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We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift

keys. The encryption operations require only rotations in phase space, which commute with computations in

the code space performed via passive linear optics, and with generalized nonlinear phase operations that are

polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any

computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics

and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby

a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network,

yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our

encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words.

While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to

any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

DOI: 10.1103/PhysRevA.97.042308

I. INTRODUCTION

In classical cryptography, homomorphic encryption has

been a topic of intense interest in recent years [1–3]. It is a

form of encryption that allows a computation to be performed

on the encrypted text without having to first decrypt the text.

If an arbitrary computation is allowed, then the encryption is

said to be fully homomorphic. The first fully homomorphic

encryption scheme was only discovered recently by Gentry in

2009 [2]. However, like many other classical cryptographic

primitives, these homomorphic schemes only offer computa-

tional security, which means that they are secure as long as

certain problems are computationally intractable. The search

for information-theoretically secure encryption problems has

led to quantum analogs of homomorphic encryption [4–6].

These schemes only have to hide the quantum input to the

computation, unlike a related quantum cryptographic protocol

known as blind quantum computation (BQC) [7] which also

hides the desired computation. However, unlike BQC, no

interactive protocols are allowed in quantum homomorphic

encryption. Other schemes that perform quantum computing

on encrypted data that require interactions are known [8–11],

though confusingly some of them have been labeled as “quan-

tum homomorphic encryption” [8,9]. Others have focused on

hybrid schemes [12–14] that bootstrap on a classical fully

homomorphic encryption scheme to achieve computational se-

curity while allowing certain classes of quantum computations

to be performed on encrypted data. However, some restrictions

have arisen. It has been shown that efficient quantum fully

*sihui_tan@sutd.edu.sg
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homomorphic encryption is impossible [15,16], even when

relaxing from perfect to imperfect security. Nonetheless, the

key insights contributed by the advent of these quantum

schemes still expand the possibilities for implementations of

homomorphic encryption in various forms and for different

uses, especially since partial information security is still

possible for sets of computations of large cardinality [4,5].

It was shown in [4] that homomorphic encryption may be

implemented for a restricted class of quantum computation

known as the boson-sampling model [17–21]. In the boson-

sampling model, computation is performed via a passive linear

optical network with a subset of the input modes of this

network initialized with a single photon, and the remainder

initialized in the vacuum state. To implement the homomorphic

encryption described in [4], the client begins by inputting a

single photon into every mode, as opposed to just a subset of the

modes. Modes where a single photon should have been present

are vertically polarized, whereas modes where no photon

should have been present are horizontally polarized. Because

horizontally and vertically polarized photons do not interfere,

they effectively evolve independently through the linear optics

network, and by discarding all horizontally polarized photons

at the output the desired computation is recovered. Security is

achieved by applying the same random polarization rotation

to every photon before entry to the network. The angle of

rotation acts as the client’s private key, which is not disclosed

to the party performing the evaluation. After the evaluation,

the photons are returned to the user, who subsequently applies

the inverse rotation and discards all horizontally polarized

photons, thereby recovering the computation. However, in the

absence of knowledge of the key, it is difficult to differentiate

between photons that belong to the computation and those

which should be discarded. With this scheme, O(log2(m)) bits
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can be hidden when m bits are encrypted. Using group theo-

retical insights, this homomorphic scheme has been expanded

upon to enable quantum computation beyond boson sampling

while improving the security [5] to hide a constant fraction of

the number of bits sent. This fraction can be made arbitrarily

close to unity by increasing the number of internal states of the

bosons used to encode information.

Quantum information theory relies on representing infor-

mation using quantum states. The underlying algebra of the

states, and hence of the operations forming the encoding, affect

the performance of the encryption scheme. In this paper, we

explore the use of a phase rotation encoding for coherent-

state qubits. The advantages of using coherent states are

plentiful. Coherent states are produced relatively easily; a laser

source closely approximates a coherent state. In phase space a

coherent state is a “blob,” where the distance from the origin is

the amplitude of the coherent state and the angle is its phase.

Schemes exist to encode classical bits onto coherent states [22],

to create a collection of universal gate sets for computations

with these encodings [23,24], and to map general quantum

communication protocols involving pure states of multiple

qubits into one that employs coherent states [25]. The ease

of producing, manipulating, and distributing coherent states

has seeded continuous-variable (CV) analogs [26], primarily

featuring coherent states, of quantum cryptography schemes

such as quantum key distribution [27–29] and random ciphers

for quantum encryption [30,31].

In this paper, we present a somewhat-homomorphic en-

cryption scheme that utilizes a logical encoding onto coherent

states and encrypts with random rotations in phase space. The

scheme works as follows: each classical bit is represented on

a single coherent state. A random private key is generated,

and the same corresponding random phase shift is applied to

every coherent state. An evaluation that is made up of elements

from an allowed set of operations, G, is then performed on the

encrypted data. The set G contains beamsplitters, linear and

nonlinear phase shifts, and unitaries that commute with encryp-

tion operators. Both the Kerr and cross-Kerr interactions are

also included in G. In fact, any operator that preserves photon

number will work. Although this scheme follows a similar

principle to those of [4,5], it is a different primitive. The main

differences are that it is a continuous-variable protocol, and the

encryption and computation operators act on the same Hilbert

space nontrivially. The other two schemes are discrete-variable

protocols, and have encryption and computation operators that

act nontrivially only on distinct subspaces.

We quantify the security of our protocol with the trace

distance between any two encrypted inputs. In this notion of

security, an adversary without knowledge of the secret key

attempts to distinguish the encryptions of any two messages.

The smaller the trace distance, the more indistinguishable the

encrypted messages are to the adversary. We find this trace

distance by showing that the encoding operation induces a

partition structure in the states of the microcanonical ensemble

where most of the off-diagonal terms are zeroed out. The

partition structure gives a closed-form equation for the trace

distance between two encrypted inputs. By comparing this

trace distance to that for the corresponding unencrypted state,

we show that our encryption scheme suppresses the distin-

guishability of the encoded states and thus provides some se-

curity against an adversary attempting to identify the encoded

message. Our scheme demonstrates that quantum somewhat-

homomorphic encryption is possible for qubit encodings using

continuous-variable states. While we focus on a coherent-state

encoding, a similar phase-key encoding scheme might be

applicable to other CV computation schemes. In principle,

this encoding could be applied to any CV scheme where the

phase-shift operator commutes with the computation, for any

choice of basis states that are not rotation symmetric in phase

space, such as photon-number states.

II. LOGICAL ENCODING USING COHERENT STATES

Consider an encoding of logical qubits using coher-

ent states with |0L〉 = |α〉 and |1L〉 = |−α〉, where |α〉 =∑∞
n=0 e− |α|2

2
αn
√

n!
|n〉 with α ∈ C. An m-bit binary string

x := (x1,x2, . . . ,xm) is represented by the tensor product

state |ψx〉 = |(−1)x1α〉 |(−1)x2α〉 . . . |(−1)xmα〉. These logi-

cal qubits are not orthogonal as | 〈α| − α〉 |2 = e−4|α|2 > 0.

Consequently, when m bits are encoded using the ensemble

{px,ρ̂x}, where px is the prior probability for the string x and

ρ̂x = |ψx〉 〈ψx|, the accessible information of the ensemble,

Iacc({px,ρ̂x}), is less than m bits.

A lower bound on the accessible information of the

encoding ensemble can be obtained for a uniform prior

by the mutual information between x and the outcomes

given by a pretty-good measurement (PGM) [32], yPGM.

The assumption that the prior distribution of the code

words is uniform corresponds to the case where the eval-

uator has no prior information about the source. The

PGM is described by the positive-operator valued measure

(POVM) {ρ̂− 1
2 ρ̂xρ̂

− 1
2 ,x ∈ Z

m
2 }, where ρ̂ = 1

2m

∑
x∈Z

m
2
ρ̂x =

1
2m (ρ̂0 + ρ̂1)⊗m, ρ̂0 := |α〉 〈α|, and ρ̂1 := |−α〉 〈−α|. Here ρ̂− 1

2

denotes the pseudoinverse of the matrix square root of the

density matrix ρ̂.

Every element of the POVM is a tensor product over the m

modes, thus the mutual information for the m-mode inputs x

to outputs yPGM is

I (x; yPGM) = mI (x; yPGM), (1)

where the I (x; yPGM) is the mutual information for a single-

mode discrimination by the PGM. Let px(ℓ) := 1
2

and py(j )

be the prior and posterior probabilities for obtaining x = ℓ and

y = j , respectively. Then, we have

I (x; yPGM) =
1∑

j,ℓ=0

px(ℓ)p(j |ℓ) log2

(
p(j |ℓ)

py(j )

)
, (2)

where p(j |ℓ) := tr(�j |ℓL〉 〈ℓL|), and �j = 2(ρ̂0 +
ρ̂1)−

1
2 ρ̂xj

(ρ̂0 + ρ̂1)−
1
2 is the conditional probability that

the j th outcome was measured given that |ℓL〉 was sent, and

�j :=
(

ρ̂0 + ρ̂1

2

)− 1
2

|(−1)jα〉 〈(−1)jα|
(

ρ̂0 + ρ̂1

2

)− 1
2

.

(3)
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The mixed state 1
2
(ρ̂0 + ρ̂1) has the spectral decomposition

a+ |ψ+〉 〈ψ+| + a− |ψ−〉 〈ψ−| [33] where the eigenvectors are

|ψ±〉 :=
|α〉 ± |−α〉

√
2
√

1 ± exp(−2|α|2)
, (4)

with eigenvalues a± := 1
2
[1 ± exp(−2|α|2)], respectively. The

conditional probabilities are explicitly

p(j |ℓ) =

{
1
2

(√
a+ + √

a−
)2

, j = ℓ

1
2

(√
a+ − √

a−
)2

, j �= ℓ
, (5)

and thus

I (x; yPGM) = (
√

a+ +
√

a−)2 log2(
√

a+ +
√

a−)

+ (
√

a+ −
√

a−)2 log2(
√

a+ −
√

a−). (6)

When |α| → 0, we have I (x; yPGM) = 2|α|2/ ln(2) + O(|α|4),

while, if |α| → ∞, I (x; yPGM) → 1. This is expected because

|α〉 and |−α〉 are barely distinguishable for small |α|, but

become nearly orthogonal as |α| becomes large.

III. HOMOMORPHIC ENCRYPTION

Here, we define encoding and decoding operations that

encrypt and decrypt the data. We follow the approach of [5],

wherein the encoding operators are chosen to commute with

those of the computation in the code space.

After the classical string is encoded onto coherent-state

qubits, the user chooses a key k uniformly at random from

the set {0,1, . . . ,d − 1}, where d is a positive integer. A

phase-space rotation is then implemented on every mode, each

with the same angle. The phase-space rotation operator on the

j th mode is

�̂j (θk) = exp(−iθk â
†
j âj ), (7)

where θk := 2πk/d. Such an operation on a coherent state

yields also a coherent state with the same amplitude, but

rotated in phase space by θk around the origin. The application

of the above operator on every mode gives a net operator

that is generated by the total photon-number operator, N̂ :=∑m
j=1 â

†
j âj . The encrypted state is then processed before

decryption. The processing is performed by an evaluator, who

is able to process the encrypted state without knowing the

secret key. Finally, the output bit string y := (y1,y2, . . . ,ym)

can be determined by a measurement on the modes after an

inverse rotation �̂j (−θk). Since the computation operators are

conditioned to commute with the encryption (and decryption)

operators and the decryption algorithm is constant in the length

of the input, our scheme satisfies Broadbent and Jeffery’s

condition of correctness and compactness [12]. In the next

section, we will show that nontrivial computation operators

which commute with
⊗m

j=1 �̂(θk) exist. Then, we discuss

the complexity of these allowed computations in our scheme.

They are closely linked to boson sampling [17] and quantum

walks [34,35]—equivalent nonuniversal models of quantum

computation.

FIG. 1. The boson-sampling model. A string of n single photons

is prepared in m optical modes. They are evolved via a passive

interferometer U . Finally the photon statistics are sampled from the

distribution P (S).

IV. ALLOWED COMPUTATIONAL OPERATIONS

The evaluation of quantum operations on the ciphertext

is implemented via a unitary operator U = e−iH t/h̄ with its

evaluation Hamiltonian H implemented by quantum optical

components that are necessarily (Hermitian) photon-number-

preserving operators. Using Ehrenfest’s theorem, we have the

following evolution of the total photon-number operator N̂

under a given Hamiltonian H : d 〈N̂〉 /dt = 1
ih̄

〈[N̂,H ]〉. Since

the evaluation operators do not change the photon number of

the input, then d 〈N̂〉 /dt = 0. This implies that 〈[N̂,H ]〉 = 0.

A set of photon-number-preserving computations that also

commutes with N̂ includes operations in passive linear op-

tics (phase shifts and beamsplitters) and operations that are

polynomials of the number operators. We call the latter set the

generalized nonlinear phase operations and their Hamiltonians

are of the form

HNL :=
∑

n∈Nm

gn1,...,nm

m∏

k=1

(a
†
kak)nk , (8)

where gn1,...,nm
is a coupling constant. The single-mode Kerr

and cross-Kerr interactions are special cases of HNL [36]. Let

K be a constant that is proportional to a third-order nonlinear

susceptibility. The single-mode Kerr interaction is given by

m = 1, g1 = −h̄K , g2 = h̄K , and gn1
= 0 otherwise, while

the cross-Kerr interaction is given by m = 2, g1,1 = h̄K , and

gn1,n2
= 0 otherwise.

Passive linear optics is featured heavily in the boson-

sampling model, where we begin by preparing n single photons

in m optical modes (see Fig. 1). This input state evolves via

nonadaptive, passive linear optics, which implements a unitary

map on the photon creation operators, â
†
i →

∑m
j=1 Ui,j â

†
j .

The output state to the interferometer has the form |ψout〉 =∑
S γS |n(S)

1 , . . . ,n(S)
m 〉, where S represents a photon-number

configuration with n
(S)
i photons in the ith mode, and γS

are the associated amplitudes. Finally, coincidence photode-

tection is performed, which samples from the probability

distribution P (S) = |γS |2. Aaronson and Arkhipov showed

that sampling from P (S) is likely to be a hard problem

for classical computers for some scaling of m with n [17].

042308-3
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Nonetheless, when the inputs to the circuit are switched from

single photons to coherent states, the quantum computation

performed can be efficiently simulated classically [37], using

simple m × m matrix multiplication. This changes, however,

when we also allow Kerr interactions in the circuit, because

this interaction allows the production of cat states from

coherent states [38]. For instance, in the interaction picture

where K(â†â)2 is regarded as the interaction part of the

evaluation Hamiltonian, an initial coherent state will evolve

to e−ih̄Kt(â†â)2 |α〉 = 1√
2
(e−iπ/4 |α〉 + eiπ/4 |−α〉) at time t =

π
2h̄K

. Cat states when evolved via passive linear optics and

sampled with number-resolved photodetection implement a

classically hard sampling problem under plausible complexity

theoretic assumptions [39], although it is not believed to be

universal for quantum computation.

V. SECURITY ANALYSIS

Without knowledge of the key, the encrypted input state is

E(ρ̂x) : =
1

d

d−1∑

k=0

m⊗

j=1

�̂j

(
2πk

d

)
|ψxj

〉 〈ψxj
| �̂j

(
−

2πk

d

)

=

⎛
⎝

m⊗

j=1

V
xj

j

⎞
⎠E(ρ̂0)

⎛
⎝

m⊗

j=1

V
†xj

j

⎞
⎠, (9)

where xj is the j th element of the string x, |ψxj
〉 := |(−1)xj α〉

is the state of the j th mode of |ψx〉, and Vj = �̂j (π ). If

someone without knowledge of the key were to attempt to

measure the encrypted input state, ρ̂x, they would perceive a

state highly mixed in the phase degree of freedom, and have

difficulty in differentiating between states that belong to the

computation. This indistinguishability gives a security for our

scheme which we now make precise.

To quantify the security of our encryption scheme, we obtain

an upper bound on the trace distance between the encrypted

states given by D(E(ρ̂u),E(ρ̂v)) for arbitrary pairs of m-bit

strings u and v, where D(σ,τ ) = 1
2
‖σ − τ‖tr denotes the trace

distance between the density matrices σ and τ . It suffices to

obtain an upper bound on D(E(ρ̂x),E(ρ̂0)) where x = u ⊕ v,

because using the invariance of the trace distance under unitary

transformation we can get to the trace distance between any

pairs of encrypted states.

We first write the phase-shift operator on the Fock space

�̂( 2π
d

) :=
∑

y∈N
ωy |y〉 〈y| where ω = e−2πi/d and N is the

set of non-negative integers. Let φ(z) =
∑

i zi mod d. Now

for every integer ℓ, the matrix [�̂( 2π
d

)⊗m]ℓ is equivalent

to
∑

y∈Nm ωℓφ(y) |y〉 〈y|. Hence, using the Fourier identity
1
d

∑d−1
ℓ=0 ωℓφ(y−z) = δφ(y−z),0,

E(ρ̂0) =
∑

z,y∈Nm

δφ(y−z),0bzb
∗
y |z〉 〈y| , (10)

where bz = bz1
bz2

. . . bzm
is a product of complex coefficients,

each given by bn := e−|α|2/2 αn
√

n!
. The state E(ρ̂0) admits a

block-diagonal decomposition, with each block labeled by

φ(y − z) = j . The support of the j th block is {|z〉 ∈ Gj : z ∈
N

m}, where Gj := {z ∈ N
m : φ(z) = j} is a partition of N

m.

Defining |gj 〉 :=
∑

z∈Gj
bz |z〉, then

E(ρ̂0) =
d−1∑

j=0

qj |g̃j 〉 〈g̃j | , (11)

where |g̃j 〉 = |gj 〉 /
√

qj is a normalized state and

qj = 〈gj |gj 〉 =
∑

z∈Gj

|bz|2.

This partition structure makes it straightforward to compute

the trace distance between E(ρ̂x) and E(ρ̂0). Using Eq. (10) in

the expression in Eq. (9), we have

E(ρ̂x) =
d−1∑

ℓ=0

qℓ |h̃ℓ〉 〈h̃ℓ| , (12)

where |h̃ℓ〉 is the normalized state

|h̃ℓ〉 =
m⊗

k=1

V
xk

k |g̃ℓ〉 =
1

√
qℓ

∑

z∈Gℓ

bz(−1)x·z |z〉 . (13)

The states |g̃k〉 and |h̃ℓ〉 satisfy the relationship

〈h̃ℓ|g̃k〉 =
{
Ak if k = ℓ

0 otherwise
, (14)

where Ak = 1
qk

∑
z∈Gk

|bz|2(−1)x·z and is a real constant.

Owing to the orthogonality of the blocks in the block de-

composition of E(ρ̂0) and E(ρ̂x), we can express the trace

distance between them as a sum across blocks. Let Ôk :=
|h̃k〉 〈h̃k| + |g̃k〉 〈g̃k| − Ak |h̃k〉 〈g̃k| − Ak |g̃k〉 〈h̃k|. Then

D(E(ρ̂u),E(ρ̂v)) =
1

2

d−1∑

k=0

qktr

(√
Ôk

)
=

d−1∑

k=0

qk

√
1 − A2

k,

(15)

where 1 − A2
k is the eigenvalue of Ôk of multiplicity 2 (please

see Appendix A for derivation).

In the limit d → ∞, we can drop the modulus in φ(z) and

use the multinomial theorem to simplify qk and Ak . We have

qk
d→∞= e−m|α|2 (m|α|2)k

k!
(16)

and

Ak
d→∞=

1

qk

[m − 2wt(x)]ke−m|α|2 |α|2k

k!
, (17)

respectively, where wt(x) is the Hamming weight of x =
u ⊕ v. Details of the derivation of qk and Ak are given in

Appendix B. If d is finite, the modulus in the definition of the

function φ(x) prevents us from using the multinomial theorem,

and these results would not apply. Explicitly, we have

D(E(ρ̂v),E(ρ̂u))
d→∞=

∞∑

k=1

e−EEk

√
1 −

(
m−2wt(x)

m

)2k

k!
, (18)

where E = m|α|2, and once again x = u ⊕ v.

For comparison, we compute the trace distance between the

unencrypted states ρ̂u and ρ̂v which is equal to that between

the unencrypted states ρ̂x and ρ̂0 for x = u ⊕ v, because of the
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FIG. 2. A plot of D(E(ρ̂u),E(ρ̂v)) vs |α| for m = 10 and d = 100,

and for various values of w = wt(u ⊕ v).

invariance of the trace distance under a unitary transformation.

This trace distance can be expressed in terms of a rank ma-

trix Q̂ := |ψx〉 〈ψx| + |ψ0〉 〈ψ0| − B |ψx〉 〈ψ0| − B |ψ0〉 〈ψx|,
where B := e−2wt(x)|α|2 . Specifically

D(ρ̂u,ρ̂v) = 1
2
tr

(√
Q̂

)
=

√
1 − B2

=
√

1 − e−4wt(x)|α|2 , (19)

where 1 − B2 is the eigenvalue of Q̂ (see Appendix A for

derivation). The trace distances in Eqs. (18) and (19) are plotted

for strings of length m = 10 in Figs. 2 and 3, respectively.

Figure 2 was calculated using an encryption key with d = 100.

The qualitative behaviors of the trace distances with and

without encryption are quite similar, with the trace distance

vanishing as |α| → 0, while approaching its maximum value of

unity as |α| grows. However, quantitatively, the trace distances

are suppressed for the encrypted states (see Fig. 4) and have

a lower spread over the different wt(x) values. The encryption

would make it harder for an adversary to distinguish between

the different encoded states, thus providing some modest

security. There is a tradeoff between security and the amount

of transmitted accessible information, and we recommend a

transmission that has a small but nonzero amplitude. In this

FIG. 3. A plot of D(ρ̂u,ρ̂v) vs |α| for m = 10 and d = 100, and

for various values of w = wt(u ⊕ v).

FIG. 4. A plot of R = D(E(ρ̂u),E(ρ̂v))/D(ρ̂u,ρ̂v) vs |α| for m =
10 andd = 100 for various weightsw = wt(u ⊕ v) values. The values

of R are less than unity indicating a suppression of distinguishability

by the encryption operation.

regime, the operations allowed for our scheme are believed to

be still of hard sampling complexity [39].

Let R := D(E(ρ̂u),E(ρ̂v))/D(ρ̂u,ρ̂v), and E := m|α|2. We

plot R versus m for (i) E = 1.0 and (ii) E = mr , where r = 0.3

in Fig. 5. The ratios are less than unity, indicating that the trace

distances are suppressed for the encrypted states. However, as

the ratios increase with m, this suppression diminishes with an

increasing length of the encoded string in both energy regimes.

The corresponding lower bounds on I (x; yPGM) are plotted

in Fig. 6, which shows I (x; yPGM) increasing with m for both

(i) E = 1.0 and E = mr where r = 0.3. This means that in

these regimes of E someone with the secret key can send more

information with increasing code length.

One might hope for an energy regime in which I (x; yPGM)

increases, while the ratio R vanishes with increasing m.

However, this does not seem to be possible. Our scheme

is still useful in situations where secure delegated quantum

processing is desired when constrained to preparing simple

resources like coherent states, and to short code words.

VI. CONCLUSION

In this paper, we present a homomorphic encryption scheme

that allows processing on logical qubits encoded onto coherent

FIG. 5. A plot of R vs m with fixed wt(x) = 1 strings, where x =
u ⊕ v, and d = 100 for (i) E = 1.0 and (ii) E = mr , where r = 0.3.
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FIG. 6. A plot of I (x; yPGM) vs m with d = 100, and fixed wt(x) =
1 strings for (i) E = 1.0 and (ii) E = mr , where r = 0.3.

states while encrypted by a random rotation in phase space.

Although the input states are classical, the set of allowed quan-

tum operations is hard to simulate classically. We analyzed

the security of our scheme through the trace distance of any

two encrypted code words and showed that there exist regimes

of coherent-state amplitudes and bit-string length in which

the trace distance can be suppressed, indicating increased

security afforded by the encryption. Our scheme is readily

implementable with existing optical network technology, and is

useful as a primitive for secure delegated quantum computing

using continuous-variable resources.
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APPENDIX A: CALCULATION OF EIGENVALUES

Let |x〉 and |y〉 be normalized states that are not orthogonal

to one another. Let |z〉 be a normalized state that is orthogonal

to |x〉 and in the plane spanned by |x〉 and |y〉. One can write

|y〉 in terms of |x〉 and |z〉 as

|y〉 = (|x〉〈x| + |z〉〈z|)|y〉
= |x〉 cos θ + |z〉 sin θ, (A1)

where cos θ = 〈x|y〉 and sin θ = 〈z|y〉. Then a given matrix

M = |x〉〈x| − C|x〉〈y| − C|y〉〈x| + |y〉〈y| (A2)

can be rewritten in terms of |x〉 and |z〉 as

M = |x〉〈x|(1 − 2C cos θ + cos2 θ )

+ |x〉〈z|(−C sin θ + sin θ cos θ )

+ |z〉〈x|(−C sin θ + sin θ cos θ )

+ |z〉〈z| sin2 θ, (A3)

for which its eigenvalues are λ± = (1 ± C)(1 ∓ cos θ ).

When M = Ôk , C = Ak , and cos θ = 〈g̃k|h̃k〉 = Ak , we

have λ+ = λ− = 1 − A2
k . When M = Q̂, C = B, and cos θ =

〈ψx|ψ0〉 = B, we have λ+ = λ− = 1 − B2.

APPENDIX B: CALCULATION OF qk AND Ak IN THE

LIMIT d → ∞

In the limit d → ∞, we can drop the modulus in φ(z) and

use the multinomial theorem to simplify qk and Ak . We have

qk
d→∞=

∑

z ∈ Nm

z1 + . . . + zm = k

e−m|α|2 |α|2(z1+...+zm)

z1!z2! . . . zm!

=
∑

z ∈ Nm

z1 + . . . + zm = k

e−m|α|2 |α|2k

k!

(
k

z1!z2! . . . zm!

)

= e−m|α|2 (m|α|2)k

k!
, (B1)

where
(

k

z1,z2,...,zm

)
:= k!

z1!z2!...zm!
is the multinomial coefficient

and

Ak
d→∞=

1

qk

∑

z ∈ Nm

z1 + . . . + zm = k

e−m|α|2 |α|2(z1+...+zm)

z1! . . . zm!
(−1)x·z

=
1

qk

∑

z ∈ Nm

z1 + . . . + zm = k

e−m|α|2 |α|2k

k!

(
k

z1,z2,. . .,zm

)
(−1)x·z

=
1

qk

e−m|α|2 |α|2k

k!

[
(−1)x1 + . . . + (−1)xm

]k

=
1

qk

[m − 2wt(x)]ke−m|α|2 |α|2k

k!
, (B2)

respectively, where wt(x) is the Hamming weight of x.
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