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Abstract 

Background: Chatbots are systems that are able to converse and interact with human users 

using spoken, written, and visual languages. Chatbots have the potential to be useful tools for 

individuals with mental disorders, especially those who are reluctant to seek mental health 

advice due to stigmatization. While numerous studies have been conducted about using 

chatbots for mental health, there is a need to systematically bring this evidence together in order 

to inform mental health providers and potential users about the main features of chatbots and 

their potential uses, and to inform future research about the main gaps of the previous literature. 

Objective: We aimed to provide an overview of the features of chatbots used by individuals for 

their mental health as reported in the empirical literature. 

Methods: Seven bibliographic databases (Medline, Embase, PsycINFO, Cochrane Central 

Register of Controlled Trials, IEEE Xplore, ACM Digital Library, and Google Scholar) were 

used in our search. In addition, backward and forward reference list checking of the included 

studies and relevant reviews was conducted. Study selection and data extraction were carried 

out by two reviewers independently. Extracted data were synthesised using a narrative 

approach. Chatbots were classified according to their purposes, platforms, response generation, 

dialogue initiative, input and output modalities, embodiment, and targeted disorders. 

Results: Of 1039 citations retrieved, 53 unique studies were included in this review. Those 

studies assessed 41 different chatbots. Common uses of chatbots were: therapy (n=17), training 

(n=12), and screening (n=10). Chatbots in most studies were rule-based (n=49) and 

implemented in stand-alone software (n=37). In 46 studies, chatbots controlled and led the 

conversations. While the most frequently used input modality was writing language only 

(n=26), the most frequently used output modality was a combination of written, spoken and 
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visual languages (n=28). In the majority of studies, chatbots included virtual representations 

(n=44). The most common focus of chatbots was depression (n=16) or autism (n=10). 

Conclusion: Research regarding chatbots in mental health is nascent. There are numerous 

chatbots that are used for various mental disorders and purposes. Healthcare providers should 

compare chatbots found in this review to help guide potential users to the most appropriate 

chatbot to support their mental health needs. More reviews are needed to summarise the 

evidence regarding the effectiveness and acceptability of chatbots in mental health. 
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1 Introduction 

The World Health Organisation defines mental health as “a state of well-being in which the 

individual realizes his or her own abilities, can cope with the normal stresses of life, can work 

productively and fruitfully, and is able to make a contribution to his or her community” [1]. It 

is has been estimated that mental disorders may affect 29% of people in their lifetime [2]. 

Globally, mental disorders are considered one of the most common causes of disability [3]. In 

2010, 28.5% of global Years Lived with Disability (YLDs) were caused by mental, 

neurological and substance use disorders, making them the top cause of YLDs [4]. Further, 

they caused about 10% of global Disability-Adjusted Life Years (DALYs) [4]. Importantly, 

absolute DALYs for these disorders increased from 182 million to 258 million (41%) over 20 

years (1990-2010) [4]. It has been estimated that the global economy will lose $16 trillion 

between 2011 and 2030 through lost labour and capital output resulted from mental disorders 

[5].  

There is a global shortage of mental health workers, with demand out-stripping service 

provision [6]. Specifically, while developed countries have only about 9 psychiatrists per 

100,000 people [7], low income countries have as few as 0.1 for every 1,000,000 people [8]. 

Due to the relative lack of mental health resources, it is difficult to provide mental health 

interventions using the one-on-one traditional gold standard approach [5]. According to the 

World Health Organization, mental health services do not reach about 55% and 85% of people 

in developed and developing countries, respectively [9]. The lack of access to mental health 

services may lead to suicidal behaviour, resulting in increasing mortality [10].  

The insufficient number of mental health workers has prompted the utilization of technological 

advancement to meet the needs of the people who are affected by mental health conditions [5]. 

According to the World Health Organization [9], 29% of the 15,000 mobile health apps focused 
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on mental health. One of the main technological solutions to the lack of mental health 

workforce are chatbots, also known as conversational agents, conversational bots, and 

chatterbots [6].  

A chatbot is a system that is able to converse and interact with human users using spoken, 

written, and visual languages [6, 11]. Chatbots have potential to increase access to mental 

health interventions. In particular, chatbots may encourage interaction by those who have 

traditionally been reluctant to seek mental health advice due to stigmatization [6, 12]. Many 

chatbots have been developed for providing mental health interventions. For example, the 

chatbot “Wysa” uses several evidence-based therapies (e.g. cognitive behavioural therapy, 

behavioural reinforcement, and mindfulness) to target symptoms of depression for users [13]. 

LISSA is another chatbot that provides training for people with autism in order to develop their 

social skills [14]. 

Numerous studies have been conducted to assess different aspects of using chatbots for mental 

health, such as effectiveness [15, 16], acceptability [14, 17], usability [18, 19], and adoption 

[20, 21]. Bringing this evidence together is very important to inform mental health providers 

and users about the main features of chatbots and their potential uses, and to inform future 

research about the main gaps of the previous literature. Two reviews have been conducted. The 

first, a scoping review focused on only embodied conversational agents (i.e. chatbots that show 

virtual human characters on their screens to mimic main features of human face-to-face 

conversation, such as verbal and nonverbal behavior) [22]. The second review focused on both 

embodied and non-embodied conversational agents (i.e. chatbots that communicate with users 

via only texts appears on screens and do not show virtual human characters), but it focused on 

some mental disorders (i.e. depression, anxiety, schizophrenia, bipolar, and substance abuse 

disorders) [6]. That review used limited search terms and therefore identified a relatively low 

number of studies (i.e. 10) [6]. Thus, it is necessary to conduct a review that focuses on all 
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types of chatbots (embodied and non-embodied) for mental health using accurate and 

comprehensive search terms. Accordingly, the aim of the current review was to provide an 

overview of the features of chatbots used by individuals for their mental health as reported in 

the empirical literature. 

2 Methods 

To achieve the abovementioned objective, a scoping review was carried out. A scoping review 

is defined as an initial exploration of the available research literature which follows a 

systematic method in order to map evidence on a certain area and identify its scope, size, and 

nature [23]. This scoping review followed guidelines recommended by the PRISMA Extension 

for Scoping Reviews (PRISMA-ScR) [23].  

2.1 Search strategy 

2.1.1 Search sources 

For the purpose of the current study, we searched the following bibliographic databases: 

MEDLINE, EMBASE, PsycINFO, Scopus, Cochrane Central Register of Controlled Trials, 

IEEE Xplore, ACM Digital Library, and Google Scholar. Only the first 100 citations resulted 

from searching Google Scholar were scanned in this review. This is because Google Scholar 

usually retrieves several hundred citations which are ordered by their relevance to the search 

topic. The search was conducted from the 10th to the 12th of May 2019. Reference lists of the 

included studies and reviews were checked for additional studies of relevance to the review 

(backward reference list checking). Further, we checked relevant studies that cited the included 

studies using the “cited by” function available in Google Scholar (forward reference list 

checking). 
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2.1.2 Search terms 

Search terms considered in the current review were selected based on two elements: population 

(e.g. mental health, mental disorder, mood disorder, and anxiety disorder) and intervention (e.g. 

conversational agent, chatbot, chatterbot, and virtual agent). The search terms were derived 

from previous reviews and informatics experts interested in mental health. Further, search 

terms for mental disorders were derived from the Medical Subject Headings (MeSH) index in 

MEDLINE. Appendix A shows the search strings used for searching each electronic database. 

2.2 Study eligibility criteria 

In order for studies to be included, they had to convey primary research findings regarding 

chatbots used by individuals for their mental health. The review focused on chatbots that work 

on the following platforms: stand-alone software and web browser, but not robotics, serious 

games, SMS, nor telephones. We excluded studies containing chatbots that were designed to 

be used specifically by physicians or caregivers. Studies about chatbots whose dialogue was 

generated by a human operator were excluded. The review included peer-reviewed articles, 

dissertations, conference proceedings, and reports, but not reviews, conference abstracts, 

proposals, editorials. Studies had to be written in the English language to be included in the 

review. There were no restrictions regarding the type of dialogue initiative (i.e. use, system, 

mixed), input and output modality (i.e. spoken, visual, and written), study design, study setting, 

measured outcome, year of publication, and country of publication.  

2.3 Study selection 

The current review followed two steps in selecting the studies. In the first step, two reviewers 

(AA & MA) screened independently the titles and abstracts of all retrieved studies. In the 

second step, the same reviewers read independently the full texts of studies included from the 

first step. Any disagreements between both reviewers were resolved through consulting a third 
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reviewer (MH). Inter-coder agreement between both reviewers was assessed using Cohen’s 

kappa [24], which was 0.80 and 0.84 in the first and second step of the selection process, 

respectively, indicating a very good agreement [25]. 

2.4 Data extraction 

To conduct a systematic and accurate extraction of data, we developed a data extraction form 

and piloted it using five included studies (Appendix B). Similar to the study selection process, 

two reviewers (AA & MA) independently conducted the process of data extraction, and any 

disagreements were resolved by the third reviewer (MH). Inter-coder agreement between the 

reviewers was good (Cohen’s kappa = 0.74) [25].  

2.5 Study quality assessment 

It is well known that scoping reviews are different from systematic reviews in having broader 

topics and including studies with more diverse study designs [26, 27]. Therefore, scoping 

reviews usually do not focus on the quality assessment of the included studies [26, 27]. 

Accordingly, we did not assess the quality of the included studies in this review.  

2.6 Data Synthesis 

Extracted data were synthesised using a narrative approach. We endeavoured to classify the 

chatbots according to their purpose, platforms, response generation, dialogue initiative, input 

and output modalities, embodiment, and targeted disorders (Appendix B). To that end, we 

adapted several taxonomies published in the literature [28-30]. Characteristics of studies and 

population were summarised in a table and described narratively. Then, a description of the 

characteristics of chatbots in the included studies was presented. 
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3 Results 

3.1 Search results 

As shown in Figure 1, the search process of six bibliographic databases retrieved 1039 

citations. After removing 409 duplicates, 630 unique titles and abstracts remained. After 

scanning their titles and abstracts, 505 citations were excluded. By reading the full text of the 

125 remaining citations, 43 publications were included. Six additional studies were identified 

from backward reference list checking, and four studies were identified from forward reference 

list checking. In total, 53 publications were included in the synthesis. Appendix C shows the 

full list of the included studies. 

Figure 1: Flow chart of the study selection process 
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3.2 Description of included studies 

As presented in Table 1, the most commonly used study design was quasi-experimental (n=23, 

43%). About two thirds of studies were journal articles (n=35, 66%). Although studies were 

published in more than 17 countries, about 43% of studies were published in the USA (n=23). 

More than half of the studies were published between 2016 and 2019 (n=30, 56.6%). The 

sample size was less than 50 in 30 studies whereas it was 200 or more in only 4 studies. The 

mean sample size was 75.2, it ranged from 4 to 454. Age of participants was reported in 33 

studies, the mean age of participants in all those studies was 37.1 years. Sex of participants was 

reported in 41 studies, the mean of male percentage in all those studies was 55%. A clinical 

sample relating to a specific mental disorder featured in about 58.5% of the studies (n=31). 

Participants were recruited from either clinical settings (n=20), community (n=16), or 

educational settings (n=20). The most common outcomes assessed by the included studies were 

acceptability (n=36) and effectiveness of the chatbots (n=33). Appendix D shows a description 

of each included study.  

Table 1: Characteristics of the included studies. 

Characteristics Number of studies 

Study design Quasi-experiment:23    Survey:16     Randomised controlled trial:14                           
Type of 
publication 

Journal article:35            Conference proceeding:16         Thesis:2 

Country 

USA:23       Japan:6        Australia:4       Netherlands:3       France:3       
UK:3           Turkey:1     Germany:1        Sweden:1             Greece:1        
Spain:1        Korea:1       Pakistan:1         Global population:1  
China: 1      Spain & Mexico:1         Romania, Spain and Scotland:1                 

Year of 
publication 

≤2005:0         2006-2010:7          2011-2015:15          2016-2019:31 

Sample size <50:30           50-99:10                100-199:9                ≥200:4 
Mean age 37.11 years 
Sex (male) 55%2 

Sample type Clinical sample:31               Non-clinical sample:22  
Setting3 Clinical:21        Educational:20       Community:16         Unknown:3 
Measured 
outcomes4 

Acceptability:36      Effectiveness:33      Usability:20      Adoption:7     

Tips 1: Mean Age was reported in 33 studies. 
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2: Sex was reported in 41 studies. 
3: Numbers do not add up as some studies recruited the sample from 
more than one setting. 
4: Numbers do not add up as most studies assessed more than one 
outcome. 

Abbreviations UK: United Kingdom; USA: United State of America 
 

3.3 Description of chatbots 

The included studies assessed 41 different chatbots. The chatbots were given names in 39 

studies (e.g. Woebot, Wysa, Laura). In 17 studies, chatbots were used for therapeutic purposes 

(Table 2). For example, the chatbots “Woebot” and “Help4Mood” were developed to deliver 

cognitive behavioural therapy for patients with depression and anxiety [31, 32]. In other 12 

studies, chatbots were used for training purposes. For instance, the chatbots “LISSA” and “VR-

JIT” were used to train patients with autism to improve their social skills and job interview 

skills, respectively [14, 33]. Chatbots were used in ten studies as a screening tool for several 

disorders such as dementia [34-36], tobacco and alcohol use disorders [37], stress [15], and 

symptoms of depression and suicide [38]. Chatbots were also used for self-management (n=7), 

counselling (n=5), education (n=4), and diagnosis (n=2). 

Chatbots were implemented in stand-alone software in 70% of studies whereas the remaining 

chatbots were implemented in web-based platforms (Table 2). In the majority of studies 

(92.5%), chatbots generated their responses based on some predefined rules or decision trees 

(rule-based). In the remaining 4 studies, chatbots generated their responses based on machine 

learning approaches (Table 2). Specifically, while one study used supervised machine learning, 

another study used reinforcement learning. However, the remaining two studies did not specify 

the machine learning approaches used. 

While chatbots led the dialogue in 86.8% of studies, both chatbots and users could lead the 

dialogue in the remaining 7 studies. Users could interact with the chatbots using: only written 
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language via keyboards and mouse (n=26), only spoken language via microphones (n=8), a 

combination of spoken and visual languages via microphones and camera or Kinect (n=10), a 

combination of written and spoken languages (n=7), and a combination of written and visual 

languages (2). However, chatbots used the following modalities to interact with users: a 

combination of written (texts), spoken and visual languages (n=28), a combination of spoken 

and visual languages (n=11), only written language (n=9), and a combination of written and 

visual languages (n=5) (Table 2). 

In 44 studies (83%), virtual representations (e.g. avatar or virtual human) were embodied in 

chatbots (Table 2). Chatbots targeted the following disorders: depression (n=16), autism 

(n=10), posttraumatic stress disorder (n=7), anxiety (n=7), substance use disorders (n=5), 

schizophrenia (n=3), dementia (n=3), stress (n=2), phobia (n=2), eating disorders (n=1), and 

any mental disorder (n=7). Appendix E shows characteristics of the chatbot used in each study.  

Table 2: Features of chatbots in the included studies 

Characteristics  Number of studies Study ID1 

Purpose2 

Therapy:17 5, 9, 12-18, 22, 24-26, 36, 42, 47, 48 
Training:12 1, 6, 20, 21, 27, 35, 38-41, 44, 46 
Screening:10 2, 5, 10, 16, 23, 24, 28, 45, 49, 51 
Self-management:7  3, 4, 7, 8, 31, 32, 50 
Counselling:5 11, 33, 43, 52, 53 
Education:4 11, 19, 34, 37 
Diagnosing:2 29, 30 

Platform  
Stand-alone software:37 2-7, 10, 13, 17, 18, 20, 21, 23-32, 34, 38-41, 44-53   

Web-based:16 1, 8, 9, 11, 12, 14-16, 19, 22, 33, 35-37, 42, 43 

Response 
generation 

Rule-based:49 1-13, 15, 16, 18-42, 44-51, 53 

Artificial intelligence:4 14, 17, 43, 52 

Dialogue 
initiative 

Chatbot:46 1-15, 17-19, 22, 23, 25-30, 33-42, 44-53 

Both:7 16, 20, 21, 24, 31, 32, 43 

User:0 - 

Input modality 

Written:26 2-5, 7-9, 11, 12, 14-19, 25, 26, 29, 33, 34, 36, 37, 42, 
43, 47, 48 

Spoken & Visual:10     1, 10, 21, 28, 35, 45, 46, 49-51 

Spoken:8 6, 13, 23, 31, 32, 44, 52, 53 

Written & Spoken:7 20, 24, 30, 38-41 

Written & Visual:2 22, 27 

Written, Spoken & Visual:28 1-3, 5, 7, 19-22, 24, 26, 27, 30, 33, 35-41, 43-49  

Spoken & Visual:11  6, 10, 13, 23, 28, 31, 32, 50-53 
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Output 
modality 

Written:9 8, 9, 11, 12, 14, 16, 17, 25, 29 

Written & Visual: 5 4, 15, 18, 34, 42 

Embodiment 
Yes:44 1-7, 10, 13, 15, 18-24, 26-28, 30-53    

No:9 8, 9, 11, 12, 14, 16, 17, 25, 29 

Targeted3 
disorders 

Depression:16 3, 5, 7-10, 12, 14, 17, 24, 26, 30-33, 43 

Autism:10 1, 6, 19, 21, 27, 29, 35, 40, 44, 46 

Posttraumatic stress disorder:7   10, 23, 39, 43, 47, 48, 51 

Mental disorders:7 25, 36, 38, 41, 42, 50, 53 

Anxiety:7 8-10, 12, 14, 18, 24 

Substance use disorders:5 2, 11, 15, 22, 52 

Schizophrenia:3 4, 20, 34 

Dementia:3 28, 45, 49 

Phobia:2 13, 29 

Stress:2 8, 16 

Eating disorders:1 37 

Tips 

1: It is the number given for each included study as shown in Appendix C. 
2: Numbers do not add up as 4 chatbots had two different purposes. 
3: Numbers do not add up as several chatbots focused on more than one mental 
disorder.  

4 Discussion 

4.1 Principal findings 

This scoping review aimed to provide an overview of the features of chatbots used by 

individuals for their mental health as reported in the empirical literature. We identified 53 

studies that assessed 41 different chatbots. The most common use of chatbots was delivery of 

therapy, training, and screening. Of 17 chatbots providing therapy, 10 chatbots were based on 

cognitive behavioural therapy, and 8 chatbots targeted people with depression and anxiety. 

Most chatbots (8 of 12) that provide training focused on people with autism. They also aimed 

to improve social skills (n=8) or job interviewing skills (n=4). Chatbots that were used as a 

screening tool focused mainly on depression (n=3), dementia (n=3), and posttraumatic stress 

disorder (n=3).  

Most chatbots (70%) were implemented in stand-alone software. This was surprising because 

web-based chatbots are considered more appropriate than stand stand-alone software for the 

following two reasons. Firstly, to use web-based chatbots, users do not need to install a specific 

application to their devices, thereby reducing the risk of breaching their privacy. Secondly, 
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web-based chatbots more accessible than stand-alone chatbots. This is because developers of a 

stand-alone chatbot need to create several applications of that chatbot in order for individuals 

to use it through different operating systems (e.g. Google's Android OS, Apple iOS, Apple 

macOS, Microsoft Windows, and Linux). 

The majority of chatbots (92.5%) depended on only decision trees to generate their responses; 

only 7.5% used machine learning approaches. This may indicate that chatbots in mental health 

lag behind chatbots in other fields (e.g. customer services) where artificial intelligence chatbots 

are more common [39, 40]. Lack of artificial intelligence chatbots in health was also noted in 

a review conducted by Laranjo and colleagues [29]. The extensive use of rule-based approaches 

in the studies may be attributed to the fact that they are more appropriate for chatbots that 

perform simple, straightforward and well-structured tasks (e.g. information retrieval & data 

collection) [28, 29]. This was obvious in our review; all chatbots performing simple tasks 

(n=15) such as education, screening, and diagnoses were rule-based. In comparison with 

artificial intelligence chatbots, rule-based chatbots are more simple to develop and less prone 

to errors as their responses are predetermined and they do not need to create new responses 

[41]. Further, rule-based chatbots are considered more secure and responsible than artificial 

intelligence chatbots [42]. In contrast to artificial intelligence chatbots, users of rule-based 

chatbots cannot usually control the dialogue because their inputs are restricted to predefined 

words and phrases [28]. Further, rule-based chatbots cannot respond to users’ inputs outside of 

the determined rules [41-43]. Although rule-based chatbots can be used for complex tasks and 

queries [42, 43], such chatbots are difficult to build because it is hard to expect every possible 

scenario and consumes too much time [41]. 

In 87% of the included studies, chatbots led and controlled the conversation. This was expected 

since most chatbots used rule-based approaches, which restrict user input to predefined words 
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and replies, thereby, prevent them to lead or control the dialogue [28]. The rareness of chatbots 

led by users was also found in another review [29]. 

While the most common input modality was writing language only (49%), the most frequently 

used output modality was a combination of written, spoken and visual languages (53%). All 

chatbots using the written language as an input modality used the written language as an output 

modality too (n=34). The majority of chatbots in this review (83%) included virtual 

representations. 

In our review, chatbots focused mainly on depression and autism. This may be attributed to the 

fact that depression and anxiety are the most common mental disorder around the world [44, 

45], and chatbots are reported to be effective in improving social skills for patients with autism 

[14, 17, 46-48]. 

4.2 Strengths and limitations 

4.2.1 Strengths  

This review provides a list of chatbots in mental health that are classified according to their 

features, and it describes the main characteristics of previous studies in this field. This helps 

readers to explore how chatbots have been used in mental health and research activity in this 

field.  

The current review is the first that focused on embodied and non-embodied chatbots used for 

any mental disorder. This made our review more comprehensive than the two previous reviews 

[6, 22]; where the former focused on some mental disorders and the latter focused on only 

embodied chatbots. Therefore, this comprehensive review provides a holistic view of the field 

and enables readers to explore more choices of chatbots for more varied mental disorders.  

In comparison with the previous reviews [6, 22], the current review is the only review that 

searched Google Scholar and performed backward and forward reference list checking in order 
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to identify grey literature. This enabled us to minimise the risk of publication bias. Further, the 

current review was the only one in the field that was developed, executed, and reported 

according to the PRISMA Extension for Scoping Reviews [23]. Accordingly, this produced a 

high quality scoping review. 

The study selection process and data extraction process were conducted by two reviewers 

independently to reduce selection bias. Agreement between reviewers was very good for the 

study selection process and good for the data extraction process.  

4.2.2 Limitations 

Although chatbots were included in this review regardless of their purpose, type of response 

generation, input and output modalities, embodiment, and targeted disorders, we restricted their 

platforms to stand-alone software and web browser (but not robotics, serious games, SMS, nor 

telephones) and restricted their type of dialogue initiative to users and system (but not human 

operator). This led to excluding more than 25 studies. We excluded systems that are controlled 

by human operator as they are more similar to telemedicine systems than chatbots in terms of 

system design. The above-mentioned restriction was also applied in the previous two reviews 

[6, 22]. 

As the field of the current review is interdisciplinary, we searched several bibliographic 

databases from different fields (e.g. Medline & PsycINFO from the health field, and IEEE 

Xplore and ACM digital library from computer science field). Owing to practical constraints, 

we could not search other databases that cover both fields (e.g. Web of Science and ProQuest), 

conduct manual search, and contact experts. Accordingly, it is likely that we have missed some 

studies. 

The current review excluded several papers as they were not primary studies. Therefore, this 

review may miss several chatbots reported in proposals, book chapters, and conference 
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abstracts. Different taxonomies are available for classifying conversation agents. Therefore, 

we adapted several taxonomies [28-30] to characterise the chatbots in our review.  

4.3 Practical and research implications 

4.3.1 Practical implications 

We have summarised here a list of different chatbots for different mental health disorders. 

Healthcare professionals can use this list to help potential users to identify the most appropriate 

chatbot for their mental health.  

Relatively few chatbots in our review targeted patients with schizophrenia, dementia, phobic 

disorders, stress, and eating disorders. Also, no chatbots targeted patients with obsessive-

compulsive disorder and bipolar. Therefore, chatbots’ developers should develop more 

chatbots that target the above-mentioned disorders. 

The current review identified relatively few chatbots implemented on a web-based platform 

despite its advantages mentioned in Section 4.1. We recommend chatbots’ designers to 

consider using a web-based platform. Latest statistics showed that there are more than 4.437 

billion internet users around the world in April 2019, with a growth rate of 8.6% over the last 

12 months [49]. This indicates that web-based chatbots can be accessible to a vast number of 

users.  

Although artificial intelligence chatbots can generate replies to complicated questions and 

enable users to lead the conversation, they were relatively few in mental health. Artificial 

intelligence chatbots depend on natural language processing to understand the context and 

intent of a question and to respond to it [42, 43]. Further, they mainly use machine and deep 

learning to learn from gathered data and continuously improve their performance and responses 

[42, 43]. Artificial intelligence chatbots also need large health databases and corpora in order 

for them to be trained [50]. Given the advancements in machine and deep learning and natural 
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language processing and growing availability of large health databases and corpora [51, 52], 

developers should endeavour to build more artificial intelligence chatbots. Although artificial 

intelligence chatbots are prone to errors, such errors can be minimised and diminished by 

extensive training and more use [41, 42].  

In our review, only 4 chatbots were implemented in developing countries. Developing 

countries have more shortage of mental health professionals than developed countries (0.1 per 

1,000,000 people vs. 9 per 100,000 people) [7, 8], thereby, people in developing countries may 

be more in need of chatbots than those in developed countries. Developers should implement 

more chatbots in developing countries if the already implemented chatbots show their 

effectiveness.  

4.3.2 Research implications 

Our review showed that less than half of effectiveness studies (14 of 33) used randomised 

controlled trials. Given that randomised controlled trials are considered the most appropriate 

design for effectiveness studies [53, 54], researchers should conduct more randomised 

controlled trials to assess the effectiveness of chatbots in mental health. The sample size was 

very small (<50) in more than half of the studies, and many studies recruited non-clinical 

samples. We recommend future studies to recruit large clinical samples in order to increase the 

generalisability of the findings. 

Few studies have assessed the adoption of chatbots, and none of the studies assessed the factors 

that affect users’ adoption of them. It is well known that identifying factors that influence use 

of chatbots is very essential to improve their implementation success [55, 56]. Researchers 

should examine the factors that affect use of chatbots in mental health. 

The included studies were inconsistent in how outcomes are measured (e.g. usability, severity 

of depression, and users’ satisfaction). For example, while some studies assessed the usability 
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of chatbots as a whole, other studies assessed the usability of specific components of chatbots 

(e.g. speech synthesis & dialogue management). Further, different usability questionnaires 

were used by those studies. To ease the interpretation of studies’ results and compare between 

chatbots, researchers should standardise measures of the same outcomes.  

The included studies were also inconsistent in reporting characteristics of chatbots, study 

methods, and characteristics of the sample. For example, it was challenging for the reviewers 

to identify chatbots’ platforms, their input and output modality, type of response generation, 

and dialogue initiative. There are several reporting guidelines for researchers, such as the 

Consolidated Standards of Reporting Trials of electronic and mobile health applications and 

online telehealth (CONSORT-EHEALTH) [57] and the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) Statement [58]. In addition that such 

guidelines improve reporting of studies, they enable readers to assess the quality of studies, 

combine their results, and compare between interventions [29]. Future research should be 

reported according to guidelines appropriate for its aim and study design. Further, researchers 

should enable readers to access the chatbot, or provide images of its main features.  

The current scoping review did not summarise the results of included studies for two reasons. 

The first, this review aimed to identify the main features of chatbots in mental health and the 

research activity in this field, thereby, helping researchers in identifying and prioritising the 

main gap in the literature. The second, this review included a large number of studies, which 

assessed different outcomes, thereby, summarising their results for each outcome in one review 

is not practical. Hence, we encourage researchers to conduct systematic reviews to summarise 

the results of the studies for each outcome. Further, future systematic reviews should focus on 

acceptability and effectiveness of the chatbots because there are numerous studies assessed 

those outcomes (more than 33 studies) and, to the best of our knowledge, findings of those 

studies were not summarised by systematic reviews. 
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5 Conclusion 

We identified 41 different chatbots in mental health. Most chatbots were rule-based, 

implemented in stand-alone software, initiated the dialogue, contained embodiment, focused 

on depression and autism, and implemented in developed countries. The most common use of 

chatbots was delivery of therapy, training, and screening. The most common input modality 

was writing language only, and the most frequently used output modality was a combination 

of written, spoken and visual languages. 

Research regarding chatbots in mental health is emerging, and this was apparent from 

publication year of studies (most studies were published in the last 9 years), lack of randomized 

controlled trials, and the inconsistency of the studies in terms of outcome measures and 

reporting of characteristics of chatbots and study design. Future studies should be consistent in 

measuring the outcomes and follow published guidelines to standardise their reporting. 
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Summary table 

Summary table 

What was already known on this topic: 

 Mental disorders are prevalent worldwide and are one of the most common causes of 

disability. 

 Chatbots may be useful tools for patients with mental disorders, especially those who 

are reluctant to seek mental health advice due to stigmatization. 

 Studies have been conducted to assess different aspects of using chatbots for mental 

health. 

What this study added to our knowledge: 

 There are numerous chatbots that are used for various mental disorders and purposes, 

have different platforms, types of response generation, types of dialogue initiative, 

input modalities, and output modalities. 

 Studies are inconsistent in how outcomes are measured, reporting of study design and 

of characteristics of chatbots.  
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