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ABSTRACT 

There is currently a lack of a reliable theory capable of making accurate predictions of the thermal 

enhancement in nanofluids (with relatively low solid volume fractions). The work described 

therefore assesses the thermal conductivity of nanoparticle suspensions in fluids using a 

Lagrangian particle tracking-based computational modelling technique. A three-dimensional, 

multiphase fluid-solid model is developed which predicts the motion of suspended nanoparticles. 

The nanofluid is predicted using an Eulerian-Lagrangian hybrid approach with a constant timestep. 

This technique takes various multiscale forces into consideration in the calculations, whose 

characteristic scales are quite different, providing for the first time an analysis of all factors 

affecting the stability and thermal conductivity of nanofluids. The system considered consists of 

71 nm diameter Al2O3 ceramic nanoparticles suspended in water, with homogeneous temperature 

distributions ranging from 25 to 85°C, at various volume fractions between 1 and 5%. The results 

of the simulations demonstrate the effectiveness of the presented technique, with predictions 
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elucidating the role of Brownian motion, fluid viscous drag, inter-particle collisions and DLVO 

attraction and repulsion forces on nanofluid stability. Results indicate that aggregated 

nanoparticles formed in the suspensions, at various particle concentrations, play an important role 

in the thermal behaviour of the nanofluids. Predictions are in agreement with theoretical and 

experimental results obtained in related studies. The thermal characteristics of nanofluids are also 

considered as a function of temperature, system chemistry and time (measured from an initially 

homogeneously dispersed state). The proven enhancement in the conductivity of fluids affected 

by the addition of nanoparticles has great potential to assist the development of commercial 

nanofluid technology aimed at energy efficient and sustainable processes. 

INTRODUCTION 

The growing interest in energy efficient and sustainable technologies has created significant 

demand for novel heat transfer and thermal energy storage materials, such as hybrid nanofluids. 

The importance of nanoscience cannot be underestimated here, since the motivation for the 

manipulation, through nanoparticle addition, of the properties of existing thermal fluids (e.g. water, 

oil, ethylene glycol and molten salt) arises from their poor thermal properties which represents a 

major limitation to the development of more energy efficient processes. New concepts were 

suggested by Choi1 to improve the heat transfer properties of classical conductive fluids through 

the addition of small concentrations of various sized nanoparticles, between 10 and 100 nm in 

diameter. Work in this field has since received increased attention, with extensive experimental, 

theoretical and computational research having been performed2-5. Heat transfer characteristics 

reported in the literature have been obtained using different types of nanoparticles such as metal 

oxides, non-metallic and carbon nanotubes, with substantially higher values of thermal 

conductivity, ݇ , observed. The most significant enhancement is for fluids containing ceramic 
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nanoparticles such as aluminium oxide (Al2O3) in water with volume fractions ranging between 1 

and 5%, for which increases in ݇ of between 2 and 36% have been obtained1-4. 

For nanofluids, different mechanisms and models have been proposed to explain the dramatic 

increase in thermal conductivity, especially at low nanoparticle loadings. The methods proposed 

by various investigators can broadly be divided into two categories: (i) static mechanisms (based 

on the structure of the stationary dispersion of solid nanoparticles in the liquid medium); and (ii) 

dynamic mechanisms (which consider the kinetics and random movement and interactions of 

nanoparticles in the liquid medium). The first category, as described by Wang and Mujumdar2, 

explains thermal transport in nanofluids through classical effective medium theories5-9, the 

nanoscale layer between the fluid and the nanoparticle interface10-12, and the aggregation or 

clustering of nanoparticles13-15. Assumptions are made for the transport of heat in each phase based 

on the diffusion equation, which may only work for low conductivity ratios (10׽) between the 

solid and the fluid16. As a result, when mathematical models based on this approach are used to 

predict nanofluid properties at low volume fractions, they tend to underestimate measured thermal 

conductivity values17. This explains why most static models fail to sufficiently describe the thermal 

conductivity of nanofluids, if they are used alone. 

The second category considers the continuous movement of the nano-sized particles with respect 

to time, and between the fluid molecules, under certain thermodynamic conditions, including 

collisions between nanoparticles10, 18 and their Brownian motion19. Enhancements in thermal 

conductivity are explained using four mechanisms: (i) collision of the base fluid molecules with 

each other; (ii ) thermal diffusion of nanoparticles within the fluid; (iii ) collision of nanoparticles 

with each other; and (iv) Brownian motion-induced nano-convection of particles (as a secondary 

dynamic mechanism). Further details of each of these mechanisms, and models of them, are given 
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by Lee and Jang17. However, the disparities between experimental conductivity data and model 

predictions suggests that conventional heat conduction models, developed for multiphase fluids 

containing larger particles (three to six orders of magnitude in diameter greater than nanoparticles) 

are inadequate for nanofluids, as detailed by Das et al.20. The current lack of a reliable theory 

capable of making accurate predictions of the thermal enhancement in nanofluids (with relatively 

low solid volume fractions) is therefore evident, as reported by Wang and Mujumdar2.  

With the aim of overcoming this issue, many researchers have tried to combine the static and 

dynamic mechanisms of thermal conductivity enhancement in nanofluids. Among the first to 

undertake such work were Ren et al.21 who considered interfacial nano-layering and Brownian 

motion-induced convection. This was followed by Murshed et al.22 in an attempt to derive a 

combined thermal conductivity model consisting of nanolayer, Brownian motion, surface 

chemistry and interaction potential elements. Xuan et al.14 proposed a different thermal 

conductivity model that considers stochastic Brownian motion and nanoparticle aggregation, 

whilst Prasher et al.24 combined aggregation kinetics with a Brownian motion-induced micro-

convection model. The theoretical predictions of the latter model were later expanded to include 

nanofluid dependency on fluid chemistry and pH, time and viscosity effects14, 25-27. 

Additionally, when considering numerical simulations, most of the literature deals with nanofluids 

as a single-phase continuous fluid rather than a multi-phase system2. The single-phase approach 

assumes that continuum principles are still valid for the fluid. Here, it is assumed that suspended 

nano-sized particles follow the flow, and as such this methodology is simpler to implement and 

computationally much less expensive than explicitly resolving both phases. The alternative multi-

phase technique better models each phase separately, however this method is not commonly used 

in the literature17 due to its computational complexity and limitations associated with long compute 
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times. The latter technique is to be preferred when modelling nano-suspensions, as it is able to 

describe the key mechanisms and dynamic processes involved in such multiphase fluids. 

There are a number of novel features in the model developed and described in this work. The 

parameters considered include particle size, physical interactions between the nanoparticles 

(collisions) and the dynamics between the particles and the carrier fluid, the particle surface (zeta) 

and related nanocolloidal properties. The significance of the enhanced thermophysical properties 

is considered, with emphasis on the solid-liquid characteristics (e.g. specific heat, thermal 

conductivity and coefficient of thermal expansion), and mechanical properties (e.g. modulus of 

elasticity, rigidity and Poisson's ratio), of the alumina ceramic nanoparticles (Į-Al 2O3, 71 nm 

diameter) in water. These characteristics are modelled dynamically as a function of temperature 

using data from Auerkari28 in an attempt to understand the dynamics of nanoparticles in such 

multiphase systems. Ceramic oxide nanoparticles have been chosen for consideration in this study 

since they are available at reasonable commercial rates compared to other types of nanoparticles 

(e.g. carbon nanotubes and graphene), and hence are more likely to be adopted in practical systems. 

Additionally, Į-Al 2O3 ceramic nanoparticles possess strong ionic interatomic bonding giving an 

excellent combination of desirable thermophysical properties and thermal stability at elevated 

temperatures (i.e. usable in both oxidizing and reducing atmospheres up to 1900°C). 

The kinetics of nanoparticles, such as aggregation, clustering and the resultant radius of gyration 

of the aggregates, are analysed using a depth-first search aggregate classification method. Finally, 

the thermal conductivity of nanofluids is predicted using an approach similar to that developed by 

Prasher et al.14, but using a more justifiable Brownian velocity (by applying a Gaussian white noise 

process) for nanoparticles in a liquid rather than an approach based on the kinetic theory of gases. 

Furthermore, the model is able to track the motion of embedded nanoparticles in the suspended 
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fluid, which is modelled using an Eulerian-Lagrangian hybrid scheme with fixed time stepping, 

based on the work of Fujita and Yamaguchi29. This approach enables quantification of the various 

multiscale forces (Brownian motion, particle collision, fluid drag and DLVO forces) whose 

characteristics (length and timescales) are quite different. 

The study presented here improves and significantly extends previous preliminarily research25. 

First, the simulations are performed for significantly longer timescales in order to obtain more 

stable and converged predictions. The present work also includes: a validation of the 

computational model; further in-depth analysis to more comprehensively elucidate the key 

dynamics associated with thermal conductivity predictions; and significantly more results for the 

situations considered.  As far as the authors are aware, there is no published analysis of the key 

dynamic factors affecting the stability and thermal conductivity of nanofluids using a similar 

multiscale computational modelling approach. Below, the combined mechanism-based model is 

described, and used to evaluate the most significant dynamic forces involved in nanofluids, with 

results and findings discussed. General conclusions are also drawn on the three-dimensional 

multiphase liquid-solid model’s ability to predict aspects of thermal property enhancement in 

nanofluids, and their potential applications in industry. 

Ultimately, the model can be used together with experimental investigations to provide more 

detailed insights into the fundamental dynamics of nanosuspensions, and can also be used in this 

regard in its own right. In addition, the present model allows different operating scenarios to be 

examined, and the impact of modifications to them established, again providing a better 

understanding of the particle dynamics, and hence the heat transfer characteristics of potential 

nanofluids. The final practical outcome is a model that can be used to establish the optimum 

characteristics for both coolants and thermal energy storage media. 



 7 

THEORETICAL MODEL 

The present section describes the governing equations solved in the computational model. The 

numerical technique developed in the present investigation describes each element of the solid 

phase as a computational sphere. The Lagrangian particle tracker solves the non-dimensional 

Newtonian equations of motion for each particle in order to calculate their trajectories (position 

and velocity at every computational timestep). The descriptive equation is derived by considering 

the force-balance between a particle's inertia and that of the fluid. The nanoparticle 

velocity, ࢛ே௉ ൌ ሺݑே௉ ǡ ே௉ǡݒ ே௉࢞ ,ே௉ሻ, and the coordinates of particle positionݓ ൌ ሺݔே௉ǡ ே௉ǡݕ  ,ே௉ሻݖ

vectors in the absence of particle rotation are given in the Lagrangian reference frame as30: μ ࢞ே௉μ ݐ ൌ  ே௉ (1)࢛

The motion of each nanoparticle is described using the Langevin equation31, where the derivative 

of the translational velocity of the i-th particle is obtained from standard Newtonian dynamics: 

݉௣ μ࢛ே௉ǡ௜μݐ ൌ  ௜ (2)ࡲ 

where, 

௜௖ࡲ =௜ࡲ ൅ ௜௘ࡲ  ൅ ࡲ௜௩ ൅ ௜௙ࡲ  ൅  ௜஻ (3)ࡲ 

Here, ݉௣ and ࢛ே௉ǡ௜ are the mass and translational velocity vector of the i-th nanoparticle, 

respectively. ࡲ௜௖ is the particle soft-sphere contact force; ࡲ௜௘ the electric double layer repulsive 

force; ࡲ௜௩ the van der Waals attractive force; ࡲ௜௙ the fluid viscous drag force and ࡲ௜஻ the stochastic 

Brownian motion force. Additional body forces such as gravity and buoyancy are assumed to be 

negligible for all length and time scales relevant to the present study, since their magnitudes are 

much smaller than the aforementioned inter-particle and hydrodynamic forces. The present model 
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predicts the dynamics and interaction mechanisms responsible for nanoparticle aggregation, 

including inter-particle collisions and DLVO (after Derjaguin and Landau32, Verwey and 

Overbeek33) inter-particle van der Waals attraction and electric double layer repulsion forces34, as 

well as fluid drag and Brownian motion forces. The fluid drag force is calculated based on the 

stagnant liquid in which the particles are suspended, and is proportional to the instantaneous 

particle velocity. In all simulations performed a Newtonian incompressible fluid with a constant 

kinematic viscosity is assumed. In this sense other carrier fluids can be considered via modification 

of the fluid parameters (viscosity and density). Furthermore, it is assumed that the drag force is 

dominant, which is realistic since only stagnant systems with a zero fluid velocity are considered. 

A soft-sphere approach is used to model inter-particle collisions as described by the Hertzian 

normal contact theory35. The model describes the collision force between the i-th and j-th spheres 

in the unit normal direction, ࢔௜௝, according to the approach of Fujita and Yamaguchi29, with a two-

dimensional schematic given in Figure 1. 

To predict inter-particle forces, DLVO theory is used, with intersurfacial separations considered 

down to 5 nm. These consist of a repulsive electric double layer force exerted between the two 

spheres, together with an attractive van der Waals forces that can be expressed mathematically34 

as: 

௜௘ࡲ ൅ ௜௩ࡲ  ൌ ෍ሺ ௜݂௝௘ ൅ ௜݂௝௩ሻ ࢔௜௝௝  (4) 

The magnitude of the electrostatic repulsive force exerted between each of two homogeneously 

charged spheres can be determined using Derjaguin’s approximation34 using: 

௜݂௝௘ ൌ െ ͸Ͷ݇݊ܽߨ௕ܶ߆ଶ݁ି఑ு೔ೕߢ  (5) 
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and for the attractive van der Waals forces34: 

௜݂௝௩ ൌ ௜௝ଶܪʹͳܽܣ  (6) 

with ܽ  the radius of a sphere; ݊ the number density of electrolyte ions; ݇௕ the Boltzmann constant; ܶ the temperature; ܣ the Hamaker constant; ܪ the inter-particle distance (surface to surface) and ߆ the polarizability factor, expressed as: 

߆ ൌ tanh ൬  Ͷ݇௕ܶ൰ (7)ߞ݁ݖ

Here, ߢ is the Debye parameter (inverse of the Debye length), given as: 

ߢ ൌ ඨʹ݊ݖଶ݁ଶɂ଴ɂ௥݇௕ܶ (8) 

where ݖ is the ion valence (a number representing ion concentration that is either a positive or 

negative integer); ݁ the elementary electric charge; ȗ the zeta potential of the nanoparticles; ɂ଴ the 

permittivity of a vacuum and ɂ௥ the relative permittivity of the medium.  

It should be noted that the magnitude of the van der Waals forces is limited below a maximum 

value to prevent divergence, thus the inter-surface distance is given a lower limit close to zero. 

These forces for two identically sized spherical particles are effective from a few angstroms to 

several hundred angstroms according to Butt36. Furthermore, Eqns. 4-7 are valid for 5 > ܽߢ, and 

so it is necessary to have a large Debye length for the medium, ț-1, or small particle radius, ܽ, such 

as occurs for nanoparticles in water. Moreover, these equations can only be applied for low 

electrolyte concentrations (i.e. salts and ionic liquids). Different expressions are available in the 
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colloidal literature for the repulsive force, for higher ܽߢ ൐  ͷ values. For water-based nanofluids ߢ is relatively small and related to the concentration of ions, ݖ, by37: 

ߢ ൌ ͷǤͲʹ͵ ൈ ͳͲଵଵሺݖሻ଴ǤହȀሺɂ௥ܶሻ଴Ǥହ (9) 

Equation (8), used in the present work, allows evaluation of ߢ for an aqueous solution at different 

values of electrolyte concentration and valence of ions, such that ݖ ൌ  ͳͲି୮ୌ for pH ≤ 7 and ݖ ൌ ͳͲିሺଵସି୮ୌሻ for pH > 7.  

The Brownian force exerted on a spherical nanoparticle is modelled using a Gaussian white noise 

process given by Kim and Zydney38: 

஻ܨ ൌ ݐρ௙݇௕ܶȟܽߨʹඨͳߦ  (10) 

in which ߦ is the coefficient of Stokes drag for a sphere and ρ௙ is the dynamic viscosity of the 

fluid. The magnitude of the fluid force responsible for nanoparticle aggregation can be determined 

in a quiescent system using the following Stokesian equation31: 

௙ܨ ൌ ͸ܽߨρ௙࢛ௌ (11) 

where ࢛ௌ is the flow velocity relative to that of the particle (࢛ௌ ൌ ி࢛ െ  ி is the࢛ ,ே௉). Here࢛

instantaneous fluid velocity at the location of the particle and ࢛ே௉ is the particle velocity. To 

predict the overall heat transfer properties of the system, the above nanofluid dynamic model is 

further coupled to a thermal energy model, which works on the basis of inter-particle distances. 

These are tracked concurrently with the fluid phase at each timestep in the simulation. The volume 

of aggregates formed at each time step was calculated using a depth-first search method to iterate 

through aggregated particle chains and clusters. The applied technique links to the thermal model 
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by considering both Brownian motion (responsible for induced micro-convection) and aggregation 

kinetics (responsible for the formation of particle percolation pathways). These physical 

phenomena are both found to be responsible for modulating the effective thermal conductivity, 

keff, in nanofluids, as noted by Prasher et al.14, and can be expressed mathematically as: 

݇௘௙௙ ൌ ሺͳ ൅ ଴Ǥଷଷଷ߶ሻݎ஺ܴ݁௠ܲܥ ቊሾ݇௔௚ ൅ ʹ݇௕௙ ൅ ʹሺ݇௔௚ െ ݇௕௙ሻ߶௔௚ሿሾ݇௔௚ ൅ ʹ݇௕௙ െ ሺ݇௔௚ െ ݇௕௙ሻ߶௔௚ሿ ቋ ݇௕௙ (12) 

where ܴ ݁ is the Brownian Reynolds number; ܲݎ the Prandtl number, and ܥ஺ and ݉  are constants 

determined from experiment; kag and kbf represent the thermal conductivity of the particle 

aggregates and the base-fluid, respectively. The particle volume fraction is given by ߶ for a 

primary particle and as ߶௔௚ for aggregated particles, which are characterized by their radius of 

gyration, Ra, determined using the depth-first search method, as illustrated in Figure 2. 

 

Figure 1. Hydrodynamic forces acting on two spherical solid particles submerged in a fluid continuum: (i) Brownian 
force; (ii) contact force; the instantaneous balance of the DLVO forces (iii) van der Waals and (iv) electrostatic; 
and the resulting (v) friction and (vi) fluid drag forces. 
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Figure 2. Schematic of aggregated particles in a three-dimensional computational cell (left). The aggregates are 
characterized by their radius of gyration (Ra) and shown to have a higher interacting mass than an individual 
nanoparticle (right), thereby creating a high conductivity percolation path. 

COMPUTATIONAL METHOD 

The multiscale model outlined in the previous section applies a Lagrangian particle tracking 

approach in order to investigate the heat transfer mechanisms in, and the dynamics of, nanofluids25. 

The three-dimensional computational region examined consists of a 1ȝm (i.e. ǻl = 1×10−9 m) cube 

filled with stagnant water. This volume element contains a collection of 71 nm diameter Al 2O3 

spherical nanoparticles (40-2000 in number) that are initially located uniformly within the 

computational domain ensuring equal spacing between neighbouring particles. Periodic boundary 

conditions are applied in all directions. The dynamic properties of both phases are coupled to the 

ambient temperature of the fluid suspension, that being water at 25 to 85°C. The thermophysical 

characteristics of the multiphase system are also modelled dynamically, whereby the mechanical 

characteristic (e.g. modulus of elasticity, rigidity and Poisson's ratio) of the alumina ceramic 

nanoparticles in water change as a function of temperature 28. 

The motion of the embedded nanoparticles in the fluid is treated using an Eulerian-Lagrangian 

hybrid scheme with fixed time stepping. To advect the particles, the equations of motion for 
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velocity and acceleration (Eqns. 1 and 2) are integrated using the fourth order Runge-Kutta 

algorithm with a very small time step, ǻt = 10-11 s, to fully capture the timescales associated with 

the short-range inter-particle forces of importance. The equation for acceleration is calculated 

using the relevant force terms in Eqn. 3. Each timestep, the terms in Eqn. 3 are recalculated using 

Eqns. 4 to 11, accounting for attractive and repulsive DLVO forces, inter-particle soft sphere 

collisions, Brownian forces and fluid viscous drag. Since there is no fluid flow, fluid velocity 

interpolation is unnecessary, and in Eqn. 11, which requires the local fluid velocity, this value is 

set to zero (࢛ி ൌ Ͳሻ to indicate a stagnant fluid. To determine whether soft-sphere collisions take 

place, a deterministic binary collision algorithm is used. The algorithm divides the domain into a 

coarse mesh, wherein overlapping particle pairs are searched for within each coarse cell. Finally, 

if a particle moves outside the fluid domain, it is reinjected into the corresponding location at the 

other side of the computational cube, satisfying periodicity. Model output is recorded each 

timestep and corresponding statistical quantities such as mean free path, particle velocities and 

inter-particle forces are calculated in post-processing. 

RESULTS AND DISCUSSION 

Various simulations were performed using the described model, with results analysed to determine 

the forces and mechanisms responsible for nanoparticle interaction dynamics, aggregation and 

subsequent thermal property enhancement. The spontaneous ordering process of the particles in 

the suspension was first examined, followed by clustering and agglomeration as a function of time. 

Timestep snapshots of the simulations at 5 vol. % are presented in Figure 3. Figure 3(a) presents 

the initial homogeneous distribution of single particles within the computational cell. Small 

aggregate clusters begin to form at later times, as in Figure 3(b), and subsequently large aggregates 

gradually form with increasing time (Figure 3(c)). 
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Figure 3. Representation of three-dimensional spherical 71 nm Al2O3 particles in 1 ȝm cubic cell filled with water 
showing: a) homogenous distribution of particles; b) formation of clusters; and c) nano-aggregation. 

With the aim of investigating the influence of particle size on aggregation, the interaction of two 

suspended nanoparticles (with charged surfaces) was examined using three different sizes of 

particle, the results of which are presented in Figure 4.  

 

Figure 4. Interaction potential energy versus distance profiles of two colliding nanoparticles (spherical Al2O3 
particles at 1 vol. % and 25°C) at three different sizes: 25 nm (red); 50 nm (green); and 71 nm (blue). Electric 

double layer (– –); maximum or total energy barrier (—) and van der Waals (). The actual magnitude of the energy 

is proportional to the particle size (radius) or interaction area (between two planar surfaces). 

The figure illustrates the potential energy of two colliding nanoparticles. For the different particle 

sizes used in the simulation it is clear that the electric double layer (long-range) force initially 

begins with an exponential decay. Then at smaller inter-particle distances, the attractive van der 

Waals (short-range) forces begin to dominate, leading to a collision between the two particles and 

(a) Homogeneous suspension (t = 0 s) (b) Nanoparticle clustering (t = 2×10
-7

 s) (c) Agglomerating particles (t = 4×10
-7

 s) 
  

ǻt
s
 ǻt

s
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subsequent adhesion. In addition, for a constant volume fraction, aggregation increases with 

decreasing particle size as the average inter-particle distance between nanoparticles decreases. 

This is exemplified by the reduction in the potential energy observed for 71nm-sized particle as 

compared to 25nm-sized particles, where the maximum energy barrier (the sum of all the repulsive 

and attractive potentials) that the particles must overcome to collide and form an aggregate 

decreases with the reduction in size. These DLVO inter-particle interaction potentials were used 

to determine the size of nanoparticles required to optimise the simulation timestep and run length. 

The model also allows for the magnitude of the different hydrodynamic and interaction forces 

exerted on nanoparticles in a suspension to be predicted, given a set of material and fluid 

properties. Figure 5 illustrates each of the multiscale forces plotted as a function of the 

intersurfacial distance, H, normalized by the particle radius, a. The results show the magnitude of 

the various forces exerted on the particles which drive particle collision and aggregation in the 

computational cell. They illustrate that when sufficient distance is maintained between 

nanoparticles, the effects of both the fluid (drag) and Brownian random motion forces dominate 

over other contributions since these forces are dependent on the velocity of the nanoparticles and 

interactions between the particles and the fluid. As the intersurfacial distance between particles 

becomes small (ܪȀܽ ൏ ͲǤͳሻ, the electric double layer repulsive force starts to have a significant 

effect on particle interactions. When two particles are close to colliding, the attractive van der 

Waals forces becomes dominant over all others. After a collision of two nanoparticles, the 

repulsive soft-sphere collision force increases rapidly and is of a similar magnitude as the attractive 

force.  

The main conclusion is that the van der Waals attraction always exceeds double-layer repulsion at 

small enough separations since it represents a power law interaction, while the double-layer 
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interaction energy remains finite or rises much more slowly as the relative inter-particle distance 

tends to zero.  These findings are in line with the existing literature on DLVO theory (i.e. Eqns. 4-

6), as noted by Israelachvili34 for the various types of interaction potential and the sequential 

phenomena that occur between two similarly charged or colloidal particles, and describe how the 

colloidal dispersion stability is affected by the electrolyte concentration and surface charge density. 

 
Figure 5. Validation of modelled colloidal forces across the control volume (1 ȝm cubic cell filled with water and 
spherical 71 nm Al2O3 particles at 1 vol. % and 25°C), showing the magnitude of the following forces: electric 

double layer (red); van der Waals (purple); fluid drag (blue); Brownian motion (green); and collision (black), as 

functions of inter-surface distance. Theory (—); and numerical (ؘ). 

The magnitude of the forces with inter-particle distance shown in Figure 5 leads to the conclusion 

that every force noted should be considered in the dynamic modelling of nanofluids, as they are 

all relevant at different interparticle separations. Moreover, the values given are in excellent 

agreement with similar results in the literature29, 31. The results of Figure 5 also confirm, and 

validate, the numerical implementation of the theory described above. 

Interaction between nanoparticles and aggregate formation  

The model allows for post-processing determination of the precise number of various dynamic 

events. Firstly, collision events are defined to be an event in which two particles ‘intersect’ and 
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then separate whilst soft-sphere interaction forces are active. The mean free path between particles 

along with aggregate number (using the depth-first search to identify chains of particles) can then 

be calculated. Figure 6 provides predictions of the average number of aggregates formed in the 

system as a function of solid volume concentration and temperature, together with mean free path 

values. 

 

 

Figure 6. Number of aggregates (ż) and mean free path (ᶭ) versus particle concentration: at 25°C (-  -);          55°C 
(----); and 85°C (––). 

It is clear from the results of Figure 6 that very few aggregates are formed when the concentration 

is 1 vol. %, and so the mean free path predictions are not shown for this case. At 3 vol. %, the 

mean free path clearly decreases due to collisions and agglomerations. Above 3 vol. %, the system 

enters a regime where both collisions and agglomerations begin to take place more frequently, 

leading to a substantial increase in the mean number of aggregates. The probability of collision 

and aggregation increases with increasing temperature due to the effect of Brownian motion. In 

terms of the fundamental dynamics, it is clear that particles at increased temperatures exhibit an 

increased mean free path, and therefore cover a larger distance in the same period of time, 

increasing their collision cross section, which further increases the aggregation rate. 
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Corresponding results for the nanoaggregate mean radius of gyration, Ra, were determined using 

the depth-first search method, described earlier. The results are presented in Figure 7, together 

with predicted effective thermal conductivity, keff, values, at different volume fractions and 

temperatures. 

 

 

Figure 7. Mean radius of gyration (ᶭ) and thermal conductivity (ż) versus particle concentration: at 25°C ((-  -); 
55°C (----); and 85°C (––). 

The results for the thermal conductivity given in Figure 7 show an almost 13% increase in keff for 

5 vol. % of particles over the solid volume fraction range considered. These predictions were made 

over a temperature range of 25 to 85 °C, and show that enhancement is to be expected. The 

exhibited temperature dependency is likely a result of increased kinetic energy and hence fluid 

drag and Brownian motion forces, encouraging collisions and providing more chances for 

aggregation. Although the Brownian motion force decreases as the mass of aggregates increases 

over time, the increase in keff is still evident, as highly conducting ceramic nanoparticles come in 

contact with each other. Thus, with increasing collisions and aggregation with time, the 

concentration and temperature variations indicate the effect of direct particle contact and the 

agglomerates’ percolation effects on the conductivity. The observed combined effects of 
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convection and conduction on thermal enhancement in nanofluids have been reported by Prasher 

et al.14, and are of the same magnitude as exhibited in the results of Figure 7. This leads to the 

same conclusion regarding the percolation effect in nanoaggregates and the dominant dynamic 

forces which are believed to govern thermal behaviour in nanofluids. The other interesting 

behaviour in the trend in conductivity is that it tends to plateau at concentrations of 3 vol. %, and 

temperatures of 55°C, and above, which can be explained by the simultaneous increase in the mass 

of the aggregates and the decrease in the nanoparticles’ Brownian motion. As might be anticipated, 

the predicted mean radius of gyration of the aggregates increases significantly with both the solid 

volume fraction and temperature, although the temperature dependence is lower for increased 

volume fractions, likely due to the reduced interparticle separation reducing the necessity for 

increased particle speeds to instigate collisions. 

Effect of time on aggregate radius of gyration 

As noted, analysis of the size distribution of nanoparticle aggregates within the computational cell 

shows that there is a significant dependency of the nanoaggregates’ mean radius of gyration, Ra, 

on temperature and solids concentration. Figure 8 presents the time sequence of Ra values over 

400 ns of simulation time at 25 to 85 °C. At a given time point it is clear that a rise in temperature 

results in an increase of the nanoaggregate size. This occurs at all concentrations, but most 

significantly at 5 vol. %. 
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Figure 8. Time dependence of aggregate mean radius of gyration at: 25°C (Ŷ); 55°C (ؘ); and 85°C (Ÿ); and for 1 
vol. % (blue); 3 vol. % (green); and 5 vol. % (red). 

Aggregation is known to be a time-dependent phenomenon. Similar conclusions as those noted 

can be reached from the nanoaggregate size distribution inferred from Ra values over time, as 

shown in Figure 9, which gives the trend of the aggregate mean radius of gyration for the 3 vol. % 

and 5 vol. % concentrations at three different temperatures between 25 and 85°C. The temperature 

dependence of Ra is quite evident from the increase in the relatively stable time dependent Ra 

values with temperature. 

  
Figure 9. Variation of mean radius of gyration with time. The figure shows the variation in Ra for the 3 vol. % 
concentration (left) and 5 vol. % concentration (right): 25°C (-  -); 55°C (----); and 85°C (––). 
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Effect of temperature and concentration on thermal conductivity 

The great potential for thermal conductivity enhancement using nanofluids has encouraged many 

researchers to undertake comprehensive investigations using various methods and techniques. The 

thermal conductivity values predicted by the present model are therefore compared against 

relevant experimental measurements and other model predictions from a number of sources39-42, 

with good agreement found. This comparison is shown in Figure 10, with both the data and 

predictions from the latter sources showing the same trend in thermal conductivity enhancement 

with increasing volume fraction of nanoparticles as the present model.  

FFigure 10 10 gives predictions made by Nan et al.41 that account for the effects of particle size, 

shape, distribution, volume fraction, the orientation of inclusions and the interfacial thermal 

resistance on the conductivity of particulate composites. In addition, their model was developed in 

terms of an effective medium approach combined with a Kapitza-type thermal contact resistance 

to reflect the thermal conductivity of composites made up of arbitrary ellipsoidal inclusions 

embedded in an imperfect matrix-inclusion. This may explain the discrepancy between predictions 

of their model and those of the present work since the Nan et al.41 model characterizes the 

conductivity of particulate composites within an interfacial thermal resistance without accounting 

for all the possible mechanisms involved and the dynamic forces present in nanofluids. 
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Figure 10. Effective thermal conductivity of nanofluids containing spherical 71 nm Al2O3 particles as a function of 
volume fraction ĭ. Experimental data of Beck et al.39 (×), with error bars from that source. Theoretical work of 
Maxwell40 is shown for a spherical nano-suspension (– –). Lines represent predictions of Nan et al.41 (–  –), Yu 
and Choi11 (–   –), Warrier et al.42 (—) and the present model (--Ŷ--). 

The theoretical values of the static model of Maxwell40 presented in Figure 10 lie slightly below 

the predictions of the present model. This classical model is widely used to determine the effective 

electrical or thermal conductivity of liquid-solid suspensions of monodisperse, low volume 

fraction mixtures of spherical particles. However, it originated from a continuum formulation that 

typically involves only the particle size and shape, and volume fraction, and assumes diffusive 

heat transfer in both the fluid and solid phases. Therefore, even if it does give good predictions for 

micro-metre or larger-size multiphase systems, the model generally underestimates the magnitude 

of thermal conductivity enhancement in nano-suspensions as a function of volume fraction17. 

The predictions of Yu and Choi11 were derived using a modified version of the Maxwell equation 

which includes the effect of liquid molecules close to the solid surface of nanoparticles on the 

thermal conductivity of solid-liquid suspensions. This effect assumes the formation of layered 

solid-like structures (known as ordered nanolayers) which have a major impact on nanofluid 

conductivity11, in particular when the particle diameter is less than 10 nm. Although their 
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predictions are found to be slightly below the results derived from the present model, they follow 

the same overall trend and are found to be remarkably similar. 

Also shown in Figure 10 are measurements from the pioneering experimental research of Beck et 

al.39 who, amongst others, elucidated the behaviour of heat conduction in nanofluids. Their study 

used seven sizes of spherical alumina nanoparticles ranging from 8 to 282 nm in diameter, with 

results indicating that the thermal conductivity enhancement decreases as the particle size 

decreases below approximately 50 nm. The authors attributed this effect to a decrease in the 

thermal conductivity of the nanoparticles themselves (as the particle size becomes small enough 

to be affected by increased phonon scattering). The measurements also showed a clear effect of 

the particle size and method of dispersion, and indicate that there is a limiting value to the thermal 

conductivity enhancement for nanofluids containing large particles. This limit was found to be 

greater than that predicted by the Maxwell equation, but could be predicted well using the volume 

fraction weighted geometric mean of the bulk thermal conductivities of the two phases. Their 

results show some nonlinearity of the thermal conductivity with respect to particle concentration, 

and although they are found to be marginally above the predictions of the present study the latter 

generally lie within the error bars attributed to the measurements. 

Warrier et al.42 also modelled the thermal conductivity of nanoparticle suspensions and examined 

the effect of the two phases present in the heterogeneous system. Their model takes into account 

adjustable parameters such as the temperature dependence of the thermal conductivities of the 

individual phases, as well as the size dependence of the dispersed phase. Using this modified 

version of the geometric mean model allowed the effect of a wide range of particle sizes (11 to 

302 nm), volume fractions and temperatures to be studied. The model is also capable of predicting 

the effect of different base fluids and the decrease in the thermal conductivity of semiconductor 
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nanoparticles, especially when the particle size is of the same order as the phonon mean free path. 

Although the predictions of Warrier et al.42 given in Figure 10 are slightly above the present results, 

they have approximately the same rate of increase in conductivity with increasing solid volume 

fraction. 

It can be concluded that experimental measurements and model predictions of nanofluid thermal 

conductivity generally fit between the lower and upper mean-field bounds originally proposed by 

Maxwell40, with the static configurations of nanofluid conductivity ranging between the two 

extremes of a dispersed phase and a continuous phase, as explained by Kleinstreuer and Feng43. 

However, it should be noted that dynamic models of nanofluid thermal conductivity represent an 

enhancement of classic Maxwell theory and thereby provide additional physical insight into the 

phenomena considered. Undoubtedly, it is necessary to consider not only one possible mechanism 

but combine several in order to explain enhancement in the thermal conductivity of nanofluids. 

With the aim of verifying these predictions, values of the normalized thermal conductivity, keff / 

kbf, are plotted against temperature and volume fraction in Figure 11. The results show that the 

present conductivity values are in reasonable agreement with experimental data and the predictions 

made by the other researchers noted. In particular, the obtained values are remarkably similar to 

the predictions of Das et al.44 at the same operating temperature of 25 oC, as well as with predictions 

of the spherical model of Hamilton and Crosser6. The probability of combined collision and 

aggregation increases linearly as the concentration increases from 1 vol. % to 3 vol. %. The other 

interesting aspect of the results is observed at 3 vol. % and above, where a change in the slope of 

the conductivity values with increasing volume fraction is evident. This demonstrates that the 

system is entering a different regime were collisions driven by Brownian motion start to weaken 



 25 

and instead agglomeration starts to dominate, leading to the substantial increase in conductivity 

values. 

 

 

Figure 11. Thermal conductivity ratio of Al2O3 nanofluids at different solid concentrations. Experimental data of 
Lee et al.45 at 21oC  (--×--). Lines represent the predictions of Das et al.44 at 25oC (–   –Ɣ), 33oC (--Ɣ--) and 51oC 
(–Ɣ–). The theoretical work of Hamilton and Crosser6 at 21oC is shown for both cylindrical (–Ŷ–) and spherical (-
-Ŷ--) models. Predictions of the present model at 25oC (--Ŷ--). 

The approximately linear relationship between the thermal conductivity and temperature, and 

particle concentration, is another behaviour that is predicted by the model, as illustrated in Figure 

12. It is clear from these results that the temperature dependence is not as strong at concentrations 

< 3 vol. %, but for larger values a stronger dependence is apparent. This reflects the role of 

intermolecular forces, dominated in this case by Brownian motion, that are strongly temperature- 

and concentration-dependent42. A similar increase in the normalized thermal conductivity with 

temperature has also been reported by Das et al.44, and is thought to be caused by the stochastic 

motion of the nanoparticles. Figure 12 also shows the effect of the volume concentration of 

nanoparticles on thermal conductivity enhancement: it increases with volume concentration from 

1 to 5 vol. % of nanoparticles. Similar effects have been reported for different nanofluids based on 

experimental measurements and model predictions11, 39, 42, 45. The thermal conductivity 
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enhancement in nanofluids at higher concentrations is believed to be due to the increased 

interaction of nanoparticles in the base fluid, and the interactions that occur as more nanoparticle 

chains are formed. The same figure also illustrates the variation in thermal conductivity 

enhancement with respect to temperature (ranging from 25°C to 85°C). The maximum 

conductivity was obtained at 85°C and the enhancements are 4%, 6.7% and 25% for 1 vol. %, 3 

vol. % and 5 vol. %, respectively, compared with pure water. The thermal conductivity is enhanced 

at higher temperatures due to Brownian motion and collisions between nanoparticles46. 

Similar results were obtained by Prasher et al.24, in agreement with the previously explained 

combined mechanism-based model of aggregation kinetics with Brownian motion-induced micro-

convection. These findings support the superiority of nanofluid dynamic models as they take the 

effect of the nanoparticles' random motion into account, while static models assume that the 

nanoparticles are stationary relative to the base fluid, which is not physically realistic. 

For the nanofluids considered, keff was found to increase with temperature over the range 25 to 

85°C. This can be seen from the simulation results presented in Figure 13.  

Figure 12. Normalized thermal conductivity enhancement as a function of temperature (left) at: 1 vol. % (–Ƒ–); 3 
vol. % (–ż–); and 5 vol. % (–ᶭ–), and as function of concentration (right) at: 25°C (–  –); 55°C (----); and 85°C 
(––). 
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Figure 13. Effective thermal conductivity enhancement as function of temperature at: 1 vol. % (–Ƒ–); 3 vol. %   (–
ż–); and 5 vol. % (–ᶭ–). 

Similar behaviour was reported by Das et al20, who noted that the variation in the thermal 

conductivity of the nanofluid with temperature closely follows that of the base fluid. To investigate 

this observation, the present simulations were extended to cover a wider range of temperatures 

than previously considered, from 0 to 100°C, and the results, together with values of the 

conductivity of pure water and Al2O3, are compared in Figure 14.  
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Figure 14.  Predictions of thermal conductivity as a function of temperature at: 1 vol. % (--Ŷ--); 3 vol. % (--ؘ--); 
and 5 vol. % (--Ÿ--). Lines represent standard reference data for pure water of Ramires et al.49 (– –) and 
experimental data for pure aluminium oxide of Touloukian50 (––). 

It can first be noted that the gradual increase in the conductivity of pure water, such as that reported 

by Ramires et al.49, from the hydrogen bonded structures could, to a large extent, be responsible 

for the increase in keff in water-based nanofluids at relatively low particle concentrations of around 

1 vol. %. Also, research has shown that keff for pure water is relatively high and rises to a maximum 

value at approximately 130°C, starting to fall at higher temperatures47. A partial decrease in keff 

with increasing temperature is therefore expected above this value, even when other types of base-

fluids are used. For instance, for oil-based nanofluids the thermal conductivity of oil is expected 

to decrease with increasing temperature, and so the overall keff of the mixture will be slightly 

affected48. Adding additional nanoparticles to the mixture could compensate for the drop in 

thermal conductivity caused by the base fluid. 

Secondly, the general trend in the nanofluid conductivity shows an increase in keff with temperature 

as the particle concentration increases up to 3 vol .% which is qualitatively in line with the trend 

for pure water. Above this value, however, the keff variation with temperature begins to move away 

from that observed for pure water to more closely resemble that observed for pure solid Al2O3. 

The conductivity of pure solid Al2O3 decreases with an increase in temperature, an effect due to 

the gradual accompanying phase change. This implies that the mechanism for thermal conductance 

in nanofluids at high concentrations above 5 vol. % will likely move away from the liquid mixture 

behaviour and become more similar to that of pure solid composites, as described by Keblinski et 

al.8. 
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Effect of pH variation of nanofluid on thermal conductivity 

The thermal conductivity of the nanofluids considered was found to be highly dependent on 

changes in pH which is one of several important factors that determine the isoelectric point of a 

nano-suspension (as it varies the surface potential and hence controls the magnitude of the 

repulsive force), with this point defined as the pH at which the surface of the nanoparticles exhibit 

a neutral net electrical charge or, equivalently, a zero zeta potential, i.e. ȗ = 0 V. For this particular 

value of ȗ, only attractive van der Waals forces are significant, and the solution is not stable as the 

repulsive forces between particles tend to decrease to zero. This is referred to as the point of zero 

charge, for which a colloidal particle is found to be electro-kinetically uncharged leading to poorer 

dispersion and increases in particle attraction and agglomeration20, 51. In this study, established 

isoelectric point values from experimental investigations on colloids were employed to provide 

guidance for model development14, 52. Thus, the pH value corresponding to the isoelectric point of 

an Al 2O3-water nanofluid has been determined53 to occur at pH ≈ 8.5 - 9.2 (for Į-Al 2O3, purity > 

99.9%, suspensions). Similar values were reported by Kim et al.54 for Į-Al 2O3 suspensions with ȗ 

potentials ranging from -55 mV at a maximum pH = 10.5, 22 mV at pH = 7, and 75 mV at pH = 

1. Clearly, an increase in pH lowers the zeta potential in a ceramic Į-Al 2O3 nano-suspension. 

The dynamics of nanoparticle suspensions are affected by all the parameters noted earlier, 

including those related to the DLVO energy profile. Correspondingly, nanoparticle stability and 

agglomeration in the present model is controlled by changing the ionic concentration valence, ݖ. 

As such, a variation from 1 to 5 in z is representative of a change in pH from neutral or acid (pH 

≤ 7), which promotes stability, to values outside the region of the isoelectric point at pH ≈ 8.5 - 

9.2. Figure 15 gives predictions of the conductivity against pH values, and with respect to Ra and 

ĭ, demonstrating the strong pH-dependence of the system. This is equivalent to changing the 
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valency which changes the Debye length (the screening potential), with a high valency 

corresponding to high screening, hence poor stability (i.e. more aggregation). 

From the figure it can be seen that the range of electrostatic surface potentials decreases as the 

valence of the ions in solution increases. This demonstrates that the dispersion of Al2O3 is affected 

by the electrostatic repulsion force which is in agreement with classical DLVO theory. Regarding 

the increase in thermal conductivity due to percolation effects (direct contact between the particles) 

in the aggregates, this effect is also illustrated in the results of Figure 15 where a clear enhancement 

in conductivity values occurs as a function of pH at a given temperature and concentration. 

The results in the figure also clearly indicate the thermal conductivity enhancement due to the 

combined effect of collision and aggregation as concentration increases from 1 vol. % to 3 vol. %, 

in line with Equation (12).  Another interesting feature of the results is the shift observed at 

concentrations of 4 vol. %, where a change in the ionic concentration valence from 1 to 5 causes 

a rise in the conductivity from 0.70 to 0.735 Wm-1K-1. An increase in conductivity values at higher 

volume fractions is evident, but when the system is forced to form aggregates (by moving away 

from the isoelectric point), it enters a different regime. Up to that point, collisions driven by 

Brownian motion had begun to diminish and instead agglomeration had started to dominate, 

leading to the substantial increase in conductivity values observed, resulting from percolation 

effects and heat transfer by conduction through the nanoaggregates.  Nevertheless, at 

concentrations ≥ 5 vol. % the system enters a limiting region, where a clumped nano-suspension 

(congested aggregates) starts to form due to the presence of too many nanoparticles in the control 

volume. This demonstrates that although aggregation can enhance the conduction contribution 

compared to a well-dispersed system, it needs to be controlled to ensure the formation of well 

dispersed aggregates (chain-like clusters), rather than large congested aggregates. 
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Figure 15. Thermal conductivity dependence on the mean radius of gyration (left) – effect of pH presented as a 
function of changes in z from ݖ ൌ 1 corresponding to pH ≤ 7 (–  Ƒ  –) to ݖ ൌ 5 outside of the isoelectric point at pH 
≈ 8.5-9.2 (–  Ŷ  –) at 25°C (Ƒ); 55°C (ż); and 85°C (ᶭ). Note that Ra is higher at the isoelectric point as energy 
potential for alumina at this pH reaches zero. Thermal conductivity dependence on solid volume fraction (right) – 
dependence is represented at different ion valencies IV-1 (–  Ƒ  –) and IV-5 (–  Ŷ  –) at 25°C against particle 
concentration, and: ion valency IV-1 at 55°C (----); and 85°C (––). 

Figure 15 also shows that the thermal conductivity increases with an increase in particle 

concentration, as well as with the difference between the pH value of the aqueous suspension and 

the isoelectric point of Al2O3 particles. It can clearly be seen that at 25°C, and at 1 vol. % to 3 vol. 

%, the change in pH (screening potential) is still significant even if the system is optimally 

aggregated. Thus, a slight change in pH leads to a clear enhancement in the thermal conductivity 

of the system. At higher concentrations ≥ 4 vol. % the effect of full nanoparticle aggregation leads 

to combined convective and conductive effects and hence an improved thermal conductivity. 

Conversely, at higher concentrations (≥ 4.5 vol. %) the thermal conductivity curve starts to flatten 

and the effect of increasing pH causes the 25°C curve to overlay the 55°C curve. This leads to the 

conclusion that at higher concentrations the effects of Brownian motion are reduced and instead 

percolation effects dominate due to increased nanoparticle aggregation in the system. 
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In general, the numerical simulations indicate that a change in zeta potential (determined in part 

by the valence and pH of the solvent phase) is an important parameter as it affects the level of 

agglomeration in nanofluids. Similar behaviour in ceramic nano-suspensions was reported by Lee 

et al.55 who studied the effect of the surface charge on the thermal behaviour of nanofluids. The 

study indicated that this basic parameter is primarily responsible for the thermal conductivity 

enhancement of nanofluids. It also highlighted how colloidal nanoparticles can be destabilized as 

the pH of the solution moves closer to the isoelectric point, eventually altering the thermal 

conductivity of the nanofluid. It is concluded that the pH of the colloidal liquid strongly affects 

the suspension stability and hence the performance of thermal nanofluids. 

CONCLUSIONS 

Key variables related to the stability and thermal conductivity of nanofluids have been examined 

using multiscale simulations. The novel model developed enables the prediction of the various 

dynamic forces acting in nanofluids, and provides quantitative predictions of the magnitude of 

those forces, including their role in particle aggregation. The model has been found to perform 

well in comparison with similar studies, and provides predictions of nanofluid dynamic properties, 

including the effect of the base fluid, and nanoparticle characteristics such as size56, concentration, 

temperature, pH and external driving forces, on the thermal conductivity of the system.  

The model provides confirmation of the effect of temperature and concentration on the 

enhancement of thermal conductivity. In addition, high temperatures are found to enhance 

nanoparticle interactions, collisions and aggregation which, ultimately, can inhibit higher 

conductivities in nanofluids. Such increases in conductivity are desirable for practical applications 

of nanofluids, for example if they are to be used in thermal applications. With regards to 

nanoparticle concentration, at low loadings (< 1 vol. %) it appears that the effective conductivity 
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is dominated by that of the base fluid. However, at moderate concentrations (≈ 3 vol. %) the 

thermal conductivity enters a zone of intensive interactions between nanoparticles, with the 

combined effects of aggregation (responsible for conduction) together with Brownian motion-

induced convection governing the conduction of heat in the system. At higher concentrations (≥ 5 

vol. %) the system starts to behave in a fashion more akin to that found in pure solid composites.  

This leads to the conclusion that the conductivity of nano-suspensions is dependent on the physical 

properties of the nanoparticles and their interactions, including the interaction between 

nanoparticles and the liquid, and the conductivity of the base fluid and nanoparticle material. 

These new findings, not previously predicted through multiscale simulation, also demonstrate the 

importance of particle agglomeration and how it leads to extended pathways (chain-like clusters) 

with a higher effective thermal conductivity. The impact of aggregate structures is therefore found 

to be positive in terms of the conduction of heat. However, aggregation into sparse but large 

clusters is known to increase the viscosity of the fluid and can become significant when the 

aggregates start to touch one another 8, 27, 57. For this reason, nanoaggregates may not be as 

favourable in some practical applications involving fluid flow, if high viscosity is of concern. To 

overcome this, appropriate physical and surface charge modifications can be implemented, using 

pH adjustment, to ensure that the level of nanoparticle aggregation always remains under control. 

In terms of limitations, the present model only applies to stagnant fluids (as it is computationally 

expensive to solve for the fluid phase evolution), simple geometries and limited numbers of 

particles. Future work will extend the model’s application to include other base-fluids such as ionic 

liquids and molten salts (used as hydride nanofluids for thermal energy storage applications), and 

to flow situations by coupling the tracking approach described with direct numerical simulations. 

This will involve optimization of the properties of the nanofluid by considering different 
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nanoparticle materials, and different particle sizes, shapes and concentrations. Experimental 

research will also be conducted to support the development of this numerical model – to track, 

characterise and model the dynamics and thermal enhancement of potential nanofluids. Further 

research initiatives in this area will assist in the design of renewable-energy power plants and other 

thermal management systems that involve nanofluids.  
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