
This is a repository copy of Function Merging by Sequence Alignment.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152091/

Version: Accepted Version

Proceedings Paper:
Rocha, RCO, Petoumenos, P, Wang, Z orcid.org/0000-0001-6157-0662 et al. (2 more
authors) (2019) Function Merging by Sequence Alignment. In: Proceedings of the 2019
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2019
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 16-20
Feb 2019, Washington, USA. IEEE , pp. 149-163. ISBN 9781728114361

https://doi.org/10.1109/CGO.2019.8661174

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Function Merging by Sequence Alignment

Rodrigo C. O. Rocha Pavlos Petoumenos Zheng Wang
University of Edinburgh, UK University of Edinburgh, UK Lancaster University, UK

r.rocha@ed.ac.uk ppetoume@inf.ed.ac.uk z.wang@lancaster.ac.uk

Murray Cole Hugh Leather
University of Edinburgh, UK University of Edinburgh, UK

mic@inf.ed.ac.uk hleather@inf.ed.ac.uk

Abstract—Resource-constrained devices for embedded systems
are becoming increasingly important. In such systems, memory
is highly restrictive, making code size in most cases even more
important than performance. Compared to more traditional
platforms, memory is a larger part of the cost and code occupies
much of it. Despite that, compilers make little effort to reduce
code size. One key technique attempts to merge the bodies
of similar functions. However, production compilers only apply
this optimization to identical functions, while research compilers
improve on that by merging the few functions with identical
control-flow graphs and signatures. Overall, existing solutions
are insufficient and we end up having to either increase cost by
adding more memory or remove functionality from programs.

We introduce a novel technique that can merge arbitrary
functions through sequence alignment, a bioinformatics algo-
rithm for identifying regions of similarity between sequences. We
combine this technique with an intelligent exploration mechanism
to direct the search towards the most promising function pairs.
Our approach is more than 2.4x better than the state-of-the-art,
reducing code size by up to 25%, with an overall average of 6%,
while introducing an average compilation-time overhead of only
15%. When aided by profiling information, this optimization can
be deployed without any significant impact on the performance
of the generated code.

Index Terms—Code Size, Function Merging, IPO, LTO.

I. INTRODUCTION

In recent years, resource-constrained devices have become

increasingly important. Application binaries for these devices

often reach several megabytes in size, turning memory size

into a limiting factor [1]. Just adding more memory is not

always a viable option. Highly integrated systems-on-chip are

common in this market and their memories typically occupy

the largest fraction of the chip area, contributing to most of

the overall cost. Even small increases in memory area translate

directly to equivalent increases in cost, which lead to enormous

levels of lost profit at large scales [2].

In such constrained scenarios, reducing the code size is es-

sential [3], [4], [5], [6], [7]. Unfortunately, production compil-

ers offer little help beyond dead-code elimination or merging

identical functions [8], [9], [10]. Developers might have more

luck just removing functionality from their libraries [6] or

hand-optimizing their code [11].

Function merging reduces replicated code by combining

multiple identical functions into a single one [12], [10].

Although a simple and intuitive concept, it is crucial for

making high-level abstractions usable, when they introduce

duplicate code [8], [9]. For example, some C++ ABIs may

end up creating multiple identical constructors and destructors

of a class to use in different contexts [9] and C++ templates

replicate code for different specializations [8], [10]. More

advanced approaches [13] have extended this idea into merg-

ing non-identical functions by leveraging structural similar-

ity. Functions with identical control-flow graphs (CFGs) and

only small differences within corresponding basic blocks are

merged into a single function that maintains the semantics

of the original functions. This is particularly important for

handling specialized template functions with small differences

in their compiled form.

While an improvement, even the state-of-the-art often usu-

ally fails to produce any noticeable code size reduction. In

this paper, we introduce a novel way to merge functions that

overcomes the major limitations of the state-of-the-art. Our

insight is that the weak results of existing function merging

implementations are not due to the lack of duplicate code but

due to the rigid, overly restrictive algorithms they use to find

duplicates.

Our approach1 is based upon the concept of sequence

alignment, developed in bioinformatics for identifying func-

tional or evolutionary relationships between different DNA

or RNA sequences. Similarly, we use sequence alignment

to find areas of functional similarity in arbitrary function

pairs. Aligned segments with equivalent code are merged. The

remaining segments where the two functions differ are added

to the new function too but have their code guarded by a

function identifier. This approach leads to significant code size

reduction.

Applying sequence alignment to all pairs of functions is

prohibitively expensive even for medium sized programs. To

counter this, our technique is integrated with a ranking-based

exploration mechanism that efficiently focuses the search to

1Artifact available at: https://doi.org/10.6084/m9.figshare.7473260

glist_t glist_add_float32(glist_t g, float32 val){

 gnode_t *gn;
 gn = (gnode_t *) mymalloc (sizeof(gnode_t));
 gn->data.float32 = val;
 gn->next = g;
 return ((glist_t) gn);
}

glist_t glist_add_float64(glist_t g, float64 val){
 gnode_t *gn;

 gn = (gnode_t *) mymalloc (sizeof(gnode_t));
 gn->data.float64 = val;
 gn->next = g;

 return ((glist_t) gn);
}

glist_t merged(bool func_id,
 glist_t g, float32 v32, float64 v64){
 gnode_t *gn;
 gn = (gnode_t *) mymalloc (sizeof(gnode_t));

 if (func_id)

 gn->data.float32 = v32;
 else

 gn->data.float64 = v64;
 gn->next = g;
 return ((glist_t) gn);
}

Merged Function

Fig. 1. Example of two functions from the benchmark sphinx with different
parameters that could be merged, as shown at the bottom. We highlight where
they differ.

the most promising pairs of functions. As a result, we achieve

our code size savings while introducing little compilation-time

overhead.

Compared to identical function merging, we introduce extra

code to be executed, namely the code that chooses between

dissimilar sequences in merged functions. A naive implemen-

tation could easily hurt performance, e.g by merging two hot

functions with only few similarities. Our implementation can

avoid this by incorporating profiling information to identify

blocks of hot code and effectively minimize the overhead in

this portion of the code.

In this paper, we make the following contributions:

• We are the first to allow merging arbitrary functions, even

ones with different signatures and CFGs.

• A novel ranking mechanism for focusing inter-procedural

optimizations to the most profitable function pairs.

• Our function merging by sequence alignment technique is

able to reduce code size by up to 25% on Intel and 30%

on ARM, significantly outperforming the state-of-the-art,

while introducing minimal compile-time and negligible

run-time overheads.

II. MOTIVATION

In this section we make the argument for a more powerful

function merging approach. Consider the examples from two

SPEC CPU2006 benchmarks shown in Figures 1 and 2.

Figure 1 shows two functions from the 482.sphinx3

benchmark. The two functions are almost identical, only their

function arguments are of different types, float32 and float64,

causing a single operation to be different. As shown at the

bottom of Figure 1, these functions can be easily merged in

three steps. First, we expand the function argument list to

include the two parameters of different types. Then, we add

a function identifier, func_id, to indicate which of the two

functions is called. Finally, we place the lines that are unique

to one of the functions in a conditional branch predicated by

the func_id. Overall, merging these two functions reduces

the total number of machine instructions by 18% in the final

object file for the Intel x86 architecture.

Despite being so similar, neither GCC nor LLVM can merge

the two functions. They can only handle identical functions,

allowing only for type mismatches that can be removed by

lossless bitcasting of the conflicting values. Similarly, the state-

of-the-art [13], while more powerful, cannot merge the two

functions either. It requires both functions to have the same

list of parameters.

Figure 2 shows another two functions extracted from

462.libquantum. While these two functions have the same

signature, i.e. the same return type and list of parameters,

they differ slightly in their bodies. Merging them manually

is straightforward, shown at the bottom of Figure 2, reducing

the number of instructions by 23% in the final object file.

But again, none of the existing techniques can merge the

two functions. The state-of-the-art can work with non-identical

functions, but it needs their CFGs to be identical. Even a single

extra basic block, as in this case, makes merging impossible.

These examples show that all existing techniques are

severely limited. Optimization passes in production compilers

work only on effectively identical functions. State-of-the-art

techniques can merge functions only when they are structurally

identical, with isomorphic CFGs, and identical signatures. All

of them miss massive opportunities for code size reduction. In

the next sections, we show a better approach which removes

such constraints and is able to merge arbitrary functions, when

it is profitable to do so.

III. OUR APPROACH

In this section we describe our proposed function merging

technique and show how it merges the motivating examples.

Our technique works on any two arbitrary functions, even

when they have few similarities and merging them would

be counter-productive. For that reason, we also introduce a

cost model to decide when it is beneficial to merge two

functions (see Section IV-A). To avoid an expensive quadratic

exploration, we integrate our profitability analysis with an

efficient ranking mechanism based on a lightweight fingerprint

of the functions.

A. Overview

Intuitively, when we are manually merging two functions,

in a textual format, we try to visualize them side by side,

identifying the equivalent segments of code and the non-

equivalent ones. Then, we use this understanding to create

the merged function. In this paper, we propose a technique

that follows this simple yet effective principle. At the core of

our technique lies a sequence alignment algorithm, which is

void quantum_cond_phase_inv(

int control, int target, quantum_reg *reg){
 int i;

 COMPLEX_FLOAT z;

 z = quantum_cexp(-pi / (1 << (control - target)));

 for(i=0; i<reg->size; i++) {

 if(reg->node[i].state & (1 << control)) {

 if(reg->node[i].state & (1 << target))
 reg->node[i].amplitude *= z;

 }

 }

 quantum_decohere(reg);
}

void quantum_cond_phase(
int control, int target, quantum_reg *reg){

 int i;

 COMPLEX_FLOAT z;
 if(quantum_objcode_put(COND_PHASE, control, target))

 return;

 z = quantum_cexp(pi / (1 << (control - target)));
 for(i=0; i<reg->size; i++) {

 if(reg->node[i].state & (1 << control)) {
 if(reg->node[i].state & (1 << target))
 reg->node[i].amplitude *= z;

 }

 }

 quantum_decohere(reg);
}

void merged(bool func_id,

int control, int target, quantum_reg *reg){
 int i;

 COMPLEX_FLOAT z;
 if(func_id)

 if(quantum_objcode_put(COND_PHASE, control, target))

 return;
 float var = (func_id)?pi:(-pi);

 z = quantum_cexp(var / (1 << (control - target)));
 for(i=0; i<reg->size; i++) {

 if(reg->node[i].state & (1 << control)) {
 if(reg->node[i].state & (1 << target))

 reg->node[i].amplitude *= z;

 }

 }

 quantum_decohere(reg);

}

Merged Function

Fig. 2. Example of two functions from the benchmark libquantum with
different CFGs that could be merged, as shown at the bottom. We highlight
where they differ.

responsible for arranging the code in segments that are either

equivalent or non-equivalent. We implement this technique at

the level of the intermediate representation (IR). Our current

implementation assumes that the input functions have all their

φ-functions demoted to memory operations, simplifying our

code generation.

The proposed technique consists of three major steps, as

depicted in Figure 3. First, we linearize each function, rep-

resenting the CFG as a sequence of labels and instructions.

The second step consists of applying a sequence alignment

algorithm, borrowed from bioinformatics, which identifies

regions of similarity between sequences. The sequence align-

ment algorithm allows us to arrange two linearized functions

into segments that are equivalent between the two functions

and segments where they differ from one another. The final

Linearization

Sequence Alignment

Code Generation

Fig. 3. Overview of our function-merging technique. Equivalent segments of
code is represented in light green and the non-equivalent ones in dark red.

step performs the code generation, actually merging the two

functions. Aligned segments with equivalent code are merged,

avoiding redundancy, while the remaining segments where the

two functions differ have their code guarded by a function

identifier.

During code generation, we create a merged list of pa-

rameters, including the extra function identifier if there are

any dissimilar segments. Arguments of the same type are

shared between the functions, without necessarily keeping

their original order. We also allow for the return types to be

different, in which case we use an aggregate type to return

values of both types. If one of them is void, then we do not

create an aggregate type, we just return the non-void type.

Given the appropriate function identifier, the merged function

is semantically equivalent to the original functions, so we

replace all of their invocations with the new function. It should

be noted that in the special case where we merge identical

functions, the output is also identical, emulating the behavior

of function merging in production compilers.

After producing the merged function, the bodies of the

original functions are replaced by a single call to this new

function, creating what is sometimes called a thunk. In some

cases, it may also be valid and profitable to completely delete

the original functions, remapping all their original calls to

the merged function. Two of the key facts that prohibit the

complete removal of the original functions are the existence

of indirect calls or the possibility of external linkage.

B. Linearization

Linearization2 is a key step for enabling the use of sequence

alignment. It takes the CFG of the function, specifies a traver-

sal order of the basic blocks, and for each block outputs its

label and its instructions. Linearization maintains the original

ordering of the instructions inside each basic block. The edges

of the CFG are implicitly represented with branch instruc-

tions having the target labels as operands. Figure 4 shows a

simplified example of linearizing the CFG of a real function

extracted from the SPEC CPU2006 400.perlbench bench-

mark.

The traversal order we use for linearization has no effect

on the correctness of the transformation but it can impact

its effectiveness. We empirically chose a reverse post-order

2Although linearization of CFGs usually refers to a predicated representa-
tion, in this paper, we use a simpler definition.

Linearization

label

call
call
store

store
br

load

B1

alloca
alloca
bitcast
icmp eq
store
br

B0label

load
ret

B2label

alloca
alloca
bitcast

label

icmp eq
store
br

label
call
call
store

store
br

load

label
load
ret

B0

B1

B2

Fig. 4. Linearizing the CFG of an example function.

traversal with a canonical ordering of successor basic blocks.

This strategy leads to good performance in our experiments.

C. Sequence Alignment

When merging two functions, the goal is to identify which

segments of the code are equivalent (and therefore can be

merged) and which ones are different. To avoid breaking the

semantics of the original program, we also need to maintain

the order of the instructions for each of the functions.

After linearization, we reduce the problem of merging

functions to the problem of sequence alignment. Sequence

alignment is important in many scientific areas, most no-

tably in molecular biology [14], [15], [16], [17] where it

is used for identifying homologous subsequences of amino

acid in proteins. Figure 5 shows an example of the sequence

alignment between two linearized functions extracted from

the 400.perlbench benchmark, including the one used in

Figure 4. Essentially, sequence alignment algorithms insert

blank characters in both input sequences so that the final

sequences end up having the same size, where equivalent

segments are aligned with their matching segments from the

other sequence and non-equivalent segments are paired with

blank characters.

Formally, sequence alignment can be defined as follows:

For a given alphabet α, a sequence S of k characters is

an element of αk, i.e., S = (a1, . . . ak). Let S1, . . . , Sm

be a set of sequences, possibly of different lengths but all

derived from the same alphabet α, where Si = (a
(i)
1 , . . . , a

(i)
k1
),

for all i ∈ {1, . . . ,m}. Consider an extended alphabet that

includes the blank character “−”, i.e., β = α ∪ {−}. An

alignment of the m sequences, S1, . . . , Sm, is another set

of sequences, S̄1, . . . , S̄m, such that each sequence S̄i is

obtained from Si by inserting blanks in positions where

some of the other sequences have non-blank and possibly

equivalent characters, for a given equivalence relation. All

sequences S̄i in the alignment set have the same length l,

where max{k1, . . . , km} ≤ l ≤ k1 + · · · + km. Moreover,

∀i ∈ {1, . . . ,m}, S̄i = (b
(i)
1 , . . . , b

(i)
l), there are increasing

functions vi : {1, . . . , ki} → {1, . . . , l}, such that:

• b
(i)
vi(j)

= a
(i)
j , for every j ∈ {1, . . . , ki};

al
lo

ca
al

lo
ca

al
lo

ca
b
it

ca
st

b
it

ca
st

la
b
el

la
b
el

al
lo

ca

ic
m

p
 e

q
ic

m
p
 u

lt

st
or

e
st

or
e

b
r

b
r

la
b
el

la
b
el

se
x
t

ge
p

lo
ad

ad
d

ca
ll

ca
ll

st
or

e
st

or
e

lo
ad

st
or

e

st
or

e
b
r

b
r

la
b
el

la
b
el

lo
ad

lo
ad

st
or

e

lo
ad

lo
ad

re
t

re
t

Fig. 5. The sequence alignment between two functions, identifying the
equivalent segments of code (green in the center) and the non-equivalent ones
(red at the sides).

• any position j not mapped by the function vi, i.e., for all

j ∈ {1, . . . , l} \ Im vi, then b
(i)
j is a blank character.

Finally, for all j ∈ {1, . . . , l}, there is at least one value of i

for which b
(i)
j is not a blank character. Note that two aligned

sequences may contain both non-blank and non-equivalent

characters at any given position, in which case there is a

mismatch.

Specifically for function-merging, we are concerned with

the alphabet consisting of all possible typed instructions and

labels. Every linearized function represents a sequence derived

from this alphabet. We explain the equivalence relation used

for this alphabet in the next section. Although we only consider

pair-wise alignments, the technique would also work for multi-

sequences.

Our work uses the Needleman-Wunsch algorithm [14] to

perform sequence alignment. This algorithm gives an align-

ment that is guaranteed to be optimal for a given scoring

scheme [18], however, other algorithms could also be used

with different performance and memory usage trade-offs [14],

[15], [16], [19]. Different alignments would produce different

but valid merged functions.

The Needleman-Wunsch algorithm [14] is based on dy-

namic programming and consists of two main steps. First, it

builds a similarity matrix, based on a scoring scheme, which

assigns weights for matches, mismatches, and gaps (blank

characters). Afterwards, a backward traversal is performed on

the similarity matrix, in order to reconstruct the final alignment

by maximizing the total score. We use a standard scoring

scheme for the Needleman-Wunsch algorithm that rewards

matches and equally penalizes mismatches and gaps.

D. Equivalence Evaluation

Before we merge functions, we first need to define what

makes two pieces of code equivalent and therefore mergeable.

In this section, we define equivalence in two separate cases, the

equivalence between instructions and the equivalence between

labels.

In general, two instructions are equivalent if: (1) their

opcodes are semantically equivalent, but not necessarily the

same; (2) they both have equivalent types; and (3) they have

pairwise operands with equivalent types. Types are equivalent

if they can be bitcast in a lossless way from one to the other.

For pointers, we also need to make sure that there is no

conflict regarding memory alignment. In the special case of

function calls, type equivalence means that both instructions

have identical function types, i.e. identical return types and

identical list of parameters.

Labels can represent both normal basic blocks and landing

blocks used in exception handling code. Labels of normal basic

blocks are ignored during code equivalence evaluation, but we

cannot do the same for landing blocks. We describe how we

handle such blocks in more detail in the following section.

Exception Handling Code: Most modern compilers, includ-

ing GCC and LLVM, implement the zero-cost Itanium ABI

for exception handling [20] sometimes called the landing-pad

model. This model consists of: (1) invoke instructions that

have two successors, one for the normal execution and one

for handling exceptions, called the landing block; (2) landing-

pad instructions that encode which action is taken when an

exception has been thrown. The invoke instruction co-operates

tightly with its landing block. The landing block must have

a landing-pad instruction as its first non-φ instruction. As

a result, two equivalent invoke instructions must also have

landing blocks with identical landing-pad instructions. This

verification is made easy by having the landing-pad instruction

as the first instruction in a landing block. Similarly, landing-

pad instructions are equivalent if they have exactly the same

type and also encode identical lists of exception and cleanup

handlers.

E. Code Generation

The code generation phase is responsible for producing a

new function from the output of the sequence alignment. Our

four main objectives are: merging the parameter lists; merging

the return types; generating select instructions to choose the

appropriate operands in merged instructions; and constructing

the CFG of the merged function.

Our approach can effectively handle multiple different func-

tion merging scenarios:

• identical functions,

• functions with differing bodies,

• functions with different parameter lists,

• functions with different return types,

• and any combination of these cases.

To maintain the semantics of the original functions, we must

be able to pass their parameters to the new merged function.

The merged parameter list is the union of the original lists,

with placeholders of the correct type for any of the parameters.

Maintaining the original order is not important for maintaining

semantics, so we make no effort to do so. If the two functions

have differing bodies, we add an extra binary parameter, called

the function identifier, to the merged list of parameters. This

extra parameter is required for selecting code that should be

executed only for one of the merged functions.

Figure 6 depicts how we merge the list of parameters of two

functions. First, we create the binary parameter that represents

the function identifier, one of the functions will be identified

by the value true and the other by the value false. We then

add all the parameters of one of the functions to the new list of

i1 i32 i32* float

double float float

i1 i32 i32* float double float

i32 i32*

i1

Function 1

Function 2

FuncID

Fig. 6. Example of a merge operation on the parameter lists of two functions.

parameters. Finally, for each parameter of the second function,

we either reuse an existing and available parameter of identical

type from the first function or we add a new parameter. We

keep track of the mapping between the lists of parameters of

the original functions and the merged function so that, later,

we are able to update the function calls. When replacing the

function calls to the new merged function, parameters that are

not used by the original function being called will receive

undefined values.

The reuse of parameters between the two merged functions

provides the following benefits: (1) it reduces the overheads

associated with function call abstractions, such as reducing

the number of values required to be communicated between

functions. (2) if both functions use merged parameters in

similar ways, it will remove some of the cases where we need

select instructions to distinguish between the functions.

There are multiple valid ways of merging parameter lists.

For example, multiple parameters of one function may have

the same type as a given parameter from the other function.

In such cases, we select parameter pairs that minimize the

number of select instructions. We find them by analyzing

all pairs of equivalent instruction that use the parameters as

operands. Our experiments show that maximizing the match-

ing of parameters, compared to never merging them, improves

code-size reduction of individual benchmarks by up to 7%.

Our technique is able to merge any return types. When

merging return types, we select the largest one as the base

type. Then, we use bitcast instructions to convert between the

types. Before a return instruction, we bitcast the values to the

base return type. We reverse this at the call-site, where we

cast back to the original type. Having identical types or void

return are just special cases where casting is unnecessary. In

the case of void types, we can just return undefined values

since they will be discarded at the corresponding call-sites.

After generating the merged list of parameters and return

type, we produce the CFG of the merged function in two

passes over the aligned sequence. The first pass creates the

basic blocks and instructions. The second assigns the correct

operands to the instructions and connects the basic blocks. A

two-passes approach is required in order to handle loops, due

to cyclic data dependencies.

First, for each entry in the aligned sequence, we either create

a new basic block for labels or we add a cloned instruction to

the appropriate basic block. If the label represents a landing

block, a landing-pad instruction is also added to the new

basic block. During this process, we keep a mapping from

the instructions and labels in the original functions to their

corresponding values in the new merged function. We need

this mapping to generate the use-definition chains for the

merged function, which is done by pointing the operands of

the instructions to the correct values in the function. However,

at this point, the cloned instructions are given empty operands,

as we are still creating the complete mapping.

While iterating over the aligned sequence, we also need to

create extra basic blocks and branch instructions in order to

maintain the semantics of the original functions, guarding the

execution of instructions that are unique to one of the functions

being merged. When transitioning from matching instructions

or labels to non-matching ones, we need to branch to new basic

blocks based on the function identifier. When transitioning

back from non-matching segments to a matching segment, we

need to reconnect both divergent points by branching back to

a single new basic block where merged instructions will be

added. This process generates diamond shaped structures in

the CFG.

The second pass over the aligned sequence creates the

operands of all instructions. We use the previously created

mapping in order to identify the correct operands for each

instruction in the merged function. There are two main cases:

(1) Creating the operands for non-matching instructions (i.e.

those that occur in just one function) is straightforward. In

this case, we only need to use the values on which the

operands of the original instruction map. (2) Matching in-

structions can have different values in corresponding operands

in each one of the original functions. If this is the case and

the original operands map to different values V1 and V2,

then we need to choose at runtime the correct value based

on the function identifier. We do with an extra select in-

struction “select (func_id==1), V_1, V_2”, which

computes the operand of the merged instruction. If the two

values are statically identical, then we do not need a select.

If the operands are labels, instead of adding a select instruc-

tion, we perform operand selection through divergent control

flow, using a new basic block and a conditional branch on the

function identifier. If the two labels represent landing blocks,

we hoist the landing-pad instruction to the new common basic

block, converting it to a landing block and converting the two

landing blocks to normal basic blocks. This is required for the

correctness of the landing-pad model.

Similar to previous work on vectorization [?], we also

exploit commutative instructions in order to maximize sim-

ilarity. When assigning operands to commutative instructions,

we perform operand reordering to maximize the number of

matching operands and reduce the total number of select

instructions required. It is also important to note that if we

are merging two identical functions, no select or extra branch

instruction will be added. As a result, we can remove the extra

parameter that represents the function identifier.

IV. FOCUSING ON PROFITABLE FUNCTIONS

Although the proposed technique is able to merge any two

functions, it is not always profitable to merge them. In fact,

as it is only profitable to merge functions that are sufficiently

similar, for most pairs of functions, merging them increases

code size. In this section, we introduce our framework for

Input

Functions

Candidates

Ranking

Function

Merging

Call Graph

Update
Profitable?

Yes

No

Linearized
Functions

Fingerprints

Optimizer

End Loop

Loop

Loop

Output

FunctionsEnd
Loop

Fingerprint
Extraction

Pre-processor

Fig. 7. Overview of our exploration framework.

efficiently exploring the optimization space, focusing on pairs

of functions that are profitable to merge.

For every function, ideally, we would like to try to merge

it with all other functions and choose the pair that maximizes

the reduction in code size. However, this quadratic exploration

over all pairs of functions results in prohibitively expensive

compilation overhead. In order to avoid the quadratic ex-

ploration of all possible merges, we propose the exploration

framework shown in Figure 7 for our optimization.

The proposed framework is based on a light-weight ranking

infrastructure that uses a fingerprint of the functions to eval-

uate their similarity. It starts by precomputing and caching

fingerprints for all functions. The purpose of fingerprints is

to make it easy to discard unpromising pairs of functions so

that we perform the more expensive evaluation only on the

most promising pairs. To this end, the fingerprint consists of:

(1) a map of instruction opcodes to their frequency in the

function; (2) the set of types manipulated by the function.

While functions can have several thousands of instructions,

an IR usually has just a few tens of opcodes, e.g., the LLVM

IR has only about 64 different opcodes. This means that the

fingerprint needs to store just a small integer array of the

opcode frequencies and a set of types, which allows for an

efficient similarity comparison.

By comparing the opcode frequencies of two functions, we

are able to estimate the best case merge, which would happen

if all instructions with the same opcode could match. This

is a very optimistic estimation. It would be possible only if

instruction types and order did not matter. We refine it further

by estimating another best case merge, this time based on type

frequencies, which would happen if all instructions with the

same data type could match.

Therefore, the upper-bound reduction, computed as a ratio,

1 2 3 4 5 6 7 8 9 10

Position of the Profitable Candidates

85.0

87.5

90.0

92.5

95.0

97.5

100.0

C
o
v
e
ra

g
e
 (

%
)

Fig. 8. Average CDF for the position of the profitable candidate and the
percentage of merged operations covered. 89% of the merge operations happen
with the topmost candidate.

can be generally defined as

UB(f1, f2,K) =

∑

k∈K

min{freq(k, f1), freq(k, f2)}

∑

k∈K

freq(k, f1) + freq(k, f2)

where UB(f1, f2, Opcodes) computes the opcode-based upper

bound and UB(f1, f2, T ypes) computes the type-based upper

bound. The final estimate selects the minimum upper bound

between the two, i.e.,

s(f1, f2) = min{UB(f1, f2, Opcodes), UB(f1, f2, T ypes)}

This estimate results in a value in the range [0, 0.5], which

encodes a description that favors maximizing both the opcode

and type similarities, while also minimizing their respective

differences. Identical functions will always result in the max-

imum value of 0.5.

For each function f1, we use a priority queue to rank the

topmost similar candidates based on their similarity, defined

by s(f1, f2), for all other functions f2. We use an exploration

threshold to limit how many top candidates we will evaluate

for any given function. We then perform this candidate explo-

ration in a greedy fashion, terminating after finding the first

candidate that results in a profitable merge and committing

that merge operation.

Ideally, profitable candidates will be as close to the top of

the rank as possible. Figure 8 shows the cumulative distri-

bution of the position of the profitable candidates in a top

10 rank. It shows that about 89% of the merge operations

occurred with the topmost candidate, while the top 5 cover

over 98% of the profitable candidates. These results suggest

that fingerprint similarity is able to accurately capture the

real function similarity, while reducing the exploration cost

by orders of magnitudes, depending on the actual number and

size of the functions.

When a profitable candidate is found, we first replace the

body of the two original functions to a single call to the

merged function. Afterwards, if the original functions can be

completely removed, we update the call graph, replacing the

calls to the original functions by calls to the merged function.

Finally, the new function is added to the optimization working

list. Because of this feedback loop, merge operations can also

be performed on functions that resulted from previous merge

operations.

A. Profitability Cost Model

After generating the code of the merged function, we need

to estimate the code-size benefit of replacing the original pair

of functions by the new merged function. In order to estimate

the code-size benefit, we first compute the code-size cost for

each instruction in all three functions. In addition to measuring

the difference in size of the merged function, we also need to

take into account all extra costs involved: (1) for the cases

where we need to keep the original functions with a call to

the merged function; and (2) for the cases where we update

the call graph, there might be an extra cost with a call to the

merged function due to the increased number of arguments.

Let c(f) be the code-size cost of a given function f , and

δ(fi, fj) represent the extra costs involved when replacing or

updating function fi with the function fj . Therefore, given a

pair of functions {f1, f2} and the merged function f1,2, we

want to maximize the profit defined as:

∆({f1, f2}, f1,2) = (c(f1) + c(f2))− (c(f1,2) + ε)

where ε = δ(f1, f1,2)+δ(f2, f1,2). We consider that the merge

operation is profitable if ∆({f1, f2}, f1,2) > 0.

However, because we are operating on the IR level, one

IR instruction does not necessarily translate to one machine

instruction. Because of that, the profitability is measured

with the help of the compiler’s target-specific cost model.

The actual cost of each instruction comes from querying

this compiler’s built-in cost model, which provides a target-

dependent cost estimation that approximates the code-size cost

of an IR instruction when lowered to machine instructions. Our

implementation makes use of the code-size costs provided by

LLVM’s target-transformation interface (TTI), which is widely

used in the decision making of most optimizations [?], [?].

B. Link-Time Optimization

There are different ways of applying this optimization,

with different trade-offs. We can apply our optimization on

a per compilation-unit basis, which usually results in lower

compilation-time overheads because only a small part of the

whole program is being considered at each moment. However,

this also limits the optimization opportunities, since only pairs

of functions within the same translation unit would be merged.

On the other hand, our optimization can also be applied in

the whole program, for example, during link-time optimization

(LTO). Optimizing the whole program is beneficial for the

simple fact that the optimization will have more functions at

its disposal. It allows us to merge functions across modules.

.c

.c

.c

..
.

opt

..
.

FE

FE

FE

opt

opt

link optFM BE .o

Function
Merging

LTO

IR

}
Back
End

Front
End

..
.

Fig. 9. In our experiments we use a compilation pipeline with a monolithic
link-time optimization (LTO).

In addition to the benefit of being able to merge more

functions, when optimizing the whole program, we can also

be more aggressive when removing the original functions,

since we know that there will be no external reference to

them. However, if the optimization is applied per translation

unit, then extra conditions must be guaranteed, e.g., the

function must be explicitly defined as internal or private to

the translation unit.

Figure 9 shows an overview of the compilation pipeline

used throughout our evaluation. First, we apply early code-

size optimizations (-Os) to each compilation unit. Then, func-

tion merging and further code-size optimizations are applied

during monolithic link-time optimization (LTO). With LTO,

object file generation is delayed until all input modules are

known, instead of being generated per translation unit, which

enables more powerful optimizations based on whole-program

analyses.

V. EVALUATION

In this section, we evaluate the proposed optimization,

where we analyze our improvements on code size reduction,

as well as its impact on the program’s performance and

compilation-time.

A. Experimental Setup

We compare our optimization against the state-of-the-

art [13] and LLVM’s identical [12] function merging tech-

niques. In our evaluation, we refer to the identical function

merging as Identical, the state-of-the-art as SOA, and our

approach as FMSA. We also run LLVM’s identical function

merging before both SOA and FMSA, as this helps to reduce

compilation time by efficiently reducing the number of trivially

mergeable functions.

All optimizations are implemented in LLVM v8 and evalu-

ated on two benchmark suites: the C/C++ SPEC CPU2006 [22]

and MiBench [23]. We target two different instruction sets,

the Intel x86-64 and the ARM Thumb. Our Intel test bench

has a quad-core 3.4 GHz Intel Core i7 CPU with 16 GiB of

RAM. The ARM test bench has a Cortex-A53 ARMv8 CPU

of 1.4 GHz with 1 GiB of RAM. We use the Intel platform

for compiling for either target. As a result, compilation-time

is almost identical for both targets. Changing the target only

affects the behavior of the backend, a very short part of the

pipeline. Because of that, we only report compilation-time

overhead results for one of the targets, the Intel ISA.

For the proposed optimization, we vary the exploration

threshold (Section IV) and we present the results for a range

of threshold values. We also show the results for the oracle ex-

ploration strategy, which instead of using a rank-based greedy

approach, merges a function with all candidates and chooses

the best one. This oracle is a perfect ranking strategy but is

unrealistic. It requires a very costly quadratic exploration, as

explained in Section IV.

B. Code-Size Reduction

Figure 10 reports the code size reduction over the baseline

for the linked object. We observe similar trends of code size

reduction on both target architectures. This is expected because

the optimizations are applied at the platform-independent IR

level. Changing the target architecture introduces only second

order effects, such as slightly different decisions due to the

different cost model (LLVM’s TTI) and differences in how

the IR is encoded into binary.

Our approach, FMSA, significantly improves over the state-

of-the art (SOA). For the Intel platform, FMSA can achieve

an average code size reduction of up to 6.3% (or 6% with the

lowest exploration threshold), while the SOA and Identical

had an average reduction of 2.5% and 1.4%, respectively.

Similarly, for the ARM platform, FMSA can achieve an

average code size reduction of up to 6.1% (or 5.7% with the

lowest threshold), while SOA and Identical had an average

reduction of 3% and 1.8%, respectively. For several of the

benchmarks, the proposed technique achieves impressive code

size reduction compared to other merging approaches.

In most cases, LLVM’s identical function merging has very

little impact on code size. We see noticeable impact only

on some of the C++ benchmarks, namely, 447.dealII,

450.soplex, 471.omnetpp, 483.xalancbmk. These

are the cases that identical function merging was designed

to handle, duplicate functions due to heavy use of templating.

Although the state-of-the-art improves over LLVM’s identical

function merging, it still gets most of its code size reduction

for benchmarks with heavy use of templating. In addition to

achieving better results in all of these cases, our technique also

shows remarkable reductions on several of the C benchmarks,

especially 462.libquantum and 482.sphinx3, where

other techniques have no real impact.

In Section II, we show two examples extracted from

462.libquantum and 482.sphinx3, where we detail

how existing techniques fail to merge similar functions in

these benchmarks. Our technique is the first that can handle

these examples, producing merged functions equivalent to the

handwritten ones shown in Figures 1 and 2.

TABLE I
NUMBER AND SIZE OF FUNCTIONS PRESENT IN EACH SPEC CPU2006

BENCHMARK JUST BEFORE FUNCTION MERGING, AS WELL AS NUMBER OF

MERGE OPERATIONS APPLIED BY EACH TECHNIQUE.

Benchmarks #Fns Min/Avg/Max Size Identical SOA FMSA[t=1] FMSA[t=10]

400.perlbench 1699 1 / 125 / 12501 12 103 175 200
401.bzip2 74 1 / 206 / 5997 0 0 7 7
403.gcc 4541 1 / 127.7 / 20688 136 341 614 710
429.mcf 24 18 / 87.25 / 297 0 1 1 1
433.milc 235 1 / 67.69 / 416 0 6 26 34
444.namd 99 1 / 570.64 / 1698 1 1 5 5
445.gobmk 2511 1 / 43.22 / 3140 183 485 436 605
447.dealII 7380 1 / 60.63 / 4856 1835 2785 2974 3315
450.soplex 1035 1 / 73.27 / 1719 27 125 156 163
453.povray 1585 1 / 98.05 / 5324 60 112 193 212
456.hmmer 487 1 / 99.98 / 1511 3 16 45 47
458.sjeng 134 1 / 145.06 / 1252 0 5 11 11
462.libquantum 95 1 / 56.64 / 626 0 1 9 9
464.h264ref 523 1 / 171.42 / 5445 3 22 50 52
470.lbm 17 6 / 123.41 / 680 0 0 0 0
471.omnetpp 1406 1 / 26.9 / 611 45 69 227 270
473.astar 101 1 / 67.11 / 584 0 2 4 4
482.sphinx3 326 1 / 80 / 924 2 6 24 26
483.xalancbmk 14191 1 / 38.58 / 3809 3057 4573 4342 4887

Table I provides detailed statistics for the SPEC CPU2006.

We show how many functions (#Fns) are present in the linked

program just before the merging pass, as well as the average,

Intel x86-64

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povra
y

456.hmmer

458.sj
eng

462.lib
quantu

m

464.h264re
f

470.lb
m

471.omnetp
p

473.asta
r

482.sp
hinx3

483.xalancbmk
M

ean
0

5

10

15

20

25

R
e
d

u
c
ti

o
n

 (
%

)

1.
4

ARM Thumb

2.
5 6.

0
6.

2
6.

2
6.

3

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10] FMSA [oracle]

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povra
y

456.hmmer

458.sj
eng

462.lib
quantu

m

464.h264re
f

470.lb
m

471.omnetp
p

473.asta
r

482.sp
hinx3

483.xalancbmk
M

ean
0

5

10

15

20

25

30

R
e
d

u
c
ti

o
n

 (
%

)

1.
8
3.

0
5.

7
5.

9
6.

0
6.

1

Fig. 10. Object file size reduction for Intel (top) and ARM (bottom). We evaluate our approach (FMSA) under four different exploration thresholds, which
control how many potential merging pairs we examine for each function before making a decision. Even for a threshold of one, we outperform the state-of-the-art
by 2.4× (Intel) and 1.9× (ARM).

minimum, and maximum size of these functions, in number

of instructions, at this same point in the compilation pipeline.

We also report how many pair-wise merge operations are

performed by each one of the function merging techniques.

Note that in almost all cases FMSA performs significantly

more merge operations than the other techniques. There are

only two cases where FMSA with exploration threshold of one

finds fewer profitable merges than the state-of-the-art. This is

due to our aggressive pruning of the search space with our

ranking mechanism. Simply increasing the threshold, e.g. to

ten, allows FMSA to merge more functions. In any case, these

extra merge operations of the state-of-the-art have little effect

on the overall code size reduction. The state-of-the-art is more

likely to fail to merge large functions and succeed with small

ones, so even when merging more functions, it does not reduce

code size as much as FMSA.

MiBench: Embedded Benchmark Suite: We have shown

that our technique achieves good results when applied on the

SPEC CPU suite. It reduces size not only on templated C++

benchmarks, like other techniques, but also on C benchmarks

where merging opportunities should be almost non-existant.

Here, we further explore how FMSA handles such cases by

applying it on the MiBench suite, a collection of small C

programs each one composed of a small number of functions.

Figure 11 shows the object file reduction for the MiBench

programs on the Intel platform. Our best result is for the

rijndael benchmark, which implements the well-known

AES encryption. FMSA merges the two largest functions,

namely, encrypt and decrypt. Inspecting the LLVM IR

for the rijndael benchmark, we observe that the two

functions contain a total of 2494 instructions, over 70% of the

code. When we merge them by sequence alignment, we create

a single function with only 1445 instruction, a 42% reduction

in the number of IR instructions. This translates into a 20.6%

reduction in the linked object file.

TABLE II
NUMBER AND SIZE OF FUNCTIONS PRESENT IN EACH MIBENCH

BENCHMARK JUST BEFORE FUNCTION MERGING, AS WELL AS NUMBER OF

MERGE OPERATIONS APPLIED BY EACH TECHNIQUE.

Benchmarks #Fns Min/Avg/Max Size Identical SOA FMSA[t=1] FMSA[t=10]

CRC32 4 8 / 24.75 / 39 0 0 0 0
FFT 7 7 / 49.86 / 144 0 0 0 0
adpcm c 3 37 / 73 / 100 0 0 0 0
adpcm d 3 37 / 73 / 100 0 0 0 0
basicmath 5 4 / 70.8 / 232 0 0 0 0
bitcount 19 4 / 22.26 / 63 0 1 3 3
blowfish d 8 1 / 245.38 / 824 0 0 0 0
blowfish e 8 1 / 245.38 / 824 0 0 0 0
jpeg c 322 1 / 100.52 / 1269 2 6 8 11
jpeg d 310 1 / 98.93 / 1269 3 6 10 10
dijkstra 6 2 / 33 / 89 0 0 0 0
ghostscript 3446 1 / 54.2 / 4218 53 53 234 250
gsm 69 1 / 97.06 / 737 0 3 8 8
ispell 84 1 / 105.51 / 1082 0 2 5 5
patricia 5 1 / 77 / 167 0 0 0 0
pgp 310 1 / 88.52 / 1845 0 1 10 10
qsort 2 11 / 50 / 89 0 0 0 0
rijndael 7 46 / 472.29 / 1247 0 0 1 1
rsynth 46 1 / 97.28 / 778 0 0 0 0
sha 7 12 / 53.29 / 150 0 0 0 0
stringsearch 10 3 / 47.9 / 99 0 0 1 1
susan 19 15 / 291.84 / 1212 0 0 1 1
typeset 362 1 / 354.47 / 12125 1 4 31 35

Table II provides more detailed statistics for MiBench.

LLVM achieves very limited results, reducing jpeg_c by

just 0.13%, jpeg_d by 0.1%, and ghostscript by 0.02%,

while having no effect on typeset. This happens because

all the functions merged by LLVM’s identical technique are

tiny functions relative to the overall size of the program. Most

of these functions comprise of just a few IR instructions. For

example, in the typeset benchmark, while it is able to merge

a pair of functions, they only have five instructions. For the

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10] FMSA [oracle]

CRC32
FFT

adpcm_c

adpcm_d

basic
math

bitc
ount

blowfis
h_d

blowfis
h_e

cjpeg

dijk
str

a
djpeg

ghosts
crip

t
gsm

isp
ell

patri
cia pgp

qso
rt

rij
ndael

rsy
nth sh

a

str
ingse

arc
h

su
sa

n

typese
t

M
ean

0

1

2

3

4

5

R
e
d

u
c
ti

o
n

 (
%

)

0
0.

1

1.
7
1.

7
1.

7
1.

7

20.6

Fig. 11. Object file size reduction for Intel on the Mibench benchmark suite. Our approach (FMSA) is the only one able to achieve a meaningful reduction
on these benchmarks.

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povra
y

456.hmmer

458.sj
eng

462.lib
quantu

m

464.h264re
f

470.lb
m

471.omnetp
p

473.asta
r

482.sp
hinx3

483.xalancbmk
M

ean
0

1

2

3

4

N
o
rm

a
li

z
e
d

 T
im

e

1.
0 1.

0
1.

15
1.

471.
74

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10]

Fig. 12. Compilation-time overhead on the Intel platform. For exhaustive exploration (not shown) the average overhead is 25×. Through ranking, we reduce
overhead by orders of magnitude. For an exploration threshold of one, FMSA has an overhead of only 20%.

same benchmark, FMSA performs several merge operations,

one of them between two functions with over 500 instructions.

Overall, the state-of-the-art does slightly better than LLVM’s

identical technique but even in its best case it cannot reduce

code size more than 0.7%.

Because these embedded benchmarks are much smaller

than those in the SPEC suite, trivially similar functions are

much less frequent. This is why neither the state-of-the-art

nor LLVM’s identical function merging technique had any real

effect on these benchmarks. Our technique can look beyond

trivially similar functions which allowed it to achieve signifi-

cant code size reduction on these real embedded benchmarks.

C. Compilation Overhead

Figure 12 shows the compilation-time overhead for all

optimizations. As explained in the experimental setup, we

only present results when compiling for the Intel platform.

Since we cross-compile on the same machine for both targets,

compilation times are very similar. We also do not include

results for the oracle (exhaustive) exploration. It would be hard

to visualize it in the same plot as the other configurations, since

it can be up to 136× slower than the baseline.

Unlike the other evaluated techniques, our optimization is a

prototype implementation, not yet tuned for compilation-time.

We believe that compilation-time can be further reduced with

some additional engineering effort. Nevertheless, by using our

ranking infrastructure to target only the single most promising

equivalent function for each function we examine, we reduce

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povra
y

456.hmmer

458.sj
eng

462.lib
quantu

m

464.h264re
f

470.lb
m

471.omnetp
p

473.asta
r

482.sp
hinx3

M
ean

20

40

60

80

100

C
o
m

p
il

a
ti

o
n

T
im

e
 (

%
)

Fingerprinting

Ranking

Linearization

Alignment

Code-Gen

Updating Calls

Fig. 13. A compilation-time breakdown isolating the percentage for each
major step of the optimization (t=1).

compilation-time overhead by up to two orders of magnitude

compared to the oracle. This brings the average compile-time

overhead to only 20% compared to the baseline, while still

reducing code size almost as well as the oracle. Depending on

the acceptable trade-off between compilation-time overhead

and code size, the developer can change the exploration

threshold to exploit more opportunities for code reduction, or

to accelerate compilation.

Figure 13 shows a detailed compilation-time breakdown.

For each major step of the proposed optimization, we present

the accumulated time spent across the whole program. To bet-

ter understand the overhead of each step, we use an exploration

threshold of one (t = 1). Because the ranking mechanism

performs a quadratic operation on the number of functions,

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10]

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povra
y

456.hmmer

458.sj
eng

462.lib
quantu

m

464.h264re
f

470.lb
m

471.omnetp
p

473.asta
r

482.sp
hinx3

483.xalancbmk
M

ean
0.8

0.9

1.0

1.1

1.2

N
o
rm

a
li

z
e
d

 R
u

n
ti

m
e

1.
0

1.
0 1.

021.
03

1.
03

Fig. 14. Runtime overhead on the Intel platform. Performance impact is almost always statistically insignificant. For the few benchmarks affected, FMSA
merges hot functions.

computing the similarity between all pairs of functions, it is

expected that ranking would be amongst the most costly steps.

However, it is interesting to notice that the sequence alignment

dominates most of the compilation-time overhead, especially

considering that this operation is performed only once per

function, when t = 1. Although this operation is linear in the

number of functions, the Needleman-Wunsh algorithm [14] is

quadratic in the size of the functions being aligned, both in

time and space. Unsurprisingly, code generation is the third

most costly step, which also includes the time to optimize the

merge of the parameters. The remaining steps contribute, in

total, a small percentage of all the compilation-time overhead.

This analysis suggests that optimizing the sequence alignment

algorithm and the ranking mechanism is key to reducing even

further the overall compilation-time overhead.

D. Performance Impact

The primary goal of function merging is to reduce code

size. Nevertheless, it is also important to understand its impact

on the programs’ execution time and the trade-offs between

performance and code size reduction. Figure 14 shows the

normalized execution time. Overall, our optimization has an

average impact of about 3% on programs’ runtime. For most

benchmarks, there is no statistically significant difference

between the baseline and the optimized binary. Only for

433.milc, 447.dealII, and 464.h264ref there is a

noticeable performance impact.

We take 433.milc, which has the worst result, for discus-

sion. For an exploration threshold value of one, we merge 58

functions. Through profiling, we discovered that a handful of

them contain hot code, that is, they have basic blocks that

are frequently executed. If we prevent these hot functions

from merging, all performance impact is removed while still

reducing code size. Specifically, our original results showed a

5.11% code size reduction and an 18% performance overhead.

Avoiding merging hot functions results in effectively non-

existent performance impact and a code size reduction of

2.09%. This code size reduction is still about twice as good

as the state-of-the-art. As with the compilation overhead, this

is a trade-off that the developer can control.

VI. RELATED WORK

Compiler optimizations for code-size reduction have existed

since the very beginning of optimizing compilers. These

optimizations can be divided in two main categories: those

that replace a piece of code by a smaller but semantically

equivalent code, changing the instructions and operations per-

formed [24], [25]; and those that remove or combine redundant

code [26], [27], [28], [29], [30], [31], [32]. Function merging

falls in the latter category.

A. Function-Merging Techniques

Google developed an optimization for the gold linker that

merges identical functions on a bit-level [8], [9]. After placing

each function in a separate ELF section, they identify functions

sections that have their text bit-identical and also have their

relocations pointing to identical sections. Similar machine-

level implementations are also offered by other production

compilers and linkers, such as MSVC [33].

This machine-level solution is target-dependent and needs

to be adapted for every back-end. A similar optimization for

merging identical functions is offered at the IR level by both

GCC and LLVM [12], [10]. This optimization is only flexible

enough to accommodate simple type mismatches provided

they can be bitcast in a lossless way. Its simplicity allows

for an efficient exploration approach based on computing the

hash of the functions and then using a tree structure to group

equivalent functions based on their hash values.

The state-of-the-art function-merging technique exploits

structural similarity among functions [13]. Their optimization

is able to merge similar functions that are not necessarily

identical. Two functions are structurally similar if both their

function types are equivalent and their CFGs isomorphic. Two

function types are equivalent if they agree in the number, order,

and types of their parameters as well as their return types, link-

age type, and other compiler-specific properties. In addition to

the structural similarity of the functions, their technique also

requires that corresponding basic blocks have exactly the same

number of instructions and that corresponding instructions

must have equivalent resulting types. Mergeable functions are

only allowed to differ in corresponding instructions, where

they can differ in their opcodes or in the number and type of

their input operands.

Because the state-of-the-art is limited to functions with

identical CFGs and function types, once it merges a pair of

functions, a third similar function cannot be merged into the

resulting merged function since they will differ in both CFGs

and their lists of parameters. Due to this limiting factor, the

state-of-the-art has to first collect all mergeable functions and

merge them simultaneously.

The state-of-the-art algorithm iterates simultaneously over

corresponding basic blocks in the set functions being merged,

as they have isomorphic CFGs. For every basic block, if

their corresponding instructions have different opcodes, they

split the basic block and insert a switch branch to select

which instruction to execute depending on a function identifier.

Because these instructions have equivalent resulting types,

their results can be merged using a phi-operator, which can

then be used transparently as operands by other instructions.

Although the state-of-the-art technique improves over

LLVM’s identical function merging, it is still unnecessarily

limited. In Section II, we showed examples of very similar

real functions where the state-of-the-art fails to merge. Our

approach addresses such limitations improving on the state-

of-the-art across the board.

B. Code Factoring

Code factoring is a related technique that addresses the

same fundamental problem of duplicated code in a different

way. Code factoring can be applied at different levels of the

program [32]. Local factoring, also known as local code mo-

tion, moves identical instructions from multiple basic blocks

to either their common predecessor or successor, whenever

valid [27], [34], [32]. Procedural abstraction finds identical

code that can be extracted into a separate function, replacing

all replicated occurrences with a function call [32], [35].

Procedural abstraction differs from function merging as it

usually works on single basic blocks or single-entry single-

exit regions. Moreover, it only works for identical segments

of code, and every identical segment of code is extracted

into a separate new function. Function merging, on the other

hand, works on whole functions, which can be identical or just

partially similar, producing a single merged function.

However, all these techniques are orthogonal to the pro-

posed optimization and could complement each other at dif-

ferent stages of the compilation pipeline.

C. Other Applications of Code Similarity

Code similarity has also been used in other compiler opti-

mizations or tools for software development and maintenance.

In this section, we describe some of these applications.

Coutinho et al. [36] proposed an optimization that uses

instruction alignment to reduce divergent code for GPU. They

are able to fuse divergent branches that contain single basic

blocks, improving GPU utilization.

Similarly, analogous algorithms have also been suggested to

identify the differences between two programs, helping devel-

opers with source-code management and maintenance [37],

[38]. These techniques are applied in tools for source-code

management, such as the diff command [38].

Similar techniques have also been applied to code editors

and IDEs [39], [40]. For example, SourcererCC [40] detects

possible clones, at the source level, by dividing the programs

into a set of code blocks where each code block is itself

represented by a bag-of-tokens, i.e., a set of tokens and their

frequencies. Tokens are keywords, literals, and identifiers,

but not operators. Code blocks are considered clones if their

degree of similarity is higher than a given threshold. In order

to reduce the number of blocks compared, candidate blocks

are filtered based on a few of their tokens where at least one

must match.

Our ranking mechanism uses an approach similar to

SourcererCC, where we use opcode frequencies and type

frequencies to determine if two functions are likely to have

similar code. However, we need a precise and effective anal-

ysis of code similarity when performing the actual merge. To

this end, we use a sequence alignment technique.

VII. CONCLUSION

We introduced a novel technique, based on sequence align-

ment, for reducing code size by merging arbitrary functions.

Our approach does not suffer from any of the major limitations

of existing solutions, outperforming them by more than 2.4×.

We also proposed a ranking-based exploration mechanism

to focus the optimization on promising pairs of functions.

Ranking reduces the compilation-time overhead by orders of

magnitude compared to an exhaustive quadratic exploration.

With this framework, our optimization is able to reduce code

size by up to 25%, with an overall average of about 6%, while

introducing an average compilation-time overhead of only

15%. Coupled with profiling information, our optimization

introduces no statistically significant impact on performance.

For future work, we plan to focus on improving the ranking

mechanism to reduce compilation time. We envisage further

improvements can be achieved by integrating the function-

merging optimization to a summary-based link-time optimiza-

tion framework, such as ThinLTO in LLVM. We also plan to

work on the linearization of the candidate functions, allowing

instruction reordering to maximize the number of matches

between the functions.

APPENDIX

A. Abstract

This artifact provides the source code that implements our

function merging optimization as well as the other optimiza-

tions required for our evaluation. Our optimization is imple-

mented on top of LLVM v8. We also provide the source code

for all benchmarks along with scripts required to reproduce

the results presented in the paper. To validate the results

build our version of LLVM with the provided scripts, run the

benchmarks and, finally, the plotting script to reproduce the

main results in the paper.

B. Artifact Check-List

• Program: LLVM and Clang, the C/C++ frontend for LLVM;
the C/C++ SPEC CPU2006 benchmark suite.

• Compilation: With provided scripts.
• Data set: Provided with the corresponding benchmarks.
• Run-time environment: Linux.
• Hardware: Intel architecture.
• Output: Raw data in CSV files and plots as PDFs.
• How much disk space required (approximately)?: Up to 5

GiB.
• Publicly available?: Yes.
• Workflow frameworks used?: Download and unzip; build

software; run benchmarking scripts; compare output results with
the expected plots provided.

C. Description

1) How Delivered: The artifact is publicly available. We provide
the following option to reproduce our experiments:

Download the source code and benchmark suite, building ev-
erything locally on your own machine.
https://doi.org/10.6084/m9.figshare.7473260
https://doi.org/10.6084/m9.figshare.7476149

The main source file that implements our optimization can be
found in the path:

llvm/lib/Transforms/IPO/FunctionMerging.cpp

The state-of-the-art and LLVM’s identical function merging can
be found, respectively, in the source files:

llvm/lib/Transforms/IPO/MergeSimilarFunctions.cpp

llvm/lib/Transforms/IPO/MergeFunctions.cpp

We provide a detailed demonstration of how to reproduce this
artifact in the video at the following URL:

http://bit.ly/cgo19fmsa-demo
2) Hardware Dependencies: The experiments described by

this artifact were executed on an Intel machine with Intel Core i7-
4770 CPU at 3.40 GHz, and 16 GiB of RAM.

3) Software Dependencies: In this section, we describe the
softwares and packages that must be installed in order to build the
LLVM compiler, the benchmark suite, and produce the plots with the
results.

The experiments described by this artifact were executed on a
machine with the operating system openSUSE Leap 42.2.

Below, we list all Linux and Python packages that must be
installed. We also specify the exact version that we have used in
our experiments.

• GCC for both C and C++ (gcc , g++)
gcc-4.8-9.61.x86_64

gcc-c++-4.8-9.61.x86_64

binutils-2.29.1-9.6.1.x86_64

• GCC’s 32-bits runtime (gcc-multilib, g++-multilib)
gcc-32bit-4.8-9.61.x86_64

gcc-c++-32bit-4.8-9.61.x86_64

• CMake build system (cmake)
cmake-3.5.2-1.2.x86_64

• Python 2.7+ (python)
python-2.7.13-25.3.1.x86_64

• Python’s TkInter (python-tk)
python-tk-2.7.13-25.3.1.x86_64

• Python’s pip (python-pip)
python-pip-7.1.2-2.4.noarch

• Python’s NumPy (numpy)
numpy 1.14.2

• Python’s Matplotlib (matplotlib)

matplotlib 2.1.0

• Python’s Seaborn (seaborn)
seaborn 0.9.0

We provide a script, called setup.sh, which automatically
installs all the necessary dependencies. This script uses the apt tool
and is the only one that requires sudo privileges.

4) Data Sets: Datasets are provided as part of the artifact with
the benchmark suite.

D. Installation

Download both the source code (https://doi.org/10.6084/m9.
figshare.7473260) and the benchmark suite (https://doi.org/10.6084/
m9.figshare.7476149). The source code has a root directory called
CGO19FMSA. Unzip all the content comprising the benchmark
suite inside the CGO19FMSA root directory. At this point, your
CGO19FMSA directory should contain:

./CGO19FMSA/

build-all.sh

config.sh

data

expected

llvm

myplots.py

plot-code-size.py

plot-compilation-time.py

plot-execution-time.py

run-all.sh

setup.sh

spec2006

In order to install all dependencies described above, run the
setup.sh script with sudo privileges. That is, assuming that you
are in the CGO19FMSA directory, run the following command:

sudo sh setup.sh

Once the dependencies have been installed, run the
build-all.sh script to build our version of LLVM and
Clang, which include our function merging optimization as well
as both the state-of-the-art optimization and LLVM’s identical
function merging optimization. Again, assuming that you are in the
CGO19FMSA directory, run the following command:

sh build-all.sh

This process might take a few hours, depending on your machine
settings. After completion, a build directory is created inside the
CGO19FMSA root directory.

This two scripts set up all the environment necessary to run all
our experiments.

E. Experiment Workflow

To run our experiments all you need to do is to execute the
run-all.sh script with the following command:

sh run-all.sh

This script automates the whole experiment workflow. At the end,
you should have all the expected plots, as well as the raw data as
CSV files, inside the results directory, which is also created inside
the CGO19FMSA root directory.

The automated process may take several hours since it involves
running all following steps for all the SPEC benchmarks:

• Code-size measurement (Figure 10 in the paper):

– Running the oracle optimization.
– Running the state-of-the-art and baselines optimizations.
– Running our optimization with all three exploration thresh-

olds.

• Compilation-time measurement (Figure 11 in the paper):

– Run all optimizations again, except for the oracle, multiple
times in order to have a measurement with statistical signif-
icance.

• Execution-time measurement (Figure 13 in the paper):

– Run, also multiple times, all compiled versions of the SPEC
benchmarks with their reference inputs.

F. Evaluation and Expected Result

After executing the automated process described above, the
results directory should have the following content:

results/

code-size-reduction.pdf

n1

spec2006

compilation-time.pdf

execution-time.pdf

compilation.csv

exec.csv

results.csv

n10

compilation.csv

exec.csv

results.csv

n5

compilation.csv

exec.csv

results.csv

results.csv

oracle

The main files to consider are the PDF files, which represent the
plots with the main results for the final version of our paper. The
three PDF files, as the name of the files suggest, contain the results
regarding code-size reduction, compilation-time overhead, and the
performance impact of our optimization during execution-time of the
benchmarks.

This artifact represents our results for the camera ready version
of the paper. We provide the expected results that were produced
in our environment with the up-to-date version that will be used in
the camera ready version of the paper (for example, it includes a
benchmark that was missing in the original version of our paper).
The reviewers can compare their results with the ones provided in
the expected directory.

G. Notes

To reduce the overall time required to run the full set of experi-
ments, we have set a small number of repetitions, which may result in
large error bars for some of the benchmarks. This effect will depend
on the noise of your environment. In order to reduce the noise in the

measurements, you just need to update the REPEAT variable in the
CGO19FMSA/run-all.sh script, changing it to a bigger number.

Because SPEC 2006 requires private access, in the
final version, we can provide only our scripts for running
the experiments. The source code remains the same
(https://doi.org/10.6084/m9.figshare.7473260).

ACKNOWLEDGMENT

We would like to thank Tobias Edler von Koch for providing
the source code for the state-of-the-art implementation. This work
has been supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under grants EP/L01503X/1 (CDT in
Pervasive Parallelism), EP/P003915/1 (SUMMER), EP/M01567X/1
(SANDeRs) and EP/M015793/1 (DIVIDEND). This work was sup-
ported by the Royal Academy of Engineering under the Research
Fellowship scheme.

REFERENCES

[1] P. Plaza, E. Sancristobal, G. Carro, M. Castro, and E. Ruiz, “Wireless
development boards to connect the world,” in Online Engineering &

Internet of Things, M. E. Auer and D. G. Zutin, Eds. Cham: Springer
International Publishing, 2018, pp. 19–27.

[2] T. J. Edler von Koch, I. Böhm, and B. Franke, “Integrated instruction
selection and register allocation for compact code generation exploiting
freeform mixing of 16- and 32-bit instructions,” in Proceedings of the

8th Annual IEEE/ACM International Symposium on Code Generation

and Optimization, ser. CGO ’10. New York, NY, USA: ACM, 2010,
pp. 180–189.

[3] U. P. Schultz, K. Burgaard, F. G. Christensen, and J. L. Knudsen,
“Compiling Java for low-end embedded systems,” in Proceedings of

the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool

for Embedded Systems, ser. LCTES ’03. New York, NY, USA: ACM,
2003, pp. 42–50.

[4] A. Varma and S. S. Bhattacharyya, “Java-through-C compilation: an
enabling technology for Java in embedded systems,” in Proceedings

Design, Automation and Test in Europe Conference and Exhibition,
vol. 3, Feb 2004, pp. 161–166 Vol.3.

[5] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management
of resource constrained devices in the internet of things,” IEEE Com-

munications Magazine, vol. 50, no. 12, pp. 144–149, December 2012.

[6] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the internet of
things: A standardization perspective,” IEEE Internet of Things Journal,
vol. 1, no. 3, pp. 265–275, June 2014.

[7] R. Auler, C. E. Millani, A. Brisighello, A. Linhares, and E. Borin,
“Handling IoT platform heterogeneity with COISA, a compact OpenISA
virtual platform,” Concurrency and Computation: Practice and Experi-

ence, vol. 29, no. 22, p. e3932, 2017.

[8] S. Tallam, C. Coutant, I. L. Taylor, X. D. Li, and C. Demetriou, “Safe
ICF: Pointer safe and unwinding aware identical code folding in gold,”
in GCC Developers Summit, 2010.

[9] D. Kwan, J. Yu, and B. Janakiraman, “Google’s C/C++ toolchain for
smart handheld devices,” in Proceedings of Technical Program of 2012

VLSI Technology, System and Application, April 2012, pp. 1–4.

[10] M. Liška, “Optimizing large applications,” arXiv preprint

arXiv:1403.6997, 2014.

[11] V. M. Weaver and S. A. McKee, “Code density concerns for new
architectures,” in 2009 IEEE International Conference on Computer

Design, Oct 2009, pp. 459–464.

[12] “The LLVM Compiler Infrastructure. MergeFunctions pass, how it
works,” http://llvm.org/docs/MergeFunctions.html.

[13] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta,
“Exploiting function similarity for code size reduction,” in Proceedings

of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers

and Tools for Embedded Systems, ser. LCTES ’14. New York, NY,
USA: ACM, 2014, pp. 85–94.

[14] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443 – 453, 1970.

[15] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195
– 197, 1981.

[16] H. Carrillo and D. Lipman, “The multiple sequence alignment problem
in biology,” SIAM J. Appl. Math., vol. 48, no. 5, pp. 1073–1082, Oct.
1988.

[17] L. Wang and T. Jiang, “On the complexity of multiple sequence
alignment,” Journal of Computational Biology, vol. 1, no. 4, pp. 337–
348, 1994.

[18] D. G. Higgins and P. M. Sharp, “Fast and sensitive multiple sequence
alignments on a microcomputer,” Bioinformatics, vol. 5, no. 2, pp. 151–
153, 1989.

[19] G. Hickey and M. Blanchette, “A probabilistic model for sequence
alignment with context-sensitive indels,” in Proceedings of the 15th An-

nual International Conference on Research in Computational Molecular

Biology, ser. RECOMB’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 85–103.

[20] C. de Dinechin, “C++ exception handling,” IEEE Concurrency, vol. 8,
no. 4, pp. 72–79, Oct. 2000.

[21] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes, “Look-ahead SLP:
Auto-vectorization in the presence of commutative operations,” in Pro-

ceedings of the 2018 International Symposium on Code Generation and

Optimization, ser. CGO 2018. New York, NY, USA: ACM, 2018, pp.
163–174.

[22] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes, “VW-SLP: Auto-
vectorization with adaptive vector width,” in Proceedings of the 27th

International Conference on Parallel Architectures and Compilation

Techniques, ser. PACT ’18. New York, NY, USA: ACM, 2018, pp.
12:1–12:15.

[23] A. Pohl, B. Cosenza, and B. Juurlink, “Cost modelling for vectorization
on ARM,” in 2018 IEEE International Conference on Cluster Computing

(CLUSTER), Sept 2018, pp. 644–645.
[24] SPEC, “Standard Performance Evaluation Corp Benchmarks,”

http://www.spec.org, 2014.
[25] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization. WWC-4 (Cat.

No.01EX538), Dec 2001, pp. 3–14.
[26] H. Massalin, “Superoptimizer: A look at the smallest program,” in Pro-

ceedings of the Second International Conference on Architectual Support

for Programming Languages and Operating Systems, ser. ASPLOS II.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1987, pp. 122–
126.

[27] A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson, “Using
peephole optimization on intermediate code,” ACM Trans. Program.

Lang. Syst., vol. 4, no. 1, pp. 21–36, Jan. 1982.
[28] J. Cocke, “Global common subexpression elimination,” in Proceedings

of a Symposium on Compiler Optimization. New York, NY, USA:
ACM, 1970, pp. 20–24.

[29] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimination,” in
Proceedings of the ACM SIGPLAN 1994 Conference on Programming

Language Design and Implementation, ser. PLDI ’94. New York, NY,
USA: ACM, 1994, pp. 147–158.

[30] J. Ernst, W. Evans, C. W. Fraser, T. A. Proebsting, and S. Lucco, “Code
compression,” in Proceedings of the ACM SIGPLAN 1997 Conference

on Programming Language Design and Implementation, ser. PLDI ’97.
New York, NY, USA: ACM, 1997, pp. 358–365.

[31] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for
reduced code space using genetic algorithms,” in Proceedings of the

ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools

for Embedded Systems, ser. LCTES ’99. New York, NY, USA: ACM,
1999, pp. 1–9.

[32] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler
techniques for code compaction,” ACM Trans. Program. Lang. Syst.,
vol. 22, no. 2, pp. 378–415, Mar. 2000.

[33] W. K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-
entry multiple-exit regions,” in Static Analysis, R. Cousot, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 401–417.

[34] G. Lóki, Á. Kiss, J. Jász, and Á. Beszédes, “Code factoring in GCC,”
in Proceedings of the 2004 GCC Developers’ Summit, 2004, pp. 79–84.

[35] “Microsoft Visual Studio. Identical COMDAT folding,”
https://msdn.microsoft.com/en-us/library/bxwfs976.aspx.

[36] P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
in Proceedings of the ACM SIGPLAN 1994 Conference on Programming

Language Design and Implementation, ser. PLDI ’94. New York, NY,
USA: ACM, 1994, pp. 159–170.

[37] A. Dreweke, M. Worlein, I. Fischer, D. Schell, T. Meinl, and
M. Philippsen, “Graph-based procedural abstraction,” in International

Symposium on Code Generation and Optimization (CGO’07), March
2007, pp. 259–270.

[38] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. M. Jr., “Divergence
analysis and optimizations,” in 2011 International Conference on Paral-

lel Architectures and Compilation Techniques, Oct 2011, pp. 320–329.
[39] W. Yang, “Identifying syntactic differences between two programs,”

Software: Practice and Experience, vol. 21, no. 7, pp. 739–755, 1991.
[40] W. Miller and E. W. Myers, “A file comparison program,” Software:

Practice and Experience, vol. 15, no. 11, pp. 1025–1040, 1985.
[41] M. Toomim, A. Begel, and S. L. Graham, “Managing duplicated code

with linked editing,” in 2004 IEEE Symposium on Visual Languages -

Human Centric Computing, Sept 2004, pp. 173–180.
[42] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-

ercc: Scaling code clone detection to big-code,” in 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE), May 2016,
pp. 1157–1168.

