the way in which

the system is scheduled, the actual response times can

only be composed of multiples of Ci, Bi, Ji, and Cj . We

therefore restricted the other symbols such as Ti, Tj , Jj
to only appear within the multipliers for expressions that

included those former symbols.

2. Improving the Verification Vectors:

a) Correlations between parameters: Correlations between

parameter values had to be avoided, as this can lead to

the inappropriate substitution of one parameter for another.

The initial verification vectors we used had all of the

messages in Deadline minus Jitter monotonic priority order.

This resulted in strong correlations between the value of

Di and the values of Dj for higher priority messages,

and similarly between Ti and Tj . As a consequence,

the evolutionary algorithm would often find high fitness,

but flawed expressions that contained summations of the

deadlines or periods of higher priority messages. This issue

was addressed by including additional vectors with random

priority ordering.

b) Range of values for variables: The verification vectors

used required careful consideration to ensure sufficient

variability in parameter values. This was necessary, because

the evolutionary approach cannot distinguish between pa-

rameters that always take the same or very similar values.

Initially, release jitter was set to a small range of values

from 0 to 2.5ms. We found that this resulted in Ji or Jj
appearing in the evolved expressions as a proxy for Ci

or Bi, hence producing flawed equations. This problem

was addressed by expanding the range of jitter values.

For similar reasons, we ensured that the message lengths

were variable (1-8 data bytes), rather than a fixed size, and

therefore that Ci, Cj , and Bi could be distinguished. We

also used constrained deadlines so that Ti and Di, and Tk

and Dk were distinguishable.



3. Tuning the Grammatical Evolution:

a) Fitness Function: As with any evolutionary algorithm,

the design of the fitness function is vitally important. In

particular, the form of the fitness function needed to heavily

penalise under-approximation of indicative response times;

however, applying a heavy penalty to the early generations

of candidate equations can be counter-productive, hence the

variable weighting factor W used in our implementation.

We experimented with different values for W . We found

that improved results were obtained if we increased the

value of W over the first half of the generations up to a

value of 10,000. We tried values of W = 1, 10, 100, 1,000,

104, 105, and 106, with notable improvements up to 104,

but not thereafter. We therefore used W = 10, 000.

b) Offset to the Fitness Function: We explored adding an

offset of 0, 0.5, 1, 2, 4, and 8 to the value returned by the

fitness function for each message. This offset impacts the

fitness proportionate selection, with larger offsets giving

a higher probability that weaker candidates would still

be included in the selection. We found no significant

improvement using non-zero offsets and hence used zero.

c) Number of Generations: We explored the effect that the

number of generations: 500, 1000, 2000, 5000, had on the

performance of the evolutionary algorithm. We found that

increasing the number of generations beyond 2000 had no

significant effect on the quality of the resulting expressions.

We therefore used 2000.

d) Escaping from local minima: Search based on Grammatical

Evolution is a trade off between exploration of the vast

search space and exploitation, i.e. searching in the vicinity

of good solutions. Small changes to an expression can

easily result in large changes in computed response times

and hence fitness, which causes difficulties in escaping

from evolutionary dead-ends (local minima). To mitigate

this problem, we repeated each experiment 500 times,

taking the results of the best 50 runs.

4. Improving the implementation:

a) Parser implementation: The standard EpochX parser is

capable of handling arbitrary expressions (i.e. Java code)

and as a consequence is relatively slow when all that is

needed is to parse simple mathematical expressions. We

implemented our own parser, which amounts to approxi-

mately two pages of Java code, this improved the overall

run time of the evolutionary algorithm by a factor of

approximately 100.

b) Parallel execution: We used a high performance compute

cluster to evolve the 500 populations for each experiment

in parallel. This resulted in an overall elapsed time for each

experiment of approximately 48 hours.

VII. CONCLUSIONS

In this paper, we introduced the idea of a formulation

assistant to aid researchers seeking to derive schedulability

tests for real-time systems. Our proof-of-concept formulation

assistant focused on the problem of deriving schedulability
analysis equations for Controller Area Network (CAN) using

Grammatical Evolution of expressions.

The main contributions of this work are as follows:

(i) We showed that an approach based on Grammatical

Evolution is viable and can provide interesting insights

into the schedulability analysis equations required.

(ii) The best equations produced by the formulation assistant

were broadly similar in quality to known sufficient

schedulability tests, when measured against a large set

of assessment vectors.

(iii) The equations produced were viable and showed a rel-

atively small degradation in quality when approximate

rather than exact response times were used as the basis

of the fitness function. This indicates that the approach

could be effective when the input data is derived from

simulation, i.e. in cases where exact response times are

unknown.

(iv) The lessons learned in the development of the proof-of-

concept formulation assistant, discussed in Section VI.

There are a number of interesting directions for future work.

These include:

• An Island-based approach: We intend to explore an

island-based approach that enables the re-combination

and evolution of the best solutions found from a number

of different island populations that are first evolved in

parallel and then combined. The aim being to avoid the

algorithm becoming trapped in evolutionary dead-ends

(local minima).

• Unsolved schedulability analysis problems: We intend to

apply the formulation assistant concept to both solved

and unsolved schedulability analysis problems, particular

in the area of Network-on-Chip, using simulation as a

means of determining indicative response times.

• Co-evolution of verification vectors: Since simulation

can typically only provide necessary schedulability in-

formation as reference data, it is important to try and

avoid candidate equations being wrongly classified as

sufficient, when in fact in some cases they can under-

estimate the exact response times. We therefore intend

to explore the co-evolution of the verification vectors

alongside the population of candidate equations. The aim

being to identify corner cases, improving the quality

of the verification vectors and hence also the resulting

schedulability analysis expressions.

We note that the schedulability analysis equations derived

by the formulation assistant approach are ultimately only as

good as the verification and assessment vectors used. While

we expect that the vectors themselves can be improved via

co-evolution, there is still no guarantee that all relevant corner

cases will be discovered. This is where the approach links back

to researchers with experience in schedulability analysis who

can interpret the expressions derived, simplify them and seek

to prove their correctness by other means, such as employing

proof assistance.

In the appendix that follows, we examine whether the

best expressions returned by the evolutionary algorithm in



experiments 1 – 4 provide sufficient schedulability tests. The

sketch proofs showing that (12) and (15) provide sufficient

tests and the counterexamples showing that (13) and (14)

do not, illustrate the way in which formulation assistance is

intended to be used by researchers. Formulation assistance

provides a means of finding candidate schedulability analysis

equations, but does not fully automate the process of deriving

schedulability tests. The burden of proof that such tests are

sufficient remains with the researchers. They can interpret,

refine, and simplify the expressions found via formulation

assistance, develop proofs (possibly employing automated

proof assistance) and also construct counter examples, which

can in turn be used to refine and improve the verification and

assessment vectors used by the evolutionary algorithm.

APPENDIX

In this appendix, we examine whether the best expressions

returned by the evolutionary algorithm in experiments 1 – 4

provide sufficient schedulability tests.

To show that the expression with the best fitness from

Experiment 4, i.e. (15) provides a sufficient test, we make use

of the proven exact schedulability analysis for CAN [11]. This

analysis needs to examine all instances of message i that are

released within a priority level-i busy period. The length Li of

this busy period is given by Eq. (8) in [11]. If Li ≤ Ti−Ji then

this busy period ends before the release of the next instance

of message i and hence only the first instance of that message

need be examined to determine schedulability. Equivalently, if

the solution L∗

i to the following fixed point iteration, starting

from an initial value of L∗

i = Ji + Ci, does not exceed Ti,

then only the first instance of message i need be examined to

determine schedulability. (Note, that when L∗

i ≤ Ti only one

instance of message i occurs within the busy period and so its

contribution Ci is taken outside of the summation).

L∗

i = Ji + Ci +Bi +
∑

k∈hp(i)

⌈

L∗

i − Ji + Jk
Tk

⌉

Ck (17)

Re-writing and simplifying the exact test i.e. (2) and (3) for

the case where q = 0, schedulability of the first instance

of message i can be checked via the following fixed point

iteration, starting from an initial value of R∗

i = Ji + Ci.

R∗

i = Ji +Ci +Bi +
∑

k∈hp(i)

⌈

R∗

i − Ji − Ci + Jk + τbit
Tk

⌉

Ck

(18)

Together, (17) and (18) form a sufficient schedulability test.

If L∗

i ≤ Ti, then only the first instance of message i need

be checked to determine schedulability, and if R∗

i ≤ Di, then

that first instance is schedulable.

To prove that the best expression from Experiment 4 (15)

provides a sufficient test, we need only show that if Ri ≤
Di in (15), then it follows that both L∗

i ≤ Ti in (17) and

R∗

i ≤ Di in (18). Comparing (15) and (17) the two fixed

point iterations are identical except for the extra +Ci term in

the numerator of the ceiling function in (15). Since Ci > 0,

it follows that L∗

i ≤ Ri (as computed by (15)) and hence if
Ri ≤ Di, we have L∗

i ≤ Ri ≤ Di ≤ Ti. Comparing (15)

and (18) the two fixed point iterations are identical except

that the +Ci term in the numerator of the ceiling function

in (15) is replaced by +τbit − Ci in (18). Since Ci > 0 >
τbit − Ci, it follows that R∗

i ≤ Ri (as computed by (15))

and hence if Ri ≤ Di, we have R∗

i ≤ Ri ≤ Di. Thus if

message i is deemed schedulable according to (15) then it is

also schedulable according to the sufficient test comprising

(17) and (18), hence (15) also provides a sufficient test.

Using the above result, we can also show that the best

expression from Experiment 1, i.e. (12) also provides a suf-

ficient test. Comparing (12) and (15), we can ignore the Ci

term inside the max() function in (12) as this term can only

make the computed value of Ri from this equation larger. The

only remaining difference between (12) and (15) is then the

substitution of Di for Ri within the numerator of the ceiling

function. It follows that whenever (12) computes a value for

Ri ≤ Di, then the value computed by (15) can be no larger,

and thus also indicates schedulability. Since (15) provides a

sufficient test, so does (12).

Next, we show that the expression with the best fitness

from Experiment 3, i.e. (14) does not provide a sufficient

test. This can be seen from the following counter example

with three messages. The message parameters (Ci, Di, Ti,

Ji, Bi) measured in bit transmission times are as follows:

message 1 (125, 1000, 1000, 750, 125), message 2 (125,

375, 10,000, 0, 125), and message 3 (125, 10,000, 10,000,

0, 0). Equation (14) computes the response time of message

2 as 375; however, the exact value is 500. This occurs when

message 1 exhibits its maximum release jitter of 750 and is

released simultaneously with message 2, just as message 3

starts transmission. Message 1 is then released again 250 bit

times later leading to a sequence of transmitted instances of

messages 3,1,1,2, and a response time of 500 for message 2.

Message 2 is therefore unschedulable, and hence (14) which

deems this message schedulable does not provide a sufficient

test. (We note that this counterexample points to the need for

improved verification and assessment vectors that permit large

values for release jitter, creating back-to-back interference).

Finally, we show that the expression with the best fitness

from Experiment 2, i.e. (13) also does not provide a sufficient

test. This can be seen from the following counterexample with

three messages as follows: message 1 (65, 200, 200, 0, 135),

message 2 (65, 10,000, 10,000, 0, 135), and message 3 (135,

10,000, 10,000, 0, 0). Equation (13) computes the response

time of message 2 as 265; however, the exact value is 330. This

occurs when messages 1 and 2 are released simultaneously,

just as message 3 starts transmission. Message 1 is then

released again 200 bit times later leading to a sequence of

transmitted instances of messages 3,1,1,2, and a response time

of 330 for message 2. The reason that (13) does not provide

a sufficient test can also be seen via comparison with (18),

which is an exact test when the priority level-i busy period

includes only one instance of message i, as is the case here

for message 2. Since (18) is exact, yet (13) can result in a

smaller computed value of Ri when Bi − Ck > Ci − τbit, it

follows that (13) can produce optimistic results.
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